
1.  Introduction
Mass-balance calculations play a crucial role in petrology and geochemistry, serving as a powerful tool for 
understanding the distribution, transformation, and cycling of elements in petrologic systems, as well as assess-
ing possible open-system behavior in experimental phase equilibria results. By quantifying elemental budgets, 
mass-balance calculations enable us to decipher the intricate chemical dynamics that shape the composition of 
Earth and planetary materials. Mass-balance calculations quantify the fluxes of elements between reservoirs 
and elucidate the factors controlling elemental distributions in a system. The proportions of phases, even if 

Abstract  We provide a new algorithm for mass-balance calculations in petrology and geochemistry 
based on the log-ratio approach championed initially by John Aitchison (e.g., Aitchison, 1982, https://doi.
org/10.1111/j.2517-6161.1982.tb01195.x; Aitchison, 1984, https://doi.org/10.1007/bf01029316) along with 
the underlying principles, mathematical frameworks, and data requirements. Log-ratio Inversion of Mixed 
End-members (LIME) is written in MATLAB and calculates phase proportions in an experiment or rock 
given a bulk composition, the composition of each phase, and the associated compositional uncertainties. 
An important advantage of LIME is that performing the mass-balance calculation in inverse log-ratio space 
constrains phase proportions to be between 0 and 100 wt.%. Further, the resulting LIME phase proportions 
provide realistic estimates of uncertainty regardless of data distribution. These two characteristics of LIME 
improve upon standard multiple linear regression techniques, which may yield negative values for phase 
proportions if non-constrained or report oversimplified symmetric errors. Primary applications of LIME 
include estimating phase abundances, calculating melting and metamorphic reaction stoichiometries, and 
checking for open system behavior in phase equilibria experiments. The technique presented here covers 
whole-rock analysis, mineralogy, and phase abundance, but could be extended to isotopic tracers, trace element 
modeling, and regolith component un-mixing. We highlight the importance of uncertainty estimations for phase 
abundances to the fields of petrology and geochemistry by comparing our results from LIME to previously 
published mass-balance calculations. Furthermore, we present case studies that demonstrate the role of 
mass-balance calculations in determining magma crystallinity and defining melting reactions.

Plain Language Summary  “The principle of mass balance is simply: some of it, plus the rest of 
it, equals all of it.”—Stormer, Jr. and Nicholls (1978, https://doi.org/10.1016/0098-3004(78)90083-3). In the 
study of igneous and metamorphic rocks, mineral abundances are used to classify rock types, characterize 
volcanic processes, and define chemical reactions. Common approaches for calculating phase abundances, 
such as multiple linear regression, suffer from mathematical artifacts that can lead to inaccurate assumptions 
(e.g., Chayes, 1960, https://doi.org/10.1029/jz065i012p04185; Miesch, 1969, https://doi.org/10.1007/978-1-
4615-8633-3_10). Compositions are reported as percentages with sums mathematically constrained to 100%. 
This fixed sum constraint may lead to erroneous coefficients when determining chemical reactions (e.g., a 
mineral being on the wrong side of the chemical reaction). Additionally, mineral abundances are often reported 
without any estimate of uncertainty. This is problematic when those values are used in subsequent calculations 
to define trends without statistical significance. We have developed a suite of MATLAB scripts to calculate 
phase abundances in natural rocks and experimental samples. This algorithm, referred to as LIME, improves 
upon previous methods by constraining phase proportions to positive values and providing realistic estimates 
for uncertainty on each phase abundance. We demonstrate the utility of these improvements in two case studies 
related to magma crystallization and mantle melting.
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macroscopically out of equilibrium, constrain processes occurring in diverse geological settings, such as 
magmatic systems or metamorphic regimes.

In petrology, mass-balance calculations provide insight into the genesis and evolution of rocks and minerals. 
By examining the bulk chemical composition of rocks and comparing them with the expected compositions 
based on mineral equilibria, thermodynamics, and known phase relations, mass-balance calculations—when 
correctly done—discern the processes that have influenced the rock's formation and subsequent modifications. 
Petrological mass-balance studies have shed light on magma differentiation, viscosity, fractional crystallization, 
assimilation, magma mixing, and metasomatic processes among other processes (e.g., DePaolo, 1981; Langmuir 
et al., 1992; Marsh, 1981).

User-friendly implementations for mass-balance calculations have served the petrology community for decades 
(e.g., XLFRAC, Stormer, Jr. and Nicholls (1978); Simplex, Baker et al. (1994); GeoBalance, Li et al. (2020)). 
Bryan et al. (1969) first applied the least-squares approximation to the issue of mass balance in petrology. The 
standard regression technique has been improved by approaches that incorporate analytical uncertainty and/
or constrain solutions to non-negative values (e.g., Albarede & Provost,  1977; Reid et  al.,  1973; Wright & 
Doherty, 1970). With geochemical data from igneous and metamorphic rocks, the mass-balance problem is often 
over-determined (i.e., more oxide constraints than phases), and thus methods have also been developed to miti-
gate this issue for least-squares mass-balance calculations (e.g., Ghiorso, 1983; Stormer, Jr. & Nicholls, 1978). 
The least-squares approach yields phase proportion uncertainties that are determined based on the residual of the 
regression fit. More recently, Monte Carlo error propagation for mass-balance calculations has been implemented 
by the GeoBalance Excel VBA program (Li et al., 2020) and Python-based MassBalanceCal (Zhang et al., 2023). 
Though additional mathematical improvements for compositional mass-balance exist (e.g., Aitchison,  1982; 
Greenacre et al., 2023), they have yet to be specifically tailored for practical application in petrology.

