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Hierarchical Shrinkage Gaussian Processes: Applications to Computer Code

Emulation and Dynamical System Recovery∗

Tao Tang†, Simon Mak‡, and David Dunson†‡

Abstract. In many areas of science and engineering, computer simulations are widely used as proxies for phys-
ical experiments, which can be infeasible or unethical. Such simulations are often computationally
expensive, and an emulator can be trained to efficiently predict the desired response surface. A
widely used emulator is the Gaussian process (GP), which provides a flexible framework for effi-
cient prediction and uncertainty quantification. Standard GPs, however, do not capture structured
shrinkage on the underlying response surface, which is present in many applications, particularly
in the physical sciences. We thus propose a new hierarchical shrinkage GP (HierGP), which incor-
porates such structure via cumulative shrinkage priors within a GP framework. We show that the
HierGP implicitly embeds the principles of effect hierarchy, heredity, and smoothness widely used
for analysis of experiments; such principles allow the HierGP to identify significant structured effects
on the response surface with limited data. We propose efficient posterior sampling algorithms for
model training and prediction and prove desirable consistency properties for the HierGP. Finally,
we demonstrate the improved performance of HierGP over existing models in a suite of numerical
experiments and an application to dynamical system recovery.

Key words. computer experiments, dynamical recovery, emulation, Gaussian processes, shrinkage priors,
uncertainty quantification
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1. Introduction. Scientific computing is playing an increasingly important role in solving
modern scientific and engineering problems, particularly with recent breakthroughs in math-
ematical modeling and computation. Quantities of interest that were difficult or infeasible to
observe from physical experiments can now be reliably simulated via computer code. Such
computer experiments typically involve solving a system of differential equations based on
physical models, and have had a wide-reaching impact in many fields, including rocket engine
design (Mak et al., 2018), personalized surgical planning (Chen et al., 2021), and universe
expansions (Kaufman et al., 2011; Ji et al., 2023). One critical bottleneck, however, is that
these virtual experiments can be highly resource-intensive for computation. For example,
the full-scale simulation of a single rocket engine injector can require millions of CPU hours
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1086 TAO TANG, SIMON MAK, AND DAVID DUNSON

(Yeh et al., 2018), which places heavy demand on computational resources for engine design
exploration and optimization.

One solution is to train an emulator model that can efficiently predict (or emulate) the
expensive computer code f(x) at different parameters x. The idea is to run the computer
code at carefully chosen points over the parameter space X (normalized to X = [0,1]d) and
then use this as training data to fit the emulator model. A popular emulator is the Gaussian
process (GP) (see Rasmussen and Williams, 2005)), a flexible Bayesian model for probabilistic
predictive modeling. GPs have two key advantages for computer code emulation (Gramacy,
2020): they offer closed-form expressions for prediction and uncertainty quantification of the
emulator, and they provide a flexible nonparametric framework for modeling the black-box
response surface.

Despite this, standard GPs have several limitations for emulation. One limitation is that,
when the training sample size n is small, the highly flexible form of a GP can become more of
a vice than a virtue. In particular, with a limited sample size, the GP posterior may distribute
probability across an overly broad range of functions, resulting in poor predictive performance
and high predictive uncertainty. A promising solution is to integrate prior knowledge on
the response surface f (e.g., via domain knowledge from applications) within the GP. This
knowledge can take the form of mechanistic models (Wheeler et al., 2014), boundary conditions
(Ding et al., 2019), or shape constraints (Golchi et al., 2015; Wang and Berger, 2016), which
can greatly improve the predictive performance of a GP with limited data. However, for
highly complex systems, such prior knowledge may be difficult to elicit with confidence and
too complex to integrate for probabilistic modeling. In lieu of this, alternate models are needed
to learn useful structure for prediction in data-limited settings. Relevant existing methods
in this vein include GPs with variable selection (Savitsky et al., 2011), graph Laplacian GPs
(Dunson et al., 2022), and GPs with embedded manifolds (Seshadri et al., 2019; Li et al., 2023).

A useful clue for physical systems is that its response surfaces, albeit complex, often
exhibit shrinkage, in that nearly all variation in the surface is dictated by a small number
of effects derived from input parameters. This shrinkage is supported by the well-known
Buckingham-π theorem (Buckingham, 1914) and extensive literature in experimental physics
(see, e.g., Berkooz et al., 1993). Furthermore, such shrinkage is often highly structured, satis-
fying the statistical principles of effect hierarchy and heredity (Wu and Hamada, 2009; Haris
et al., 2016) and the marginality principle (Nelder, 1977); such principles have been widely
used for analyzing limited data from physical experiments. Here, effect hierarchy presumes
that main effects typically have greater influence than interaction effects, and effect heredity
(specifically, strong effect heredity; more on this later) presumes that such interactions are
significant only when its component main effects are significant. This structured shrinkage
behavior is not accommodated by existing GPs with variable selection (Savitsky et al., 2011),
nor GPs that separate main effects and pairwise interactions (Ferrari and Dunson, 2021). A re-
cent paper (Ding et al., 2020) further noted the principle of effect smoothness, which presumes
that lower-order (i.e., smoother) basis functions are likely more influential than higher-order
basis functions. We aim to carefully embed such principles within the GP, thus providing a
flexible and data-driven framework for predictive modeling with limited training data.

We present next the proposed hierarchical shrinkage GP (HierGP), which embeds the
aforementioned structured shrinkage principles (effect hierarchy, heredity, and smoothness) via

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1087

carefully designed shrinkage priors within a GP framework. The HierGP begins with a basis
expansion of a GP and then assigns hierarchical shrinkage priors on basis coefficients to capture
the desired structured shrinkage behavior. In particular, we extend the cumulative shrinkage
priors proposed in Legramanti et al. (2020) within a GP and show that the resulting HierGP
indeed captures the desired properties of effect hierarchy, heredity, and smoothness. We
then propose a Gibbs sampler that leverages a data augmentation trick for efficient posterior
computation. Under mild conditions on sparsity, we prove posterior contraction results for the
HierGP under both fixed and randomly sampled design points. Finally, we demonstrate the
effectiveness of the proposed HierGP over existing models in a suite of numerical experiments
and an application to dynamical system recovery.

The paper is structured as follows. Section 2 introduces the proposed HierGP. Section 3
presents the data-augmented Gibbs sampler for posterior sampling. Section 4 briefly outlines
posterior consistency results for the HierGP. Section 5 reports numerical experiments and an
application to dynamical system recovery. Section 6 concludes the paper.

2. Model specification. In this section, we describe the HierGP and discuss connections
with existing GP models. We first review standard GPs and their representation as an infinite
basis expansion with random coefficients. We then propose the HierGP as an extension of
this basis representation with carefully specified shrinkage priors that capture the desired
structured shrinkage properties.

2.1. Gaussian process modeling. In what follows, we let f(x) denote the expensive black-
box function to be emulated, where x ∈R

d are its input parameters. A GP (Rasmussen and
Williams, 2005; Gramacy, 2020) adopts the following probabilistic prior on f(·):

f(·)∼GP{µ(·), γ(·, ·)}.(2.1)

Here, µ(·) is the mean function of the process and γ(·, ·) its covariance function. A key
appeal for GP modeling is that, conditional on observed data f(x1), . . . , f(xn) from the black-
box system, the posterior predictive distribution [f(·)|f(x1), . . . , f(xn)] remains a GP with
closed-form expressions for its posterior mean and covariance. This facilitates prediction and
uncertainty quantification via a flexible Bayesian nonparametric model.

In order to integrate the desired structured shrinkage properties, we will employ an alter-
nate representation of the GP as an infinite basis expansion. This relies on the well-known
Karhunen–Loève theorem (stated below), which shows that a GP can be represented as an
infinite basis expansion of orthonormal functions.

