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ABSTRACT

Writing large amounts of data concurrently to stable storage is a

typical I/O pattern of manyHPCworkflows. This pattern introduces

high I/O overheads and results in increased storage space utiliza-

tion especially for workflows that need to capture the evolution of

data structures with high frequency as checkpoints. In this context,

many applications, such as graph pattern matching, perform sparse

updates to large data structures between checkpoints. For these

applications, incremental checkpointing techniques that save only

the differences from one checkpoint to another can dramatically

reduce the checkpoint sizes, I/O bottlenecks, and storage space uti-

lization. However, such techniques are not without challenges: it is

non-trivial to transparently determine what data has changed since

a previous checkpoint and assemble the differences in a compact

fashion that does not result in excessive metadata. State-of-art data

reduction techniques (e.g., compression and de-duplication) have

significant limitations when applied to modern HPC applications

that leverage GPUs: slow at detecting the differences, generate a

large amount of metadata to keep track of the differences, and

ignore crucial spatiotemporal checkpoint data redundancy. This

paper addresses these challenges by proposing a Merkle tree-based

incremental checkpointing method to exploit GPUs’ high memory

bandwidth and massive parallelism. Experimental results at scale

show a significant reduction of the I/O overhead and space utiliza-

tion of checkpointing compared with state-of-the-art incremental

checkpointing and compression techniques.
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1 INTRODUCTION

One fundamentally enabling I/O pattern of HPCworkflows is check-

pointing. It involves many processes, distributed in groups over a

large number of compute nodes (e.g., one process per GPU), that

need to simultaneously capture important data structures at critical

moments during runtime and save persistent checkpoints of these

data structures durably to revisit them later. Traditionally, check-

pointing has been the leading enabler of resilience for HPC work-

flows: applications take checkpoints periodically during runtime

and restart from the latest checkpoint in case of failures to minimize

the number of lost computations (at the expense of checkpointing

overheads). Over time, checkpointing has found broad applicability

in other scenarios: batch job preemption [7] (e.g., to make room

for higher priority on-demand jobs without losing computational

progress), job migration [27], adjoint computations and automated

differentiation methods that generate intermediate states during

a forward pass and revisit them in a backward pass [35], explor-

ing alternative computational paths (e.g., sensitivity analysis of AI

models using variations of training data starting from a common

initial training) [28], and the study of reproducibility by capturing

and comparing intermediate results during different runs. Under

such circumstances, checkpointing is more challenging for two rea-

sons: (1) there is a need to store the entire checkpoint record into a

lineage [18] (not just the latest checkpoint); and (2) the checkpoint-

ing frequency is significantly higher than in the case of resilience

(e.g., checkpoint intervals of 10ms are common in adjoint compu-

tations [13] and reproducibility, as opposed to resilience, where

checkpoint intervals are correlated with the mean time between

failures and are the order of hours).

The need to reduce I/O overheads and space utilization

of checkpointing:With the ever-increasing computational and

data processing capabilities of HPC workflows, the push towards

Exascale has resulted in HPC systems made of thousands of com-

pute nodes, each equipped with many-core CPUs and several GPUs.

Such systems are complemented by a heterogeneous storage stack

that includes deep local memory hierarchies (e.g., high bandwidth
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memory, volatile host memory, persistent memory, NVMe-enabled

flash storage) and external data repositories (e.g., parallel file sys-

tems). Traditionally, checkpointing has been performed by direct

writes to the external repository, which blocks the application for

the duration of checkpointing. In this case, at a large scale, many

processes distributed on the compute nodes (typically one process

per GPU) compete for a limited I/O bandwidth. This introduces

large I/O overheads and therefore increases the end-to-end runtime.

Even in the case of resilience, where the checkpointing frequency is

low, I/O overheads are significant enough to warrant asynchronous

multi-level checkpointing methods [21]: the processes write the

checkpoints to the fastest local memory (e.g., GPU memory), then

let the application continue running, while in the background they

flush the checkpoints asynchronously to slower memory tiers and

eventually the external repository. However, at high checkpointing

frequency, such methods have two limitations: (1) there is only

a limited amount of spare space available on the fastest memory

tiers to cache checkpoints, so the HPC workflow may be delayed

if it produces new checkpoints faster than they can be flushed to

slower memory tiers; and (2) since the entire checkpoint record

needs to be persisted, its accumulated size may quickly explode to

large sizes and produce unacceptable resource utilization, even if

performance considerations were not a concern. Thus, there is a

need to simultaneously reduce both the I/O overheads and space

utilization of checkpoints.

Limitations of state-of-art: One strategy that simultaneously

achieves both goals is data reduction. The key idea is simple: if

we can reduce the sizes of the checkpoints, they are both faster to

flush to slower memory tiers, and they occupy less space simulta-

neously. In this regard, many compression techniques have been

proposed, both lossy [30] and lossless [9]. They aim to solve a trade-

off between fidelity compared with the original checkpoint data,

compression ratio, and compression throughout. Not all compres-

sion algorithms are feasible for reducing I/O overheads. In this case,

the I/O overhead is the sum between the compression and flush

overhead, which means that compression reduces the I/O overhead

only if it is faster than the duration of flushing the difference be-

tween the original and the compressed size. Even if compression

may effectively reduce the I/O overheads and space utilization of

individual checkpoints, in our case, we are interested in the en-

tire checkpoint record. Under such circumstances, it is often the

case that the checkpointed data changes only partially from one

checkpoint to another. For example, graph applications use data

structures that are very sparsely updated [16]. Thus, additional

opportunities exist to take advantage of specialized data reduc-

tion techniques for checkpoints that evolve in time. Incremental

checkpointing techniques aim to do so by means of dirty data track-

ing (i.e., detect what data was touched since the last checkpoint)

or de-duplication [2, 6, 17, 24, 29]: save a full checkpoint initially,

then save only the differences later. However, such techniques are

either slow at detecting the differences, generate a large amount

of metadata to keep track of the differences, or ignore important

spatiotemporal checkpoint data redundancy (e.g., checkpoint data

duplicated in a different checkpoint at a different position). Fur-

thermore, the checkpointed data is typically generated on GPU

memory, which has additional limitations compared with the host

memory of compute nodes, and therefore limits the applicability of

some incremental checkpointing techniques (e.g., based on dirty

memory page tracking).

