'.) Check for updates

A ’ I l ADVANCING
nu EARTH AND

= SPACE SCIENCES

Geochemistry, Geophysics,

Geosystems’

METHOD
10.1029/2023GC011234

Key Points:

e We give a suite of MATLAB
scripts (LIME) that implements
an Aitchison (1982, https://doi.
org/10.1111/j.2517-6161.1982.
tb01195.x) log-ratio approach for
mass-balance calculations in petrology

e Our algorithm constrains phase
proportions to positive values and
provides errors that consider known
uncertainties of input compositions

e We demonstrate the utility of
propagated phase uncertainties
through calculations of magma
crystallinity and melting reaction
coefficients

Correspondence to:

K. Prissel,
kelsey.prissel @nasa.gov

Citation:

Prissel, K., Olive, J.-A., & Krawczynski,
M. J. (2023). A log-ratio-based
algorithm for petrologic mass-balance
problems and uncertainty assessment.
Geochemistry, Geophysics, Geosystems,
24, e2023GC011234. https://doi.
0rg/10.1029/2023GC011234

Received 12 SEP 2023
Accepted 25 NOV 2023

© 2023 The Authors. Geochemistry,
Geophysics, Geosystems published by
Wiley Periodicals LLC on behalf of
American Geophysical Union.

This is an open access article under

the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

ok

A Log-Ratio-Based Algorithm for Petrologic Mass-Balance
Problems and Uncertainty Assessment

Kelsey Prissel?? (2] Jean-Arthur Olive* (*, and Michael J. Krawczynski®

'JTacobs, NASA Johnson Space Center, Houston, TX, USA, ?Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC, USA, *Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO,
USA, “Laboratoire de Géologie, CNRS—Ecole normale supérieure—PSL University, Paris, France

Abstract We provide a new algorithm for mass-balance calculations in petrology and geochemistry

based on the log-ratio approach championed initially by John Aitchison (e.g., Aitchison, 1982, https://doi.
org/10.1111/j.2517-6161.1982.tb01195.x; Aitchison, 1984, https://doi.org/10.1007/bf01029316) along with
the underlying principles, mathematical frameworks, and data requirements. Log-ratio Inversion of Mixed
End-members (LIME) is written in MATLAB and calculates phase proportions in an experiment or rock

given a bulk composition, the composition of each phase, and the associated compositional uncertainties.

An important advantage of LIME is that performing the mass-balance calculation in inverse log-ratio space
constrains phase proportions to be between 0 and 100 wt.%. Further, the resulting LIME phase proportions
provide realistic estimates of uncertainty regardless of data distribution. These two characteristics of LIME
improve upon standard multiple linear regression techniques, which may yield negative values for phase
proportions if non-constrained or report oversimplified symmetric errors. Primary applications of LIME
include estimating phase abundances, calculating melting and metamorphic reaction stoichiometries, and
checking for open system behavior in phase equilibria experiments. The technique presented here covers
whole-rock analysis, mineralogy, and phase abundance, but could be extended to isotopic tracers, trace element
modeling, and regolith component un-mixing. We highlight the importance of uncertainty estimations for phase
abundances to the fields of petrology and geochemistry by comparing our results from LIME to previously
published mass-balance calculations. Furthermore, we present case studies that demonstrate the role of
mass-balance calculations in determining magma crystallinity and defining melting reactions.

Plain Language Summary “The principle of mass balance is simply: some of it, plus the rest of

it, equals all of it.”—Stormer, Jr. and Nicholls (1978, https://doi.org/10.1016/0098-3004(78)90083-3). In the
study of igneous and metamorphic rocks, mineral abundances are used to classify rock types, characterize
volcanic processes, and define chemical reactions. Common approaches for calculating phase abundances,
such as multiple linear regression, suffer from mathematical artifacts that can lead to inaccurate assumptions
(e.g., Chayes, 1960, https://doi.org/10.1029/jz0651012p04185; Miesch, 1969, https://doi.org/10.1007/978-1-
4615-8633-3_10). Compositions are reported as percentages with sums mathematically constrained to 100%.
This fixed sum constraint may lead to erroneous coefficients when determining chemical reactions (e.g., a
mineral being on the wrong side of the chemical reaction). Additionally, mineral abundances are often reported
without any estimate of uncertainty. This is problematic when those values are used in subsequent calculations
to define trends without statistical significance. We have developed a suite of MATLAB scripts to calculate
phase abundances in natural rocks and experimental samples. This algorithm, referred to as LIME, improves
upon previous methods by constraining phase proportions to positive values and providing realistic estimates
for uncertainty on each phase abundance. We demonstrate the utility of these improvements in two case studies
related to magma crystallization and mantle melting.

1. Introduction

Mass-balance calculations play a crucial role in petrology and geochemistry, serving as a powerful tool for
understanding the distribution, transformation, and cycling of elements in petrologic systems, as well as assess-
ing possible open-system behavior in experimental phase equilibria results. By quantifying elemental budgets,
mass-balance calculations enable us to decipher the intricate chemical dynamics that shape the composition of
Earth and planetary materials. Mass-balance calculations quantify the fluxes of elements between reservoirs
and elucidate the factors controlling elemental distributions in a system. The proportions of phases, even if
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macroscopically out of equilibrium, constrain processes occurring in diverse geological settings, such as
magmatic systems or metamorphic regimes.

In petrology, mass-balance calculations provide insight into the genesis and evolution of rocks and minerals.
By examining the bulk chemical composition of rocks and comparing them with the expected compositions
based on mineral equilibria, thermodynamics, and known phase relations, mass-balance calculations—when
correctly done—discern the processes that have influenced the rock's formation and subsequent modifications.
Petrological mass-balance studies have shed light on magma differentiation, viscosity, fractional crystallization,
assimilation, magma mixing, and metasomatic processes among other processes (e.g., DePaolo, 1981; Langmuir
et al., 1992; Marsh, 1981).

User-friendly implementations for mass-balance calculations have served the petrology community for decades
(e.g., XLFRAC, Stormer, Jr. and Nicholls (1978); Simplex, Baker et al. (1994); GeoBalance, Li et al. (2020)).
Bryan et al. (1969) first applied the least-squares approximation to the issue of mass balance in petrology. The
standard regression technique has been improved by approaches that incorporate analytical uncertainty and/
or constrain solutions to non-negative values (e.g., Albarede & Provost, 1977; Reid et al., 1973; Wright &
Doherty, 1970). With geochemical data from igneous and metamorphic rocks, the mass-balance problem is often
over-determined (i.e., more oxide constraints than phases), and thus methods have also been developed to miti-
gate this issue for least-squares mass-balance calculations (e.g., Ghiorso, 1983; Stormer, Jr. & Nicholls, 1978).
The least-squares approach yields phase proportion uncertainties that are determined based on the residual of the
regression fit. More recently, Monte Carlo error propagation for mass-balance calculations has been implemented
by the GeoBalance Excel VBA program (Li et al., 2020) and Python-based MassBalanceCal (Zhang et al., 2023).
Though additional mathematical improvements for compositional mass-balance exist (e.g., Aitchison, 1982;
Greenacre et al., 2023), they have yet to be specifically tailored for practical application in petrology.

Here, we present a new algorithm (Log-ratio Inversion of Mixed End-members, or LIME) for mass-balance calcu-
lations in petrology and geochemistry based on the log-ratio approach initially championed by John Aitchison
(e.g., Aitchison, 1982). This approach to mass-balance constrains solutions to non-negative values, incorporates
analytical uncertainty, and yields asymmetric error bars that realistically reflect compositional uncertainties in
the bulk and phase compositions. We demonstrate improvements to mass-balance calculations through case study
applications, and highlight the significance of phase abundances in elucidating petrologic processes. Primary
applications of LIME include determining phase abundances, calculating melting and metamorphic reaction
stoichiometries, and checking for closed/open system behavior in phase equilibria experiments. The technique
presented here covers whole-rock analysis, mineralogy, and phase abundance, but could be extended to isotopic
tracers, trace element modeling, or regolith component un-mixing (e.g., Korotev & Kremser, 1992).