Theorem 2.1 (Karhunen–Loève; Theorem 5.3 of Alexanderian, 2015). Let f(x) ∼
GP{0, γ(·, ·)} be a zero-mean Gaussian process, with covariance kernel γ continuous on X ×X
and γ(x,x′) ∈ L2(X ). Then there exists an orthonormal basis {φk(x)}∞|k|=1 of L2(X ) such
that

f(x) =

∞
∑

|k|=1

λkφk(x),(2.2)

where k= (k1, . . . , kd)∈N
d
0 is a multi-index, the coefficients {λk}∞|k|=1 are independent Gauss-

ian random variables given by λk =
∫

X f(x)φk(x)dx and satisfy E(λk) = 0 and E(λjλk) =
I{j = k}Var(λk), where I{·} is the indicator function.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1088 TAO TANG, SIMON MAK, AND DAVID DUNSON

Here, the conditions on kernel γ ensure the GP f(·) is mean-squared continuous, i.e.,
f ∈L2(X ×Ω); see Alexanderian (2015). Equation (2.2) is also known as the Karhunen–Loève
expansion, which is widely used in statistics (Wang, 2008) and uncertainty quantification
(Xiu, 2010; Ghanem and Spanos, 1991). This expansion can also be viewed as a stochastic
extension of the classical Fourier expansion.

As a tangible example, consider the case where f(·) follows the GP in (2.2) with mean
function µ(·)≡ 0 and isotropic squared-exponential covariance function:

γ(x,x′) = σ2 exp

{

−‖x−x′‖22
2l2

}

.(2.3)

Then one can show (see, e.g., Rasmussen andWilliams, 2005) that the corresponding Karhunen–
Loève decomposition of f(·) takes the form (2.2), with

λk =

d
∏

m=1

(

√

2a

A
Bkm

)

ξk, φk(x) =

d
∏

m=1

(

exp
{

−(c− a)x2m
}

Hkm
(
√
2cxm)

)

,(2.4)

where ξk
i.i.d.∼ N (0,1), Hk(·) is the kth order Hermite polynomial (Xiu, 2010), with a−1 = 4σ2,

b−1 = 2l2, c=
√
a2 + 2ab, A= a+ b+ c, and B = b/A.

A careful inspection of the prior specification (2.4) shows that it captures the aforemen-
tioned principles of effect smoothness (Ding et al., 2020) and effect hierarchy (Hamada and
Wu, 1992). Recall that effect smoothness presumes that lower-order (i.e., smoother) basis
functions are likely more influential than higher-order basis functions. This is captured in
(2.4): as the index km increases (with all other indices in k held constant), the independent
Gaussian priors on the coefficients λk have increasingly smaller variances, thus placing less
importance on higher-order (i.e., less smooth) basis functions φk(x). It also captures the
principle of effect hierarchy, which presumes that main effects typically have greater influence
than interaction effects. To see why, let us fix the dimension as d = 2, and consider the two
coefficients λ(1,0) and λ(1,1), where the first represents a main effect and the second represents
its corresponding interaction. The prior specification (2.4) assigns greater variance on the
first coefficient, thus allowing for greater effect magnitude with high probability a priori. This
argument naturally extends for a higher dimension d by comparing, e.g., the two coefficients
λ(1,0,0,··· ,0) and λ(1,1,0,··· ,0).

Despite this, the specification in (2.4) also reveals potential drawbacks of the standard GP
as a surrogate model. First, it does not capture the desired principle of effect heredity (Haris
et al., 2016), which presumes interaction effects are significant only when all of its component
main effects are significant.1 This is due to the independent prior specification of coefficients
for both main effect and interaction terms. Effect heredity is widely used for effective analysis
of limited data from physical experiments (see, e.g., Wu and Hamada, 2009; Mak and Wu,
2019a), and the integration of such structure within a GP is thus promising in our data-
limited setting. Second, recall that our use of shrinkage aims to reflect the belief that the

1Here and throughout the paper, effect heredity refers to the strong notion of effect heredity (Haris et al.,
2016), as opposed to weak effect heredity (Hamada and Wu, 1992), which requires at least one significant main
effect.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1089

response surface is dominated by a small number of significant effects. The prior specification
in (2.4), however, does not capture this belief well. For coefficients λk with |k| =∑d

m=1 km
small, its prior samples from (2.4) will all be relatively large with high probability, resulting
in many significant effects present in the surface f(·). Without a careful identification of such
underlying dominant effects, the standard GP may thus yield mediocre predictions with high
uncertainty, particularly with limited data.

We tackle such limitations via the proposed HierGP, which employs a novel prior specifi-
cation on the basis representation (2.2). In particular, the HierGP makes use of spike-and-slab
priors (Ishwaran and Rao, 2005), widely used in Bayesian variable selection to identify dom-
inant coefficients in {λk}∞|k|=1. These priors are then carefully constructed over each term in
the expansion to embed the desired principles of effect hierarchy, heredity, and smoothness for
structured shrinkage of f(·). In what follows, we first introduce the HierGP in the univariate
setting of d= 1 and then extend it to the multivariate setting.

2.2. The univariate HierGP model. For ease of exposition, we introduce the HierGP first
in the (d = 1)-dimensional setting. Suppose the design space is the unit interval X = [0,1],
and we obtain the training data {(xi, yi)}ni=1, where x1, . . . , xn ∈ X are the training input
parameters, and y1, . . . , yn are its corresponding outputs. We assume the outputs are obtained
from the model:

yi = f(xi) + εi, εi
i.i.d.∼ N (0, θ2), i= 1, . . . , n.(2.5)

For the earlier problem of computer code emulation, the error term εi reduces to zero for
deterministic simulators, since observations from f are obtained without noise. For the sake
of generality, we will adopt the above noisy model specification for the remainder of the paper
and reduce the error term to zero whenever appropriate.

Following (2.2), the HierGP assumes a basis expansion model on the response surface f :

f(x) =

∞
∑

k=1

λkφk(x).(2.6)

Here, {φk(x)}∞k=1 is a fixed L2-orthonormal basis on X and {λk}∞k=1 its corresponding coeffi-
cients. We then adopt the following hierarchical prior specification for the coefficients λk:

λk
indep.∼ N (0, σ2

k), σ2
k ∼wkπk + (1−wk)δσ2

∞

, k= 1,2, . . . .(2.7)

The prior σ2
k ∼ wkπk + (1− wk)δσ2

∞

is shorthand for the spike-and-slab prior (Ishwaran and
Rao, 2005), where πk is the slab distribution and δσ2

∞

(a point mass at σ2
∞) is the spike

distribution. With probability wk, this prior samples from the slab distribution πk; otherwise,
it samples a point mass at the spike σ2

∞. The first case can be seen as the coefficient λk

being significant, i.e., influential, for the response surface f , whereas (with a near-zero choice
of σ2

∞) the latter case can be seen as λk being insignificant for the response surface. This
mixture of spike-and-slab priors provides an appealing probabilistic framework for identifying
the underlying few dominant effects from data. A common choice for the slab distribution is
the Inverse-Gamma prior πk = IG(aσ, bσ); we later adopt this in section 3 for the proposed
Gibbs sampler.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1090 TAO TANG, SIMON MAK, AND DAVID DUNSON

Although from a modeling perspective the choice of σ2
∞ = 0 for the spike distribution can

be desirable, it is well known that the corresponding point mass δσ2
∞

at 0 may cause com-
putational instability and poor MCMC mixing (Scheipl et al., 2012); we have encountered
similar issues in our implementation. A common work-around in the Bayesian variable se-
lection literature (see, e.g., Ročková and George, 2018) is to set σ2

∞ as a small but nonzero
constant, such that σ2

∞ is much smaller than the mean of the slab distribution E(πk). Further
discussion of the specification of hyperparameters aσ, bσ, and σ2

∞ is provided in section SM5
of the supplementary material.

Of course, prior to data, the probability wk (for λk to be significant) is typically unknown.
We thus assign the following cumulative priors on {wk}∞k=1, adapted from the cumulative
shrinkage priors in Legramanti et al. (2020) for sparse factor modeling:

wk =

k
∏

j=1

(1− νj), νj
i.i.d.∼ Beta(1, αj = α), w0 = 1, j = 1,2, . . . .(2.8)

To complete the specification, we assign an independent Inverse-Gamma prior on the noise
variance, i.e., θ2 ∼ IG(aθ, bθ). The prior (2.8) provides an appealing cumulative property that
captures the desired effect smoothness principle (Ding et al., 2020), which asserts that lower-
order (smoother) effects in f are more important than higher-order (less smooth) effects. To
see why, note that with the prior (2.8), the expected probability on the kth coefficient is
E(wk) = (α/(1 + α))k. For smaller indices k (corresponding to smoother effects), this prior
favors larger values of wk and places greater probability on the kth term to be significant;
conversely, for larger k, it places less probability on the kth term to be significant. This
cumulative property thus nicely reflects effect smoothness (Ding et al., 2020) within the desired
spike-and-slab prior specification on the coefficients {λk}∞k=1.