Contributions: To address the limitations mentioned above, in

this paper, we propose a novel incremental checkpointing method

that: (1) identifies and de-duplicates repeating patterns across the

checkpoints of the entire checkpoint record; (2) extracts a compact

metadata representation of these repeating patterns; (3) serializes

the differences and the compact metadata representation efficiently

into host memory for asynchronous transfer to other storage tiers;

and (4) takes advantage of modern GPU accelerators to scale to

tens of thousands of GPU cores. To this end, we propose a Merkle

tree-based [15] de-duplication method that achieves a high data re-

duction throughput and rate, effectively reducing the I/O overheads

and space utilization.

We summarize our contributions as follows. First, we introduce a

series of design principles that are at the core of ourmethod: (1) iden-

tify repeating data chunks at fine granularity (hundreds of bytes)

through hashing that leverages spatial and temporal redundancy

across the entire checkpoint record; (2) coalesce such contiguous

chunks into a hierarchic set of repeating non-overlapping patterns

that are matched against the entire checkpoint record to obtain

a compact metadata representation; (3) collect and assemble the

compact metadata and unique chunks into a separate contiguous

GPU buffer that is optimized for transfer to the host memory; and

(4) leverage fused GPU kernels that feature massive parallelism

and low latency and synchronization overheads in order to achieve

high scalability (Section 2.1). Second, we propose highly parallel

algorithms based on the above design principles. In particular, we

zoom on the aspect of how to coalesce contiguous chunks into

a hierarchic set of repeating overlapping patterns efficiently in

parallel by leveraging the structure of Merkle trees (Section 2.2).

Third, we illustrate how to implement our algorithms by proposing

a research prototype that leverages Kokkos performance-portable

abstractions, which generalize our method to various GPU accelera-

tors (Section 2.4). We demonstrate the benefits of our solution for a

real-life graph application using extensive experiments at scale for

a variety of graphs. The results show our solution reduces the I/O

overhead and space utilization of checkpointing by up to orders of

magnitude compared with state-of-art incremental checkpointing

and compression techniques (Section 3).

2 SYSTEM DESIGN

This section introduces our approach. A high-level overview is

depicted in Figure 1.

Figure 1: Our method in a nutshell: each process performs

de-duplication on its own GPU.
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2.1 Design Principles

De-duplication of data chunks using fine-grain hashing that

is spatiotemporal agnostic: We assume an HPC workflow in

which processes are co-located on the same compute node, each

assigned to a dedicated GPU. In this case, each process produces

a checkpoint record with high frequency directly into the GPU

memory. Since the spare GPU memory available for checkpointing

is limited, we cannot afford to hold the entire checkpoint record in

the GPU memory, even if we apply an incremental checkpointing

technique that stores only the differences. Furthermore, even if

we had enough free space on the GPU memory to hold the entire

checkpoint record, it is not feasible to compare a new checkpoint

with all previous checkpoints in the historical record to identify the

differences. Thus, we propose a hash-based method that splits a new

checkpoint into fine-grain chunks (in the order of tens or hundreds

of bytes), then hashes each chunk to produce a set of unique chunk

hashes, which can be compared with the accumulated set of unique

chunk hashes of the checkpoint record to identify the data chunks

that are unique to the new checkpoint. Using this method, a chunk

must be stored only the first time it is encountered, regardless of

how many times it appears again in the same checkpoint (spatial

duplication) or future checkpoints (temporal duplication). Although

such methods have been proposed before in the context of incre-

mental block storage [14], we operate directly in the memory of

GPU accelerators, which introduces additional challenges. First, un-

like storage systems, we cannot afford to access a separate metadata

repository with a historical record of unique hashes due to high I/O

latency. Therefore, we propose to keep a distinct record for each

process in the GPU memory. Second, as the historical record of

unique hashes grows over time, there is a need for efficient indexing

and lookup techniques that are GPU-optimized. To this end, we

leverage specialized hash tables, as detailed in Section 2.4.

Compact hierarchic representation of contiguous repeat-

ing patterns using Merkle tree-based metadata: A GPU-

optimized data structure that holds the entire checkpoint record of

unique chunk hashes enables us to identify a minimal set of chunks

representing the difference between new and older checkpoints.

However, this set may be very large since we are using fine-grain

chunk sizes. Consequently, storing naivemetadata about the chunks

(e.g., an entry for each chunk that identifies the checkpoint ID and

offset where it first occurred) quickly leads to an explosion of the

metadata size, which may dramatically reduce the space savings,

even if the difference is negligible. On the other hand, it is essential

to note that the chunks may form large contiguous regions that re-

peat both within the same checkpoint and across past checkpoints.

Therefore, there is an opportunity to reduce the metadata sizes

by identifying and leveraging such contiguous regions directly. To

this end, we propose a hierarchical Merkle tree-based [15] method

that stores hashes corresponding to different arrangements of non-

overlapping adjacent regions in the historical record of unique

hashes (bound by up to two times more hashes than the naive

method) to identify a close to a minimum number of contiguous

regions that cover the difference. Using this method, the metadata

size can be dramatically reduced under the right circumstances, as

we only need to store the difference between the checkpoint ID and

offset where an entire region appeared the first time. To this end,

we introduce a specialized algorithm detailed in Section 2.2.

Efficient combined serialization of metadata and unique

chunks as a consolidated difference optimized for transfer

to host memory: Once we have identified the smallest set of re-

gions and unique chunks that make up the difference, we need to

consolidate the data and metadata into the host memory to obtain

a single checkpoint object that can be flushed asynchronously fur-

ther down the storage hierarchy. However, these unique chunks

may be scattered all over the GPU memory, especially if the de-

duplication is effective and the difference is negligible. Therefore,

a naive strategy that initiates transfers of individual chunks from

the GPU memory to the host memory suffers significant I/O band-

width degradation since it involves non-trivial latencies to set up

the transfer, not to mention cache misses. Therefore, we propose

serializing the metadata and the unique chunks into a consolidated

difference directly on the GPU memory. Then, for the consolidated

difference, initiating a single device-to-host data transfer is enough,

which can take advantage of the full PCIe bandwidth that links

the GPU memory with the host memory. Even if the consolidation

leverages high GPU-to-GPU memory bandwidth, it is non-trivial

because it needs to consider coalesced memory accesses that occur

when concurrently running threads access memory close to each

other. Doing so allows the hardware to predict and retrieve data

ahead of time. Cache hierarchies are also better utilized. To this end,

we design a specialized serialization method that pre-calculates

offsets in the consolidated difference and assigns GPU threads to

parallelize the data transfers by the observations above.