2. A Log-Ratio Approach to the Mass-Balance Problem
2.1. Mathematical Formulation and Challenges of the Mass-Balance Problem

Consider a rock made up of P mineral phases, each being analyzed for C element concentrations (i.e., major
oxides, in wt.%). The bulk composition of the rock is also being determined, and written as a C-element column
vector b. Assuming homogeneous phases and perfect measurements, we have the following linear relation

b=Ep (1

where E is the C X P matrix whose columns represent the major oxide composition of each mineral phase (£;
denotes the proportion of oxide 7 in the jth mineral phase), and p is the P-element column vector containing the
relative proportions of the mineral phases. Equation 1 describes the forward problem we wish to invert while
accounting for measurement uncertainty and phase inhomogeneity. Knowing the bulk composition » and the
end-member composition E with some prior uncertainty, we wish to identify the values of vector p that best
predict b, as well as the associated uncertainty on p.

An intuitive way to do so is to perform a least-squares regression on matrix £ and data vector b in order to esti-
mate which vector p = p* minimizes the distance between Ep and b (in the L2 norm sense: |Ep — b||,) (Bryan
et al., 1969; Wright & Doherty, 1970). Such methods rely on the assumption that uncertainties on » and p follow
a Gaussian distribution. Complications arise, however, when one attempts to perform least-squares inversion on
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compositional vectors and matrices that carry only relative information (proportions) such as b, p, and E. Indeed,
such vectors are subject to a positivity and unit-sum constraint:

C

bi>0; ) bi=1 )
i=1
P

>0 Y pi=1 3)
i=1
C

E;>0; ) Ey=1 )

i=l1

Because of these constraints, the L? norm does not constitute an appropriate measure of distance in a simplex, that
is, a space of compositional vectors. This means that compositional uncertainties, which are related to the spread
of compositional distributions, are not properly assessed when one uses usual metrics such as the standard devi-
ation. Besides, a C-simplex (S€) spanned by compositional vectors with C components really has C — 1 degrees
of freedom (i.e., once the C — 1 first components have been assigned, the unit-sum constraint sets the value of the
Cth-component). Multivariate Gaussian distributions can therefore not be defined on a C-simplex because their
natural domain of definition is the Euclidian space R¢~!. By ignoring these facts when performing linear regres-
sions on compositional data sets, researchers often end up with skewed results, such as negative phase contents
and misleading (or absent) measures of uncertainty (e.g., Pawlowsky-Glahn et al., 2015).

Albarede and Provost (1977) recognized these limitations and proposed to perform standard least-squares meth-
ods not on compositions directly, but on a transformed data set that would not be subject to the constraints
listed above. Specifically, they worked with vectors Q; € R instead of compositional vectors w; € S€, where
sin’Q. = w, (Ray & Szekely, 1973). While this approach allows the definition of Gaussian uncertainties on the
transformed vectors, it does not get rid of spurious correlations inherited from the unit-sum constraint.

A more general approach was put forward by Aitchison (1982), who established the field of compositional geom-
etry. He defined a set of basic operations on the simplex S¢ providing it a structure analogous to that of Euclidian
spaces such as R¢~!. Specifically, through the definition of an inner-product in S, he introduced a measure of
distance in the simplex now referred to as Aitchison distance. He also introduced one-to-one mappings between
S€ and R, The first one, the additive log-ratio transform (alr), consists of choosing a component of a compo-
sitional vector, and taking the logarithm of each of the other components divided by the chosen component. This
yields a vector of real numbers that is subject to neither the positivity nor unit-sum constraints, making it suitable
for standard regression techniques, as well as other statistical tests that require unconstrained real space. One
drawback of this transform is that is does not provide a direct correspondence between the Aitchison distance
and the Euclidian distance. In other words, taking the Aitchison norm of compositional vector x will not yield
the same result as taking the L? norm of alr(x), which makes the interpretation of transformed data less straight-
forward (Egozcue et al., 2003). Aitchison (1982) also introduced the centered-log-ratio (clr) transform, which
consists of the logarithm of each component of a composition vector divided by the geometric mean of all its
components (see Appendix A). This transform allows a direct correspondence between Aitchison and Euclidian
distances. However, the clr of a C-component composition yields a C-component vector subject to a zero-sum
constraint. This implies that clr-transformed data still carry spurious correlations. Specifically, any covariance
matrix defined on clr-transformed data sets will be singular, which is a major drawback for many least-squares
algorithms.

A third transform, the isometric log-ratio transform (ilr) was introduced by Egozcue et al. (2003). It is based on
the definition of an orthogonal basis in the simplex in the Aitchison sense (see Appendix A). The ilr allows a
direct correspondence (isometry) between Aitchison and Euclidian distances, meaning that the L? norm of ilr(x)
yields the same result as the Aitchison norm of the C-element compositional vector x. In addition, the compo-
nents of ilr(x) are not subject to any sum or positivity constraint, and span an unconstrained, Euclidian space R¢~".
These properties make the ilr-transform a powerful tool for compositional data analysis. A now standard practice
consists of taking the ilr of compositional data sets and performing standard statistical or inverse methods to the
transformed data sets (Chave, 2017). Here we apply this methodology to inverting the convex linear mixing prob-
lem (Equation 1) and present a suite of numerical programs tailored for petrological mass-balance calculations.
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2.2. The Log-Ratio Transformed Mass Balance Problem

The very first step in our methodology is to eliminate any zero present in our data sets. We do so by following the
protocol detailed in Appendix B. We then reformulate Equation 1 as a non-linear problem involving the isometric
log-ratio (ilr) transform of each compositional vector involved:

b=Y(E,p). 5)

The hat notation denotes the ilr-transform. We define the ilr of a matrix as the matrix composed of the ilr of
each of its columns. | is a vector with P — 1 real components not subject to the unit sum constraint, and £ is a
(C — 1) X P matrix. ¥ denotes a non-linear operator which, from Equation 1, explicitly writes

Y(E,p) =ilr™" (E) ilr™'(p). (©6)

A convenient way of handling uncertainties on end-member compositions is to treat £ as a model parameter (like
;) rather than as data (like b). We, therefore, assemble a column vector; with CP — 1 components that contains
all the columns of E taken sequentially, followed by the P — 1 elements of ; . Following a standard Bayesian
approach, we treat our initial estimate of » (model vector) as a random drawing from a multivariate Gaussian
distribution f},,,,. This prior distribution is centered on an a-priori estimate of ; termed ri,, which contains the
actual measurements of end-member compositions (columns of £) and an initial “guess” of ; which assumes
all mineral phases are in equal proportions. The spread of f,,,, is expressed through a (CP — 1) X (CP — 1)
covariance matrix Cpp,,, containing (a) uncertainty related to the measurements of the end-member composi-
tions (P(C — 1) X P(C — 1) upper-left block), and (b) uncertainty on the initial guess of the phase proportions
(P — 1) X (P — 1) lower-right block), taken to be large (see Appendix C):

Frrior() eXp(—%(r?l — 1) Crrron(i = 1io) ). )

Similarly, we model measurement uncertainty on the ilr of the bulk composition vector b as a Gaussian distribu-
tion g, centered on the measured ilr-bulk composition by, with a (C — 1) x (C — 1) covariance matrix C, (see
Appendix C for details on constructing C).

L b= o) Co(b- b)) @®)

80BS (13) X exp(—z

A slight rewriting of ¥ in Equation 5 allows us to define operator @ so that
b = o(h) &)

Equation 9 is a concise form of the forward mass-balance problem which has been rendered non-linear by the use
of the ilr-transform.