2.3. The multivariate HierGP model. With this univariate case in hand, we now present
the multivariate HierGP model. Suppose the design space is the unit hypercube X = [0,1]d,
and we collect training data {(xi, yi)}ni=1, where x1, . . . ,xn ∈X are training input parameters
and y1, . . . , yn its corresponding outputs. As before, we assume the outputs are obtained from
the model

yi = f(xi) + εi, εi
i.i.d.∼ N (0, θ2), i= 1, . . . , n,(2.9)

where f takes the basis representation form

f(x) =

∞
∑

|k|=1

λkφk(x), k= (k1, . . . , kd), k ∈N
d
0.(2.10)

Here, {φk(x)}∞|k|=1 is an L2-orthonormal basis on X = [0,1]d, and {λk}∞|k|=1 are its coefficients.
We then adopt independent spike-and-slab priors on the coefficients:

λk
indep.∼ N (0, σ2

k), σ2
k ∼wkπk + (1−wk)δσ2

∞

, k ∈N
d
0,(2.11)

where πk and δσ2
∞

are again the slab-and-spike distributions, respectively.
We now extend the earlier prior to the multivariate setting to capture the desired principle

of effect heredity:

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1091

wk =

d
∏

m=1

wkm,m, wkm,m =

km
∏

j=1

(1− νj,m), w0,m = 1, νj,m
i.i.d.∼ Beta(1, αj,m = α)(2.12)

for m = 1, . . . , d and j = 1,2, . . . . Recall that effect heredity (Haris et al., 2016) (or the
marginality principle; see McCullagh and Nelder, 1989) presumes an interaction effect is
significant only when all of its component variables are also significant. Here, the mth variable
is deemed “significant” if its cumulative term wkm,m is large and “insignificant” if wkm,m is
small, since a larger wkm,m results in a larger probability that its corresponding coefficient
is nonzero and vice versa. To see why the above prior embeds this principle, note that the
probability weight wk for each multi-index k is modeled as a product of separate cumulative
terms wkm,m over each of the d dimensions. By setting wk as the product form (2.12), it follows
that term k is significant (i.e., wk large) only when all of its component variables (represented
by its cumulative terms) are significant, which is precisely effect heredity. The prior (2.12) can
thus be viewed as a careful specification of the spike-and-slab priors on coefficients {λk}∞|k|=1
to reflect the desired effect heredity structure.

In addition to heredity, the prior (2.12) also captures the remaining two desired principles
of effect smoothness and hierarchy. Effect smoothness follows directly from the earlier univari-
ate case. With other indices in k held constant, as the index km decreases (i.e., for smoother
terms), the employed prior favors larger values of wk and thus places greater probability of
the kth term to be significant. To see effect hierarchy, let us again fix dimension as d = 2
and consider the main effect λk1

, k1 = (1,0) and its interaction effect λk2
, k2 = (1,1). By

construction, the probability weight wk1
would be strictly greater than wk2

, and thus main ef-
fects have a greater prior probability of being significant than do interactions. This argument
again naturally extends for a higher dimension d by comparing, e.g., the probability weights
for indices k1 = (1,0,0, . . . ,0) and k2 = (1,1,0, . . . ,0). In this sense, the proposed hierarchical
prior (2.12) embeds the principles of effect heredity, hierarchy, and smoothness within the
desired spike-and-slab framework.

To highlight the effect of such principles on prior specification, Figure 1 compares the mar-
ginal prior densities and correlations of the HierGP with the standard GP, the latter using a
squared-exponential kernel with unit length-scale. Figure 1 (left) shows the prior densities on
the effects λ(1,1) and λ(2,2) for both models. As expected, the HierGP priors are noticeably
more aggressive in shrinkage towards near-zero values via its spike distribution, which is desir-
able in identifying the underlying sparse dominant effects. Further, in comparing the marginal
priors for λ(1,1) and λ(2,2), we see that as the order increases in both dimensions, the HierGP
assigns greater probability on its spike distribution. This results in a distinctly different prior
for λ(2,2) compared to the standard GP, as it places increasingly greater weight on shrinking
this effect, in accordance with the desired effect smoothness and hierarchy principles. Figure 1
(right) shows, in dimension d= 2, the marginal prior covariances between the first 5× 5 = 25
coefficients from the same HierGP; note that the standard GP assigns independent priors on
all coefficients. To contrast, the HierGP can be seen to impose highly structured correlations
between coefficients, following the desired effect hierarchy, heredity, and smoothness princi-
ples. As we show later, when the response surface adheres to such principles and is controlled
by a few dominant effects, the above structured prior specification from the HierGP can allow
for improved predictions with limited data.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1092 TAO TANG, SIMON MAK, AND DAVID DUNSON

Figure 1. (Left) Visualizing the prior densities for coefficients λ(1,1) and λ(2,2) from the HierGP and the
standard GP using a squared-exponential kernel with unit length-scale. For the HierGP, the spike distribution
is shown in red (scaled by probability 1−wk) and the slab distribution in blue (scaled by probability wk). (Right)
Visualizing the marginal prior covariances between different coefficients from the HierGP.

The performance of the HierGP can of course be sensitive to the choice of the basis
functions {φk(x)}∞|k|=1, and thus a careful specification of this basis is important. In certain

physical science applications (e.g., in turbulence dynamics; see Mak et al., 2018), one may be
able to elicit guiding prior information on dominant basis functions, and this should of course
be integrated within the HierGP. Such an elicited basis is typically of product form from our
experience and thus should reflect increasing basis function complexity as each index in k

increases. Another instance of this is in our later dynamic systems application (section 5.2),
where it is known a priori that the few dominant effects are typically polynomial in the
differential equations. For other applications, however, it may be more difficult to elicit an
informed choice of basis. In such a setting, one can employ the eigenfunctions of a standard
covariance kernel that captures the expected smoothness of the response surface, e.g., the
squared-exponential kernel for highly smooth functions or the Matérn kernel for functions
with certain desired smoothness.

The hierarchical form (2.12) can be easily modified in several ways to incorporate addi-
tional prior information from the modeler. First, in some cases, a modeler may have preference
on a choice of basis (which may not be L2-orthonormal) for which this hierarchical sparsity
is expected to hold. This nonorthonormal basis can be directly integrated within this model-
ing framework and the later posterior sampler; our assumption of orthonormality is, however,
needed in later theoretical results. Second, if a modeler expects heavier-tailed effects for coeffi-
cients, they can easily adopt heavier-tailed distributions (e.g., the horseshoe priors in Carvalho
et al., 2009) within the spike-and-slab prior framework (2.11). One can also integrate heavier
tails via a careful specification of the hyperparameter sequence αj,m. For example, with αj,m

set as an increasing sequence, e.g., O(m2), we can place greater weights on latter terms in the
expansion and thus impose heavier tail behavior.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1093

2.4. The HierGP2 model. While effect hierarchy and heredity are generally desirable for
response surface modeling, there may be scenarios where one does not have a strong prior
belief for such structured shrinkage, despite knowing that only a few coefficients λk are likely
significant. In this case, one may want to adopt an alternate exchangeable shrinkage prior on
the coefficients:

λk|σ2
k ∼N (0, σ2

kτ
2), σk ∼Ψ, k ∈N

d
0,(2.13)

where Ψ is a distribution supported on (0,+∞). Such priors are known as global-local (GL)
mixtures, where {σk}k are called the local shrinkage parameters, and τ the global shrinkage
parameter. The GL prior provides a flexible framework for Bayesian shrinkage and selection:
heavy-tailed distributions for Ψ allow for identification of strong signals, and its concentration
around zero provides the desired shrinkage behavior. Examples of GL priors include the
horseshoe prior (Carvalho et al., 2010), the Dirichlet–Laplace prior (Bhattacharya et al.,
2015), and the generalized double Pareto prior (Armagan et al., 2013). We shall call the basis
expansion model (2.10) with GL priors (2.13) the HierGP2 model; in later experiments, the
HierGP2 is implemented with Ψ taken as the horseshoe prior from Carvalho et al. (2010). In
scenarios where the underlying response surface (while dominated by a few dominant effects)
does not adhere strongly to effect hierarchy and/or heredity, we show later that the HierGP2

may also yield improved predictions over existing surrogate models.