Fused GPU kernels for optimal massive GPU parallelism: Without

taking advantage of the massive parallelism of GPUs, even simple

steps in our method, such as hashing the data chunks or performing

GPU memory accesses and GPU-to-GPU data transfers, are time-

consuming and lead to large overheads. Therefore, our method

needs to scale to a large number of GPU cores, which are on the

order of ten thousand on modern GPUs. However, this is non-trivial

because hashing of data chunks, indexing, and lookup in the hash

historical record, generating compact metadata representations,

and consolidating checkpoint differences are complex operations

with tight dependencies. Therefore, it is not enough to reason about

these aspects as independent steps that can be parallelized using

separate GPU kernels, as such a naive method would introduce

unacceptable latencies associated with submitting and executing

new kernels. To address this issue, we propose to use a single

fused kernel that takes advantage of containers and abstractions

offered by performance portability abstractions such as Kokkos to

parallelize the execution into related łwaves” that ensure the work

is evenly distributed and maximizes coalesced memory accesses

without delays between waves, as detailed in Section 2.4.

2.2 Zoom on Merkle Tree-based Compact
Metadata

We propose a heuristic algorithm to identify a close to a minimal

number of non-overlapping contiguous regions that fully describe

the difference between a new checkpoint and all previous check-

points in the checkpoint record. Using this method, in addition to

the unique chunks encountered in the latest checkpoint, we only

need to store a small amount of enough metadata to restore the

checkpoint later fully.
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Specifically, we assume the fine-grain chunks are the leaves of a

(potentially incomplete) binary tree. Then, we compute the hashes

not only for the leaves but also in a bottom-up fashion for the

intermediate tree nodes by hashing the left child’s hash with the

right child’s hash, similar to Merkle trees. We only go one level up

if the hash of the left and right child were found in the historical

record of unique hashes and represent a contiguous region that can

be consolidated. If this is the case, the new region is added to the

historical record of unique hashes. Then, we collect the intermediate

nodes that were touched by this process and are the closest to the

tree’s root. This yields a compact representation of the checkpoint

difference, both with respect to the new chunks encountered the

first time and the reused chunks from previous checkpoints.

Figure 2: Example of compact metadata representation. Our

method reduces the metadata amount from 7 entries to 3

entries compared with a naive method.

To understand why the method works, consider an example

depicted in Figure 2. The checkpoint historical record includes

a single first checkpoint that was taken fully and the historical

record of unique hashes consists of all possible non-overlapping

regions corresponding to the intermediate nodes 0-14. Then, a

second checkpoint is taken, and the new chunk 11 is identical to

the previous chunk 11 (which we refer to as fixed duplicate). In

contrast, chunk 12 is identical to another previous chunk from the

first checkpoint other than 12 (whichwe refer to as shifted duplicate).

All other chunks between the first and second checkpoints are

different.

The algorithm works as follows. First, we hash the chunks of

the second checkpoint and insert any new hashes into the histori-

cal record of unique hashes, which results in four inserts 𝐼 , 𝐽 , 𝐾, 𝐿,

referred to as first-time occurrences. Note that chunks 13 and 14

are identical to chunks 7 and 8. Even though they belong to the

second checkpoint, they are still marked as shifted duplicates, just

like chunk 12. Chunks 11 and 12 are the only ones that form two

non-contiguous regions that cannot be consolidated. Therefore,

we stop. For all other leaves, we go one level up. We consolidate

chunks 7 and 8 into region 3 and chunks 9 and 10 into region 4.

Both region 3 and region 4 are added to the historical record of

unique hashes. Then we consolidate chunks 13 and 14 into region

6. Since the hash of region 6 is identical to the hash of region 3,

which already is in the historical record of unique hashes, the entire

region 6 is marked as a shifted duplicate. The process continues

only for regions 3 and 4, which can now be consolidated into re-

gion 1, also inserted in the historical record of unique hashes. We

obtain the compact metadata representation of the difference as a

set of three non-overlapping regions: 1, 12, 6. We can omit chunk

11 from the difference since it remains unchanged from the first

checkpoint. Finally, we obtain a mix of metadata describing the

first-time occurrences and shifted duplicates, followed by the chunk

content corresponding only to the first-time occurrences. Using

this method, we save only three metadata entries compared with

the naive method that saves a metadata entry for each non-fixed

duplicate chunk (referred to as the List method). Now the compact

metadata and new unique chunks are ready to be serialized and

transferred to the host memory.

Algorithm 1 De-duplication using compact metadata.

Input: 𝐶ℎ𝑢𝑛𝑘𝑠,𝑇𝑟𝑒𝑒, 𝐿𝑒𝑎𝑣𝑒𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, 𝑀𝑎𝑝
1: for all 𝑙𝑒𝑎𝑓 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠 do in parallel
2: 𝑑𝑖𝑔𝑒𝑠𝑡 ← Hash(𝐶ℎ𝑢𝑛𝑘 (𝑙𝑒𝑎𝑓 ))
3: if 𝑑𝑖𝑔𝑒𝑠𝑡 == 𝑇𝑟𝑒𝑒 (𝑙𝑒𝑎𝑓 ) then
4: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIXED_DUPL
5: else
6: 𝑒𝑛𝑡𝑟𝑦 ← (𝑙𝑒𝑎𝑓 , 𝑐ℎ𝑘𝑝𝑡𝐼𝐷)
7: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ←𝑀𝑎𝑝 .insert(𝑑𝑖𝑔𝑒𝑠𝑡 ,𝑒𝑛𝑡𝑟𝑦)
8: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
9: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIRST_OCUR
10: else if not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
11: (𝑙𝑒𝑎𝑓𝑜𝑙𝑑 , 𝑐ℎ𝑘𝑝𝑡𝐼𝐷𝑜𝑙𝑑 ) ←𝑀𝑎𝑝[𝑑𝑖𝑔𝑒𝑠𝑡]
12: 𝑠𝑎𝑚𝑒𝐼𝐷 ← 𝑐ℎ𝑘𝑝𝑡𝐼𝐷𝑜𝑙𝑑 == 𝑐ℎ𝑘𝑝𝑡𝐼𝐷
13: if 𝑙𝑒𝑎𝑓 < 𝑙𝑒𝑎𝑓𝑜𝑙𝑑 && 𝑠𝑎𝑚𝑒𝐼𝐷 then
14: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓𝑜𝑙𝑑 ) ← SHIFT_DUPL
15: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIRST_OCUR
16: 𝑙𝑒𝑎𝑓𝑜𝑙𝑑 ← 𝑙𝑒𝑎𝑓
17: else
18: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← SHIFT_DUPL
19: end if
20: end if
21: 𝑇𝑟𝑒𝑒 (𝑙𝑒𝑎𝑓 ) ← 𝑑𝑖𝑔𝑒𝑠𝑡
22: end if
23: end for
24: for 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑇𝑟𝑒𝑒 do
25: for all 𝑛𝑜𝑑𝑒 ∈ 𝑙𝑒𝑣𝑒𝑙 do in parallel
26: if 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟 are FIRST_OCUR then
27: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑛𝑜𝑑𝑒) ← FIRST_OCUR
28: 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ← Hash((𝑇𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑙 , 𝑐ℎ𝑖𝑙𝑑𝑟 ))
29: 𝑀𝑎𝑝 [𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒)] ← (𝑛𝑜𝑑𝑒, 𝑐ℎ𝑘𝑝𝑡𝐼𝐷)
30: end if
31: end for
32: end for
33: for 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑇𝑟𝑒𝑒 do
34: for all 𝑛𝑜𝑑𝑒 ∈ 𝑙𝑒𝑣𝑒𝑙 do in parallel
35: if 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑐ℎ𝑖𝑙𝑑𝑙 ) ≠ 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑐ℎ𝑖𝑙𝑑𝑟 ) then
36: save roots 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟
37: else if 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟 are SHIFT_DUPL then
38: 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ← Hash(𝑇𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑙 ), 𝑡𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑟 ))
39: if 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ∈ 𝑀𝑎𝑝 then
40: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑛𝑜𝑑𝑒) ← SHIFT_DUPL
41: else
42: save roots 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑_𝑟
43: end if
44: end if
45: end for
46: end for
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Algorithm 1 lists the pseudocode corresponding to our metadata

