
PHYSICAL REVIEW C 109, 064903 (2024)

New metric improving Bayesian calibration of a multistage approach studying
hadron and inclusive jet suppression

W. Fan,1,* G. Vujanovic,2,3,† S. A. Bass,1 A. Angerami,4 R. Arora,5 S. Cao,6,2 Y. Chen,7,8 T. Dai,1 L. Du,9 R. Ehlers,10,11

H. Elfner,12,13,14 R. J. Fries,15,16 C. Gale,9 Y. He,17,18 M. Heffernan,9 U. Heinz,19 B. V. Jacak,20,21 P. M. Jacobs,20,21 S. Jeon,9

Y. Ji,22 L. Kasper,23 M. Kordell, II,15,16 A. Kumar,9,2 J. Latessa,24 Y.-J. Lee,7,8 R. Lemmon,25 D. Liyanage,19 A. Lopez,26

M. Luzum,26 A. Majumder,2 S. Mak,22 A. Mankolli,23 C. Martin,10 H. Mehryar,24 T. Mengel,10 J. Mulligan,20,21 C. Nattrass,10

J. Norman,27 J.-F. Paquet,1 C. Parker,15,16 J. H. Putschke,2 G. Roland,7,8 B. Schenke,28 L. Schwiebert,24 A. Sengupta,15,16

C. Shen,2,29 C. Sirimanna,2 D. Soeder,1 R. A. Soltz,2,4 I. Soudi,2 M. Strickland,30 Y. Tachibana,31,2 J. Velkovska,23

X.-N. Wang,32,20,21 and W. Zhao2

(JETSCAPE Collaboration)
1Department of Physics, Duke University, Durham, North Carolina 27708, USA

2Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
3Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada

4Lawrence Livermore National Laboratory, Livermore, California 94550, USA
5Research Computing Group, University Technology Solutions, The University of Texas at San Antonio, San Antonio, Texas 78249, USA

6Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
7Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

8Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
9Department of Physics, McGill University, Montréal QC H3A 2T8, Canada

10Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
11Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

12GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
13Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany

14Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
15Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

16Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
17Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University,

Guangzhou 510006, China
18Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal

University, Guangzhou 510006, China
19Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

20Department of Physics, University of California, Berkeley, California 94270, USA
21Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, USA

22Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA
23Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

24Department of Computer Science, Wayne State University, Detroit, Michigan 48202, USA
25Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom

26Instituto de Fìsica, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil
27Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
28Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

29RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
30Department of Physics, Kent State University, Kent, Ohio 44242, USA

31Akita International University, Yuwa, Akita-City 010-1292, Japan
32Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University,

Wuhan 430079, China

(Received 31 July 2023; accepted 10 April 2024; published 6 June 2024)

*Corresponding author: wenkai.fan@duke.edu
†Corresponding author: gojko.vujanovic@uregina.ca

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

2469-9985/2024/109(6)/064903(23) 064903-1 Published by the American Physical Society

https://ror.org/01070mq45
https://ror.org/03dzc0485
https://ror.org/01070mq45
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.064903&domain=pdf&date_stamp=2024-06-06
https://creativecommons.org/licenses/by/4.0/


W. FAN et al. PHYSICAL REVIEW C 109, 064903 (2024)

We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage
approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and
(linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated
in comparison with high-pT charged hadrons, D mesons, and the inclusive jet nuclear modification factors,
using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening
transport coefficient q̂. To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian
workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The
usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future
such analyses.

DOI: 10.1103/PhysRevC.109.064903

I. INTRODUCTION

Colliding QCD bound states at relativistic energies can
lead to the excitation of its fundamental degrees of freedom
known as partons. Some of these are highly energetic and gen-
erate a spray of particles known as a jet. While proton-proton
collisions allow the study of the fragmentation of partons
and their subsequent decay into hadronic bound states in the
vacuum [1–4], the showering of jets in high-energy heavy-ion
collisions inherently includes interactions with the hot and
dense nuclear medium known as the quark gluon plasma
(QGP) [5–19]. The modification of jets in nucleus-nucleus
(A-A) collisions compared with jets in proton-proton (p-p)
collisions is referred to as jet quenching. As jets are generated
early in heavy-ion collisions, their partonic content samples
the properties of the QGP throughout its evolution and can
be described by perturbative QCD, which provides us with
an established approach to study them (see Refs. [20–23] and
references therein). Given that parton lifetime (or virtuality)
plays an important role in how partons interact with the QGP,
and no single Monte Carlo approach for parton energy loss has
been devised that describes all virtualities at once, a multiscale
approach is the preferred option, as explored herein.

The interaction between an energetic parton and the QGP
medium is divided into two regimes determined by the vir-
tuality (t = E2 − |p|2 = Q2) of the parton. Parton evolution
in the high-virtuality (t2 � q̂E ) regime is described by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion modified to include nuclear medium effects [24–26]
based on the higher-twist formalism [19,27,28]. The jet-
medium interaction is encapsulated in various transport
coefficients governing the exchange of energy-momentum
between jet partons and those in the QGP: The transverse
momentum diffusion of jet partons in the QGP is encoded in
q̂ [29,30], while longitudinal transfers (not used herein) are
contained within ê and ê2 [31,32].

With every split in the DGLAP or vacuum like stage the
virtuality undergoes a reduction. Once the virtuality reaches
ts ∼ √

q̂E , the switching virtuality (ts) between the DGLAP
and transport stages, multiple scatterings from the medium
maintain the virtuality at the scale

√
q̂E . In this effort, ts is

treated as a free parameter, tuned using Bayesian methods.
Below ts, the virtuality scale is considered close to that of the
medium in our simulations, and thus rate equations [15,33,34]
become an apt description of parton evolution in the QGP.
Finally, once partons reach low energies and (and low

virtualities), hadronization occurs via PYTHIA’s string frag-
mentation present within the JETSCAPE framework [35,36].
The high- and low-virtuality parton energy-loss regimes
are incorporated inside the JETSCAPE framework, which
provides a model-agnostic communication layer among jet
energy-loss models, allowing for a multistage event generator
to be created, as is the case in this study. Beyond jet-medium
interactions, the model-agnostic nature of the JETSCAPE
framework has been used to study and interpret simulations
of the nuclear bulk medium itself [37,38], while the frame-
work also provides a dynamical communication layer between
simulation of the nuclear medium and the energy-loss calcu-
lations. Finally, the JETSCAPE framework has developed a
set of Bayesian tools to constrain jet-quenching calculations
in heavy-ion collisions [39].