2.3. Inversion Procedure

We apply a quasi-Newton iterative method (Tarantola, 1981) to invert the non-linear problem described by Equa-
tion 9. This method starts from the prior distribution fpg;or(iit) (characterized by covariance matrix Cpp,,, and
centered on #yy) and employs discrete steps to approach a posterior distribution fposr(71) that allows the best
prediction of the data distribution gops (13) in the L,-norm sense. In practice, we iterate over the model vector
m™ after initializing it at 4" = /. At each iteration n, we estimate the Jacobian matrix of ® through a centered
finite-difference approximation

g _ by _ Pl + Ari/2) — Di(riu — Ain/2) ‘o
K7 omy AR

(Ar?) (10)

Discrete steps of A = 102 were found sufficiently small to allow a robust estimate of J in most petrological
applications. The Jacobian is then used in the following steepest-descent scheme:

Vh(ﬂ“) - ﬁ’l(n) _ ”K(ﬂ) [J(n)TCBI (q)(’;,\l(n)) _ B) + C;IIQIOR (ﬁ’l(n) _ Yho)] (11)
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Figure 1. Illustration of the LIME algorithm in composition space (left column) and ilr-transformed space (right column), based on experiment C321 from
Krawczynski and Grove (2012) (see Section 3). LIME builds a probability density function (PDF) on the mixture (here, proportions of glass, olivine, and plagioclase)
that best explains a known bulk composition, accounting for uncertainties on both the bulk and end-member compositions. The algorithm initially postulates equal
phase proportions, with large model uncertainties (a). In ilr-space, this corresponds to a wide, isotropic Gaussian distribution centered on zero (b). An iterative
procedure is then applied in ilr-space to find the best-fitting phase proportions and associated probability density function (d). It typically converges within tens of
iterations (circles show progression from iteration n = 1 to n = 100). The results are then converted back to composition space (c). The same results are plotted as PDFs
of individual phase proportions in Figure 2a.

where
n n - n - -1
K = [J97CH I + Chonl (12)

and p is a damping term we set equal to 0.9 by default. We empirically find that a smaller value sometimes
improves convergence. A" typically converges within tens of iterations (e.g., Figure 1) toward a model vector
), which contains our best estimate of the phase proportions.

By default, our method only performs the updates described by Equation 11 on the components of the model
vector that describe phase proportions, that is, we do not update the values that describe the composition of the
end-member phases. Doing so assumes the end-member compositions and their uncertainties are well described
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Figure 2. LIME output probability density functions for computed phase abundance results on three experiments: C321
(a) and C309 (b) from Krawczynski and Grove (2012), and STV315 4-6 (c) from Pichavant and Macdonald (2007). For
numerical LIME results and comparison to published phase abundances, see Table 1.
by the input data set, and limits the number of parameters to invert for. To explicitly treat the end-member compo-
sitions as model parameters, users can switch on the option yn_iterate on endmembers.
The uncertainty associated with our best model estimate is described by a Gaussian distribution f}, ¢ centered on
' with covariance matrix C POST
A 1 A A (00 A A (00
fpos]‘(m) cxexp(—z(m—m( ))TCposr(m—m( ))>, (13)
where
Crost = Cprior — CPRIORJ(DO)T(J(m)CPRIORJ(oo)T + CD)_IJ(OO)CPRIOR- 14
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Table 1 We sample this distribution in composition space by drawing 80,000 random

Comparison of LIME Results and Published Values From Krawczynski
and Grove (2012) Experiments C321 and C309, Pichavant and
Macdonald (2007) Experiment STV315 4-6, and Dawson and
Krawczynski (2022) Experiment LO07

LIME
Phase Reported (wt.%) Mean =+ s.d. (wt.%) Best fit (wt.%)
Krawczynski and Grove (2012) C321
Glass 93 91 +1 92.0+93
Orthopyroxene 4 5+2 44}
Olivine 2 4+1 3.6+)7
Krawczynski and Grove (2012) C309
Glass 100 73+3 74+)
Orthopyroxene 27 20+2 20+)
Clinopyroxene -22 5+4 4+3
IImenite -7 2+1 13457
Spinel 1 0.8+02 0.707
Pichavant and Macdonald (2007) STV315 4-6
Glass 64 37+ 16 38+
Plagioclase 12 2+7 24+
Clinopyroxene 22 21+8 2244
Orthopyroxene —-10 12 £ 10 1048
Olivine 12 8+5 71;
Dawson and Krawczynski (2022) LO07
Glass 42+6 4343
Amphibole 25+4 2542
Orthopyroxene 16 +2 16+)
Clinopyroxene 10+4 10+]
Plagioclase 7+6 5+

Note. Here, “Best Fit” gives the best fitting phase abundance (peak center)
and phase abundance increments to the 25th (=) and 75th (+) percentiles of
the posterior distribution. Users can define which percentiles of interest to
calculate before running LIME. For a Gaussian distribution, percentiles of
15.9 and 84.1 correspond approximately to lo.

samples from f,,. and then computing their inverse-ilr transform. This
allows us to construct distribution curves for each mineral phase that are
bounded between 0 and 1 (Figure 2). The number of random samples from
Srosr can be varied in the code, but we found 80,000 was enough to generate
smooth probability density curves for phases in most situations. This value
can be increased or decreased by the user (see Appendix E).

The above methodology is implemented as a MATLAB (The MathWorks
Inc, 2022) code openly distributed on the Zenodo repository (Prissel
et al., 2023), and described in Appendix E. User-provided data sets of
end-member compositions and bulk compositions are first processed
to eliminate any zero not compatible with the calculation of the ilr transform
(Appendix A). This is achieved with the method highlighted in Appendix B.
Data set and model uncertainties (expressed in the form of covariance matri-
ces Cp and C,p,) are assessed as detailed in Appendix C. Finally, Appen-
dix D summarizes how synthetic data sets were used to evaluate the code's
performance.

3. Examples and Advantages of Using LIME for
Mass-Balance Calculations

3.1. Constrained Phase Proportions From 0% to 100%

To demonstrate how the mass-balance calculations of LIME compare to
previous methods, we detail three examples in the following text, Table 1
and Figure 2. As described in Section 2, an important advantage of LIME
is that performing the mass balance calculation in ilr-space constrains phase
proportions to be between 0 and 100 wt.%. Further, the resulting probability
density curves give phase proportions as well as realistic, and often asymmet-
ric, uncertainties on the proportion for each phase. These two characteristics
of LIME improve upon the commonly used multiple linear regression tech-
niques, which only report symmetric errors and may give standard deviations
that yield nonsensical negative values for phase proportions. Owing to these
improvements, several authors have implemented previous versions of LIME
(Krawczynski & Olive, 2011) in calculating the phase proportions of igneous
and metamorphic rocks (Codillo et al., 2022; Collinet et al., 2015; Davis
& Hirschmann, 2013; Gavrilenko et al., 2019; Grove et al., 2013; Guenther
et al., 2022; Mitchell & Grove, 2015; Stadermann et al., 2022). LIME has
also been used to assess the open system behavior of iron in experimental
samples (Brown & Grove, 2015; Goltz et al., 2022; Prissel et al., 2018). We
describe how to perform the Fe loss calculation in Appendix ES5.

Inputs required for a LIME calculation are the bulk composition of the experiment and individual analyses of

each experimental phase. LIME will transform each individual analysis into ilr-space and then compute a geomet-

ric mean, so it is important to input multiple individual analyses instead of an average composition. We provide

user instructions and a detailed discussion of input data and uncertainty in Appendix E. We have also provided
the compositional data input files for example, experiments C321, C309, L007, and STV315 4-6 in the LIME
source files (https://github.com/kprissel/LIME).

The main output of the LIME calculation is a probability density function of phase proportions (Figure 2). We
present published experiment C321 from Krawczynski and Grove (2012) as a simple example of the LIME
output. This experiment contains three phases: olivine, orthopyroxene, and glass (Figures 1 and 2a). The mass

balance for this experiment is relatively straightforward because all of the phases are homogeneous and there were

no issues with open system behavior in the experiment (i.e., Fe loss). The area under each curve is normalized

to 1. For experiment C321, the peaks are relatively symmetric, with approximate normal distributions and low
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uncertainties. For each phase, the peak center and width relate to the best fitting phase proportion and the uncer-
tainty on that value, respectively. The original publication calculated the mass balance with a non-constrained
linear least squares method, and there is good agreement between the reported phase proportions and those
calculated with LIME (Table 1).

For petrologic mass-balance calculations it has been common practice to either report negative coefficients
(e.g., Krawczynski & Grove, 2012; Pichavant & Macdonald, 2007) or not report mass-balance coefficients when
the results are negative (e.g., Canil & Bellis, 2008). To demonstrate the improvement over common regression
methods used for the estimation of phase proportions, we provide two examples of experiments with previously
reported negative phase abundances (Figure 2, Table 1).

Experiment C309 from Krawczynski and Grove (2012) has published negative values for mass balance coeffi-
cients of clinopyroxene and ilmenite phases. Standard linear regression techniques are not constrained to give
positive phase proportion coefficients, resulting in non-intuitive negative abundances for existing phases. The
LIME algorithm constrains the mass balance calculation to positive space, giving best-fit proportions that more
realistically reflect the observed phase assemblage. The phase proportion coefficients for C309 are reported in
Table 1 along with the first and third quartiles from the probability density function, which emphasize the asym-
metric nature of the probability functions when mapped back into non-Euclidian composition space (Figure 2b).
Similarly, results for a recalculation of experiment STV315 4-6 from Pichavant and Macdonald (2007) demon-
strate the difference between linear regression methods and the LIME algorithm (Figure 2c). Specifically, for
this experiment, there is a drastic difference in the calculated “glass™ percents, which would have significant
impact when using the glass proportion to define crystallization trends or determine the total crystallinity of an
experiment.