compactionmethod in greater detail. The historical record of unique

hashes is denoted𝑀𝑎𝑝 [ℎ𝑎𝑠ℎ], while 𝑇𝑟𝑒𝑒 [𝑛𝑜𝑑𝑒] and 𝐿𝑎𝑏𝑒𝑙 [𝑛𝑜𝑑𝑒]

are temporary data structures that hold the hashes of leaves (inter-

mediate nodes) and, respectively the type of the region covered by

each leaf (intermediate node). Identical labels mean a region can be

consolidated.

According to the design principle that aims at leveraging the

massive parallelism offered by GPUs, we parallelize this algorithm

level-by-level. However, to avoid a situation where shifted dupli-

cates are hashed faster than first-time occurrences (which leads to a

missing entry in the historical record of unique hashes and therefore

missed de-duplication opportunities), we perform the paralleliza-

tion in two stages: first, we process the sub-trees corresponding

to the first-time occurrences, then we process the sub-trees corre-

sponding to the shifted duplicates.

To restore a checkpoint from the differences, it is enough to

start from the first-time occurrences, then fill the fixed duplicates

and finally assemble the shifted duplicates from the corresponding

checkpoint ID (which can be a previous checkpoint or the current

checkpoint to be restored).

2.3 Architecture

Figure 3: Architecture of multi-level asynchronous check-

pointing that integrates our GPU-accelerated de-duplication.

Figure 3 depicts the general architecture of an asynchronous

checkpointing that integrates with our GPU-accelerated method.

Each compute node features multiple GPUs. A large number of

compute nodes compete for the I/O bandwidth of an external repos-

itory, typically a parallel file system. Each application process uses

a dedicated GPU and stops during checkpointing to perform the

de-duplication on the GPU according to the steps illustrated in

Figure 1. Then, it transfers the consolidated difference to the host

memory and resumes the computations. From this point forward,

an asynchronous multi-level checkpointing runtime flushes the

differences stored in the host memory down the storage hierarchy

(local storage, parallel file system). Since each process maintains its

own record of unique hashes on its GPU, the only bottleneck is the

competition for PCIe bandwidth between the GPUs when transfer-

ring the differences. This competition is nevertheless much lower

compared with the case when the full checkpoints are transferred

to the host memory, in which case much larger sizes are involved.

Furthermore, intermediate storage tiers like host memory and local

SSDs are filling up slower, which helps amortize the competition

for the I/O bandwidth of the parallel file system. Ultimately, this

leads to better utilization of the entire storage hierarchy and lower

I/O overheads, in addition to storage space savings.

2.4 Implementation

Our implementation builds on performance portable abstractions

that enable efficient massive parallelization into fused kernels while

offering optimized implementations of GPU-aware hash tables

(used to maintain the historical record of unique hashes).

Parallelization with Kokkos:We implement our method us-

ing the Kokkos performance portability framework [32] for par-

allel execution on CPUs and GPUs. Kokkos includes several ex-

ecution and data structure abstractions for developing scalable

applications. We use the UnorderedMap provided by Kokkos. The

UnorderedMap is designed to handle thousands of concurrent in-

sertions. The map is lock-free and minimizes the use of atomic

operations. This performance-focused design is important for cal-

culating and identifying differences between thousands of hashes.

Kokkos provides flexible parallel execution constructs that allow

direct control of work division. The ability to control which chunks

are assigned to which threads and in what order greatly impacts

performance, as outlined in the subsequent sections. Merkle trees

are complete binary trees, so we store them in a flattened array and

identify parent-child relationships using simple formulas based on

the offset in the array. This simplifies tree search and management

on the GPU, as the array format does not waste space on unused

pointers.

Efficient hash calculation using GPUs: We use the 128-bit

Murmur3 [1] hash function for comparing chunks. Murmur3 is a

common non-cryptographic hash function used for hash tables. A

fast hash function such as Murmur3 is necessary to maximize de-

duplication throughput. Slow cryptographic hash functions such

as MD5 [26] would introduce a bottleneck. To efficiently leverage

the GPUs hardware, we structure the code such that successive

threads compute hashes for successive chunks. By doing so, we

ensure that the stride between memory accesses is reduced. Reduc-

ing the stride decreases the number of memory accesses to global

memory, speeding up the hash calculation. Optimized memory ac-

cess patterns are necessary to utilize the GPU’s bandwidth and

computational capabilities fully. This is particularly true for hash-

ing data since the computational cost of Murmur3 is already low.

Our method may compute and store up to twice the number of

hashes in the historical record of unique hashes since the number

of intermediate nodes is equal to the number of leaves minus one.

However, this is a worst-case scenario encountered only when the

checkpointed data fully changes during the checkpoint interval.

This can be easily detected, and incremental checkpointing can

be deactivated accordingly. Conversely, when the checkpointed

data remains unchanged between checkpoints, our method may

calculate intermediate nodes unnecessarily. This may be mitigated

by adopting a top-down method. Another important aspect is the

size of the chunks, which needs to be larger than double the size of

the hash values. In our case, each Murmur3 hash digest is 16 bytes:

so long as the chunk size exceeds 32 bytes, the cost of computing

an inner node is lower than that of a leaf node. This represents a

trade-off: hashing smaller chunks of data improves the memory

access pattern by reducing the stride between memory accesses, but
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increases the number of inner nodes. Thanks to compact metadata

representation, the latter aspect is of lesser concern. Finally, we did

not consider hash collisions. If hash collisions are a concern, they

can be mitigated by using a cache of chunks that can be directly

compared in parallel with the metadata compaction.