3. Posterior sampling. With the HierGP in hand, we present next an efficient MCMC
algorithm for posterior sampling of the response surface f(·) given data. We first present a
Gibbs sampler for the univariate HierGP and then extend this to a Gibbs sampler for the
multivariate HierGP.

3.1. Gibbs sampling for the univariate HierGP. Suppose we collect training data
{(xi, yi)}ni=1 from model (2.5). Let Θ= {(λk)

∞
k=1, (vj)

∞
j=1, θ

2} be the parameter set for posterior

inference. One can write the likelihood function as2

L(Θ|{(xi, yi)}ni=1) = [{(xi, yi)}ni=1|Θ]=

n
∏

i=1

1√
2πθ2

e−
(yi−f(xi))

2

2θ2 ,(3.1)

where the response surface f is a function of parameters (λk)
∞
k=1 (see (2.6)). Conditional on

data, we then wish to draw samples {Θ[b]}Bb=1 from the posterior distribution:

[Θ|{(xi, yi)}ni=1]∝L(Θ|{(xi, yi)}ni=1) [Θ],(3.2)

where [Θ] = [(vj)
∞
j=1, (λk)

∞
k=1, θ

2] follows from the prior model in (2.6) and (2.7) for the univari-

ate HierGP. With samples {Θ[b]}Bb=1, posterior predictive samples on f(·) (call this {f[b](·)}Bb=1)
can then be obtained by plugging {Θ[b]}Bb=1 into (2.6).

To sample from (3.2), we make use of a data-augmented Gibbs sampler (Gelman et al.,
1995), which leverages closed-form full conditional distributions for efficient posterior sam-
pling. This sampler is similar in spirit to the Gibbs sampler in Legramanti et al. (2020) for
factor models but is adapted for the GP setting at hand. As mentioned earlier, we adopt the

2Here, [X] denotes the distribution of a random variable X.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

8
/2

5
 t

o
 1

5
2
.3

.1
0
2
.2

5
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



1094 TAO TANG, SIMON MAK, AND DAVID DUNSON

Inverse-Gamma prior πk = π= IG(aσ, bσ) for the slab distribution in (2.7). We further employ
the following truncation for f(·):

f(x) =

K
∑

k=1

λkφk(x)(3.3)

for a sufficiently large choice of truncation index K. Further details are provided in supple-
mentary material section SM6 on an adaptive choice of K, following Legramanti et al. (2020).

We now derive the required full conditional distributions. Let X̃ = (φ1(xi), . . . , φK(xi))
n
i=1

be the design matrix for the data. Further, for k = 1, . . . ,K, let zk be a latent categorical
random variable, defined conditionally as P(zk = l|Θ)= νlwl−1 for l= 1,2, . . . ,K. It can then
be shown that

[σ2
k|zk]∼ {1− I(zk ≤ k)}IG(aσ, bσ) + I(zk ≤ k)δσ2

∞

,(3.4)

where I(·) is the indicator function. With this data augmentation trick, one can then derive
the full conditional distribution3 of zk as

[zk = l|−]∝
{

νlwl−1φ(λk; 0, σ
2
∞), l= 1, . . . , k,

νlwl−1t2aσ
(λk; 0, (bσ/aσ)), l= k+ 1, . . . ,K,

(3.5)

where φ(λ; 0, σ2
∞) and t2a(λ; 0, (bσ/aσ)) are the densities of the normal and t-distributions

(with 2aσ degrees-of-freedom) evaluated at λ, respectively.
Consider now the full conditional distributions for the parameter set Θ. Let D =

diag{σ2
k}Kk=1 and y = (y1, . . . , yn). For the coefficient vector Λ = (λk)

K
k=1, its full conditional

distribution can be shown to be

[Λ|−]∼N (V θ−1X̃y,V ), V = (D−1 + θ−2X̃
T
X̃)−1.(3.6)

Similarly, for parameter vj , its full conditional distribution becomes

[vj |−]∼Beta

(

1 +

K
∑

k=1

I(zk = j), αj +

K
∑

k=1

I(zk > j)

)

, j = 1, . . . ,K.(3.7)

Last, for the noise parameter θ2, its full conditional distribution can be shown to be

[

θ2|−
]

∼ IG

(

aθ +
n

2
,
bθ +STS

2

)

, S = y−ΛX̃.(3.8)

A complete derivation of these full conditional distributions is provided in section SM4 of the
supplementary material.

Algorithm 3.1 presents the detailed steps of the Gibbs sampler, which combines the above
full conditional steps (3.5)–(3.8) for sampling the desired posterior distribution [Θ|{(xi, yi)}ni=1].
Here, all sampling steps are quite straightforward; for (3.5), we sample from this K-point dis-
crete distribution via inverse transform sampling, with probabilities given by normalizing the
weights in (3.5) to sum to one. Further details on the specification of hyperprior parameters
can be found in section SM5 of the supplementary material.

3For brevity, [θ|−] denotes the full conditional distribution of parameter θ, conditional on both the data
y1, . . . , yn and all parameters in Θ except for the considered parameter θ.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1095

Algorithm 3.1. Gibbs sampling for the univariate HierGP.

Inputs: hyperparameters α, aσ, bσ, aθ, bθ, σ
2
∞, data {(xi, yi)}ni=1, number of iterations B.

1: Set initial parameters Θ[0] = {(λ[0]
k )Kk=1, (v

[0]
j )Kj=1, θ

2
[0]}.

2: for b= 1, . . . ,B do

3: for k= 1, . . . ,K do

4: Sample z
[b]
k from the full conditional distribution [zk=l|−] in (3.5) with λk=λ

[b−1]
k .

(Step 1)
5: for k= 1, . . . ,K do

6: If z
[b]
k ≤ k, let σ2

k = σ2
∞; else sample σ2

k ∼ IG(aσ + 0.5, bσ + 0.5(λ
[b−1]
k )2).

(Step 2)
7: for j = 1, . . . ,K do

8: Sample v
[b]
j ∼Beta(1+

∑K
k=1 I(z

[b]
k =j), αj+

∑K
k=1 I(z

[b]
k >j)); update wj in (2.12).

9: Sample θ2[b] ∼ IG(aθ + n/2, bθ +STS/2), where S = y−Λ[b−1]X̃. (Step 3)

10: Sample Λ[b] = (λ
[b]
k )k≤K ∼N (V θ−2

[b] X̃y,V ), where V = (D−1 + θ−2
[b] X̃

T
X̃)−1 and

D=diag{σ2
k}k≤K . (Step 4)

3.2. Gibbs sampling for the multivariate HierGP. We now extend the above Gibbs sam-
pler for the multivariate HierGP model,4 which leverages the full hierarchical shrinkage prior
(2.12). Suppose we obtain data {(xi, yi)}ni=1, and let Θ= {(λk)

∞
|k|=1, (vj,m)∞j=1

d

m=1
, θ2} be the

parameter set. As before, we adopt the Inverse-Gamma prior πk = π= IG(aσ, bσ) for the slab
distribution. We employ the following truncation for f(·):

f(x) =
∑

k≤K

λkφk(x),(3.9)

where K = (K1, . . . ,Kd) is the vector of truncation indices for each dimension. Again, these
indices K1, . . . ,Kd should be set sufficiently large; further details on this are provided in
supplementary material section SM6 following Legramanti et al. (2020).