3.2. Best Practices for Reporting Uncertainty From LIME

The most accurate representation of uncertainty in LIME derives from the posterior distribution of the randomly
sampled points in ilr-space. The uncertainty on each phase proportion is graphically depicted as a standard LIME
output (Figure 2). We recognize that it might be impractical to report uncertainty as a figure, especially in papers
with dozens of these calculations and bulk compositions with many phases. In addition, phase abundances are
often used as inputs into subsequent calculations (e.g., Section 4) and propagating uncertainty would be impos-
sible from a figure. Therefore, we have developed multiple ways to numerically express uncertainty when using
LIME, and we include two examples in Table 1.

The output of LIME gives three estimations for uncertainty on phase proportions. The simplest estimate of uncer-
tainty is the average and 1o standard deviation of the 80,000 random samples computed in the LIME algorithm
(i.e., “Mean =+ s.d.” in Table 1). Because the standard deviation will only provide symmetric error, these values
are an oversimplification and will be incorrect if the distribution is not normal, hindering any predictive power
for this measure of error. For the cases where the probability density functions approach normal distributions, the
LIME mean and standard deviation are similar to the previously reported uncertainties. However, the mean and
standard deviation should not be used for cases that have significantly skewed distributions.

If using phase proportion data in subsequent calculations, the highest fidelity uncertainty propagation would use
the 80,000 random sample values in a Monte Carlo method. One output of the LIME algorithm is a vector R that
contains all 80,000 of the randomly sampled points in ilr-space converted back to common composition space.
This vector can be used in subsequent calculations, such as total crystallinity during a series of fractional crystal-
lization experiments. This is the suggested method to achieve the full benefit of our methodology, and R is given
as the second tab, “Modeled abundances,” in the output spreadsheet (see Appendix E). An important considera-
tion is that, because these samples are randomly generated, the resulting R values will not be exactly the same in
each calculation. However, through numerous tests we have determined that the resulting phase proportions and
uncertainties are reproducible to 0.1 wt.% when re-running the LIME algorithm for identical inputs.

For numerically reporting uncertainties from LIME, we recommend reporting the best fitting composition (peak)
and boundaries for user-defined percentiles of the probability density functions. This method incorporates the
asymmetric nature of the phase proportion curves and reports an upper and lower bound instead of a single lo
value (Table 1). For the recommended percentile approach, the user defines what percentiles will be used (here,
25th and 75th) to calculate the error (Appendix E). Uncertainty can be recalculated for different percentiles
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Figure 3. LIME output probability density function for computed phase abundance results on experiment L007 from Dawson
and Krawczynski (2022). The results are also depicted as a box and whisker plot showing the best fitting phase abundances
(peak center) and the 25th and 75th percentiles (Table 1).

by either changing the input percentiles and re-running the code, or by calculating the distribution from the
random values in output R. As an example, numerically reported asymmetric uncertainties are compared to the
probability density function for experiment LO07 from Dawson and Krawczynski (2022) in Figure 3. All three
methods of reporting uncertainty are output upon each LIME calculation.

4. Application to Petrologic Problems
4.1. Case Study 1: Magma Crystallinity

The crystallinity of a magma affects all of its physical properties including but not limited to density, viscos-
ity, and volatile solubility. Therefore, studies of the dynamics and eruptibility of magma often rely on quan-
titative estimates for the total crystallinity of a magma (e.g., Blundy & Cashman, 2001; Blundy et al., 2008;
Cashman, 1992; Cashman & Marsh, 1988; Cashman et al., 2017; Huber et al., 2012; Parmigiani et al., 2014). To
demonstrate how LIME can be used to address questions pertaining to magma crystallinity, we have calculated
the modal abundance of phases in a suite of amphibole-bearing experiments and have used the resulting propor-
tions and uncertainties to quantify the change in crystallinity as a function of temperature.

A drastic increase in crystallinity due to the onset of amphibole crystallization has been hypothesized as the cause
for hydrous basaltic magmas becoming trapped near the base of the Earth's crust rather than ascending to the
surface (e.g., Barclay & Carmichael, 2004). Numerous experimental studies have demonstrated that the propor-
tion of melt in an experiment exhibits an abrupt decrease (>30 wt.%) over a short cooling interval (20-50°C)
once amphibole becomes a stable phase in the crystallizing assemblage (Barclay & Carmichael, 2004; Blatter
et al., 2013; Foden & Green, 1992; Grove et al., 1997; Helz, 1973; Holloway & Burnham, 1972; Moore &
Carmichael, 1998; Nandedkar et al., 2014; Sisson & Grove, 1993). This increase in amphibole abundance over a
finite temperature interval, accompanied by a decrease in olivine and pyroxene abundance, reflects the peritectic
reaction occurring between melt and clinopyroxene + olivine to produce amphibole.

Variation in melt fraction (F) with change in temperature (7), or dF/dT, is a measure with which to quantify the
change in crystallinity at the onset of amphibole crystallization. Whether or not there is a steep change in crys-
tallinity as a result of amphibole crystallization will be determined by factors such as melt composition, water
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Figure 4. (a) Comparison of reported and calculated glass proportions for the set of experiments (n = 64) included in the magma crystallinity case study (Section 4.1).
Error bars represent the 2¢ error on the glass proportion calculated using LIME. The dashed line is a 1:1 line that illustrates the overall agreement between the reported
and calculated glass proportions. (b and ¢) Glass proportion plotted as a function of temperature for two experimental series selected from Grove et al. (1997) (b) and

Blatter et al. (2013) (c). For each panel, the reported values are plotted as gray circles and the LIME calculated values are depicted as triangles with 2o error bars.

The solid line corresponds to the weighted linear regression through the LIME calculated values for the amphibole-in interval (red) and amphibole crystallization
(black), with the dashed lines for each fit representing the 95% confidence interval on the regression. The calculated slope and uncertainty (20) for each regression are
given in the corresponding color. For the dF/dT reported here, F' denotes melt percent rather than melt fraction. (d) Calculated dF/dT for the amphibole-in interval of
each experimental series included in the magma crystallinity case study plotted against the average NBO/T for the experimental glass compositions in a given series.
The data symbol reflects the experimental study from which the dF/dT was calculated (as given in the legend). Black symbols represent those studies included in the
compilation of Barclay and Carmichael (2004), whereas red symbols denote experiments that have been added to the compilation by this study for comparison. The
error bars depict the 2o uncertainty on the slope as calculated from a weighted linear regression through the LIME glass proportions and experiment temperatures.

content, and pressure. A large dF/dT is expected for lower melt SiO,, lower H,O, and lower pressure (Barclay &
Carmichael, 2004; Melekhova et al., 2013, 2015). Additionally, fractional crystallization sequences will have a
smaller dF/dT because the amphibole-producing reactions between melt and earlier crystallized silicates will be
suppressed (Nandedkar et al., 2014).