High throughput serialization of scattered chunks: As with

hash calculation, optimizing memory accesses for gathering scat-

tered chunks is important in order to obtain high GPU-to-GPU

transfer throughput for the serialization of the consolidated check-

point difference. Rather than having each thread copy a different

chunk, we use a team of threads to copy each chunk into the con-

tiguous buffer. This ensures that memory accesses coalesce and

memory bandwidth utilization is maximized. Without such opti-

mizations, even if the transfer from the GPU to the host memory

is accelerated due to contiguity, this benefit would be negated by

poor serialization throughput.

3 EVALUATION

3.1 Setup

We perform our tests on two supercomputers at Argonne National

Laboratory’s Leadership Computing Facility (ALCF): ThetaGPU

and Polaris. Theta GPU is a DGX A100-based system comprised of

24 NVIDIA DGX A100 nodes, each with eight NVIDIA A100 Tensor

Core GPUs and two AMD EPYC 7742 64-core CPUs. Memory-wise,

each node is equipped with 1 TB of DDR4 and 320 GB GPUmemory

for 24 TB DDR4 and 7.6 TB GPU memory. The nodes are intercon-

nected using 20 Mellanox QM9700 HDR200 40-port switches wired

in a fat-tree topology. External storage is provided by a Lustre

parallel file system, which is mounted using POSIX and provides

an aggregated I/O bandwidth of 250 GB/s. Polaris is a 560-node

HPE Apollo 6500 Gen 10+ system. Each node consists of an AMD

32-core EPYC 7543P CPU, 4 A100 GPUs, 512 GB of DDR4, two 1.6

TB SSDs, and 4 A100 GPUs. The nodes are connected using the

Slingshot 10 network. The number of processes tested ranges from

a single process to 64 processes. Each process has its own GPU and

is isolated from the other processes.

3.2 Methodology

This section outlines the experimental procedures for evaluating

our work. The use case, state-of-the-art, performance metrics, ex-

perimental scenarios, and input data are shown in detail.

Application use case: Our driver application for the experi-

mental evaluation is ORbit ANd Graphlet Enumeration at Scale

(ORANGES), a parallel graph application that takes a graph as an

input and computes each vertex’s graphlet degree vector (GDV) in

order to enable graph matching. A graphlet is an induced subgraph

of a small number of vertices. A graphlet degree vector can be

seen as a generalization of the degree concept [31]. The degree of a

vertex represents the number of times a vertex is part of an edge.

The graphlet degree vector represents the number of times a ver-

tex is part of different graphlets, with one entry for each graphlet.

GDVs are used for graph-matching applications, such as in compar-

ing phylogenetic networks in bioinformatics and comparing event

graphs in large-scale HPC applications. We create the GDV on all

two to five vertices graphlets. Each vertex in the graph is associated

with a vector of size 72, representing the different positions (or or-

bits) of the vertex in the 30 possible graphlets (more details on the

graphlets and orbits are given in [10]). For each vertex in the graph,

we identify the graphlets associated with it and its different orbits

in the graphlets. Based on this calculation, we increase the count of

each orbit in GDV associated with the vertex. If the graph is sparse,

then the GDV is also sparse, as not all graphlets are formed. For

example, triangles are rarely formed in event graphs representing

communications in HPC simulations and in almost planar road

graphs. Due to this, only 10 possible 30 graphlets are formed fre-

quently, and the remaining 20 very rarely, if at all. Graphs will also

have repeated substructures which can result in some GDVs being

similar to others. The updated pattern depends on the input graph,

simplifying the exploration of different patterns. These characteris-

tics make ORANGES a good candidate to showcase the benefits of

our work.

Compared state-of-the-artmethods:We compare ourmethod

(henceforth denoted Tree) with a baseline checkpointing method

that always stores a full checkpoint (denoted Full). Additionally,

we implemented a Basic incremental checkpointing method that

breaks the checkpoint into chunks, hashes the chunks, then builds

a bitmap to indicate what chunks are new and what chunks remain

unchanged. It saves the bitmap and the new chunks. Furthermore,

we implemented a List method that is identical to ourmethod except

for the metadata compaction, which is omitted. Instead, a full list of

all first-time occurrences and shifted duplicates is stored along the

new chunks. For fairness, both the Basic and List methods benefit

from the same massive parallelization optimizations introduced

by our method. Furthermore, we use several lossless compression

algorithms included with the open-source nvCOMP [22] library

provided by NVIDIA. Since our application counts graphlets and

needs an exact output for correctness, lossy compression is not

applicable.

Metrics:We focus on two metrics when evaluating our work;

data de-duplication ratio and de-duplication throughput. The de-

duplication ratio is measured as the size of the full checkpoints

divided by the size of the de-duplicated checkpoints. Higher ratios

indicate greater space savings. Throughput is calculated as the size

of the original data divided by the time it takes to create and copy

the incremental checkpoint from the GPU to the host memory. In

the case of Full, this measures the GPU to host flush throughput.

In the case of the other methods, the de-duplication throughput

includes both the overhead of compression/de-duplication and the

overhead of GPU-to-host transfers.

Experimental scenarios:We present three scenarios that exam-

ine different factors affecting our method versus existing methods.

The first scenario studies the impact of chunk size on de-duplication

performance. Chunk size determines the de-duplication granularity,

which directly affects checkpoint size reduction and the computa-

tional overhead of checkpointing. We vary the chunk size from 32

to 512 bytes and compare our method with the Full, Basic, and List

method in terms of data de-duplication ratio and de-duplication

throughput. This scenario leverages a single GPU. The second sce-

nario investigates how the benefits of de-duplication accumulate as

the checkpointing frequency increases. Specifically, we capture a

full initial checkpoint, then another 𝑁 − 1 incremental checkpoint

that is evenly distributed during the runtime 𝑅 (i.e., we use a fixed
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checkpoint interval 𝑅/𝑁 ). We vary 𝑁 from 5 to 20 and aggregate

the metrics for all captured checkpoints (excluding the first check-

point). Using this method, we can compare the results for different

input graphs that produce different runtimes (in the order of min-

utes). This scenario again leverages a single GPU. The last scenario

performs strong scaling tests. We vary the number of GPUs from 1

to 64 and take checkpoints every 10 minutes. At scale, for larger

dense graphs, the number of iterations rapidly increases, hence the

longer checkpoint interval. We focus on the comparison between

our Tree method and the Full method.