Here, we present a new algorithm (Log-ratio Inversion of Mixed End-members, or LIME) for mass-balance calcu-
lations in petrology and geochemistry based on the log-ratio approach initially championed by John Aitchison 
(e.g., Aitchison, 1982). This approach to mass-balance constrains solutions to non-negative values, incorporates 
analytical uncertainty, and yields asymmetric error bars that realistically reflect compositional uncertainties in 
the bulk and phase compositions. We demonstrate improvements to mass-balance calculations through case study 
applications, and highlight the significance of phase abundances in elucidating petrologic processes. Primary 
applications of LIME include determining phase abundances, calculating melting and metamorphic reaction 
stoichiometries, and checking for closed/open system behavior in phase equilibria experiments. The technique 
presented here covers whole-rock analysis, mineralogy, and phase abundance, but could be extended to isotopic 
tracers, trace element modeling, or regolith component un-mixing (e.g., Korotev & Kremser, 1992).

2.  A Log-Ratio Approach to the Mass-Balance Problem
2.1.  Mathematical Formulation and Challenges of the Mass-Balance Problem

Consider a rock made up of P mineral phases, each being analyzed for C element concentrations (i.e., major 
oxides, in wt.%). The bulk composition of the rock is also being determined, and written as a C-element column 
vector b. Assuming homogeneous phases and perfect measurements, we have the following linear relation

𝑏𝑏 = 𝐸𝐸𝐸𝐸� (1)

where E is the C × P matrix whose columns represent the major oxide composition of each mineral phase (Eij 
denotes the proportion of oxide i in the jth mineral phase), and p is the P-element column vector containing the 
relative proportions of the mineral phases. Equation 1 describes the forward problem we wish to invert while 
accounting for measurement uncertainty and phase inhomogeneity. Knowing the bulk composition b and the 
end-member composition E with some prior uncertainty, we wish to identify the values of vector p that best 
predict b, as well as the associated uncertainty on p.

An intuitive way to do so is to perform a least-squares regression on matrix E and data vector b in order to esti-
mate which vector p = p* minimizes the distance between Ep and b (in the L 2 norm sense: ‖Ep − b‖2) (Bryan 
et al., 1969; Wright & Doherty, 1970). Such methods rely on the assumption that uncertainties on b and p follow 
a Gaussian distribution. Complications arise, however, when one attempts to perform least-squares inversion on 
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compositional vectors and matrices that carry only relative information (proportions) such as b, p, and E. Indeed, 
such vectors are subject to a positivity and unit-sum constraint:

𝑏𝑏𝑖𝑖 > 0;

𝐶𝐶
∑

𝑖𝑖=1

𝑏𝑏𝑖𝑖 = 1� (2)

𝑝𝑝𝑖𝑖 > 0;

𝑃𝑃
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖 = 1� (3)

𝐸𝐸𝑖𝑖𝑖𝑖 > 0;

𝐶𝐶
∑

𝑖𝑖=1

𝐸𝐸𝑖𝑖𝑖𝑖 = 1� (4)

Because of these constraints, the L 2 norm does not constitute an appropriate measure of distance in a simplex, that 
is, a space of compositional vectors. This means that compositional uncertainties, which are related to the spread 
of compositional distributions, are not properly assessed when one uses usual metrics such as the standard devi-
ation. Besides, a C-simplex (S C) spanned by compositional vectors with C components really has C − 1 degrees 
of freedom (i.e., once the C − 1 first components have been assigned, the unit-sum constraint sets the value of the 
Cth-component). Multivariate Gaussian distributions can therefore not be defined on a C-simplex because their 
natural domain of definition is the Euclidian space 𝐴𝐴 ℝ

𝐶𝐶−1 . By ignoring these facts when performing linear regres-
sions on compositional data sets, researchers often end up with skewed results, such as negative phase contents 
and misleading (or absent) measures of uncertainty (e.g., Pawlowsky-Glahn et al., 2015).

Albarede and Provost (1977) recognized these limitations and proposed to perform standard least-squares meth-
ods not on compositions directly, but on a transformed data set that would not be subject to the constraints 
listed above. Specifically, they worked with vectors 𝐴𝐴 Ω𝑖𝑖 ∈ ℝ

𝐶𝐶 instead of compositional vectors ωi ∈ S C, where 
sin 2Ωi = ωi (Ray & Szekely, 1973). While this approach allows the definition of Gaussian uncertainties on the 
transformed vectors, it does not get rid of spurious correlations inherited from the unit-sum constraint.