We now derive similar closed-form full conditional distributions of Θ for the multivariate
HierGP. Let X̃ = (φk(xi))k≤K,i=1,...,n ∈ R

n×‖K‖ be the design matrix for the data, where

k ∈ N
d
0 is a multi-index that iterates over K and ‖K‖ =

∏d
m=1Km. Further, let zk be the

vector of latent random variables, defined conditionally as

P{zk = (l1, . . . , ld)|wl1,1, . . . ,wld,d}=
d
∏

m=1

vlm,mwlm−1,m,(3.10)

where wlm,m is as defined in (2.12). With this, we can leverage a similar data augmentation
trick to derive the full conditional distribution of zk = [zk,1, . . . , zk,d] as

4We will refer to the multivariate HierGP as simply “the HierGP” from here on.
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1096 TAO TANG, SIMON MAK, AND DAVID DUNSON

[zk = l|−]∝



























(

d
∏

m=1

vlm,mwlm−1,m

)

φ(λk; 0, σ
2
∞); otherwise,

(

d
∏

m=1

vlm,mwlm−1,m

)

t2aσ
(λk; 0, (b/a)), l1 > k1, . . . , ld > kd,

(3.11)

by marginalizing out all σ2
k. Details on this marginalization are provided in section SM4 of

the supplementary material.
Let us consider now the full conditional distributions for the parameter set Θ. Let D =

diag{σ2
k}k≤K . For the coefficient vector Λ= (λk)k≤K , its full conditional can be shown to be

the same form as (3.6). For parameter vj,m, its full conditional distribution follows:

[vj,m|−]∼Beta



1+
∑

k≤K

I(zk,m=j), αj+
∑

k≤K

I(zk,m > j)



 , j=1, . . . ,Km, m=1, . . . , d.

(3.12)

Finally, the full conditional of θ2 follows the same form as in (3.8). Algorithm 3.2 details
the steps in this Gibbs sampling algorithm. Further details on the specification of hyperprior
parameters can be found in section SM5. As before, one can adopt a sufficiently large choice
of truncation indices K or employ an adaptive setting of K; details on the latter are provided
in section SM6.

We provide a brief analysis of computational complexity for the Gibbs sampler in Algo-
rithm 3.2. The computation cost for Step 4 can be shown to be O(dn‖K‖+ (‖K‖)3), since
it requires the computation of X̃

T
X̃ from n observations and ‖K‖ bases, and a matrix in-

version step for computing V . The computational cost for Step 3 is O(|K|), as we update

Algorithm 3.2. Gibbs sampling for the multivariate HierGP.

Inputs: hyperparameters α, aσ, bσ, aθ, bθ, σ
2
∞, data {(xi, yi)}ni=1, number of iterations B.

Set initial parameters Θ[0] = {(λ[0]
k )k≤K , (v

[0]
j,m)j≤Km,m≤d, θ

2
[0]}.

for b= 1, . . . ,B do

3: for k in (1, · · · ,1) : (K1, . . . ,Kd) do

Sample z
[b]
k from [zk = l|−] in (3.11) with λk = λ

[b−1]
k . (Step 1)

for k= (k1, . . . , kd) in (1, . . . ,1) : (K1, . . . ,Kd) do

6: if ∃m: z
[b]
k,m ≤ km, then let σ2

k = σ2
∞; else σ2

k ∼ IG(aσ + 0.5, bσ + 0.5(λ
[b−1]
k )2).

(Step 2)
for m in 1, . . . , d do

9: for j in 1, . . . ,Km do

Sample v
[b]
j,m ∼Beta(1 +

∑

k≤K I(z
[b]
k,m = j), αj +

∑

k≤K I(z
[b]
k,m > j)).

Update wj,m and wk from (2.12).

12: Update θ2[b] from IG(aθ + n/2, bθ +STS/2), where S = y−Λ[b−1]X̃.

(Step 3)

Sample Λ[b] = (λ
[b]
k )k≤K ∼N (V θ−2

[b] X̃y,V ), where V = (D−1 + θ−2
[b] X̃

T
X̃)−1 and

D=diag{σ2
k}k≤K . (Step 4)
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1097

O(‖K‖) variables and each update costs O(1). The cost of Step 2 is O(‖K‖2), since it iterates
through ‖K‖ variables, with each sampling step requiring O(‖K‖) computation. The cost
of Step 1 can similarly be shown to be O(‖K‖2). Combining this, we have a computational
complexity of O{dn‖K‖+ ‖K‖3} for each iteration of this Gibbs sampler. Note that, with a
fixed truncation limit Km =K for each dimension m= 1, . . . , d, ‖K‖ reduces to Kd. Thus, as
dimension d increases, the computational cost for our Gibbs sampler can grow rapidly; this
is unsurprising, as we would require an exponentially growing number of basis functions with
fixed truncation limit K.

There are several ways to soften this so-called curse of dimensionality. An easy-to im-
plement solution is to leverage multithreaded and/or distributed processing to parallelize the
sampling of the latent vectors zk over k, which is the primary computational bottleneck. Such
distributed architecture is now commonplace in personal computers and computing clusters,
and we have observed significant speed-ups (on the order of tens to hundreds) in exploiting
this for our Gibbs sampler, which is highly parallelizable. Another strategy, motivated by the
theory of sparse grids (Bungartz and Griebel, 2004), is to use a reduced basis expansion of
the form (with equal truncation indices Km =K)

f(x) =
∑

|k|1≤K+d−1

λkφk(x),(3.13)

where |k|1 =
∑d

m=1 km. Such a “sparse” expansion effectively removes the highest-order
terms in accordance with effect hierarchy and smoothness. One can show (Bungartz and
Griebel, 2004) that such an approximation can indeed soften the curse of dimensionality for
error approximation. This reduced-order basis can be directly used within the HierGP, and
decreases the number of basis functions toO{K(logK)d−1}, thus permitting greater scalability
in moderate-to-high dimensions.

Finally, we provide some insights on the “data-adaptivity” of the HierGP, i.e., the adap-
tivity of its embedded effect principles from the data y. For standard GP modeling, this
adaptivity is typically achieved via inference on its kernel length-scale parameters, which
dictate the embedded decay rate for effect smoothness. In the HierGP, there are no such
length-scale parameters explicitly specified in its model. Instead, its data-adaptivity arises
from the dependence of its prior variance Var(λk) on the slab distribution πk (see (2.11)),
which follows an Inverse-Gamma prior. As data are collected, the decay rate of these variance
terms will be updated as the slab distribution (and other model parameters) is conditioned
on such data, which then allows for adaptivity of the embedded effect principles within the
HierGP.

3.3. Gibbs sampling for HierGP2. In scenarios where one expects the presence of a few
dominant effects but does not have strong prior belief of effect hierarchy and/or heredity, the
alternative HierGP2 model in section 2.4 (which makes use of GL shrinkage priors) may be an
appealing alternative. We present next an analogous Gibbs sampler for this alternate model
with Ψ taken as the horseshoe priors in Carvalho et al. (2010). Here, the posterior sampling
of the parameter set Θ = {(λk)

∞
k=1, θ

2} reduces to an analogous setting as Bayesian linear
regression with horseshoe priors, for which there are existing posterior sampling algorithms.
Algorithm 3.3 provides a direct extension of one such sampler—the blocked Metropolis-within-

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1098 TAO TANG, SIMON MAK, AND DAVID DUNSON

Algorithm 3.3. Blocked Metropolis-within-Gibbs sampler for the HierGP2.

Inputs: hyperparameters aθ, bθ, τ , data {(xi, yi)}ni=1, number of iterations B.

1: Set initial parameters Θ[0] = {(λ[0]
k )Kk=1, (θ

[0])2}.
2: for b= 1, . . . ,B do

3: Sample Λ[b] = (λ
[b]
1 , . . . , λ

[b]
K ) from N (V (θ[b−1])−1X̃

T
y,V ), where V = (D−1+

(θ[b−1])−2X̃
T
X̃)−1 and D=diag{σ2

k

[b−1]}Kk=1. (Step 1)

4: Sample {σ[b]
k }Kk=1 via Metropolis–Hastings from the density proportional to

∏K
k=1 (1 + σk)

−1 exp{−(λ
[b]
k )2τσk

2(θ[b])2 }. (Step 2)

5: Update (θ[b])2 from IG(aθ+n/2, (bθ +STS)/2), where S = y−Λ[b]X̃. (Step 3)

Gibbs sampler in Johndrow et al. (2020)—for posterior sampling from the HierGP2. Further
details on the specification of hyperprior parameters can be found in section SM5 of the
supplementary material.