Input data: For the scenarios mentioned above, we use a set of

graphs with different complexities in terms of vertices and edges

(Tab. 1). Message Race, Unstructured Mesh, Asia OSM, and Huge-

bubbles are used for the single process tests, and Delaunay is used

for the scaling test. The Message Race and Unstructured Mesh sce-

Graph ∥𝑉 ∥ ∥𝐸∥ GDV size

Message Race 11,174,336 16,761,248 3.26 GB

Unstructured Mesh 14,418,368 21,627,296 4.21 GB

Asia OSM 11,950,757 25,423,206 3.49 GB

Hugebubbles 18,318,143 54,940,162 5.35 GB

Delaunay N24 16,777,216 100,663,202 4.9 GB

Table 1: Input graphs used for our tests. Delaunay N24 is used

for the scaling test.

narios are event graphs representing communication patterns in

HPC benchmarks. Asia OSM, Hugebubbles, and Delaunay N24 are

graphs from the SuiteSparse collection [3]. The event graphs are

more sparse than the graphs from SuiteSparse, with fewer dense

subgraphs. As noted later, this leads to improved results for the

event graphs.

Before running ORANGES, we pre-process the graphs by reorder-

ing the vertices using Gorder [36]. Gorder is a graph reordering

application that relabels a graph’s vertices to improve cache perfor-

mance while maintaining the graph’s topological structure. Gorder

uses an approximate greedy algorithm with a priority queue to

find a graph ordering where connected vertices are stored close

together. Keeping the vertices close together improves cache reuse

when operating on graphs and is a typical optimization applied by

the graph community.

3.3 Results

Figure 4 shows the impact of chunk size on the de-duplication ratio

and throughput for our Tree method versus Full, Basic, and List.

Figure 4a highlights the trade-offs when deciding chunk size

for the Message Race graph. With 64-byte chunks, our method

achieves a 5 times better de-duplication ratio than List (the best

among the compared methods). The List method sees a decline in

ratio with chunks smaller than 256 bytesÐlarge amounts of meta-

data cause the decrease. As the chunk size shrinks, more of the

checkpoint comprises metadata for tracking duplicate chunks. Our

method compacts the metadata, which allows smaller chunk sizes

without performance degradation. The throughput values suggest

that significant reductions in checkpoint sizes can overcome the

additional overheads of identifying compact metadata. Specifically,

our method shows superior throughput, matching the improved

de-duplication ratio performance. Throughput performance starts

to degrade with chunks smaller than 256 bytes, where the additional

overhead exceeds the benefits of smaller checkpoints. This behav-

ior is typical of all compared methods. Our Tree method benefits

the most from small chunk sizes, allowing smaller chunks without

decreasing throughput performance. Figure 4b shows similar per-

formance characteristics for the Unstructured Mesh graph as the

Message Race graph.

Figure 4c shows that it is more challenging to de-duplicate the

checkpoints for Asia OSM than Message Race or Unstructured

Mesh. The de-duplication ratio is lower for all methods. Our Tree

method only shows notable improvements with 32-byte chunks,

outperforming the other methods. Figure 4d shows the samemetrics

for Hugebubbles. Similar to Asia OSM, the Hugebubbles graph is

more challenging to de-duplicate. Despite the difficulty, we see

significant improvements with our Tree method with chunk sizes

of less than 128 bytes. With 64-byte chunks and smaller ones, we see

a 37% improvement in the de-duplication ratio and a 13% increase

in throughput.

Figure 5 shows how checkpoint frequency affects our method’s

de-duplication ratio and throughput compared with the state-of-art

techniques. We capture 5, 10, or 20 checkpoints at moments evenly

distributed during the runtime. The de-duplication ratio results in

Figures 5a- 5c demonstrate the benefits of using temporal informa-

tion for de-duplicating data. Increasing the checkpoint frequency

reduces the number of updates at each checkpoint. Fewer updates

and frequent checkpoints increase the temporal information our

method can leverage. However, this does not always compare fa-

vorably with compression. For example, our method has worse

de-duplication ratios than Zstd for all four graphs. Increasing the

number of checkpoints to 20 allows our Tree method to outperform

Zstd for all input data, even with the more difficult Asia OSM and

Hugebubbles graphs. This behavior is expected, as the compression

techniques are limited to individual checkpoints. We are using our

Tree method; taking 20 checkpoints results in a smaller total check-

point size for all graphs except Asia OSM, which sees only a 2%

Figures 5d- 5f show that throughput performance is less impacted

by increasing checkpoint frequency. Throughput increases for our

Tree method as well as for the List, and Basic methods, while the

compression techniques are unaffected. The improvements to the

Tree method range from 1.37×with the UnstructuredMesh to 2.77×

with the Hugebubbles graph.

Figure 6 shows the strong scaling results of the Full method

compared with our Tree method. The Delaunay N24 graph is the

input, and the number of GPUs varies from 1 to 64. Each process

checkpoints independently, but multiple GPUs copying data to a

shared CPU can impact performance. We measure the sum of the

first ten checkpoints for all processes. Throughput is measured by

taking the sum of 10 checkpoints and dividing it by the maximum

runtime spent on de-duplication across all processes. Figure 6a

shows the sum of total checkpoint sizes for ORANGES running the

Delaunay N24 graph. As the number of processes increases expo-

nentially, so does the checkpointed data. At 64 processes, we see a

215× reduction in total checkpoint size compared with Full: 4.33 TB

of checkpoints is reduced to 20 GB. The de-duplication through-

put is shown in Figure 6b. This indicates that our Tree method

has greater throughput than Full, and the throughput maintains or

improves as the number of processes increases. Since ORANGES
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(a) Message Race (b) Unstuctured Mesh

(c) Asia OSM (d) Hugebubbles

Figure 4: Impact of chunk size on de-duplication ratio and throughput for our method (Tree) vs. other incremental methods

(i.e., Full, Basic, and List) for the Message Race, Unstructured Mesh, Asia OSM, and Hugebubbles input graphs. Chunk size

ranges from 32 to 512 bytes.

is embarrassingly parallel (it finishes with a reduction of the inde-

pendently obtained results on each GPU), we did not perform a

full comparison at scale between all methods. We anticipate similar

trends compared with the single GPU experiments.