Using LIME, we have determined the dF/dT at the onset of amphibole crystallization for 19 amphibole-bearing
experimental sequences (Figure 4). For each experiment, the proportions of glass and mineral phases were
calculated from the reported bulk composition and phase compositions. The glass proportions calculated with
LIME agree with the previously reported values and provide estimates for the uncertainty on the melt fraction
for each experiment (Figure 4a). The dF/dT for each experimental sequence was determined from a weighted
linear regression of the calculated glass proportions and the reported experimental temperatures. In many cases,
the experimental sequence exhibits a non-linear trend in melt fraction with respect to temperature. For this
reason, dF/dT was calculated at the “amphibole-in” interval, defined by the first amphibole-bearing experiment
and the higher-temperature experiment that precedes it. When an experimental sequence contained multiple
amphibole-bearing experiments, the dF/dT was also calculated for all experiments with amphibole in the crys-
tallizing assemblage. Comparing the dF/dT for the amphibole-in interval with that of the amphibole-bearing
experiments, we have determined whether the change in dF/dT associated with the onset of amphibole crystal-
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lization is significant given the estimated uncertainties on the glass proportions (Figures 4b and 4c). A signifi-
cant difference in slope was found for four of the 10 experimental sequences with multiple amphibole-bearing
experiments. For example, the experimental series in Grove et al. (1997) and Blatter et al. (2013) have a change
in slope (dF/dT) at the onset of amphibole crystallization that is significant within the estimated uncertainty
(Figures 4b and 4c). For the two experiments at lower temperature (higher crystallinity) in Grove et al. (1997),
the reported glass proportions are slightly different from those calculated by LIME, yet still within the estimated
20 uncertainty (Figure 4b). In the Blatter et al. (2013) series, the reported glass proportion increases when
temperature decreases from 995 to 975°C. As glass proportion is generally expected to decrease as tempera-
ture decreases, the authors attributed this supposed increase to the uncertainty of the least-squares approach to
calculating modal abundances. Here we show that the average glass proportion calculated by LIME decreases
in this temperature interval as expected, and the originally reported value is within the estimated 2¢ uncertainty
(Figure 4c).

To explore compositional effects on dF/dT, we have plotted the calculated slopes and uncertainties against the
ratio of non-bridging oxygens to tetrahedral cations (NBO/T) in the experimental melts, incorporating hydro-
gen as a network modifier into the calculations using the reported H,O values for the experiments (Figure 4d).
Because the composition of the experimental melt differs on either side of the amphibole-in boundary, the NBO/T
used for the plot in Figure 4d is the average NBO/T of the two melts. There is not a clear relationship between dF/
dT and NBO/T. For water-saturated experiments conducted at 200 MPa and originally presented as a compilation
in Barclay and Carmichael (2004), experimental melts with higher NBO/T generally have a higher dF/dT. In
contrast, dF/dT decreases with an increase in NBO/T for the Blatter et al. (2013) series of experiments conducted
on the same composition at different pressures. Though not conclusive, the data do support the theory that the
onset of amphibole crystallization causes an increase in crystallinity as shown by the break in slope (dF/dT).
However, the magnitude of this change is still uncertain and requires further study on the effects of water, melt
composition, and pressure. Importantly, this case study illustrates the utility of LIME in addressing petrologic
questions such as those pertaining to magma crystallinity.

4.2. Case Study 2: Melting Reaction Coefficients

The mass proportion method for calculating melting reactions uses the phase abundances from experimental
samples to define melting reaction coefficients (e.g., Kinzler & Grove, 1992; Walter, 1998; Walter et al., 1995).
The resulting reaction coefficients are used in forward melting models, as well as to model trace element evolu-
tion particularly at low degrees of melting (e.g., Jennings & Holland, 2015; Longhi, 2002; Walter et al., 1995).
Experimentally determined melting reactions describe the nature of melting (i.e., peritectic or eutectic) and iden-
tify pressure-dependent changes in melting behavior.

The uncertainty on melting reaction coefficients will be determined by the uncertainty on the calculated exper-
imental phase abundances used to define the reactions. For experiments containing olivine and orthopyroxene,
calculating modal abundances by linear regression commonly yields a negative proportion for one of the silicate
phases (Section 3). Using LIME to define the phase abundances for these reactions provides an estimate of uncer-
tainty and ensures that the phase proportions are positive values.

Garnet melting with a peritectic reaction of olivine + clinopyroxene + garnet = orthopyroxene + liquid is a
well-studied example of such a system (Grove et al., 2013, and references therein). We have used this reaction
here as a case study for defining reaction coefficients with LIME and the electron microprobe data and starting
material bulk composition reported in Walter (1998) (Figure 5). We have recalculated the phase proportions
and melting reactions for a suite of experiments and compare them to the original results of Walter (1998).
Walter (1998) investigated four different experimental pressures and reports a series of experiments at each pres-
sure. We have taken the two experiments that bracket the garnet-out transition at each experimental pressure, and
then calculated the reaction coefficients following the mass proportion method (Walter et al., 1995). The phase
abundance uncertainties were propagated through the reaction coefficient calculation in order to determine the
uncertainty on each coefficient. In order to do this calculation, the raw electron microprobe data is necessary,
however, the temperature interval between the two experiments will also influence the calculated coefficients.
Walter (1998) reports reaction coefficients adjusted to certain melting intervals, and thus, in order to make a
direct comparison we have recalculated reaction coefficients from the phase modal abundances reported in Table
8 of Walter (1998) (Figure 6).
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Figure 5. Comparison of reported and calculated phase proportions for the experiments bracketing the garnet-out melting
reactions investigated by Walter (1998) (Section 4.2). The error bars on the values calculated from LIME represent the

15.9 and 84.1 percentiles, which, if the distribution is Gaussian, represents a 1o error on the phase proportion (Section 3).
Walter (1998) used Monte Carlo simulations to assess uncertainty in calculated phase proportions. The error bars on the
reported values from Walter (1998) represent the reported 1o standard variation. The dashed line is a 1:1 line that illustrates
the overall agreement between the reported and calculated phase proportions.

The phase proportions calculated with LIME broadly agree with those reported in Walter (1998) (Figure 5).
However, Walter (1998) reported negative phase proportions for two experiments (one clinopyroxene, one
garnet), whereas the proportions are non-negative when calculated using LIME. This difference is non-trivial in
practice, as a reaction coefficient calculated from a negative phase abundance would result in that phase appear-
ing on the opposite side of the melting reaction. For instance, the coefficient for garnet in a garnet-out melting
reaction should be negative because the phase is consumed. However, the previously reported negative phase
proportion of garnet at 7 GPa results in a calculated reaction coefficient that is positive (Figure 6).

The calculated reaction coefficients reveal how the garnet melting reaction changes with pressure (Figure 6). At
pressures below 7 GPa, the olivine melting reaction coefficient is near zero, indicating that olivine does not have
a strong control on the reaction. However, at 7 GPa neither orthopyroxene nor clinopyroxene is present in the
melting reaction, and thus olivine becomes the phase consumed in addition to garnet. At pressures below 6 GPa,
clinopyroxene is consumed (negative reaction coefficient) and orthopyroxene is precipitated (positive reaction
coefficient). At 6 GPa, orthopyroxene is consumed, and the coefficient calculated using the phase proportions
from LIME indicates clinopyroxene is also consumed. In contrast, the clinopyroxene reaction coefficient calcu-
lated from the reported phase proportions in Walter (1998) is positive. The positive clinopyroxene reaction coef-
ficient does not indicate a change in melting behavior but is instead an artifact of the negative reported modal
abundance for clinopyroxene.

5. Conclusion

LIME is a practical log-ratio approach to mass-balance calculations in igneous and metamorphic systems that
provides benefits over traditional multiple linear regression techniques. When compositions are mapped from the
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Figure 6. Garnet-out melting reaction coefficients calculated from the phase abundances in experiments from Walter (1998) (Section 4.2, Figure 5). Coefficients are
plotted as a function of pressure and each phase has a separate plot (“opx” = orthopyroxene, “cpx” = clinopyroxene). The uncertainties on phase modal proportions
have been propagated through the reaction coefficient calculation and the plotted error bars represent the 1o error.

inverse log-ratio space back to composition space, the algorithm reports solutions with realistic uncertainty on
end-member abundances. In using LIME to determine phase abundances, we:

¢ Estimate phase abundances based on user-input compositional uncertainties.

e Report accurate uncertainties, which are often asymmetric.

¢ Propagate uncertainty in phase proportions through subsequent calculations of magma crystallinity and melt-
ing reaction coefficients.

We have demonstrated herein the ability of LIME to provide accurate confidence estimates for fundamental
quantitative calculations in petrology, and this utility can be extended to a variety of petrologic applications.
The LIME algorithm can also be used to reassess cases where previously reported data yielded negative
phase abundances or did not include estimates of uncertainty. Looking forward, we hope that the LIME
approach may be established as a new standard benchmark for petrologic studies that require phase abundance
calculations.

Appendix A: Computing the Isometric Log-Ratio Transform

The ilr-transform of a D-component composition vector returns its projection on an orthonormal basis of S? (see
Egozcue et al. (2003) and Chave (2017) for extensive definitions and detailed computation). Such a basis can be
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found by performing the Gram-Schmidt procedure on a known-set of D — 1 independent compositions in SP. This
calculation is made especially convenient by the use of Aitchison's centered log-ratio transform (clr), defined by

clr(x); = log x—] (A1)
g(x)

where g(x) denotes the geometric mean of vector x, that is,

1

> b
glx) = h‘[x,w : (A2)
i=1

Note that the inverse-clr transform (clr~!) is easily computed by taking the exponential of each component of
clr(x), and then renormalizing them so they add up to one.