4. Consistency results for the HierGP. We next present consistency results for the Hi-
erGP, which extend existing theory on consistency for high-dimensional Bayesian linear regres-
sion, specifically from Song and Liang (2023) and Choi and Schervish (2007). As mentioned
before, for the HierGP, we will adopt point masses δσ2

k,0
for the spike distributions, where {σ2

k}
is prespecified; this is commonly used in the literature for theoretical analysis. Main theorems
are presented next, with assumptions and proofs deferred to Appendix A for brevity.

To prove consistency, we will require several assumptions on the underlying basis repre-
sentation form of f , its smoothness, and the experimental design of the sample points {xi}ni=1.
The technical details of such assumptions are deferred to section SM1.1. We do outline an im-
portant assumption (A1) in section SM1.1 on the true function f0(·) that we wish to predict.
Namely, we assume

f0(x) =
∑

k∈S

λ0
kφk(x),(4.1)

where S ⊂N
d
0 is a finite index set. In other words, we presume that the true function f0 can

be represented as a finite sum of the employed basis functions φk(x); this reflects our belief
that f0 is indeed dictated by a few dominant effects.

Under such assumptions, we can prove the following consistency result for the HierGP
under fixed design points.

Theorem 4.1 (consistency of HierGP, fixed design). Suppose f follows the HierGP model
specified in (2.9)–(2.12) with corresponding prior measure Π∗

2 (with trivial modification made
to satisfy assumption (A5); see section SM1.1). Let Q0 be the conditional distribution of the
data {yi}ni=1 given fixed design points {xi}ni=1. Suppose assumptions (A1), (A2), (A4), and
(A5) from section SM1.1 hold. Then the following hold:

(a) For any ε > 0, we have

Π∗
2

(

(f, θ)∈W c
ε,n|{(xi, yi)}ni=1

)

→ 0, [Q0] almost surely,(4.2)

where Wε,n is the empirical measure neighborhood around the truth (f0, θ0) (see section
SM1.2).
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1099

(b) For any ε > 0, we also have

Π∗
2(L

c
ε|{(xi, yi)}ni=1)→ 0, [Q0] almost surely,(4.3)

where Lε is the L1-neighborhood around (f0, θ0) (see section SM1.2).

We can further show consistency of the HierGP under random design points.

Theorem 4.2 (consistency of HierGP, random design). Suppose f follows the HierGP model
specified in (2.9)–(2.12) with prior measure Π∗

1. Let Q0 denote the joint distribution of
{(xn, yn)}∞n=1. Suppose assumptions (A1), (A2), and (A3) from section SM1.1 hold. Then,
for random design points drawn from some measure P0, the following hold:

(a) For any ε > 0, we have

Π∗
1(U

c
ε |{(xi, yi)}ni=1)→ 0, [Q0] almost surely,(4.4)

where Uε is a P0-neighborhood around (f0, θ0) (see section SM1.2).
(b) For any ε > 0, we also have

Π∗
1(H

c
ε |{(xi, yi)}ni=1)→ 0, [Q0] almost surely,(4.5)

where Hε is the Hellinger neighborhood around (f0, θ0) (see section SM1.2).

Theorems 4.1 and 4.2 show that, under regularity conditions, the posterior distribution of
the response surface and its corresponding variance parameter indeed converge to the truth
under various modes of convergence as sample size n goes to infinity. This establishes posterior
consistency of the proposed HierGP and guarantees that the employed structured shrinkage
prior indeed provides enough support for predicting the desired class of functions in (4.1).
The proofs of both theorems extend results in Choi and Schervish (2007), and its detailed
statements are provided in sections SM1 and SM2.

We provide some insight on why only consistency is shown for the HierGP. While there
exists a rich literature on contraction rates for standard shrinkage priors, the employed
hierarchical shrinkage prior within the HierGP is quite new. Standard analysis tools for
high-dimensional Bayesian linear regression (see, e.g., Castillo et al., 2015, Song and Liang,
2023, Jeong and Ghosal, 2021) are thus not directly suitable in this setting, due to the highly
structured nature of our shrinkage prior. We thus focus on establishing the consistency of
our model in this novel prior setting and defer the more challenging question of contraction
rates to future work. Section SM3 provides further consistency and Bernstein–von Mises
approximation results on the HierGP2 model.

5. Numerical experiments. We now explore the proposed HierGP and HierGP2 in a suite
of numerical experiments. We first investigate their performance for computer code emulation
and then demonstrate its effectiveness for the recovery of dynamical systems.

5.1. Computer code emulation. For our experiments on computer code emulation, we
will consider a suite of test functions and compare the proposed models (HierGP and HierGP2)
with several popular and/or related GP-based emulators. This includes the standard GP em-
ulator with Matérn-3/2 kernel (Stein, 1999); the additive GP model in Lu et al. (2022), which
builds off of recent work (Duvenaud et al., 2011) on leveraging additive low-dimensional struc-
ture; the “least-squares” model, which makes use of a least-squares fit of the data {(xi, yi)}ni=1

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1100 TAO TANG, SIMON MAK, AND DAVID DUNSON

using a prespecified basis matrix X̃; and the sparse least-squares fit, which makes use of
l1-regularized estimates under the same setup, with penalty parameters tuned via cross-
validation. The latter two are akin to surrogate models used in polynomial chaos; see Luthen
et al. (2021) for a comprehensive review. Both models provide useful benchmarks for the
HierGP in highlighting potential advantages of embedding effect smoothness, hierarchy, and
heredity within shrinkage priors on the GP. For a fair comparison, both models make use of
the same basis matrix as the HierGP. Finally, we compare with the fixed rank kriging method
(see, e.g., Cressie and Johannesson, 2008), a popular approach in spatial statistics that lever-
ages a prespecified truncation of the Karhunen–Loève expansion. This is implemented via the
R package FRK (Zammit-Mangion and Sainsbury-Dale, 2023).

Consider first the setting where test functions are simulated from the HierGP prior in
section 3.2 in d = 2 and d = 3 dimensions. This function is simulated with parameters
α = 6, aσ = 1, bσ = 1, σ∞ = 0, a truncation limit of K = (8,8) and (4,4,4) for d = 2 and
d= 3, respectively, and sinusoidal basis φk(x) = Πd

m=1 sin(2πkmxm). The simulated response
surfaces thus are dominated by a few significant effects and capture the presumed effect
smoothness, heredity, and hierarchy principles. For model training, we use n= 70 uniformly
sampled design points. This sample size is higher than the usual rule of thumb n = 10d
recommended in Loeppky et al. (2009), which has been noted to be insufficient for more
complex functions (Harari et al., 2018), as is the case here. For the HierGP, least-squares, and
sparse least-squares fits, we assume the perfectly specified setting where the basis matrix and
truncation levels are set to be the same as the simulation model; we will explore a misspecified
setting next. This simulation is then replicated 50 times to measure error variability.

Figures 2 and 3 show boxplots of the prediction errors for 400 uniformly sampled testing
points for each approach in d= 2 and 3 dimensions. We see that the HierGP yields improved
predictions over competing models. This is not surprising: when dominant effects in f are
structured according to the effect principles, the HierGP should be able to leverage such

Figure 2. Boxplots for prediction root-mean-squared errors of the compared methods when f is simulated
from the HierGP in d= 2 dimensions. From left to right are zoomed-in views of the boxplots. Here, LS denotes
the least-squares fit, SparseLS denotes the sparse least-squares fit, and FRK denotes the fixed rank kriging
approach.
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1101

Figure 3. Boxplots for prediction root-mean-squared errors of the compared methods when f is simulated
from the HierGP in d= 3 dimensions. From left to right are zoomed-in views of the boxplots. Here, LS denotes
the least-squares fit, SparseLS denotes the sparse least-squares fit, and FRK denotes the fixed rank kriging
approach.

Table 1

Empirical coverage rates of the 95% posterior predictive credible intervals and their corresponding average
interval widths when the true function f is simulated from the HierGP in d dimensions.