4 RELATED WORK

Incremental storage is a well-known technique to accelerate I/O

and to reduce storage space utilization. In addition to checkpoint-

ing, it is applied in many other scenarios: versioning and incre-

mental snapshots of file systems, virtual machine images, and

block devices. They use either dirty page (block) tracking or de-

duplication [6, 17, 33, 34] to identify incremental differences. Dirty

page tracking for host memory can be accelerated by the OS and

hardware using techniques such as user-level faults that avoid ex-

pensive context switches triggered by more conventional methods

that trap the SEGFAULT signal. However, dirty-page tracking re-

quires specialized kernel support and is unavailable on all platforms.

Furthermore, they are typically limited to memory page granularity

(e.g., 4 KB), which limits their de-duplication potential (e.g., single-

byte changes or writing identical data to the same address can mark

an entire page dirty). Such techniques are unavailable on GPUs

because the GPU drivers handle the memory virtualization fully

transparently [11, 12]. Complementary to incremental storage is

the problem of how to re-assemble checkpoints from differences,

which involves metadata organization, indexing and search tech-

niques [19, 20]. Several works focus on enabling checkpointing

for GPU applications [5, 8, 23, 25]. However, each has drawbacks.

Some works [8, 23] only perform essential temporal de-duplication.

Others [5, 25] only perform de-duplication at the page or variable

level. Methods such as libhashckpt [4] use a hybrid method with

multiple change detection systems to reduce the checkpoint size.

Another alternative to incremental checkpointing is checkpoint

compression, both lossless [9] and lossy [30]. Typical compression

algorithms prioritize decompression performance, assuming that

compression is a relatively infrequent operation, which does not

hold in our high-frequency checkpointing scenario. Furthermore,

many compression algorithms cannot leverage the temporal redun-

dancy of data that evolves in time.

5 CONCLUSIONS

This paper presents a scalable GPU-aware Merkle tree-based in-

cremental checkpointing method leveraging de-duplication to re-

duce the checkpoint sizes and increase the checkpointing through-

put simultaneously. To this end, we identify contiguous repeating

patterns across the entire checkpoint record, for which we elim-

inate the redundancy both at the data and metadata levels. We

use these fundamental ideas to improve the de-duplication ratio

and de-duplication throughput for graph-matching applications

by significant margins (up to orders of magnitude) compared with
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(a) De-duplication ratio for 5 checkpoints (b) De-duplication ratio for 10 checkpoints (c) De-duplication ratio for 20 checkpoints

(d) Throughput for five checkpoints (e) Throughput for 10 checkpoints (f) Throughput for 20 checkpoints

Figure 5: Impact of checkpoint frequency on de-duplication ratio and throughput for our method (Tree) vs. state-of-art (i.e.,

Full, Basic, and List) and several nvCOMP compression algorithms. Results are shown for 𝑁 = 5, 10, 20 checkpoints evenly

distributed during the runtime (which varies for each input graph).

(a) Total checkpoint size (b) De-duplication throughput

Figure 6: Strong scaling results with up to 64 GPUs using the Delaunay N24 input graph. Our method (Tree) achieves over two

orders of magnitude reduction in checkpoint size compared with Full and retains a high throughput at scale.

other incremental checkpointing methods. Unlike high-throughput

compression techniques, our method improves the de-duplication

ratio and throughput for an increasing checkpointing frequency,

resulting in a size of the checkpoint record up to 67× smaller. Fur-

thermore, our method shows excellent scalability for large graphs,

reducing the checkpoint sizes by two orders of magnitude and

increasing the checkpointing throughput by almost an order of

magnitude compared with full checkpoints. Such benefits are sig-

nificantly impacted in non-resilience scenarios where incremental

checkpoints are used to analyze intermediate results (e.g., repro-

ducibility efforts) or make progress (e.g., adjoint computations).

Encouraged by these results, in future work, we plan to address

several directions: evaluating the benefits of our method for other

classes of applications, such as adjoint computations; combining

our method with compression techniques to further reduce the

checkpoint sizes and increase the data reduction throughput (e.g.,

by compressing the first-time occurrences in the difference); stream-

ing methods that overlap de-duplication with transfers to the host
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memory; and scalable reconstruction techniques that efficiently col-

lect scattered compact regions from multiple previous checkpoints.

ACKNOWLEDGMENTS

This material is based uponwork supported by: the U.S. Department

of Energy (DOE), Office of Science, Office of Advanced Scientific

Computing Research, under Contract DE-AC02-06CH11357; the

National Science Foundation under Grants #1900888 and #1900765;

and the IBM Shared University Research Award at the University

of Tennessee. This manuscript has been authored by UT-Battelle

LLC under contract DE-AC05-00OR22725 with the US Department

of Energy (DOE). Sandia National Laboratories is a multi-mission

laboratory managed and operated by National Technology & En-

gineering Solutions of Sandia, LLC, a wholly owned subsidiary

of Honeywell International Inc., for the U.S. Department of En-

ergy’s National Nuclear Security Administration under contract

DE-NA0003525.

REFERENCES
[1] Austin Appleby. 2012. SMHasher & MurmurHash. Retrieved from

https://code.google.com/p/smhasher.
[2] Iván Cores, Gabriel Rodríguez, Mará J Martín, Patricia González, and Roberto R

Osorio. 2013. Improving Scalability of Application-Level Checkpoint-Recovery
by Reducing Checkpoint Sizes. New Generation Computing 31 (2013), 163ś185.

[3] Timothy A Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1ś25. https://doi.org/10.1145/2049662.2049663

[4] Kurt B Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian Arnold.
2011. libhashckpt: Hash-based Incremental Checkpointing Using GPU’s. In
European MPI Users’ Group Meeting. Springer, Santorini, Greece, 272ś281.

[5] Rohan Garg, Apoorve Mohan, Michael Sullivan, and Gene Cooperman. 2018.
CRUM: Checkpoint-Restart Support for CUDA’s Unified Memory. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, United
Kingdom, 302ś313.

[6] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. 2005.
Transparent, Incremental Checkpointing at Kernel Level: a Foundation for Fault
Tolerance for Parallel Computers. In SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. IEEE, Seattle, WA, USA, 9ś9.

[7] Paul H Hargrove and Jason C Duell. 2006. Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters. In Journal of Physics: Conference Series, Vol. 46. IOP
Publishing, Denver, USA, 494.

[8] Sudarsun Kannan, Naila Farooqui, Ada Gavrilovska, and Karsten Schwan. 2014.
Heterocheckpoint: Efficient Checkpointing for Accelerator-based Systems. In
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, Atlanta, USA, 738ś743.

[9] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip: A High-
Throughput Parallel Lossless Compressor for Scientific Data. In 2021 Data Com-
pression Conference (DCC). IEEE, Snowbird, USA, 103ś112.