This study focuses on improving Bayesian tools to con-
strain the nuclear modification factor of inclusive jets, light
hadrons and D mesons (a discussion on particulars of heavy
flavor production can be found in Ref. [40]). The com-
bination of highly dimensional parameter spaces explored
in high-energy heavy-ion collisions simulations (see, e.g.,
Refs. [37,39,41–45]) together with the high computational
requirements to generate realistic simulations, necessitates
the use of model emulators to accelerate the Markov Chain
Monte Carlo computations employed when obtaining the pos-
terior parameter distributions in Bayesian analysis. Given that
the presence of emulators is currently unavoidable inside
large-scale Bayesian analysis, a new measure quantifying the
performance of an emulator is needed.

For reliable predictions with quantified uncertainty, we in-
troduce herein a newmeasure for quantifying the performance
of Gaussian process (GP) emulators to approximate full model
calculations. This novel measure is based on the Kullback-
Leibler divergence within closure tests. The novel measure
proposed is inspired from the work done in devising scoring
rules [46–49] in Bayesian statistics. To fully appreciate the
usefulness of this new measure, a Bayesian inference (cali-
bration) of model parameters is performed where a selection
of hadron and inclusive jet suppression observables are used,
focusing solely on central (0%–10%) nuclear collisions at
the CERN Large Hadron Collider (LHC). As our calculation
currently yields a large statistical uncertainty for heavy flavor
observables, validation of the Bayesian inference workflow
is especially important, and presents a good scenario to test
our new performance metric of GP emulators. We also test
its sensitivity to various model parameters and to different
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observables, thus highlighting its usefulness for future
Bayesian analysis. Finally, we present Bayesian constraints on
model parameters explored in our limited Bayesian analysis,
and provide comparisons with experimental data.

This work is organized as follows: Section II presents de-
tails regarding the multistage energy-loss calculation herein
as well as provide details about the hydrodynamical simula-
tion of the QGP with which partons will interact. Section III
presents our Bayesian setup, with the new measure quanti-
fying the performance for GP emulation being presented in
Sec. III D. The best performing GP emulator is then used
within a small-scale Bayesian calibration. Section IV is re-
served for concluding remarks and present an outlook of how
our current Bayesian analysis can be improved in the future.

II. SIMULATION SETUP

In the following sections we describe our simulation of
parton evolution in the QGP. Section II A describes the models
used to explain the interaction of jet partons with the QGP,
while Sec. II B provides details of how QGP is evolved.

A. Parton interactions with the quark gluon plasma

After initial parton production in PYTHIA, the evolution
of high-energy and high-virtuality partons is calculated in
MATTER (Modular All Twist Transverse-scattering Elastic-
drag and Radiation) [50,51], which uses the higher twist
formalism [19,27,28] to explain parton interactions within
the QGP. A virtuality ordered shower is thus developed for
massless and massive [52,53] partons. Once hard partons
in the shower reach a low virtuality regime, further evo-
lution proceeds via the linear Boltzmann transport (LBT)
model [54]. The LBT interactions between the hard partons
and the QGP are preserving parton virtuality while mod-
ifying their energy, and three-momentum direction. Thus,

MATTER evolves partons with virtuality t > ts—ts being the
switching virtuality—while LBT simulates those with t � ts.
The connection time between the PYTHIA shower and the en-
ergy loss models is chosen to be 0.6 fm/c but the dependence
of the nuclear modification factor on this quantity is found to
be weak [55,56].

The reason for the weak dependence on the connection
time stems from the fact that medium-induced modifications
to the jet shower evolution are suppressed for highly virtual
partons, thus making the shower more vacuum-like [55]. Fur-
thermore, as ts is being varied, so is the balance between
the high virtuality portion of the evolution in MATTER versus
the low virtuality portion in LBT. Our Bayesian exploration
constrains ts in a way that reproduces the observed RAA, while
simultaneously probing the virtuality dependence of q̂ in
MATTER.

Following the evolution in LBT, the JETSCAPE frame-
work determines whether partons undergo further splittings
in MATTER (i.e., for parton leaving the QGP with enough vir-
tuality to continue showering in the vacuum) or whether they
need to hadronize (hadronization is handled via fragmentation
in PYTHIA) using the colorless string hadronization routine [4].

1. The MATTER simulation

Parton decays in MATTER are calculated using the Sudakov
form factor. The probability for no decay for a parton is given
by

�(t, tmin) = exp

[
−

∫ t

tmin

dt ′
∫ zmax

zmin

dz
dN tot

dzdt ′

]
dN tot

dzdt ′

= dNvac

dzdt ′
+ dNmed

dzdt ′
, (1)

where dNvac/dzdt ′ + dNmed/dzdt ′ includes all possible de-
cay channels of a given parton. For instance, according to
soft collinear effective theory (SCET) [52], the decay of heavy
quark Q → Q + g gives

dNvac

dzdt
+ dNmed

dzdt
= αs(t )

2π

Pg←Q(z)

t

⎧⎨
⎩1 +

∫ τ+
Q

0
dτ+

2 − 2 cos
(

τ+
τ+
Q

)
z(1 − z)t (1 + χ )2

[(
1 + z

2

)
− χ +

(
1 + z

2

)
χ2

]
q̂

⎫⎬
⎭. (2)

In Eq. (2), z labels the momentum fraction of the daughter
heavy quark, M is the mass of the heavy quark, χ = (1 −
z)2M2/l2⊥, with l2⊥ being the relative transverse momentum
square between the outgoing daughter partons, determined via
z(1 − z)t = l2⊥(1 + χ ), while t is the virtuality of the heavy
quark and Pg←Q(z) = CF ( 1+z2

1−z ) is the splitting function and
CF = 4/3. The light flavor result [19,27,28,50], is recovered
in the limit M → 0. The integral over light-cone time τ+ in
Eq. (2) assumes the medium is in its rest frame, with the upper
bound τ+

Q = 2q+/t being given by the ratio of forward light-

cone momentum q+ = (q0 + q · n̂)/√2 (with n̂ = q/|q|), and
the virtuality t .