Once the clr of composition x is known, we need to define a simple orthonormal (in the Euclidian sense) basis
of a (D — 1) dimensional subspace of R?, termed B. A convenient one is the set of (D — 1) unit vectors u; € R?,
i=1,2,...,D — 1 defined by

- ...— =-10...0 (A3)
i times

We then store these vectors as rows of a (D — 1) X D matrix U, and obtain the following relation between the
ilr- and clr- transforms:

ilr(x) = clr(x)UT (A4
and
clr(x) =ilr(x)U (AS)

Other transition matrices U can be obtained by choosing a different orthonormal basis of B. Ad-hoc choices (for
detailed compositional inference studies) could be based on sequential binary partitions that make physical sense,
but these are beyond the scope of this contribution.

Appendix B: Eliminating Zeroes in Petrologic Data Sets

Because the logarithm of zero is undefined, values of zero cannot serve as inputs to the log-ratio transform,
which is the critical part of the LIME algorithm. Compositional data in petrology can include values of “zero”
for multiple reasons. For instance, when an element is not analyzed, such as AL, O, in plagioclase, or when the
concentration of an element is below the analytical detection limit and an author chose to represent this as a zero.
To make data that include zeros suitable for LIME, we have developed a normative-type calculation that recom-
putes phase compositions in a way that eliminates zeroes.

We accomplished this using a balanced approach of amalgamation and replacement of zero values. Amalgama-
tion involves the addition of two or more oxides to make a parameter for fitting that is a combination of the two.
This reduces the amount of available data to make a fit and can make the system less over-determined. However,
this amalgamation often has the benefit of preventing the algorithm's iterations from getting stuck in local minima
and over-emphasizing the importance of elements whose abundances are poorly constrained (i.e., near detection
limit values).

There are times when amalgamation must be avoided in order to preserve data that are critical to the mass
balance. These cases primarily include calculations where an element resides in a single phase at high
abundance and is rare or absent in the other phases. A good example of this is when a phosphate, such as
apatite, is present in an assemblage. In this case, phosphorus is a critical element in determining the abundance
of the phosphate phase, so amalgamating the phosphorus data with another element will significantly increase
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the uncertainty in the calculated phosphate abundance. In cases such as these, we have chosen not to remove
zeroes by amalgamation, and instead replace zeroes with a trivial amount of an element (usually 0.01 wt%). In
this way, the minor amount of the element in the phases with zero abundance does not affect the overall mass
balance in an appreciable way, but the element can still be used in the LIME algorithm to mass balance the
phase with high abundance. The cut-off values for whether zero data get amalgamated or replaced have been
specifically defined with certain minerals in mind, and these minerals are noted within each amalgamation
step description.

Below, we detail the normative calculation procedures implemented by LIME to help the user understand the data

processing and the meaning of the amalgamated output:

To begin, LIME converts all input compositions to wt.% monocation oxides and converts all FeO and Fe,O,

to FeO,,,,. At this point all compositions are normalized to 100 wt.%. All bulk compositions of igneous and

metamorphic rocks will have at least the following oxides: SiO,, CaO, MgO, AlO, ;. These oxides comprise the

CMAS system, which is a basic building block in natural magmatic systems and commonly used in experimental

systems (e.g., haplobasalt). Bulk compositions in LIME should always have at least these four oxides. Follow-

ing the assumption that a bulk composition contains CMAS, the subsequent steps provide a framework for the
remaining relevant rock-forming elements.

Step 1. LIME eliminates oxides with zero values in the bulk composition. If an oxide absent from the bulk
has a reported abundance <5 wt.% in a phase, the oxide will be removed from the end-member phase
composition and the composition will be renormalized to 100 wt.% without that particular oxide. If
there is a phase with >5 wt.% of an oxide that has a zero value in the bulk composition, that phase will
not be included in the mass-balance calculation (and will be assumed of trivial abundance). If there
exists a phase (e.g., chromite) for which an important oxide is missing from the input bulk composition
(e.g., CrO, 5), this suggests that the input bulk composition is not an accurate representation of the bulk
sample. In this case, we suggest modifying the bulk composition (i.e., include a non-zero estimate) so
that the phase of interest is not excluded from the LIME calculation.

Step 2. For any compositions which report HO;, F, Cl, or NiO as compositional components, LIME will
remove the components from the composition (bulk or end-member phase) and renormalize the compo-
sition to 100 wt.%.

Step 3. LIME assesses AlO, 5 and TiO, for potential amalgamation with SiO,. For AlO, , if an end-member
phase is found to contain >19.4 wt.% (albite), then AlO, 5 will not be amalgamated and 0.01 wt.% will
be substituted for any zero values of AlO, ;. For TiO,, if there is an end-member phase with >8 wt.%
(magnetite-iilvospinel solid solution), TiO, will not be amalgamated and zero values will be replaced by
0.01 wt.%. If the reported abundance of AlO, 5 and/or TiO, in all end-member phases is less than these
pre-defined values (including zero), the oxide(s) will be amalgamated with SiO, for the bulk and phase
compositions. For all amalgamation calculations, the command window will display the result for the
user (i.e., Amalgamating Si and Al or substituting zero Ti by 0.01% Ti).Oxide
labels will also be adjusted to reflect any amalgamation (i.e., “SiO,” becomes “SiO,-Al,0,-TiO,” if
both Al and Ti are amalgamated).

Step 4. LIME inspects CrO, ; and MnO with a method similar to that described in Step 3. If there exists
an end-member phase with >4 wt.% CrO, ; or MnO (e.g., Cr- or Mn-bearing spinels), then a value
of 0.01 wt.% will be substituted in all phases with zero reported CrO, 5 or MnO. Otherwise, if no
end-member phase contains >4 wt.% CrO, 5 or MnO, the amount of these oxides will be set to zero and
the compositions will be renormalized to 100 wt.%.

Step 5. If there is no MgO reported for a phase, LIME will substitute a value of 0.01 wt.%.

Step 6. If one end-member phase has no FeO reported, LIME will add the amount of FeO to MgO in all phases,
thereby amalgamating FeO and MgO.

Step 7. If there is no CaO reported for an end-member phase, LIME will substitute a value of 0.01 wt.%.

Step 8. If there is no NaO, ; reported for an end-member phase, LIME will amalgamate NaO, ; with CaO in
all phases.

Step 9. If an end-member phase contains >6 wt.% KO, 5, LIME will substitute a value of 0.01 wt.% KO, for
any phase with zero KO ;. Otherwise, KO, 5 will be set to zero in all phases and the compositions will
be renormalized.
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Step 10. If there is a phase with >42.2 wt.% PO, ; (fluorapatite), LIME will replace any zero reported PO, 5 in
an end-member phase with 0.01 wt.%. If there is no phase with >42.2 wt.% PO, 5, LIME will remove
PO, , from all phases and renormalize the compositions.

Appendix C: Assembling Covariance Matrices for Compositional Uncertainty

All the procedures described below assume zeroes have been eliminated from the data set following the method
of Appendix B. At this stage, the data set should contain P mineral phases and C possibly amalgamated compo-
nents (oxides).

C1. Covariance Matrix for the Bulk Composition

Uncertainties on bulk compositions are rarely reported in the experimental literature. When reported, the bulk
composition uncertainties can be directly incorporated into LIME (Appendix E). When bulk uncertainty is not
available, we assume that each component of the bulk composition vector is known within the same relative
uncertainty (e.g., 1%, user-specified input parameter on Line 10 of 1ime input.m). We then use the bulk
uncertainty (either reported or estimated) to draw 1,000 random bulk compositions, which we transform into
their ilr counterparts. The variance of each component of the ilr-transformed vectors is then used to populate the
diagonal of matrix C, which is of size (C — 1) X (C - 1).

C2. Covariance Matrix for End-Member Compositions

The composition of end-member phases is typically determined from several geochemical analyses conducted
on multiple grains or at various locations within a single grain. We take advantage of this redundancy and
compute the ilr-transform of each individual measurement (a C-element composition vector). The resulting list of
ilr-transformed vectors is used to compute a (C — 1) X (C — 1) covariance matrix Cg), which includes off-diagonal
components describing possible covariation among certain oxides.