A more general approach was put forward by Aitchison (1982), who established the field of compositional geom-
etry. He defined a set of basic operations on the simplex S C providing it a structure analogous to that of Euclidian 
spaces such as 𝐴𝐴 ℝ

𝐶𝐶−1 . Specifically, through the definition of an inner-product in S C, he introduced a measure of 
distance in the simplex now referred to as Aitchison distance. He also introduced one-to-one mappings between 
S C and 𝐴𝐴 ℝ

𝐶𝐶−1 . The first one, the additive log-ratio transform (alr), consists of choosing a component of a compo-
sitional vector, and taking the logarithm of each of the other components divided by the chosen component. This 
yields a vector of real numbers that is subject to neither the positivity nor unit-sum constraints, making it suitable 
for standard regression techniques, as well as other statistical tests that require unconstrained real space. One 
drawback of this transform is that is does not provide a direct correspondence between the Aitchison distance 
and the Euclidian distance. In other words, taking the Aitchison norm of compositional vector x will not yield 
the same result as taking the L 2 norm of alr(x), which makes the interpretation of transformed data less straight-
forward (Egozcue et al., 2003). Aitchison (1982) also introduced the centered-log-ratio (clr) transform, which 
consists of the logarithm of each component of a composition vector divided by the geometric mean of all its 
components (see Appendix A). This transform allows a direct correspondence between Aitchison and Euclidian 
distances. However, the clr of a C-component composition yields a C-component vector subject to a zero-sum 
constraint. This implies that clr-transformed data still carry spurious correlations. Specifically, any covariance 
matrix defined on clr-transformed data sets will be singular, which is a major drawback for many least-squares 
algorithms.

A third transform, the isometric log-ratio transform (ilr) was introduced by Egozcue et al. (2003). It is based on 
the definition of an orthogonal basis in the simplex in the Aitchison sense (see Appendix A). The ilr allows a 
direct correspondence (isometry) between Aitchison and Euclidian distances, meaning that the L 2 norm of ilr(x) 
yields the same result as the Aitchison norm of the C-element compositional vector x. In addition, the compo-
nents of ilr(x) are not subject to any sum or positivity constraint, and span an unconstrained, Euclidian space 𝐴𝐴 ℝ

𝐶𝐶−1 . 
These properties make the ilr-transform a powerful tool for compositional data analysis. A now standard practice 
consists of taking the ilr of compositional data sets and performing standard statistical or inverse methods to the 
transformed data sets (Chave, 2017). Here we apply this methodology to inverting the convex linear mixing prob-
lem (Equation 1) and present a suite of numerical programs tailored for petrological mass-balance calculations.
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2.2.  The Log-Ratio Transformed Mass Balance Problem

The very first step in our methodology is to eliminate any zero present in our data sets. We do so by following the 
protocol detailed in Appendix B. We then reformulate Equation 1 as a non-linear problem involving the isometric 
log-ratio (ilr) transform of each compositional vector involved:

𝑏̂𝑏 = Ψ
(

𝐸̂𝐸𝐸 𝐸𝐸𝐸
)

.� (5)

The hat notation denotes the ilr-transform. We define the ilr of a matrix as the matrix composed of the ilr of 
each of its columns. 𝐴𝐴 𝐴𝐴𝐴 is a vector with P − 1 real components not subject to the unit sum constraint, and 𝐴𝐴 𝐸̂𝐸 is a 
(C − 1) × P matrix. Ψ denotes a non-linear operator which, from Equation 1, explicitly writes

Ψ
(

𝐸̂𝐸𝐸 𝐸𝐸𝐸
)

= 𝑖𝑖𝑖𝑖𝑖𝑖−1
(

𝐸̂𝐸
)

𝑖𝑖𝑖𝑖𝑖𝑖−1(𝑝̂𝑝).� (6)

A convenient way of handling uncertainties on end-member compositions is to treat 𝐴𝐴 𝐸̂𝐸 as a model parameter (like 
𝐴𝐴 𝐴𝐴𝐴 ) rather than as data (like 𝐴𝐴 𝑏̂𝑏 ). We, therefore, assemble a column vector 𝐴𝐴 𝐴𝐴𝐴 with CP − 1 components that contains 

all the columns of 𝐴𝐴 𝐸̂𝐸 taken sequentially, followed by the P − 1 elements of 𝐴𝐴 𝐴𝐴𝐴 . Following a standard Bayesian 
approach, we treat our initial estimate of 𝐴𝐴 𝐴𝐴𝐴 (model vector) as a random drawing from a multivariate Gaussian 
distribution fPRIOR. This prior distribution is centered on an a-priori estimate of 𝐴𝐴 𝐴𝐴𝐴 termed 𝐴𝐴 𝐴𝐴𝐴0 , which contains the 
actual measurements of end-member compositions (columns of 𝐴𝐴 𝐸̂𝐸 ) and an initial “guess” of 𝐴𝐴 𝐴𝐴𝐴 which assumes 
all mineral phases are in equal proportions. The spread of fPRIOR is expressed through a (CP − 1) × (CP − 1) 
covariance matrix CPRIOR containing (a) uncertainty related to the measurements of the end-member composi-
tions (P(C − 1) × P(C − 1) upper-left block), and (b) uncertainty on the initial guess of the phase proportions 
((P − 1) × (P − 1) lower-right block), taken to be large (see Appendix C):

𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚̂𝑚) ∝ exp

(

−
1

2
(𝑚̂𝑚 − 𝑚̂𝑚0)

𝑇𝑇
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚̂𝑚 − 𝑚̂𝑚0)

)

.� (7)

Similarly, we model measurement uncertainty on the ilr of the bulk composition vector 𝐴𝐴 𝑏̂𝑏 as a Gaussian distribu-
tion gOBS centered on the measured ilr-bulk composition 𝐴𝐴 𝑏̂𝑏0 , with a (C − 1) × (C − 1) covariance matrix CD (see 
Appendix C for details on constructing CD).

𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂

(

𝑏̂𝑏
)

∝ exp

(

−
1

2

(

𝑏̂𝑏 − 𝑏̂𝑏0
)𝑇𝑇
𝐶𝐶𝐷𝐷

(

𝑏̂𝑏 − 𝑏̂𝑏0
)

)

� (8)

A slight rewriting of Ψ in Equation 5 allows us to define operator Φ so that

𝑏̂𝑏 = Φ(𝑚̂𝑚)� (9)

Equation 9 is a concise form of the forward mass-balance problem which has been rendered non-linear by the use 
of the ilr-transform.

2.3.  Inversion Procedure

We apply a quasi-Newton iterative method (Tarantola, 1981) to invert the non-linear problem described by Equa-
tion 9. This method starts from the prior distribution 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚̂𝑚) (characterized by covariance matrix CPRIOR and 
centered on 𝐴𝐴 𝐴𝐴𝐴0 ) and employs discrete steps to approach a posterior distribution 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚̂𝑚) that allows the best 
prediction of the data distribution 𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂

(

𝑏̂𝑏
)

 in the L2-norm sense. In practice, we iterate over the model vector 
𝐴𝐴 𝐴𝐴𝐴

(𝑛𝑛) after initializing it at 𝐴𝐴 𝐴𝐴𝐴
(0)

= ̂𝑚𝑚0 . At each iteration n, we estimate the Jacobian matrix of Φ through a centered 
finite-difference approximation

𝐽𝐽
(𝑛𝑛)

𝑘𝑘𝑘𝑘
=

𝜕𝜕𝑏̂𝑏𝑘𝑘

𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

=
Φ𝑘𝑘(𝑚̂𝑚𝑙𝑙 + Δ𝑚̂𝑚∕2) − Φ𝑘𝑘(𝑚̂𝑚𝑙𝑙 − Δ𝑚̂𝑚∕2)

Δ𝑚̂𝑚
+ 𝑂𝑂

(

Δ𝑚̂𝑚
2
)

� (10)

Discrete steps of 𝐴𝐴 Δ𝑚̂𝑚 = 10
−3 were found sufficiently small to allow a robust estimate of J in most petrological 

applications. The Jacobian is then used in the following steepest-descent scheme:

𝑚̂𝑚
(𝑛𝑛+1)

= 𝑚̂𝑚
(𝑛𝑛)

− 𝜇𝜇𝜇𝜇 (𝑛𝑛)
[

𝐽𝐽 (𝑛𝑛)𝑇𝑇 𝐶𝐶−1

𝐷𝐷

(

Φ
(

𝑚̂𝑚
(𝑛𝑛)
)

− 𝑏̂𝑏
)

+ 𝐶𝐶−1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(

𝑚̂𝑚
(𝑛𝑛)

− 𝑚̂𝑚0

)]

� (11)
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where

𝐾𝐾 (𝑛𝑛)
=
[

𝐽𝐽 (𝑛𝑛)𝑇𝑇 𝐶𝐶−1

𝐷𝐷
𝐽𝐽 (𝑛𝑛)

+ 𝐶𝐶−1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

]−1� (12)

and μ is a damping term we set equal to 0.9 by default. We empirically find that a smaller value sometimes 
improves convergence. 𝐴𝐴 𝐴𝐴𝐴

(𝑛𝑛) typically converges within tens of iterations (e.g., Figure 1) toward a model vector 
𝐴𝐴 𝐴𝐴𝐴

(∞) , which contains our best estimate of the phase proportions.

By default, our method only performs the updates described by Equation 11 on the components of the model 
vector that describe phase proportions, that is, we do not update the values that describe the composition of the 
end-member phases. Doing so assumes the end-member compositions and their uncertainties are well described 

Figure 1.  Illustration of the LIME algorithm in composition space (left column) and ilr-transformed space (right column), based on experiment C321 from 
Krawczynski and Grove (2012) (see Section 3). LIME builds a probability density function (PDF) on the mixture (here, proportions of glass, olivine, and plagioclase) 
that best explains a known bulk composition, accounting for uncertainties on both the bulk and end-member compositions. The algorithm initially postulates equal 
phase proportions, with large model uncertainties (a). In ilr-space, this corresponds to a wide, isotropic Gaussian distribution centered on zero (b). An iterative 
procedure is then applied in ilr-space to find the best-fitting phase proportions and associated probability density function (d). It typically converges within tens of 
iterations (circles show progression from iteration n = 1 to n = 100). The results are then converted back to composition space (c). The same results are plotted as PDFs 
of individual phase proportions in Figure 2a.
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by the input data set, and limits the number of parameters to invert for. To explicitly treat the end-member compo-
sitions as model parameters, users can switch on the option yn_iterate_on_endmembers.