As the g → Q + Q̄ has not yet been calculated using the
SCET approach devised in Ref. [52], this phenomenological

study estimates the gluon splitting into heavy quarks using
the light flavor formula [50], and reduces the kinematic range
using [53]

zmin = t0 + M2

t
+ O

((
t0 + M2

t

)2
)

,

zmax = 1 − t0 + M2

t
+ O

((
t0 + M2

t

)2
)

, (3)

assuming M2/t 	 1, t0/t 	 1, and t0 = 1 GeV2. Imposing
zmax > zmin as well as t > tmin, requires that tmin = 2(M2 +
t0). The determination of t and z proceeds in the same way as
for Q → Q + g (more details are in Ref. [53]).
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The transverse momentum broadening q̂[T (τ+)] acquired
by the quark as it traverses the QGP is the only quantity that
depends on τ+ through the temperature T . From the hard
thermal loop (HTL) approximation [57], q̂ is

q̂HTL = Ca
42ζ (3)

π
α2
s T

3 ln

(
cET

4m2
D

)
, (4)

where ζ (3) ≈ 1.202 05 is Apéry’s constant, Ca = Nc = 3 the
number of colors, while the Debye mass is m2

D = 6παsT 2,
and c ≈ 5.7 [58]. The studies [53,55] showed that a constant
effective αeff

s can be improved by allowing the coupling to run
with the scale μ2 = 2ET via

q̂HTL = Ca
42ζ (3)

π
αs(μ

2)αeff
s T 3 ln

(
cET

4m2
D

)
, (5)

where

m2
D = 4παeff

s T 2

3

(
Nc + Nf

2

)
Nf =3= 6παeff

s T 2,

αs
(
μ2

) =
⎧⎨
⎩

αeff
s , μ2 < μ2

0
4π

11−2Nf /3
1

ln μ2

�2

, μ2 > μ2
0,

(6)

with � being chosen such that αs(μ2
0) = αeff

s at μ2
0 = 1 GeV2

[59]. The effective parametrization of the t-dependent q̂ is
[53,55]

q̂(t )

q̂HTL
= H (t ) = c0

1 + c1 ln2 (t ) + c2 ln4 (t )
, (7)

where q̂HTL is given in Eq. (5), c1 as well as c2 are tunable
parameters, and c0 = 1 + c1 ln2(ts) + c2 ln4(ts) is an overall
normalization ensuring q̂(t )/q̂HTL ∈ [0, 1] for t > ts. Note
that currently the virtuality dependence of q̂ is assumed to
be the same regardless of the mass of the quark [53]. Finally,
MATTER also includes elastic 2 → 2 scatterings using leading-
order perturbative QCD matrix elements as explored in detail
below.

2. The linearized Boltzmann transport simulation

Once a parton enters the linearized Boltzmann transport
(LBT) at t < ts, its virtuality remains unchanged (see, e.g.,
Ref. [21] and references therein). The LBT relies on solving
the Boltzmann equation taking into account 2 → 2 and 2 → 3
processes. The 2 → 2 scattering processes consist of leading-
order perturbative QCD matrix elements. The evolution of the
momentum and position distribution of a hard quark Q with
momentum p1 is given by

pμ
1 ∂μ f1(x1, p1) = Cel[ f1] + Cinel[ f1],

Cel[ f1] = d2
2

∫
dP2

∫
dP3

∫
dP3(2π )4δ(4)(p1 + p2 − p3 − p4)|M1,2→3,4|2λ2(s, t, u)

×{ f3(p3) f4(p4)[1 ± f1(p1)][1 ± f2(p2)] − f1(p1) f2(p2)[1 ± f3(p3)][1 ± f4(p4)]}, (8)

where d2 is the spin-color degeneracy of parton “2,”∫
dPi ≡ ∫ d3pi

(2π )32p0i
with i = 2, 3, 4, while λ2(s, t, u) = θ (s −

2m2
D)θ (s + t − m2

D)θ (−t − m2
D). The same 2 → 2 scattering

rates are also used in MATTER.
The medium-induced gluon radiation describing 2 → 3

processes uses the same higher twist formulation as that em-
ployed in Eq. (2) of the MATTER simulation. The latter has an
average number of gluons emitted from a hard quark (between
time t and t + �t):

N̄med(t → t + �t ) ≈ �t
∫

dzdk2⊥
dNmed

dzdk2⊥dt
,

dNmed

dzdk2⊥dt
= 2αsP(z)

πk4⊥
q̂

(
k2⊥

k2⊥ + z2M2

)4

sin2
(
t − ti
2τ f

)
.

(9)

A Poisson probability distribution is employed to sample
independent successive emissions, with the probability of
emitting n gluons being

P (n) = (N̄med)n

n!
e−N̄med

, (10)

while the probability of a total inelastic process is Pinel. =
1 − e−N̄med

. The procedure to determine whether (and how
many) elastic vs inelastic scatterings inside the QGP have
occurred is explored in detail in Ref. [55]. The only unde-
termined coefficient in LBT is the strong coupling αs, which
has a fixed component α(eff )

s = 0.3, and a running component
αs(μ2) [53].

B. Evolution of the QCD medium

The evolution of the QCD medium used herein is per-
formed using a boost-invariant (2 + 1)-dimensional [(2 +
1)D] model which involves three stages: a prehydrodynamic,
hydrodynamic, and a hadronic transport stage [41,60–62].
The prehydrodynamic stage is based on the TRENTo initial
condition for Pb-Pb collisions [63], which is followed by a
collisionless Boltzmann evolution for a proper time of τFS =
1.2 fm/c. Free-streaming generates a nontrivial initial pro-
file used inside a (2 + 1)D hydrodynamical simulation. 400
TRENTo initial Pb-Pb configurations were generated within the
0%–10% centrality class at

√
sNN = 5.02 TeV. The central-

ity selection is done using soft charged hadron multiplicity,
as outlined in Refs. [41,64] (see also Ref. [65]). The most
central collision was chosen to maximize the potential con-
straint that could be imposed q̂. This requires maximizing
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the space-time size of the QGP medium, and minimizing
the effects of hadronic energy loss, which this study does
not model. The relevant parameters used for simulating the
evolution of the QCD medium are extracted from a Bayesian
model-to-data comparison, explained in Refs. [41,64]. The
event-by-event setup of the soft medium has been found to
be important for the proper description of jet energy loss due
to the added fluctuations in the medium [66]. The hydro-
dynamical simulation [60,67] is stopped once all fluid cells
reach below Tc = 154 MeV [68], at which point all fields are
converted into particles using the Cooper-Frye prescription
[64,69,70], following which the ultrarelativistic molecular
dynamics (UrQMD) [61,62] hadronic (Boltzmann) transport
simulation is used.

III. BAYESIAN INFERENCE

There are four parameters in the aforementioned multi-
stage energy-loss approach: the effective coupling constant
αeff
s , the switching virtuality ts = Q2

s , and (c1, c2) that control
the virtuality dependence of q̂(t ). Previous studies [53,55]
have briefly explored the effects of these parameters on the
charged hadron, Dmeson, and inclusive jet RAA. However, the
full correlation between the parameters and the observables,
as well as the full capability of this multistage approach to
describe experimental data, remain to be quantified. Bayesian
inference can help answer these questions.