HierGP HierGP2 MatérnGP

Empirical coverage rate (d= 2) 100.0% 100.0% 91.0%
Empirical coverage rate (d= 3) 97.7% 99.1% 92.2%

Average credible interval width (d= 2) 1.721 1.313 4.062
Average credible interval width (d= 3) 1.277 1.798 7.250

structure for improved predictions. The HierGP2 (which adopts a less structured horseshoe
prior on basis coefficients) also does quite well, but it has slightly higher errors since it does not
integrate full information on effect principles. The standard Matérn GP and the additive GP
both yield significantly worse predictive performance; this is intuitive since such models do not
account for structured sparsity in f . The two least-squares fits (even with a perfectly specified
basis) also yield poor performance, which is expected since such fits also do not identify the
sparse number of dominant effects, despite having a perfectly specified basis. Finally, fixed
rank kriging also yields worse predictions compared to the HierGP. This is again not too
surprising, as the latter uses a predetermined truncation of the Karhunen–Loève expansion,
whereas the HierGP leverages a data-adaptive and structured shrinkage of this expansion to
identify important effects in f .

Table 1 compares the uncertainty quantification performance of these models by reporting
the empirical coverage rates of 95% posterior predictive credible intervals and corresponding
average predictive interval widths. Here, we compared only the two HierGP models with
the standard GP, as the other methods are not fully probabilistic. We see that, for both
d = 2 and d = 3, the empirical coverage rates for the HierGP models are noticeably higher
than that for the standard GP, which can dip below the nominal 95% rate. Furthermore,
the credible interval widths for the HierGP models are significantly smaller than that for the
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1102 TAO TANG, SIMON MAK, AND DAVID DUNSON

standard GP. This suggests that, when f has the presumed structure for dominant effects,
the proposed models can indeed leverage such structure to provide more precise probabilistic
predictions with improved coverage over standard GPs, as desired.

Finally, we investigate the computation times of the compared methods in our d = 2
experiment (the d = 3 experiment yields comparable timing). All computation is performed
on a single-core 2.6 GHz Intel Core i7 processor and is measured in seconds. Here, our HierGP
and HierGP2 models (which provide the best predictive performance) require 20.1 and 16.3
s, respectively, for model training and prediction. Of the existing GPs, the MatérnGP, fixed
rank kriging, and additive GP models require 34.4, 28.6, and 27.3 s, respectively, for the same
tasks. Finally, the least-squares and sparse least-squares fit are nearly instantaneous, but as
shown earlier, such methods yield worse predictive performance to our methods, as it does
not leverage the desired effect principles. Thus, for these experiments, the HierGP models
offer improved emulation performance at comparable computing times.

Consider next the emulation of the two synthetic test functions in the literature, the
Branin function (Sobester et al., 2008)

f(x) = a(x2 − bx1 + cx1 − r)2 + s(1− t) cos(x1) + s,

where a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and t = 1/π, and the Cheng & Sandu
function (Cheng and Sandu, 2010)

f(x) = cos(x1 + x2) exp(x1x2).

These two functions vary in their degree of adherence to the effect heredity and hierarchy
principles. Here, the HierGP, least-squares, and sparse least-squares fits make use of the
above sinusoidal basis with truncation limit K = (8,8). This provides a good test for how
robust the proposed models are when there are minor violations of the effect principles with
respect to the chosen basis functions. As before, n= 70 uniformly sampled design points are
used for training.

Figure 4 shows boxplots of prediction errors for 400 uniformly sampled testing points for
each test function. For the Branin function, the HierGP provides the best predictive per-
formance of all the considered models, with the HierGP2 a close competitor. Upon further
inspection, this is not surprising since its functional form suggests some form of effect heredity
and hierarchy is present. For the Cheng & Sandu function, we see that the HierGP2 provides
the best predictive performance, with the HierGP a close competitor. This can be explained
by the more complex interaction structure present in its functional form, which may slightly
deviate from the presumed hierarchical structure in the HierGP. Regardless, the above exper-
iments suggest that, when effect smoothness, hierarchy, and heredity are present in f (even
with minor violations), the proposed models can indeed identify and integrate such structure
for improved predictive performance.

5.2. Recovery of dynamical systems. We now further investigate the HierGP for the
problem of dynamical system recovery and prediction, which is widely used in climatology,
ecology, and finance (see, e.g., Ghadami and Epureanu, 2022, Luo et al., 2011, Mudelsee,
2019). We first provide a brief review of this problem, following Brunton et al. (2016). We
consider here dynamical systems (Guckenheimer and Holmes, 2013) that take the form
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1103

Figure 4. Barplots of prediction root-mean-squared errors for the compared methods when f is taken as the
Branin and Cheng & Sandu functions, respectively. The left figure shows the barplots over all methods, and the
right figure shows the zoomed-in barplots for the best-performing methods. Here, LS denotes the least-squares
fit, SparseLS denotes the sparse least-squares fit, and FRK denotes the fixed rank kriging approach.

d

dt
x(t) := ẋ(t) = f(x(t)).(5.1)

Here, x(t) ∈ R
q denotes the system states at time t, and f(x(t)) captures dynamical con-

straints that govern the equations of motion for such system states. The formulation (5.1)
covers a broad range of dynamical systems used in ecology, biology, and other scientific disci-
plines (Delahunt and Kutz, 2022).

Consider now the setting where data {(x(ti), ẋ(ti)}ni=1 are observed on the system states,
where t1, . . . , tn are the sampled time points. We can rearrange this into the following state
matrices:

X = (xT (t1), . . . ,x
T (tn))

T =











x1(t1) x2(t1) · · · xd(t1)
x1(t2) x2(t2) · · · xd(t2)

· · · · · · . . .
...

x1(tn) x2(tn) · · · xd(tn)











∈R
n×d,

Ẋ = (ẋT (t1), . . . , ẋ
T (tn))

T =











ẋ1(t1) ẋ2(t1) · · · ẋd(t1)
ẋ1(t2) ẋ2(t2) · · · ẋd(t2)

· · · · · · . . .
...

ẋ1(tn) ẋ2(tn) · · · ẋd(tn)











∈R
n×d.

With this, we then construct a “library” of candidate functions for recovering the function f

in (5.1), thus recovering the underlying system dynamics. Suppose these candidate functions
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1104 TAO TANG, SIMON MAK, AND DAVID DUNSON

F = {φk(x)}k are parametrized by the multi-index k = (k1, . . . , kd), k ≤ K. Given the
sampled time points, this library can be represented by the following model matrix:

Φ(X) =





| · · · | · · · |
Φ(X)[1] · · · Φ(X)[k] · · · Φ(X)[K]

| · · · | · · · |



∈R
n×‖K‖,

where ‖K‖=∏d
m=1Km is the total number of basis functions in F , and Φ(X)[k] is the model

matrix consisting of the basis functions in F with multi-index k. The dynamical system (5.1)
can then be represented by the following linear system of equations:

Ẋ =Φ(X)Ξ,(5.2)

where Ξ = (ξ1, . . . ,ξd) ∈ R
‖K‖×d is the matrix of coefficients for f , and ξm ∈ R

‖K‖ is the
coefficient vector for the mth component of f .

Given data matrices Ẋ and X, the goal of recovering f can be viewed as a regression
problem on estimating the coefficient matrix Ξ. In a seminal paper, Brunton et al. (2016)
argued that, since in many physical systems there are only a few dominant terms that govern
the underlying dynamics, the coefficients in Ξ should be estimated in a sparse manner. To
achieve this, they proposed a method called Sparse Identification of Nonlinear Dynamics
(SINDy), which makes use of compressed sensing algorithms for sparse estimation of Ξ, thus
allowing for a sparse identification of the system f . Since then, there have been further
developments on SINDy via sparse regression and deep learning; see Champion et al. (2020)
and Both et al. (2021).

A potential limitation with the above SINDy-based methods is that, as mentioned in
section 1, dominant effects in physical systems are often structured via the principles of effect
hierarchy, heredity, and smoothness (Ding et al., 2020): main effects typically have greater
influence than interactions, and interactions are significant only when component main effects
are significant. One way to capture such structure is to assign the proposed hierarchical
cumulative priors (2.11) and (2.12) independently over each row of the coefficient matrix Ξ.
With these priors, the resulting linear system (5.2) can be viewed as fitting m independent
HierGPs, with basis functions taken from the function library F . The recovery of governing
equations can thus be performed via posterior sampling of the coefficient matrix Ξ given data
{(x(ti), ẋ(ti)}ni=1, using the Gibbs sampler in section 3.2. With posterior samples {Ξ1, . . . ,ΞB}
generated, one can then predict and quantify uncertainty on the dynamical system via forward
solves of (5.1) using each coefficient matrix sample Ξb, b= 1, . . . ,B.