The uncertainty associated with our best model estimate is described by a Gaussian distribution fPOST centered on 
𝐴𝐴 𝐴𝐴𝐴

(∞) with covariance matrix CPOST:

𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚̂𝑚) ∝ exp

(

−
1

2

(

𝑚̂𝑚 − 𝑚̂𝑚
(∞)

)𝑇𝑇
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(

𝑚̂𝑚 − 𝑚̂𝑚
(∞)

)

)

,� (13)

where

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐽𝐽
(∞)𝑇𝑇

(

𝐽𝐽 (∞)𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐽𝐽
(∞)𝑇𝑇

+ 𝐶𝐶𝐷𝐷

)−1

𝐽𝐽 (∞)𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.� (14)

Figure 2.  LIME output probability density functions for computed phase abundance results on three experiments: C321 
(a) and C309 (b) from Krawczynski and Grove (2012), and STV315 4–6 (c) from Pichavant and Macdonald (2007). For 
numerical LIME results and comparison to published phase abundances, see Table 1.
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We sample this distribution in composition space by drawing 80,000 random 
samples from fPOST and then computing their inverse-ilr transform. This 
allows us to construct distribution curves for each mineral phase that are 
bounded between 0 and 1 (Figure 2). The number of random samples from 
fPOST can be varied in the code, but we found 80,000 was enough to generate 
smooth probability density curves for phases in most situations. This value 
can be increased or decreased by the user (see Appendix E).

The above methodology is implemented as a MATLAB (The MathWorks 
Inc,  2022) code openly distributed on the Zenodo repository (Prissel 
et  al.,  2023), and described in Appendix  E. User-provided data sets of 
end-member compositions and bulk compositions are first processed 
to  eliminate any zero not compatible with the calculation of the ilr transform 
(Appendix A). This is achieved with the method highlighted in Appendix B. 
Data set and model uncertainties (expressed in the form of covariance matri-
ces CD and CPRIOR) are assessed as detailed in Appendix C. Finally, Appen-
dix D summarizes how synthetic data sets were used to evaluate the code's 
performance.

3.  Examples and Advantages of Using LIME for 
Mass-Balance Calculations
3.1.  Constrained Phase Proportions From 0% to 100%

To demonstrate how the mass-balance calculations of LIME compare to 
previous methods, we detail three examples in the following text, Table 1 
and Figure 2. As described in Section 2, an important advantage of LIME 
is that performing the mass balance calculation in ilr-space constrains phase 
proportions to be between 0 and 100 wt.%. Further, the resulting probability 
density curves give phase proportions as well as realistic, and often asymmet-
ric, uncertainties on the proportion for each phase. These two characteristics 
of LIME improve upon the commonly used multiple linear regression tech-
niques, which only report symmetric errors and may give standard deviations 
that yield nonsensical negative values for phase proportions. Owing to these 
improvements, several authors have implemented previous versions of LIME 
(Krawczynski & Olive, 2011) in calculating the phase proportions of igneous 
and metamorphic rocks (Codillo et  al.,  2022; Collinet et  al.,  2015; Davis 
& Hirschmann, 2013; Gavrilenko et al., 2019; Grove et al., 2013; Guenther 
et al., 2022; Mitchell & Grove, 2015; Stadermann et al., 2022). LIME has 
also been used to assess the open system behavior of iron in experimental 
samples (Brown & Grove, 2015; Goltz et al., 2022; Prissel et al., 2018). We 
describe how to perform the Fe loss calculation in Appendix E5.

Inputs required for a LIME calculation are the bulk composition of the experiment and individual analyses of 
each experimental phase. LIME will transform each individual analysis into ilr-space and then compute a geomet-
ric mean, so it is important to input multiple individual analyses instead of an average composition. We provide 
user instructions and a detailed discussion of input data and uncertainty in Appendix E. We have also provided 
the compositional data input files for example, experiments C321, C309, L007, and STV315 4–6 in the LIME 
source files (https://github.com/kprissel/LIME).

The main output of the LIME calculation is a probability density function of phase proportions (Figure 2). We 
present published experiment C321 from Krawczynski and Grove  (2012) as a simple example of the LIME 
output. This experiment contains three phases: olivine, orthopyroxene, and glass (Figures 1 and 2a). The mass 
balance for this experiment is relatively straightforward because all of the phases are homogeneous and there were 
no issues with open system behavior in the experiment (i.e., Fe loss). The area under each curve is normalized 
to 1. For experiment C321, the peaks are relatively symmetric, with approximate normal distributions and low 

Phase Reported (wt.%)

LIME

Mean ± s.d. (wt.%) Best fit (wt.%)

Krawczynski and Grove (2012) C321

  Glass 93 91 ± 1 𝐴𝐴 92.0±0.3

1.1
 

  Orthopyroxene 4 5 ± 2 𝐴𝐴 4±
1

1
 

  Olivine 2 4 ± 1 𝐴𝐴 3.6±0.9

0.7
 

Krawczynski and Grove (2012) C309

  Glass 100 73 ± 3 𝐴𝐴 74±
1

3
 

  Orthopyroxene 27 20 ± 2 𝐴𝐴 20±
1

2
 

  Clinopyroxene −22 5 ± 4 𝐴𝐴 4±
3

2
 

  Ilmenite −7 2 ± 1 𝐴𝐴 1.3±0.7

0.5
 

  Spinel 1 0.8 ± 0.2𝐴𝐴 0.7±0.2

0.1
 

Pichavant and Macdonald (2007) STV315 4-6

  Glass 64 37 ± 16 𝐴𝐴 38±
10

12
 

  Plagioclase 12 22 ± 7 𝐴𝐴 24±
3

6
 

  Clinopyroxene 22 21 ± 8 𝐴𝐴 22±
4

7
 

  Orthopyroxene −10 12 ± 10 𝐴𝐴 10±
6

5
 

  Olivine 12 8 ± 5 𝐴𝐴 7±
3

3
 

Dawson and Krawczynski (2022) L007

  Glass 42 ± 6 𝐴𝐴 43±
3

5
 

  Amphibole 25 ± 4 𝐴𝐴 25±
2

3
 

  Orthopyroxene 16 ± 2 𝐴𝐴 16±
1

2
 

  Clinopyroxene 10 ± 4 𝐴𝐴 10±
3

2
 

  Plagioclase 7 ± 6 𝐴𝐴 5±
4

2
 

Note. Here, “Best Fit” gives the best fitting phase abundance (peak center) 
and phase abundance increments to the 25th (−) and 75th (+) percentiles of 
the posterior distribution. Users can define which percentiles of interest to 
calculate before running LIME. For a Gaussian distribution, percentiles of 
15.9 and 84.1 correspond approximately to 1σ.