The Bayes’ theorem states that the posterior distribution of
the parameter set x, given the experimental observation yexp,
is proportional to the product of the prior distribution q(x) and
the likelihood function L(yexp|x):

p(x|y) ∝ L(yexp|x)q(x). (11)

The prior q(x), as the name suggests, represents our prior
knowledge of the parameter values. The likelihood function
L(yexp|x) is the probability of observing yexp given a specific
parameter set x:

L(y|x) = exp
{− 1

2 [f (x) − yexp]ᵀ
−1[f (x) − yexp]
}

√
(2π )mdet


, (12)

where m is the dimension of yexp, 
 = 
M + 
exp is the
uncertainty covariance matrix, which takes into account both
model and experimental uncertainties, and f (x) is the model
calculation given the parameters x. In the case of model un-
certainties 
M , solely statistical are accounted for herein.

If f (x) is known for an arbitrary x, then one can perform
a Markov chain Monte Carlo (MCMC) random walk through
the parameter space to extract the posterior parameter distri-
bution. However, each point in the parameter space requires
at least O(104) CPU hours to compute, meaning it is com-
putationally prohibitive to walk in this parameter space by
performing a full model simulation at each step. A surrogate
model that can mimic the actual model with a reasonable com-
putational cost is needed. The Gaussian process (GP) emulator
is chosen as a fast surrogate model yielding both mean and
covariance information. The surrogate model is trained on the
set of precomputed (x, f (x)) pairs called the training data
stored as (Xtrain, ytrain ). Xtrain has dimensions m × k, where
m is the number of training data and k is the dimension

of the parameter set. ytrain is a m × 1 vector, since at each
training point, just one dimension of the model output f (x) is
emulated. A GP essentially interpolates between all training
data. Mathematically, one assumes that all desired outputs y
to be predicted at inputs X , along with the known outputs
ytrain at the training points Xtrain, follow a multivariate normal
distribution:(

y

ytrain

)
∼ N

((
μ

μtrain

)
,

(
K (X,X ) K (X,Xtrain )

K (Xtrain,X ) K (Xtrain,Xtrain )

))
,

where K denotes the covariance matrix. The distribution of y
is then given by

y ∼N (K (X,Xtrain )K
−1(Xtrain,Xtrain )ytrain,K (X,X )

− K (X,Xtrain )K
−1(Xtrain,Xtrain )K (Xtrain,X )). (13)

Each element in the covariance matrix K is calculated with
the kernel function k(x, x′) that characterizes the correlation
between two points in the parameter space [37]. The kernel
encodes the prior Bayesian belief of the function being mim-
icked. Common kernel choices include [71]

(1) the radial basis function (RBF) kernel k(r) =
σ 2 exp(−r2/2l2) (equivalent to the Matérn kernel with
ν → ∞),

(2) the Matérn (ν = 5/2) kernel k(r) = σ 2(1 + √
5r/l +

5r2/3l2) exp(−√
5r/l ),

(3) the Matérn (ν = 3/2) kernel k(r) = σ 2(1 +√
3r/l ) exp(−√

3r/l ),
(4) the white noise kernel k(r) = σ 2δ(r),

where r = |x − x′|, while σ and l are hyperparameters that are
assigned a possible window and then optimized to maximize
the likelihood of fit of the Gaussian process to the training
data.

Since a GP emulator maps onto a one-dimensional space,
in principle one would need dim(y) of GP emulators for all the
data points. However, as the simulation results are in fact cor-
related (e.g., the measured or calculated RAA points at different
pT are positively correlated with each other), dimensional
reduction of the data is possible using principal component
analysis (PCA). The principal component decomposition al-
lows us to select the number (NPC) of principal components
(PCs)—a subset of vectors in dim(y)-dimensional space—that
emulate the majority of the variance in training data. The addi-
tional uncertainty introduced by GP emulation and truncating
uncertainty induced via PCA selection are accounted for in
the covariance matrix 
.

The last ingredient needed for an efficient Bayesian infer-
ence workflow is to devise the optimal distribution of training
data points. Latin hypercube sampling of the parameter space
is used to optimally distribute training points. One runs the full
simulations at the hypercube-sampled design points, selects
the first few principal components in PCA (NPC containing the
best optimal number of PCs), and trains NPC GP emulators
using the appropriate kernel functions discussed above. To
predict the model output at a new point in the parameter space,
one runs the NPC GP emulators at this new point and then
inverse-transforms the outputs from the principal component
space onto the original observable (output) space. Besides
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TABLE I. Prior parameters ranges in our Bayesian calibration.

Parameter αeff
s Qs c1 c2

Range 0.1–0.5 1.5–4 1–10 50–300

generating the training data, the two key factors that affect
model emulation process is the choice of the kernel in GP,
and the number of principal components NPC in PCA. One of
the main results of this work—presented in Sec. III D—is to
devise a quantitative measure of the performance of the GP
emulator, allowing to choose the best emulator for a Bayesian
model-to-data comparison. Finally, using the optimal emu-
lator, the MCMC random walk in the parameter space is
performed to extract the posterior distribution of the param-
eters within a limited Bayesian model-to-data comparison.

A. Calibration setup

The prior range for the model parameters are considered to
be uniform distributions and are listed in Table I.

Those ranges are selected based on previous exploration of
these parameters in Refs. [55,65]. Due to constrained com-
putation budget of this work, 50 design points are drawn by
latin hypercube sampling (see Fig. 1). For each design point,
roughly 400 000 events are generated and distributed evenly
among 400 fluid simulations. Sizable statistical fluctuations
are observed especially for charged hadron and D meson RAA,
which will impact our calibration. The validity of the Bayesian
analysis against model calculation fluctuations will be verified
in Sec. III D, with further details in Appendix.

Given the computational resources available, this work fo-
cuses on Pb-Pb collisions at

√
sNN = 5.02 TeV and 0%–10%

centrality. A previous study [72] shows that calibrating to
different collision energies independently versus at the same
time may yield slightly different posteriors. Equivalently, one
may need to use different values for the same parameter in
different collision systems [73]. We leave such a exploration
to a future study.