If only one compositional measurement exists for an end-member phase, we recommend generating a small
number (~10) of synthetic measurements assuming a known relative uncertainty (see draw_compos.m in
Appendix E), and use these to determine CS), as is systematically done for bulk composition uncertainty. This
produces a diagonal matrix Cg), which does not account for possible covariations between oxide composi-
tions within each end-member phase (e.g., SiO, and Al,O, in plagioclase). Once a covariance matrix has been
determined for each end-member composition, each Cg) is assembled into a block-diagonal matrix C, of size
P(C—-1)xP(C—-1).

C3. Complete Covariance Matrix for End-Member Compositions and Phase Proportions

Our algorithm iterates on a model vector m that concatenates the ilr of the phase proportions and that of the
end-member compositions. Its associated (prior) covariance matrix Cpp,,, must therefore reflect this structure.
We use C;; as the upper-left block of Cpp,,- The lower-right block is simply a (P — 1) X (P — 1) diagonal matrix
with constant coefficients set equal to 1 (or a large number).

Finally, if the end-member data is such that C;. is poorly conditioned (conditioning number below 107'%), we
reduce Cpp,p to its diagonal to ensure its inverse is easily computed. When this occurs, the following text will
display in the command window: WARNING - end-member covariance matrix badly condi-
tioned - was reduced to its diagonal.

Appendix D: Synthetic Tests

Inverting synthetic data sets is a straightforward way to ensure that LIME yields accurate results across a wide
range of compositions. Synthetic tests also assess the limits of the LIME approach and its handling of uncer-
tainties. To create synthetic data, we calculated mixtures of the glass, olivine, and plagioclase compositions
reported by Draper and Johnston (1992). We generated 900 synthetic bulk compositions (Equation 1), each corre-
sponding to a three-end-member mixture uniformly sampled in the corresponding (2-D) ilr-transformed space.
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To incorporate compositional variation for each end-member (glass, olivine, and plagioclase), we generated 15
end-member compositions drawn from a normal distribution centered on the reported composition and a defined
standard deviation of either 0.1%, 1%, or 5% relative to the mean for each oxide. These synthetic compositions
are meant to represent individual analyses of a given mineral phase, which will inherently have uncertainty and
spatial variability. This table of end-member compositions, along with the bulk composition, were then used as
inputs for the LIME algorithm.

For each of the 900 synthetic experiments, we compared the LIME-estimated mineral proportions to the true
proportion used when generating the synthetic mixture (Figure D1). Uncertainty or variability in the end-member
composition is the strongest control on LIME's performance. End-member compositions are precisely known
(0.1% uncertainty: Figures Dla-D1c), LIME recovers the true phase proportions almost perfectly, producing
results with small error bars. When the oxide composition of individual end-members varies within 5%, LIME
reflects this variability by attributing large posterior uncertainties to the phase proportions (large error bars in
Figures D1g-D1i). Large uncertainties may also skew the estimate in non-straightforward ways that are specific
to the chemistry of each mineral phase. As an example, in this synthetic test large end-member uncertainties
make LIME underestimate large proportions of glass (Figure D1g), overestimate low proportions of plagi-
oclase (Figure D1i), and leave olivine relatively unaffected (Figure D1h). For end-member uncertainties that
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Figure D1. Recovered versus true mineral proportions from 900 synthetic experiments constructed as mixtures of glass,
olivine and plagioclase. 1:1 line is plotted in red. Error bars represent 25th and 75th percentile of LIME estimates. Each row
corresponds to a different assumption on the (relative) uncertainty of the compositions of glass, olivine, and plagioclase:
(a—) 0.1%; (d—f) 1%; (g-i) 5%.
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are representative of typical experimental data (1%: Figures D1d-D1f), LIME recovers known phase mixtures
with posterior uncertainties (error bar width) on the order of percents. From these synthetic tests, we conclude
that LIME recovers balanced mixtures more accurately than mixtures where one or two end-members are in very
small proportions (e.g., see the increased deviation from the red line and width of error bars close to 0 and 1 in
Figures D1d-D1f).

Appendix E: User Guide

Log-ratio Inversion of Mixed End-members (LIME) is a MATLAB (The MathWorks Inc, 2022) program for
calculating the phase proportions in a rock given a bulk composition and the composition of each phase. The
mathematical details, outputs, and example applications are fully described in the main text. Here, instructions
are presented for performing calculations within LIME.

E1l. Getting Started

The plotting commands and statistical functions in the source code for LIME require that MATLAB version
2019a or later, including the “Statistics and Machine Learning Toolbox,” be installed on your machine in order to
perform a LIME calculation. To begin using LIME, download LIME . zip from the GitHub repository (github.
com/kprissel/LIME). Add the provided files to your MATLAB path.

Contents of LIME . zip:

lime input.m: This is the front-end, user-interfacing file for computing with LIME. User inputs and prefer-
ences are given, and a calculation can be completed from start to finish by running this script.

Inputs (folder):Example input files for compositional data including.xlsx and.txt formats. Use these files
as templates for entering your own data into LIME.

main_ script.m:Serves as the main engine for the code by calling upon subscripts. Calledin 1ime input.m
for each input composition.

preplime.m: Function that prepares user-input data for the formatting expected in subsequent scripts. This
allows the user to input the compositional data with any oxide order and include phase labels that will be used
in LIME figures.

clr.m: Function that computes the centered log-ratio transform from the D-dimensional S simplex to R?
(Aitchison, 1982).

clrinv.m: Function that computes the inverse centered log-ratio transform from R? to the D-dimensional SP
simplex (Aitchison, 1982).

draw_compos .m: Function that generates a set of random compositions with a specified mean and standard
deviation.

forwardilr.m: Function that computes the forward composition problem in ilr formulation.

ilr.m: Function that computes the isometric log-ratio transform from the D-dimensional SD simplex to RP-!
(Egozcue et al., 2003).

ilrinv.m: Function that computers the inverse-isometric log-ratio transform from R?-! to the D-dimensional
SP simplex (Egozcue et al., 2003).

lime .m: Function that computes the log-ratio-inversion of mixed end-members.

OKnorm.m: Function that amalgamates oxides in a pre-defined way, as described in the manuscript text
(Section 2.2).

E2. Data Inputs Required for LIME

Data required for LIME are the average bulk composition and the compositions of each phase, all reported as
weight percent oxides (SiO,, TiO,, Al,O;, Fe,0,, Cr,0,, FeO, MnO, MgO, NiO, CaO, Na,0, K,O, P,0;, H,0).
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Uncertainty on the bulk composition can be input as generalized percent or using specified values for each oxide.
The uncertainty on each phase composition will be determined based on the standard deviation of all the compo-
sitions input for a given phase. Because of this, you must give at least two compositional analyses for each phase.
For data that has been published as averages and standard deviations of n points, you can reproduce a synthetic
data set with those statistics using draw _compos .m. To do this, run the function draw_compos (N, mean,
std), where N is the number of analyses to be generated, mean is the average of those analyses, and std is the
standard deviation of the normal distribution that will be used to randomly generate compositions. Note that for
the compositional inputs, FeO and Fe,O, get amalgamated to total FeO (FeO,), so the phase abundance calcu-
lation will not directly include variations in Fe oxidation state. Though NiO and H,O are accepted as inputs, the
current version of LIME zeroes these oxides out prior to performing a calculation. Data should be appropriately
quality checked and filtered before being input to LIME. If there is a compositional input with a total less than
95 wt.%, a warning will be displayed in the command window.

Data are input as either a spreadsheet or text file. There are multiple input file examples included in the Inputs
folder. We suggest using TEMPLATE . x1sx to get started with your own data. The format of the input files
has columns for the phase label and oxides. In this version of LIME, the phase label must be the first column
but the oxides can be given in any order. After the row of column labels, each subsequent row corresponds to a
composition.

The bulk composition is listed first in TEMPLATE . x1sx, and in this version of LIME the bulk composition
must be given the “bulk” phase label. If the uncertainty (wt.%) is known for each oxide in “bulk,” include these
values in a subsequent row labeled “U.” If no “U” labeled row is given for uncertainty on the bulk composition,
the pct _err bulkgivenin lime input.m will be used instead (1% uncertainty default).