Table 1 
Comparison of LIME Results and Published Values From Krawczynski 
and Grove (2012) Experiments C321 and C309, Pichavant and 
Macdonald (2007) Experiment STV315 4-6, and Dawson and 
Krawczynski (2022) Experiment L007
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uncertainties. For each phase, the peak center and width relate to the best fitting phase proportion and the uncer-
tainty on that value, respectively. The original publication calculated the mass balance with a non-constrained 
linear least squares method, and there is good agreement between the reported phase proportions and those 
calculated with LIME (Table 1).

For petrologic mass-balance calculations it has been common practice to either report negative coefficients 
(e.g., Krawczynski & Grove, 2012; Pichavant & Macdonald, 2007) or not report mass-balance coefficients when 
the results are negative (e.g., Canil & Bellis, 2008). To demonstrate the improvement over common regression 
methods used for the estimation of phase proportions, we provide two examples of experiments with previously 
reported negative phase abundances (Figure 2, Table 1).

Experiment C309 from Krawczynski and Grove (2012) has published negative values for mass balance coeffi-
cients of clinopyroxene and ilmenite phases. Standard linear regression techniques are not constrained to give 
positive phase proportion coefficients, resulting in non-intuitive negative abundances for existing phases. The 
LIME algorithm constrains the mass balance calculation to positive space, giving best-fit proportions that more 
realistically reflect the observed phase assemblage. The phase proportion coefficients for C309 are reported in 
Table 1 along with the first and third quartiles from the probability density function, which emphasize the asym-
metric nature of the probability functions when mapped back into non-Euclidian composi tion space (Figure 2b). 
Similarly, results for a recalculation of experiment STV315 4-6 from Pichavant and Macdonald (2007) demon-
strate the difference between linear regression methods and the LIME algorithm (Figure 2c). Specifically, for 
this experiment, there is a drastic difference in the calculated “glass” percents, which would have significant 
impact when using the glass proportion to define crystallization trends or determine the total crystallinity of an 
experiment.

3.2.  Best Practices for Reporting Uncertainty From LIME

The most accurate representation of uncertainty in LIME derives from the posterior distribution of the randomly 
sampled points in ilr-space. The uncertainty on each phase proportion is graphically depicted as a standard LIME 
output (Figure 2). We recognize that it might be impractical to report uncertainty as a figure, especially in papers 
with dozens of these calculations and bulk compositions with many phases. In addition, phase abundances are 
often used as inputs into subsequent calculations (e.g., Section 4) and propagating uncertainty would be impos-
sible from a figure. Therefore, we have developed multiple ways to numerically express uncertainty when using 
LIME, and we include two examples in Table 1.

The output of LIME gives three estimations for uncertainty on phase proportions. The simplest estimate of uncer-
tainty is the average and 1σ standard deviation of the 80,000 random samples computed in the LIME algorithm 
(i.e., “Mean ± s.d.” in Table 1). Because the standard deviation will only provide symmetric error, these values 
are an oversimplification and will be incorrect if the distribution is not normal, hindering any predictive power 
for this measure of error. For the cases where the probability density functions approach normal distributions, the 
LIME mean and standard deviation are similar to the previously reported uncertainties. However, the mean and 
standard deviation should not be used for cases that have significantly skewed distributions.

If using phase proportion data in subsequent calculations, the highest fidelity uncertainty propagation would use 
the 80,000 random sample values in a Monte Carlo method. One output of the LIME algorithm is a vector R that 
contains all 80,000 of the randomly sampled points in ilr-space converted back to common composition space. 
This vector can be used in subsequent calculations, such as total crystallinity during a series of fractional crystal-
lization experiments. This is the suggested method to achieve the full benefit of our methodology, and R is given 
as the second tab, “Modeled abundances,” in the output spreadsheet (see Appendix E). An important considera-
tion is that, because these samples are randomly generated, the resulting R values will not be exactly the same in 
each calculation. However, through numerous tests we have determined that the resulting phase proportions and 
uncertainties are reproducible to 0.1 wt.% when re-running the LIME algorithm for identical inputs.

For numerically reporting uncertainties from LIME, we recommend reporting the best fitting composition (peak) 
and boundaries for user-defined percentiles of the probability density functions. This method incorporates the 
asymmetric nature of the phase proportion curves and reports an upper and lower bound instead of a single 1σ 
value (Table 1). For the recommended percentile approach, the user defines what percentiles will be used (here, 
25th and 75th) to calculate the error (Appendix  E). Uncertainty can be recalculated for different percentiles 
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by either changing the input percentiles and re-running the code, or by calculating the distribution from the 
random values in output R. As an example, numerically reported asymmetric uncertainties are compared to the 
probability density function for experiment L007 from Dawson and Krawczynski (2022) in Figure 3. All three 
methods of reporting uncertainty are output upon each LIME calculation.