As for the experimental observables that will be calibrated
to, we choose the nuclear modification factor RAA for charged
hadrons, D mesons, and inclusive jets. RX

AA is defined as

RX
AA =

dσX
AA

d pT
dσX

pp

d pT

=
∑

�

dNX
AA,�

d pT
σ̂�( p̂T )∑

�

dNX
pp,�

d pT
σ̂�( p̂T )

, (14)

where dNX
AA/d pT and dNX

pp/d pT are the multiplicity in the
experimentally given pT bin of the quantity X , which is either
charged hadrons, D mesons, or jets originating from A-A and
p-p collisions, respectively. The spectrum dNX

AA,�/d pT is cal-
culated utilizing the multistage model presented in Sec. II A.
The total cross section for producing a hard scattering process
is broken down in several segments � of exchanged trans-
verse momentum p̂T contributing to the hard scattering at the
level σ̂�. Each hard scattering event is sampled by PYTHIA.
Many samplings of σ̂�, spanning a large kinematic range of
the collision, are combined to produce dσ X/d pT . To avoid

FIG. 1. Distribution of input parameter αeff
s and Qs from all 50

sampled design points within the prior range.

complications from hard-thermal hadronic recombinations
and nonperturbative effects, the charged hadron and D meson
are sampled solely for pT � 7 GeV.

An important step before training GP emulators is to verify
that the dynamic range of model calculations spans that of the
experimental observations. Our model calculations depicted
in Fig. 2 cover the measured range in RX

AA, with each unique
color in each plot corresponding to calculation from a single
design point.

At first glance, it may appear that the statistical fluctuations
are significant, especially forDmeson RAA, which could affect
the validity of the Bayesian inference.1 However, we have per-
formed extensive validations of the GP emulator, in Sec. III B,
GP emulator closure tests in Sec. III C, as well as stability tests
of the posterior distribution in Appendix to addresses these
concerns.

B. Emulator validation

The GP emulator’s performance validation is presented in
Fig. 3, where a direct comparison between emulator predic-
tions and model calculations at five random design points can
be seen. Here the RBF with a white noise kernel is used along
with five PCs. The emulator predictions fit the model calcula-
tions well, and seem to cut off some statistical fluctuations,

1While generating the training data under a fixed computation
budget, we were pursuing a balance between the number of design
points to cover the parameter space and the number of events for
each design point. This balance required a reduction in statistics for
the D meson RAA at every design point, to ensure sufficient number
of design points are available to cover the parameter space.
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FIG. 2. A comparison between model calculation using parameters from all the design points and experimental data is shown, focusing on
LHC data from Pb-Pb collisions at

√
sNN = 5.02 TeV and 0%–10% centrality. Leading hadrons theory to data comparisons are presented in

panels (a) and (b). Specifically, panel (a) shows charged hadron RAA theoretical calculations against experimental data from CMS [74], while
panel (b) focuses on D-meson RAA calculations against measurements from ALICE [75]. Panels (c) through (e) are reserved inclusive jet RAA

comparisons, where jets are reconstructed using the anti-kT algorithm. In panel (c), theoretical calculations are contrasted against data from
ATLAS [76], while panels (d) and (e) center on describing the jet radius dependence using data from ALICE [77] at R = 0.2 and R = 0.4,
respectively. Each unique color in each plot corresponds to calculation from a single design point.
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FIG. 3. Comparison between emulator predictions and model calculations at five random design points selected from the sample as the one
depicted in Fig. 1. The combination of radial basis function with a white noise kernel is used along with five principal components (PCs). The
panels follow the same categories as in Fig. 2, while the colored bands correspond to the region covered by one standard deviation.

stemming form using a subset of all PCs. The full perfor-
mance of the emulator is plotted in Fig. 4, where the emulator
response versus model calculation is plotted for all design
points. The emulator seems to perform the best at predicting
inclusive jet RAA reconstricted using the anti-kT algorithm [see
Figs. 4(c)–4(e)], followed by charged hadron RAA in Fig. 4(a),
and finally the D meson RAA in Fig. 4(d). Figure 4(f) depicts

the histograms of the relative difference between model cal-
culations and emulator predictions for each observable. The
distributions can all be fitted by a Gaussian centered near the
origin, implying that the emulator induces little systematic
bias in predicting the model. More quantitatively, the standard
deviation is around 6%–9% when predicting inclusive jet RAA,
12% when predicting charged hadron RAA, and 30% when
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FIG. 4. A detailed comparison between emulator predictions and model calculations at all design points. The first five plots are scatter
plots that display the model calculation and emulator prediction for each observable. An ideal emulator gives the same output as the model,
thus lying along the back solid line in panels (a) through (e). Each color in panels (a)–(e) are calculated using the same design point as in
Fig. 2. Panel (f) shows histograms of the relative difference between model calculation and emulator prediction for different observables. The
combination of RBF and white noise kernel, along with five PCs, are used throughout.
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FIG. 5. Closure test results for αeff
s and Qs at nine random design points. The black lines represent the truth values. The RBF and white

noise kernel is used along with five PCs.

predicting D meson RAA.2 Note that when calculating the
emulator prediction at one design point, the GP emulation

2As a point of comparison, if all the design points are used to
train a single emulator, the uncertainty of the relative difference
will be slightly reduced (around 5%–7% when predicting inclusive
jet RAA, 10% when predicting charged hadron RAA, and 25% when
predicting Dmeson RAA). However, we did not perform closure cross

training dataset will exclude the data from that specific design
point. Thus, different emulators are trained for each design
point and the emulator does not know the truth values when
making predictions, as required for cross validation [78] via
closure tests.

validation on emulators using all design points, given the computa-
tional resources available for this work.
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C. Closure test

Being able to predict the training data does not guarantee
that our emulator can constrain the model parameters well. If
the data are not sensitive to some parameters, those parame-
ters may end up with a wide posterior. Furthermore, if there
are degeneracies in the model, i.e., multiple combinations
of model parameters can describe the same set of data, the
posterior distributions becomes multimodal. These scenarios
can be checked for by performing a cross-validation closure
test, whereby one design point is taken out from the train-
ing process and treated as the truth. The emulator is trained
without the truth point and then the posterior distributions
of the parameters are drawn. Since the truth values for the
parameters is known in this case, one can make a comparison
between the posterior parameter distributions and the truth.
If there are infinitely many design points and zero statistical
fluctuation at each design point, one expects a very narrow
peak in the posterior distribution in a closure test near the truth
value (or several peaks in the case of degeneracy).