The remaining rows are compositional analyses for the phases, with the phase label corresponding to each row
given in the first column (e.g., “phasel”). During a routine, the subfile preplime.m will find the “bulk” and
“U” entries, rearrange the oxide columns to be in the expected order for the rest of the calculations, and group the
rows of analyses according to the phase labels. Be careful to use the exact same label (matching characters and
title case) for each row that is meant to represent the same phase. For example, if phases are labeled “clinopyrox-
ene” and one of the clinopyroxene rows is given as “cpx,” the code will treat these are separate phases. Another
common issue when users first start with LIME is the oxide column labels. Be sure to use the oxide labels given in
the example input files (e.g., “Si0,”); any additional spaces or characters in the oxide column names will prevent
the code from finding the expected oxide (e.g., “wt% SiO,” or “SiO,”).

E3. Running the Code

Aside from the input files, LIME users will only need to interface with 1ime input .m to successfully perform
a calculation. Once the input file is prepared, open 1ime input.min MATLAB. Give the file path for the input
file in the £ilename variable at Line 7. Multiple file names can be given, with each file name string separated
by a comma. When running multiple input files at once, we recommend saving the outputs (set ouput_yn =1
on Line 11), because variable names will be overwritten with each code iteration.

User-Specified Parameters, Lines 9—12: Here you can define a percent uncertainty in the bulk composition (Line
10), choose whether to save the result outputs as a separate file (Line 11), and choose whether to display the result
convergence plot to assess the performance of the code (Line 12).

Additional Parameters, Lines 19-28: These parameters relate to the ilr conversion and calculations in ilr-space.
They also define how many synthetic compositions to generate for the bulk composition (Line 23) and how many
samples to generate for the posterior distribution (Line 28). The specific details of these calculations are given
in Section 2.3.

The variable NEWT .error measure defines how the reported error will be calculated. When this variable is
set to “1,” the reported errors on the posterior distribution will be the 1-sigma equivalent of a Gaussian distribu-
tion (15.9 and 84.1 percentiles). If the variable is set to “2,” the errors will be the 2-sigma error equivalent for a
Gaussian distribution (2.3 and 97.7 percentiles). Because not all posterior distributions have a Gaussian distri-
bution (see asymmetry in Section 3), you can also define a vector of two percentile values to be used in the error
calculation instead. If a vector of two values is specified, those percentiles will be used instead of the default 15.9
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and 84.1. The provided 1ime input.m file sets the reported errors to be the 25th and 75th percentiles of the
posterior distribution.

E4. Results and Outputs

Results are reported in the command window (Figure E1) and as probability density functions in MATLAB
Figure 1. If plot cvg=1onLine120of 1ime input.m, then MATLAB Figure 2 will show the convergence
plot of phase proportions at each iteration of the calculation.

The command window will first display text that details the modifications made by OKnorm.m to the compo-
sitions during the calculation (e.g., zero-ing oxides missing from the bulk composition
or oxide amalgamation). Then, the results are given for each phase. The input phase strings are listed as column
headers in the order corresponding to the order of the reported result values. The first set of phase proportions
given in the command window are the mean and standard deviation (wt.%) for each phase. The second set of
phase proportions corresponds to the best fitting phase abundance (wt.%, peak center) and the wt.% units to
each user-specified percentile of the PDFs shown in Figure 1. We recommend reporting the second set of values,
particularly if there is asymmetry in your results, and rounding the results to significant figures appropriate for
your calculated uncertainties (see Section 3.2). The last section of the command window result gives the recalcu-
lated and input bulk compositions, reported in the oxide components as modified by OKnorm.m.

If output _yn =11inLine 11 of 1ime input.m, a folder will be created when you run the code. It will be
titled the name of your input file plus “_LIME” and contain an Excel file (_LIME_results.xlsx) with a tab for the
command window output (“Main Output”) as well as the 80,000 modeled abundances used to generate the results
(“Modeled abundances”). This folder will also contain a PDF of Figure 1 (_LIME_figure.pdf) and a duplicate
file of the input compositions.

Command Window ®

>> lime_input

Zero-ing oxides missing from the bulk composition
removing Ni0 and H20

zero-ing Cr & . .
zero-ing Mn Modifications to compositions and
replacing zero Mg0 by ©.01% Mg0 i i

e i Nk it oxides by OKporm.m fqllowmg
zero-ing K method in Appendix B.

zero-ing P

INVERSION RESULTS
phase order
"glass" "ilmenite" "plagioclase" "quartz"

mean phase composition (wt %) and standard deviation (wt %)
55.5757 6.5215 15.1781 22.7247

0.8254 0.2000 0.4010 0.5810

ERROR MEASURE: USER SPECIFIED PERCENTILES: [25 75].
minus to 25th percentile (wt %)
0.5705 0.1346 0.2676 0.3910

Results: best fit modal abundances
and uncertainties for each phase

best fitting phase composition (wt%)
55.5883 6.5191 15.1740 22.7186

plus to 75th percentile (wt %)
0.5436 0.1362 0.2724 0.3980

ilr-space 1-sigma range (%):
54.7721 6.3241 14.7777 22.1477

56.4086 6.7219 15.5764  23.3021

oxide order
"sio2" "Tio2" "A1203" "Fe0" "Mg0" "Ca0-Na20"

) . Comparison of
corresponding data prediction (wt %) .
54.0563  7.2019 11.1066 18.3712  1.2073  7.9667 recalculated and input
bulk compositions

. and true data (wt %)
53.7910 7.1721 10.9631 18.9549 1.1270 7.9918

Figure E1. Screenshot of command window after successful run of 1ime input .m with provided input file J047.xlsx.
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ES. Calculating Experimental Iron Loss

Reaction between Fe-rich samples and metal sample containers is a well-known occurrence in experimental
petrology (Borisov & Jones, 1999; Grove, 1982). During an experiment, Fe can diffuse out of the experimental
sample and into the metal container. The amount of iron “lost” to the capsule will depend on the metal alloy
composition of the container as well as the oxygen fugacity, with increased partitioning of Fe into metal at lower
oxygen fugacities.

We have developed a way to estimate Fe loss using LIME. To do this, we perform a phase abundance calculation
excluding Fe from the bulk and phase compositions. Using the phase proportions from the Fe-free calculation
and the average phase compositions (including Fe), we then recalculate the bulk Fe composition. Comparing the
recalculated bulk Fe content to the initial bulk Fe content determines the percent of Fe that was lost from the bulk
sample during the experiment. When performing this calculation, the Fe-bearing and Fe-free phase abundances
should be compared to assess how influential Fe content is on the calculated phase abundances. For example, an
Fe-free calculation will not be reliable if an experiment contains a phase that is primarily iron (e.g., magnetite or
Fe metal), because that phase will no longer be included in the phase abundance calculation. We have used this
method previously to estimate Fe loss for olivine- and glass-bearing experiments (Prissel et al., 2018) as well as
ilmenite- and glass-bearing experiments (Prissel, 2020). In the case of ilmenite, zeroing out Fe makes the ilmenite
proportion predominantly dependent on the Ti compositions of the ilmenite, glass, and bulk composition.

In Prissel et al. (2018), we analyzed the Fe content of Re metal sample containers using both electron microprobe
and inductively coupled plasma mass spectrometry. The LIME-estimated amount of Fe lost from the experimen-
tal sample was greater than the amount of Fe in found in the Re sample container. This discrepancy indicated
another source of Fe loss, evaporation, which was also supported by Fe isotopic analysis of the samples and metal
containers.

To calculate Fe loss with LIME, begin by inputting your data as you would for a normal calculation. To zero
out Fe, go to Line 5 of the main script.m file and add “0” as a third input in the “preplime” function:
0 = Fe-free, 1 = Fe-bearing (This optional input is used for the loop at Line 48-54 in preplime .m.) With “0”
as the third input in the preplime function (i.e., preplime (filename{f},pct err bulk,0)), running
lime input.m will conduct an Fe-free phase abundance calculation. Then, the resulting proportions from the
Fe-free calculation can be used to determine bulk Fe loss as described above.

Data Availability Statement

The initial version of the source code used for this manuscript, as well as the example input files, have been
provided with DOI on Zenodo (Prissel et al., 2023) and future versions of the code will be maintained on GitHub
(https://github.com/kprissel/LIME).
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