4.  Application to Petrologic Problems
4.1.  Case Study 1: Magma Crystallinity

The crystallinity of a magma affects all of its physical properties including but not limited to density, viscos-
ity, and volatile solubility. Therefore, studies of the dynamics and eruptibility of magma often rely on quan-
titative estimates for the total crystallinity of a magma (e.g., Blundy & Cashman, 2001; Blundy et al., 2008; 
Cashman, 1992; Cashman & Marsh, 1988; Cashman et al., 2017; Huber et al., 2012; Parmigiani et al., 2014). To 
demonstrate how LIME can be used to address questions pertaining to magma crystallinity, we have calculated 
the modal abundance of phases in a suite of amphibole-bearing experiments and have used the resulting propor-
tions and uncertainties to quantify the change in crystallinity as a function of temperature.

A drastic increase in crystallinity due to the onset of amphibole crystallization has been hypothesized as the cause 
for hydrous basaltic magmas becoming trapped near the base of the Earth's crust rather than ascending to the 
surface (e.g., Barclay & Carmichael, 2004). Numerous experimental studies have demonstrated that the propor-
tion of melt in an experiment exhibits an abrupt decrease (>30 wt.%) over a short cooling interval (20–50°C) 
once amphibole becomes a stable phase in the crystallizing assemblage (Barclay & Carmichael, 2004; Blatter 
et  al.,  2013; Foden & Green,  1992; Grove et  al.,  1997; Helz,  1973; Holloway & Burnham,  1972; Moore & 
Carmichael, 1998; Nandedkar et al., 2014; Sisson & Grove, 1993). This increase in amphibole abundance over a 
finite temperature interval, accompanied by a decrease in olivine and pyroxene abundance, reflects the peritectic 
reaction occurring between melt and clinopyroxene ± olivine to produce amphibole.

Variation in melt fraction (F) with change in temperature (T), or dF/dT, is a measure with which to quantify the 
change in crystallinity at the onset of amphibole crystallization. Whether or not there is a steep change in crys-
tallinity as a result of amphibole crystallization will be determined by factors such as melt composition, water 

Figure 3.  LIME output probability density function for computed phase abundance results on experiment L007 from Dawson 
and Krawczynski (2022). The results are also depicted as a box and whisker plot showing the best fitting phase abundances 
(peak center) and the 25th and 75th percentiles (Table 1).
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content, and pressure. A large dF/dT is expected for lower melt SiO2, lower H2O, and lower pressure (Barclay & 
Carmichael, 2004; Melekhova et al., 2013, 2015). Additionally, fractional crystallization sequences will have a 
smaller dF/dT because the amphibole-producing reactions between melt and earlier crystallized silicates will be 
suppressed (Nandedkar et al., 2014).

Using LIME, we have determined the dF/dT at the onset of amphibole crystallization for 19 amphibole-bearing 
experimental sequences (Figure  4). For each experiment, the proportions of glass and mineral phases were 
calculated from the reported bulk composition and phase compositions. The glass proportions calculated with 
LIME agree with the previously reported values and provide estimates for the uncertainty on the melt fraction 
for each experiment (Figure 4a). The dF/dT for each experimental sequence was determined from a weighted 
linear regression of the calculated glass proportions and the reported experimental temperatures. In many cases, 
the experimental sequence exhibits a non-linear trend in melt fraction with respect to temperature. For this 
reason, dF/dT was calculated at the “amphibole-in” interval, defined by the first amphibole-bearing experiment 
and the higher-temperature experiment that precedes it. When an experimental sequence contained multiple 
amphibole-bearing experiments, the dF/dT was also calculated for all experiments with amphibole in the crys-
tallizing assemblage. Comparing the dF/dT for the amphibole-in interval with that of the amphibole-bearing 
experiments, we have determined whether the change in dF/dT associated with the onset of amphibole crystal-