The results for the closure test at nine random design points
is shown in Fig. 5. For each panel in this figure, a single design
point is removed when training GP emulator, i.e., the remain-
ing 49 points are used for training. The trained GP emulator
is then employed as a surrogate within the MCMC random
walk to obtain the posterior parameter distribution shown.
Notice that the posterior distribution are often peaked near
the truth values for αeff

s and Qs. This procedure is repeated
eight additional times, each time another random training
point is removed, thus producing the remaining eight panels in
Fig. 5. In that figure, the RBF kernel augmented with a white
noise kernel was used to produce results, for reasons that are
explored in Sec. III D 2.3 Repeating this procedure for each
parameter combination of the simulated model, as was done
herein, ensures that the emulator does not exhibit undesired
behavior within the spanned parameter space.

D. Selection of optimal emulator settings for Bayesian inference

In the previous section, while the closure tests at nine ran-
dom design points seem to perform well, it is difficult quantify
emulator performance by merely looking at posterior distri-
butions, let alone compare the performance between different
kernel functions and NPC. A performance measure of the GPE
is thus devised leveraging the notion of scoring rules [46–49]
in Bayesian statistics. Scoring rules are traditionally used
for evaluating the accuracy of probabilistic predictive models
[48]. In this study such a rule is used for a novel purpose of fit-
ting emulator parameters for Bayesian analysis. The proposed
measure, derived below, quantifies the amount of information
loss induced by GPE modeling via an information-theoretic
approach.

The main contribution to GPE information loss stems from
the second moment of the posterior distribution (as will be
shown below). We define a quantity �d which measures the

3Note, however, that it is difficult to compare the posterior distri-
butions with different shapes generated using different kernels and
NPC.

FIG. 6. 〈�〉 calculated with Gaussian posterior centered at the
truth versus the standard deviation σ of the Gaussian posterior p(x).
The analytical result using a uniform posterior and Dirac-δ distribu-
tion posterior are shown with dashed lines.

(second moment) deviation of the posterior distribution away
from the truth value x(d )truth of the parameter x, while using the
dth design point as the truth:

�d =
∫ (

x − x(d )truth

xmax − xmin

)2

pd (x)dx, (15)

where |xmax − xmin| is the allowed range of a parameter to
be constrained, and pd (x) is the marginalized posterior dis-
tribution obtained from the case where dth design point is
excluded. This is a new quantitative measure of the emulator’s
performance at recovering the truth from the mock data.

Using �d defined as a closure test for one design point,
averaging over all design points allows us to obtain an overall
performance of the emulator:

〈�〉 = 1

Nd

Nd∑
d=1

�d . (16)

In our study, the number of design points is Nd = 50.
To understand how 〈�〉 measures the deviation of the

posterior distribution, the following example is illustrative.
Suppose there are infinitely many design points uniformly
distributed among the prior range. One calculates the values
of 〈�〉 with a uniform posterior p(x) or a Gaussian posterior
distribution centered at the truth with the variance being a free
parameter to get a hint of the magnitude of 〈�〉. For the case of
a uniform p(x) posterior, 〈�〉 = 1/6 is immediately obtained.
If one assumes a Gaussian posterior distribution centered at
the truth, Fig. 6 shows how 〈�〉 changes as a function of σ :
the standard deviation. 〈�〉 approaches the value calculated
with a uniform posterior when σ → ∞, and goes to 0 as σ

decreases. Thus, in closure tests, it is desirable for 〈�〉 to be
as close to zero as possible4 while extracting the parameter

4Note that, when 〈�〉 = 0, the GP emulator is indistinguishable
from the full model.
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FIG. 7. Comparison of 〈�〉 using different kernels and various number of principal components. The panels explore the sensitivity of 〈�〉
to (a) αeff

s , (b) c1, (c) c2, and (d) Qs.

FIG. 8. Comparison of (a) �〈�〉 and (b) �〈�〉 for different parameters with different kernels, training data selection, and number of
principal components.
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FIG. 9. The change of sensitivity of 〈�〉 as different types of observables are considered. Panel (a) explores the change in sensitivity of
〈�〉(αeff

s ), panels (b) and (c) focus on 〈�〉(c1), and 〈�〉(c2), respectively, while panel (d) investigates the change in sensitivity for 〈�〉(Qs ) as
various observables are incorporated.

values in the posterior because that brings the sensitivity of
the GP emulator to model-parameters closer to the sensitivity
of the model itself to those parameters.

We also recommend that, in practice, the averaging over
�d (yielding 〈�〉) should be done using closure tests for
cross validation [78], rather than separating the simulation
dataset into a training and testing set for the GP emulator.
The first approach via cross-validated closure tests ensures
there is less variability in 〈�〉 (and thus more stable fits
for emulator parameters), since each data point is used for
both training and testing (in different folds). The latter ap-
proach, which performs a single training-testing split of the
simulated data, introduces greater variability in 〈�〉 (es-
pecially for the 50 design points used herein), which in
turn induces greater instability in model fitting. The latter
can be of course be overcome by increasing the number
of design points, but this is prohibitively expensive for
our study.

1. Connection to the Kullback-Leibler divergence

The Kullback-Leibler divergence [79] is defined between
two probability distributions, the posterior p(x) and the prior
q(x), as

DKL(p|q) =
∫

p(x) ln

(
p(x)

q(x)

)
dx. (17)

This provides an information-theoretic measure of how one
probability distribution p differs from a second probability
distribution q when the latter is used as a reference. In particu-
lar, for Bayesian analysis, this can be interpreted as a measure
of information change when updating the prior distribution
to a posterior distribution [80]. We restrict ourselves to a
one-dimensional system to ensure a clarity of our argument,
with the generalization to multiple dimensions being straight-
forward.

DKL is ill-defined (i.e., diverges) when the prior distribu-
tion q(x) is a Dirac-δ function centered at x0, the so-called
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FIG. 10. The posterior distribution of model parameters. The emulator is using five PC and the RBF and white noise kernel combination
and trained from 50 design points.

“true” value. This can be seen using the limit representation
δ(x − x0) = limσq→0+[ 1√

πσq
e−(x−x0 )2/σ 2

q ] as

DKL(p|q) =
∫

dx p(x) lim
σq→0+

⎡
⎣ln

⎛
⎝ p(x)

1√
πσq

e−(x−x0 )2/σ 2
q

⎞
⎠

⎤
⎦

= lim
σq→0+

[
σ−2
q

∫
p(x)(x − x0)

2dx + O(ln σq)

]
.

(18)

However, noticing that the divergence is caused by the prior
q(x), with the posterior p(x) being σq independent, the non-
singular part in Eq. (18) is

�̂(x0) =
∫

p(x)(x − x0)
2dx, (19)

which bares resemblance to �d . Indeed, the shape of
�d (xtruth ) in Eq. (15) is the same as �̂(x0) in Eq. (19), as
required, the only difference being an x-independent overall
normalization.
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FIG. 11. Comparison between the posterior distribution of the observables and experiment data. Note that the pink (light gray) colored
CMS data [81] in panel (c) are not used in training the GP emulator nor are they used in the subsequent Bayesian model-to-data comparison.