[10] Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša
Pržulj. 2010. Topological network alignment uncovers biological function and
phylogeny. Journal of the Royal Society Interface 7, 50 (2010), 1341ś1354.

[11] Kyushick Lee, Michael B Sullivan, Siva Kumar Sastry Hari, Timothy Tsai,
Stephen W Keckler, and Mattan Erez. 2019. GPU Snapshot: Checkpoint Offload-
ing for GPU-Dense Systems. In Proceedings of the ACM International Conference
on Supercomputing. Association for Computing Machinery, Phoenix, AZ, USA,
171ś183.

[12] Jiacheng Ma, Xiao Zheng, Yaozu Dong, Wentai Li, Zhengwei Qi, Bingsheng
He, and Haibing Guan. 2018. gMig: Efficient GPU Live Migration Optimized
by Software Dirty Page for Full Virtualization. In Proceedings of the 14th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
Association for Computing Machinery, New York, NY, USA, 31ś44.

[13] Avinash Maurya, Mustafa Rafique, Thierry Tonellot, Hussain AlSalem, Franck
Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-level
Checkpoint Caching and Prefetching. In HPDC’23: The 32nd International Sympo-
sium on High-Performance Parallel and Distributed Computing. Association for
Computing Machinery, Orlando, FL, USA.

[14] Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and
Julian Kunkel. 2012. A Study on Data Deduplication in HPC Storage Systems. In
SC’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA, 1ś11.

[15] Ralph C Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in CryptologyÐCRYPTO’87: Proceedings 7. Springer, Santa

Barbara, CA, USA, 369ś378.
[16] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin.

2015. GraphBIG: Understanding Graph Computing in the Context of Industrial
Solutions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. Association for Computing Ma-
chinery, Austin, TX, USA, 1ś12.

[17] Bogdan Nicolae. 2013. Towards Scalable Checkpoint Restart: A Collective Inline
Memory Contents Deduplication Proposal. In IPDPS ’13: The 27th IEEE Interna-
tional Parallel and Distributed Processing Symposium. Association for Computing
Machinery, Boston, USA, 19ś28.

[18] Bogdan Nicolae. 2020. DataStates: Towards Lightweight Data Models for Deep
Learning. In SMC’20: The 2020 Smoky Mountains Computational Sciences and
Engineering Conference. Springer, Nashville, United States, 117ś129. https://doi.
org/10.1007/978-3-030-63393-6_8

[19] Bogdan Nicolae. 2022. Scalable Multi-Versioning Ordered Key-Value Stores with
Persistent Memory Support. In IPDPS 2022: The 36th IEEE International Parallel
and Distributed Processing Symposium. IEEE, Lyon, France, 93ś103.

[20] Bogdan Nicolae, Gabriel Antoniu, Luc Bouge, Diana Moise, and Alexandra
Carpen-Amarie. 2011. BlobSeer: Next-generation data management for large
scale infrastructures. J. Parallel Distrib. Comput. 71, 2 (2011), 169ś184.

[21] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, Rio de Janiero, Brazil, 911ś920.

[22] NVIDIA. 2023. nvCOMP: A library for fast lossless compression/decompression on
the GPU. Nvidia. https://developer.nvidia.com/nvcomp

[23] Konstantinos Parasyris, Kai Keller, Leonardo Bautista-Gomez, and Osman Unsal.
2020. Checkpoint Restart Support for Heterogeneous HPC Applications. In 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, Melbourne, Australia, 242ś251.

[24] James S Plank, Jian Xu, and Robert HB Netzer. 1995. Compressed Differences: An
Algorithm for Fast Incremental Checkpointing. Technical Report. Citeseer.

[25] Behnam Pourghassemi and Aparna Chandramowlishwaran. 2017. cudaCR: An
In-kernel Application-level Checkpoint/Restart Scheme for CUDA-enabled GPUs.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
Honolulu, USA, 725ś732.

[26] Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321. https:
//doi.org/10.17487/RFC1321

[27] Manuel Rodríguez-Pascual, Jiajun Cao, José A Moríñigo, Gene Cooperman, and
Rafael Mayo-García. 2019. Job Migration in HPC Clusters by Means of Check-
point/Restart. The Journal of Supercomputing 75 (2019), 6517ś6541.

[28] Elvis Rojas, Diego Pérez, Jon C Calhoun, Leonardo Bautista Gomez, Terry Jones,
and Esteban Meneses. 2021. Understanding Soft Error Sensitivity of Deep Learn-
ing Models and Frameworks through Checkpoint Alteration. In 2021 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). IEEE, Portland, OR, USA,
492ś503.

[29] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, and Eitan Frachtenberg. 2004.
On the Feasibility of Incremental Checkpointing for Scientific Computing. In 18th
International Parallel and Distributed Processing Symposium, 2004. Proceedings.
IEEE, Santa Fe, NM, USA, 58.

[30] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. 2015. Exploration
of Lossy Compression for Application-level Checkpoint/Restart. In 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE, Hyderabad,
India, 914ś922.

[31] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient Graphlet Kernels for Large Graph Comparison. In 12th
International Conference on Artificial Intelligence and Statistics (AISTATS), Society
for Artificial Intelligence and Statistics, 488-495 (2009). Proceedings of Machine
Learning Research, Clearwater beach, USA, 488ś495.

[32] Christian R Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S Hollman, Dan
Ibanez, et al. 2021. Kokkos 3: Programming Model Extensions for the Exascale
Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2021), 805ś817.

[33] Manav Vasavada, Frank Mueller, Paul H Hargrove, and Eric Roman. 2011. Com-
paring Different Approaches for Incremental Checkpointing: The Showdown. In
Linux Symposium, Vol. 69. Ottowa, Canada, 69ś80.

[34] Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos, Andy Tanen-
baum, and Cristiano Giuffrida. 2015. Speculative Memory Checkpointing. In
Proceedings of the 16th Annual Middleware Conference. Association for Computing
Machinery, New York, NY, USA, 197ś209.

[35] Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. 2009. Minimal Repetition
Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation. SIAM
Journal on Scientific Computing 31, 4 (2009), 2549ś2567.

[36] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Pro-
cessing by Graph Ordering. In Proceedings of the 2016 International Conference
on Management of Data. Association for Computing Machinery, New York, NY,
USA, 1813ś1828.

674


	Abstract
	1 Introduction
	2 System Design
	2.1 Design Principles
	2.2 Zoom on Merkle Tree-based Compact Metadata
	2.3 Architecture
	2.4 Implementation

	3 Evaluation
	3.1 Setup
	3.2 Methodology
	3.3 Results

	4 Related work
	5 Conclusions
	Acknowledgments
	References

