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We explore jetśmedium interactions at various scales in high-energy
heavy-ion collisions using the JETSCAPE framework. The physics of the
multi-stage modeling and the coherence effect at high virtuality is discussed
through the results of multiple jet and high-pT particle observables, com-
pared with experimental data. Furthermore, we investigate the jetśmedium
interaction involved in the hadronization process.
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1. Introduction

In jet-shower evolution, the virtuality and energy of each jet parton vary
considerably. Thus, in high-energy heavy-ion collisions, jets can be used as
dynamical probes to investigate the jetśmedium interaction at various scales.
JETSCAPE [1ś7] is a publicly available software framework for Monte Carlo
event generators that enables simulations describing physics at varying scales
involved in the in-medium jet evolution. The JETSCAPE framework incor-
porates multiple models, each effective at an individual scale range, and
switches between them at appropriate scales while mediating their commu-
nication.

As a new feature, the jet quenching strength q̂ with an explicit virtuality
dependence due to the resolution scale evolution of jets [8] is now supported
by JETSCAPE. In these proceedings, we demonstrate that this further ex-
tension is crucial for a simultaneous description of the nuclear modiőcation
factor for inclusive jets and leading hadrons. Observables for jet substruc-
tures and heavy-ŕavor jets are also explored for more detailed discussions
of the virtuality dependence in the jetśmedium interaction. Furthermore,
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we present the effect of jetśmedium interaction in the hadronization process
through a systematic study using the Hybrid Hadronization module in the
JETSCAPE package.

2. Multi-stage jet evolution in JETSCAPE

We present results from a multi-stage jet evolution model, the MATTER

energy loss module handles partons with large virtualities, and the LBT en-
ergy loss module is applied to nearly on-shell partons within the JETSCAPE

framework. In the MATTER phase, the coherence effects by the scale evolu-
tion of the medium parton distribution [8] are implemented as the effective
jet quenching strength q̂ = q̂HTLf(Q

2) with the virtuality-dependent modu-
lation factor parametrized as [6]

f(Q2) =
1 + 10 ln2

(

Q2
sw

)

+ 100 ln4
(

Q2
sw

)

1 + 10 ln2 (Q2) + 100 ln4 (Q2)
, (1)

where Q2
sw is the switching virtuality between MATTER and LBT. If one

eliminates the virtuality dependence (f(Q2) = 1), the effective jet quenching
strength is reduced to the jet quenching parameter for the on-shell parton
calculated by the hard-thermal-loop (HTL) effective theory [9]. The space-
time medium proőle for the energy loss calculations is obtained through
(2+1)-D freestreaming [10] and subsequent (2+1)-D viscous hydrodynamic
evolution by VISHNU [11] with the initial condition by TRENTo [12]. The
values of free parameters are the same throughout all calculations.

Figure 1 shows the nuclear-modiőcation factor for the reconstructed jet
and single particle. Our full results with the coherence effects describe the
experimental data from the top RHIC to the top LHC collision energies well.
In particular, the coherence effects are signiőcant in describing the high-pT
single particle at 5.02 TeV. Besides, excellent descriptions of the groomed
jet observables measured by ALICE are presented in őgure 2.

The coherence effects also manifest in the jet substructures, such as the
jet-fragmentation function shown in Fig. 3. Since the energy loss of partons
in the jet core is suppressed by the coherence effect, the enhancement of
high-pT constituents can be seen.

The contribution from each phase of the multi-stage description in charm
and inclusive hadron energy loss is shown in Fig. 4. It can be seen that the
low virtuality phase dominates the charm quark energy loss compared to the
light ŕavor partons.
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Fig. 1. Nuclear modiőcation factors for the reconstructed jet (left panels) and

single particle (right panels). Top: Pb+Pb collisions at 5.02 TeV. Middle: Pb+Pb

collisions at 2.76 TeV. Bottom: Au+Au collisions at 200 GeV. Experimental data

are taken from ATLAS [13], CMS [14ś17], STAR [18], and PHENIX [19].
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Fig. 2. Modiőcation of zg (left) and rg (right) distribution for the charged jet in

Pb+Pb collisions at 5.02 TeV. Experimental data are taken from ALICE [20].
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Fig. 3. Modiőcation of the jet-fragmentation function in Pb+Pb collisions at

5.02 TeV. Experimental data are taken from ATLAS [21].
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Fig. 4. Nuclear modiőcation factors for D0 meson (left) and inclusive charged

hadron (right). Experimental data are taken from the CMS [15, 22] and AL-

ICE [23].
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3. Jetśmedium interaction in hadronization

Hybrid Hadronization [24] is a model which interpolates string fragmen-
tation in a vacuum and quark recombination in a dense QGP medium. Its
comprehensive description even includes recombinations of jet partons with
thermal medium partons.

Figure 5 shows Λ-to-K ratio of longitudinal momentum spectra in a jet.
Here, a jet shower with E = 100 GeV traveling in the x-direction in a brick
medium with T = 0.3 GeV is hadronized by the Hybrid Hadronization. As
the path length increases, more baryons are produced due to more possible
interactions with the medium partons. Furthermore, the medium ŕow shifts
the ratio’s peak since baryons inherit more momenta of medium partons.

Fig. 5. (Color online) Yield ratios of Λ to K in jets as a function of momentum in

the x-direction for the brick medium with ŕow velocity (a) v = (0, 0, 0), and (b)

v = (0.8, 0, 0). Each color of the markers represents the path length of the jets in

the medium L.
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