The above derivation indicates that �d is a measure
of the finite part in DKL when the prior is a Dirac-δ
distribution represented as the limit of a Gaussian distri-
bution. DKL was not used before as a metric in closure
test because of this divergence, which we have regulated.
This connection is another motivation for using �d and
〈�〉 in closure tests. For a comparison with other metrics,
see Ref. [65].

Notice that the interpretation of the Kullback-Leibler
divergence is different in closure tests compared with model-
to-data Bayesian comparisons. In closure tests, the starting
point is one where the information is maximized, i.e., the
exact parameters are known a priori. However, since that
parameters set is not used in the GP emulator, there is infor-
mation loss which is captured by DKL. In this case, a small
DKL is desirable.
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Conversely, when using the trained GP emulators in
Bayesian model-to-data comparisons, we are using a uniform
prior distribution q(x) to extract the posterior distribution via
Bayesian inference. In that case, the posterior has gained
information relative to the prior and a larger DKL means pa-
rameters are better constrained.

2. Comparison between different kernels

Six types of kernels are compared in this section: the RBF
kernel, the Matérn (ν = 5/2), the Matérn (ν = 3/2), and lin-
ear combinations of these three kernels with the white noise
kernel. The results are shown in Fig. 7. From the various
panels therein, one can see that 〈�〉(αeff

s ) has the smallest
values, and thus model dependence on αeff

s is best captured
by the emulator. The second best emulated parameter is Qs

as can be seen by 〈�〉(Qs) in Fig. 7(d). Finally, Figs. 7(b)
and 7(c) show that the emulator struggles to capture model
sensitivity to c1 and c2, as is seen in 〈�〉(c1) and 〈�〉(c2).5
This means the emulators are having trouble recovering these
two parameters given the current level of uncertainties. To
pick the optimal settings for the emulator, the product of all
the 〈�〉 is investigated. That is,

�〈�〉 = 〈�〉(αeff
s

)〈�〉(Qs)〈�〉(c1)〈�〉(c2), (20)

which is computed for different emulators in Fig. 8. As can
be seen therein, a minimum in �〈�〉 curve exists and gives
the optimal choice of NPC. Also note that the white noise
kernel improves the overall performance, thus highlighting
the importance of including the white noise kernel in the GP
emulator.

One can also look at the variance of �, i.e., σ�, which is
calculated as

σ� = 1

Nd

Nd=50∑
d=1

(�d − 〈�〉)2. (21)

Notice that σ� is not an absolute indication of the emulator’s
performance because it is possible to still have large mean
and small variance (or small mean and large variance) at the
same time (for a comparison with other metrics, see Ref. [65],
Sec. 6.4.1). Nevertheless, a large σ� indicates that the em-
ulator is not performing well on at least some of the design
points. The product of all the σ�, which is

�σ� = σ�
(
αeff
s

)
σ�(Qs)σ

�(c1)σ
�(c2), (22)

is shown in Fig. 8(b). Interestingly, the smallest values are
also achieved at around five or six principal components, and
with the kernels that include white noise. The decision to use
NPC = 5 is based on the results presented in Fig. 8. In this
work, we use the (RBF + white noise) kernel with five prin-
cipal components for its overall performance and consistency
with previous studies.

The method discussed in this section is quite general and
can easily be applied to other Bayesian analysis projects uti-
lizing the Gaussian Process emulator as a surrogate model.

5Note � = 1/6 is indicated by the blue (gray) dashed line, which
is the analytical result assuming a uniform posterior.

FIG. 12. Panel (a) depicts the prior (light gray), 95% credible
region of the posterior (light blue), and 60% credible region of the
posterior (deep blue) of H (t ) = H (Q2) defined in Eq. (7). Panel
(b) displays the corresponding information gain using the Kullback-
Leibler divergence DKL .

Key ingredients for training the emulator, including choice of
the kernel and the number of principal components, can all be
determined by computing (〈�〉,�〈�〉) as well as (σ�,�σ�).
The level of constraint on each parameter, can also be reflected
by 〈�〉. Note, however, that model-related (i.e., theoretical)
systematic uncertainties have not yet been taken into account.
One should also keep in mind that this is a measure of the
average performance over the entire parameter space being
searched. Currently, the average is the best estimate we can get
since the truth (optimal) parameters are not known a priori.

3. Observable sensitivity analysis

〈�〉 can also be used to measure the sensitivity of model
parameters to different observables. There are three categories
of observables in our calibration: charged hadrons, D mesons,
and inclusive jet RAA. The 〈�〉 when calibrating to different
combinations of these three types of observables are shown
in Fig. 9. We find that inclusive jet RAA observables are most
sensitive to 〈�〉(αeff

s ), while charged hadron RAA governs the
size of 〈�〉(Qs). Of course, a combination of two or more of
these observables improves 〈�〉. No significant constraint can
be derived on average for c1 and c2. The fact that � can be
used to identify which observable(s) contribute the most to
emulator prediction is a key feature guiding future emulator
performance improvement. Together with the fact that � can
also quantify the performance of GP emulation kernels as
discussed in Sec. III D 2, makes it an invaluable quantity to
compute when training emulators.
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FIG. 13. Posterior distribution of αeff
s and Qs, calibrated using different observables individually as well as pairwise.

E. Bayesian inference results

The posterior distribution of the parameters calibrating all
five experimental datasets is shown in Fig. 10. The posterior
distribution of the observables compared with data are shown
in Fig. 11. Relative to the parameters used in Refs. [53,55],
the posterior distribution in Fig. 10 suggests similar value for
αeff
s and a slightly smaller Qs. Indeed, Refs. [53,55] show

that smaller values of Qs shifts the charged hadron and D
meson RAA upwards, a little closer to data compared with
results found in Refs. [53,55], compensating somewhat for
the mismatch in charged hadron RAA at high pT seen in our
earlier study.

While the case of a virtuality independent q̂ has been
phenomenologically ruled out in Refs. [53,55], Fig. 10 shows
a weak constraint on c1 and a slight preference for large c2
values. An intuitive explanation for why c1 and c2 are hard
to constrain is that the energy loss in the MATTER regime
goes to zero when c1 and c2 go to infinity. Furthermore,
MATTER’s energy loss is quickly reduced when c1 and c2
values are non-negligible as is the case herein, and was shown
in Refs. [53,55] using much higher statistics.6 In the future,

6〈�〉(c1) and 〈�〉(c2) also reflect the small sensitivity of (c1, c2 ) to
observables.

a measurement with smaller uncertainties at high pT can
be beneficial in helping better constrain c1 and c2, together
with higher statistics of theoretical calculations to improve
D-meson RAA predictions.