For problems where such structure is present in the governing equations, one would expect
that the integration of the effect principles within the HierGP can yield improved dynamical
system recovery with greater certainty, particularly using limited data. We explore this below
in numerical comparisons with existing methods on two dynamical systems.

5.2.1. 2D cubic equations. Consider the following 2D planar dynamical system (see
Brunton et al., 2016 for further details):

dx(t)

dt
=−ax(t)3 + by(t)3,

dy(t)

dt
=−bx(t)3 + ax(t)3,

(5.3)
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1105

where a and b are constant parameters. While this system is simple, it has two appealing
features that allow interesting comparison of recovery methods. First, its derivative functions
capture effect sparsity and hierarchy, as they depend on only two basis functions of relatively
low order. Second, one can show for any initial point (x(0), y(0)), the system will always
converge to a stationary point (0,0) with quasi-periodic behavior (Brunton et al., 2016), thus
providing stability and predictability to numerical solutions. In the following experiment, we
set the true parameters as a = 0.1 and b = 2, with initial condition (x0, y0) = (2,0). We
then generate the training data by numerically solving the dynamical system (5.3) and then
sampling n= 500 observations (with a time step of 0.04) from one trajectory corrupted with
i.i.d. Gaussian noise (with variance 0.01). Finally, we set K = (5,5) for the HierGP.

Figure 5 shows the trajectory of the true dynamical system, as well as the recovered
trajectory from a forward simulation of the fitted HierGP model. For the latter, we first
performed posterior sampling on model parameters Θ and then used its posterior mean as
parameters for a forward solve of the system (5.3). Visually, we see that the HierGP trajectory
captures well the desired periodic and asymptotic behavior of the cubic system. Figure 6 shows
the corresponding prediction errors of the recovered systems for the HierGP and SINDy in each
of the two coordinates. We see that the HierGP indeed yields noticeably improved predictions
over SINDy; this suggests that the integration of effect structure (when present) for prior
specification indeed allows for improved system recovery. The errors for both methods are
relatively small, which is unsurprising since the true dynamical system is quite simple. These
errors do grow slightly with time; this is intuitive since recovery errors should propagate in
time given estimation errors for dynamical system coefficients.

Figure 7 further explores the uncertainty quantification of the proposed method by showing
the forward runs of 50 posterior sample draws for Ξ for the 2D system (5.3) in x- and y-
coordinates. The existing SINDy method (Brunton et al., 2016) does not provide such a
quantification of uncertainty. We see that the recovered trajectories from the HierGP not
only recover the true system well but also does so with relatively high certainty. We do note

Figure 5. Visualizing the true and recovered trajectories for the 2D cubic system. [Left] The x-trajectory
(orange) and y-trajectory (blue) for the true (solid) and recovered (dashed) systems using the HierGP. [Middle]
The 2D trajectories of the true (solid) and recovered (dashed) systems from the HierGP. [Right] The learned
vector field from the fitted HierGP model.
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1106 TAO TANG, SIMON MAK, AND DAVID DUNSON

Figure 6. Prediction errors (in x- and y-coordinates) of the HierGP (top) and SINDy (bottom) for the 2D
cubic system with 500 time steps.

Figure 7. Visualizing the forward runs of 50 posterior sample draws from the HierGP for the 2D cubic
system in x- and y-coordinates (from left to right).
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HierGP: HIERARCHICAL SHRINKAGE GAUSSIAN PROCESSES 1107

that the posterior uncertainties from our model grow gradually in time; this is again not
surprising since uncertainties in the recovered system should accumulate over time.

5.2.2. Chaotic Lorenz system. Consider next the following 3D chaotic Lorenz system
(Lorenz, 1963), given by

dx(t)

dt
= σ(y(t)− x(t)),

dy(t)

dt
= x(t)(ρ− z(t))− y(t),

dz(t)

dt
= x(t)y(t)− βz(t),

(5.4)

where σ, β, and ρ are constant parameters. Although these equations have rich and chaotic
dynamics that evolve on a strange attractor (Brunton et al., 2016), the modeled equations
for each derivative are sparse and of relatively low order, thus reflecting the desired effect
principles. In particular, the derivative functions are typically influenced by only a few low-
order terms that have sparse and hierarchical structure (Brunton et al., 2016). In the fol-
lowing, we set the true parameters as σ = 10, β = 8/3, and ρ = 28 with initial conditions
(x(0), y(0), z(0)) = (−8,7,27). As before, the training data are generated by solving the dy-
namical system (5.4) and then sampling (with time step 0.05) n= 200 observations corrupted
with Gaussian noise (with variance 0.01) from the resulting solution.

Figure 8 shows the trajectory of the true Lorenz system, as well as the trajectory of the
recovered system using the fitted HierGP model with K = (5,5,5). Visually, we see that the
recovered system captures the desired strange attractor behavior and short-time dynamics:
the trajectory moves locally and predictably initially, but more globally and chaotically as
time progresses, constrained within a region with complex geometric structure (Lorenz, 1963).
Figure 9 shows the corresponding prediction errors of the recovered systems using the HierGP
and SINDy in each of the three coordinates. We again see that the HierGP yields noticeably

Figure 8. Visualizing the recovered trajectory (left) of the 3D Lorenz system using the HierGP and the true
trajectory of the system (right).
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Figure 9. Prediction errors (in x-, y-, and z-coordinates) of the HierGP (top) and SINDy (bottom) for the
3D Lorenz system.

improved performance over SINDy, which suggests that the integration of structured shrinkage
(when present) can indeed improve system recovery. We note that the errors grow rapidly as
time progresses, which suggests that recovery becomes increasingly difficult over time; this is
not too surprising given the chaotic nature of this system.

Figure 10 further investigates the uncertainty quantification performance of the HierGP
by showing the forward runs of 50 posterior sample draws on Θ for the 3D Lorenz system in
x-, y-, and z-coordinates. Initially, we see that the recovered trajectories using the HierGP
have low uncertainties, with all sample paths quite close to each other. However, as time
progresses, we see much higher posterior uncertainties, with sample paths growing further
apart as uncertainty accumulates over time. This is not surprising given the chaotic nature of
the system and its error propagation over time and again suggests that long-term prediction
of such systems is a challenging problem.

6. Conclusion. We proposed in this work a novel hierarchical shrinkage Gaussian process
(HierGP), which embeds the principles of effect hierarchy (Hamada and Wu, 1992), heredity
(Haris et al., 2016), and smoothness (Ding et al., 2020) within carefully constructed cumula-
tive shrinkage priors in a Gaussian process. Similar to the use of such principles for classical

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Figure 10. Visualizing the forward runs of 50 posterior sample draws from the HierGP for the 3D Lorenz
system in x-, y-, and z-coordinates (from left to right).

analysis of experiments (see, e.g., Wu and Hamada, 2009), the embedding of this structured
shrinkage within a Bayesian nonparametric model can allow for improved predictive perfor-
mance with limited experimental data. We then derived efficient posterior sampling algorithms
for model training and prediction and proved desirable consistency results for the HierGP. Nu-
merical experiments confirmed the improved performance of the HierGP over existing models
for both computer code emulation and dynamical systems recovery.

Despite promising results, there are many avenues for fruitful future work. One direction
is in establishing posterior contraction rates for the HierGP. In the case where f has the pre-
sumed effect structure, it would be interesting to explore whether the HierGP rates improve
upon standard contraction rates for GPs, which are known to suffer from a curse ofdimen-
sionality (van der Vaart and van Zanten, 2008). Another direction is in exploring cumulative
shrinkage priors that can capture a weaker form of effect heredity (see, e.g., Wu and Hamada,
2009; Mak and Wu, 2019b), where interaction effects can be significant when at least one
component effect is significant. This can provide a more flexible model in cases where there
may be minor violations to the effect principles. Finally, the exploration of the HierGP for
factor screening would be of interest; such a direction requires further investigation of variable
selection consistency for our model.
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