Figure 12 shows the constraint on H (Q2) resulting from
this Bayesian analysis. Figure 12(a) shows the prior, 95%
credible region, and 60% credible region of H (t ) = H (Q2) as
a function of Q. The Kullback-Leibler divergence (defined in
Sec. III D 1) depicted in Fig. 12(b) monotonically decreases
with Q. This is likely due to the fact that the second-order
term and the fourth-order term in H (Q2) are comparable in
magnitude in this region. Thus, the joint distribution of c1
and c2 at low Q is constrained, rather than their individual
distributions. While tighter constraints on parameters involved
in describing H (Q2) should be sought after in the future,
Fig. 12(b) confirms that there is significant information gained
about H (Q2) at (mostly) lower values of Q2. A different
parametrization choice for H (Q2) may yield better constraints
on its parameter values, a fact actively being explored within
the JETSCAPE Collaboration [82].

F. Sensitivity to different observables

We analyze in Fig. 13 how different observables (and
observable combinations) affect the constraints presented in
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Fig. 10. Since the constraint for c1 and c2 are weak, only the
posterior distribution of αeff

s and Qs are shown in Fig. 13. One
can see that charged-hadron data are the main reason why
large Qs is disfavored. Indeed, looking at the bottom panels
in Fig. 13 one sees that any combination including charged
hadron RAA provides a stronger sensitivity to Qs, compared
with using jet and D mesons, thus furthering our understand-
ing of the results in Fig. 10. Looking at the off-diagonal joint
distribution plots in Fig. 13 also reveals that αeff

s and Qs are
anticorrelated; an observation that may be useful in future
Bayesian analysis.

IV. CONCLUSION

In this work, we performed Bayesian inference for a multi-
stage parton energy-loss approach in heavy-ion collisions. The
model calculation is calibrated to charged hadron, D meson,
and inclusive jet RAA measurements. The challenge, however,
is the sizable uncertainties in both experimental measure-
ments and model calculation (emulation). We have validated
our Bayesian workflow in both the forward direction, i.e.,
mapping from model parameters to observables, and the in-
verse direction, in the context of closure tests. Specifically,
we have proposed the 〈�〉 metric in cross-validation closure
tests which we connected to the Kullback-Leibler divergence.
With this metric, the optimal settings for emulating the model
calculation was determined. The 〈�〉 metric can also give
guidance about the sensitivity of each parameter to different
observables. Its usefulness for future Bayesian inference stud-
ies is what makes 〈�〉 an important quantity to calculate and
is the main result of our work.

The results of our Bayesian analysis finds optimal values
for αeff

s andQs to be similar to what have been used in previous
studies [53,55,65], although now these values are on a much
firmer footing. The constraints for c1 and c2 are much weaker
due to their small sensitivity to the current observables. The
small sensitivity is verified by both the 〈�〉 metric and ar-
guments about the influence of c1 and c2 on parton energy
loss [65]. Another outcome of our Bayesian analysis is the
identification that αeff

s is most sensitive to inclusive jet RAA,
while Qs is most sensitive to charged hadron RAA.

While there are sizable experiment uncertainties in the data
against which our model was calibrated, there are also sizable
theoretical uncertainties owing, in part, to the computation
resources available for simulation. The latter restricted us to
a subset of experimental data included in our Bayesian study.
To improve theoretical uncertainties, one could adopt a more
complex parametrization for q̂ to account for the potential
difference between data and theory at high pT . One could
also sample c1 and c2 on a logarithmic scale to improve the
design point density at large c1 and c2. Our calibration should
also include more observables, different collision energies and
systems, as well as centralities. The JETSCAPE Collaboration
has an ongoing Bayesian analysis that will address most of
these points [82]. Furthermore, we expect that improved ex-
perimental uncertainties, such as releasing the full covariance
matrix, would benefit future Bayesian studies. Thus, a more
detailed discussion of the uncertainties for both experiment
(e.g., off-diagonal experimental systematic uncertainty) and

theory (systematic model uncertainty), should be included in
a future study.
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APPENDIX: STABILITY OF THE POSTERIOR TO
FLUCTUATIONS

The closure test offers an excellent check that the emu-
lator can reproduce mock data (model calculation) at many
design points. However, the relation between the posterior
distribution and the uncertainty level of the training data is
still not explored. It is difficult to reduce the fluctuations of
the training data because it requires running more events. The
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FIG. 14. The posterior distribution of the model parameters. Only 1/3 of events are used for each design point.

other direction is easier to explore and can be investigated in
two ways.

First, we can reduce the statistics when generating the
training data, which we have done by only using 1/3 of
events at each design point. Thus, the effects of statistical
fluctuations for each observable are scaled up and can be
readily appreciated. Figure 14 shows the posterior distribution
of the parameters. Compared with what is shown in Fig. 10,
the posterior distribution is not wildly altered in Fig. 14,
except for weaker constraint on c1 and c2, which remain the
roughly the same. The effects of increasing the statistics by

a factor of three significantly improve the constraint on the
αeff
s and Qs parameters, while the effects on (c1, c2) are more

modest.
In Fig. 15, we study how improved statics affect 〈�〉.

A marked improvement is seen on 〈�〉(αeff
s ) and 〈�〉(Qs),

while 〈�〉 for c1 and c2 is modest, hovering around 1/6,
showing that constraints on c1 and c2 almost do not change
when tripling the statistics. More statistics in D meson RAA

calculations, although a different parametrization for q̂(t ) may
be needed and is being explored in Ref. [82]. Of course,
reduced experimental uncertainties will also improve this
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FIG. 15. Comparison of 〈�〉 for different parameters with the same settings for the emulator but different statistics for the training data.

situation. Finally, the last element we considered is adding
more Gaussian noise to all the model calculations for each
design point. That is, every observable gets an equal amount
of additional statistical fluctuation. In Fig. 16, we can see

the updated posterior distribution when an additional noise
with 0.05 standard deviation is introduced. Similar poste-
rior distributions of the parameters are seen compared with
Figs. 10 and 14.
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FIG. 16. The posterior distribution of the model parameters with added Gaussian noise to all training data. The Gaussian noise has a mean
μ = 0 and standard deviation σ = 0.05.
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