Figure 4.  (a) Comparison of reported and calculated glass proportions for the set of experiments (n = 64) included in the magma crystallinity case study (Section 4.1). 
Error bars represent the 2σ error on the glass proportion calculated using LIME. The dashed line is a 1:1 line that illustrates the overall agreement between the reported 
and calculated glass proportions. (b and c) Glass proportion plotted as a function of temperature for two experimental series selected from Grove et al. (1997) (b) and 
Blatter et al. (2013) (c). For each panel, the reported values are plotted as gray circles and the LIME calculated values are depicted as triangles with 2σ error bars. 
The solid line corresponds to the weighted linear regression through the LIME calculated values for the amphibole-in interval (red) and amphibole crystallization 
(black), with the dashed lines for each fit representing the 95% confidence interval on the regression. The calculated slope and uncertainty (2σ) for each regression are 
given in the corresponding color. For the dF/dT reported here, F denotes melt percent rather than melt fraction. (d) Calculated dF/dT for the amphibole-in interval of 
each experimental series included in the magma crystallinity case study plotted against the average NBO/T for the experimental glass compositions in a given series. 
The data symbol reflects the experimental study from which the dF/dT was calculated (as given in the legend). Black symbols represent those studies included in the 
compilation of Barclay and Carmichael (2004), whereas red symbols denote experiments that have been added to the compilation by this study for comparison. The 
error bars depict the 2σ uncertainty on the slope as calculated from a weighted linear regression through the LIME glass proportions and experiment temperatures.
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lization is significant given the estimated uncertainties on the glass proportions (Figures 4b and 4c). A signifi-
cant difference in slope was found for four of the 10 experimental sequences with multiple amphibole-bearing 
experiments. For example, the experimental series in Grove et al. (1997) and Blatter et al. (2013) have a change 
in slope (dF/dT) at the onset of amphibole crystallization that is significant within the estimated uncertainty 
(Figures 4b and 4c). For the two experiments at lower temperature (higher crystallinity) in Grove et al. (1997), 
the reported glass proportions are slightly different from those calculated by LIME, yet still within the estimated 
2σ uncertainty (Figure  4b). In the Blatter et  al.  (2013) series, the reported glass proportion increases when 
temperature decreases from 995 to 975°C. As glass proportion is generally expected to decrease as tempera-
ture decreases, the authors attributed this supposed increase to the uncertainty of the least-squares approach to 
calculating modal abundances. Here we show that the average glass proportion calculated by LIME decreases 
in this temperature interval as expected, and the originally reported value is within the estimated 2σ uncertainty 
(Figure 4c).

To explore compositional effects on dF/dT, we have plotted the calculated slopes and uncertainties against the 
ratio of non-bridging oxygens to tetrahedral cations (NBO/T) in the experimental melts, incorporating hydro-
gen as a network modifier into the calculations using the reported H2O values for the experiments (Figure 4d). 
Because the composition of the experimental melt differs on either side of the amphibole-in boundary, the NBO/T 
used for the plot in Figure 4d is the average NBO/T of the two melts. There is not a clear relationship between dF/
dT and NBO/T. For water-saturated experiments conducted at 200 MPa and originally presented as a compilation 
in Barclay and Carmichael  (2004), experimental melts with higher NBO/T generally have a higher dF/dT. In 
contrast, dF/dT decreases with an increase in NBO/T for the Blatter et al. (2013) series of experiments conducted 
on the same composition at different pressures. Though not conclusive, the data do support the theory that the 
onset of amphibole crystallization causes an increase in crystallinity as shown by the break in slope (dF/dT). 
However, the magnitude of this change is still uncertain and requires further study on the effects of water, melt 
composition, and pressure. Importantly, this case study illustrates the utility of LIME in addressing petrologic 
questions such as those pertaining to magma crystallinity.

4.2.  Case Study 2: Melting Reaction Coefficients

The mass proportion method for calculating melting reactions uses the phase abundances from experimental 
samples to define melting reaction coefficients (e.g., Kinzler & Grove, 1992; Walter, 1998; Walter et al., 1995). 
The resulting reaction coefficients are used in forward melting models, as well as to model trace element evolu-
tion particularly at low degrees of melting (e.g., Jennings & Holland, 2015; Longhi, 2002; Walter et al., 1995). 
Experimentally determined melting reactions describe the nature of melting (i.e., peritectic or eutectic) and iden-
tify pressure-dependent changes in melting behavior.

The uncertainty on melting reaction coefficients will be determined by the uncertainty on the calculated exper-
imental phase abundances used to define the reactions. For experiments containing olivine and orthopyroxene, 
calculating modal abundances by linear regression commonly yields a negative proportion for one of the silicate 
phases (Section 3). Using LIME to define the phase abundances for these reactions provides an estimate of uncer-
tainty and ensures that the phase proportions are positive values.

Garnet melting with a peritectic reaction of olivine + clinopyroxene + garnet = orthopyroxene +  liquid is a 
well-studied example of such a system (Grove et al., 2013, and references therein). We have used this reaction 
here as a case study for defining reaction coefficients with LIME and the electron microprobe data and starting 
material bulk composition reported in Walter  (1998) (Figure 5). We have recalculated the phase proportions 
and melting reactions for a suite of experiments and compare them to the original results of Walter  (1998). 
Walter (1998) investigated four different experimental pressures and reports a series of experiments at each pres-
sure. We have taken the two experiments that bracket the garnet-out transition at each experimental pressure, and 
then calculated the reaction coefficients following the mass proportion method (Walter et al., 1995). The phase 
abundance uncertainties were propagated through the reaction coefficient calculation in order to determine the 
uncertainty on each coefficient. In order to do this calculation, the raw electron microprobe data is necessary, 
however, the temperature interval between the two experiments will also influence the calculated coefficients. 
Walter  (1998) reports reaction coefficients adjusted to certain melting intervals, and thus, in order to make a 
direct comparison we have recalculated reaction coefficients from the phase modal abundances reported in Table 
8 of Walter (1998) (Figure 6).
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The phase proportions calculated with LIME broadly agree with those reported in Walter  (1998) (Figure 5). 
However, Walter  (1998) reported negative phase proportions for two experiments (one clinopyroxene, one 
garnet), whereas the proportions are non-negative when calculated using LIME. This difference is non-trivial in 
practice, as a reaction coefficient calculated from a negative phase abundance would result in that phase appear-
ing on the opposite side of the melting reaction. For instance, the coefficient for garnet in a garnet-out melting 
reaction should be negative because the phase is consumed. However, the previously reported negative phase 
proportion of garnet at 7 GPa results in a calculated reaction coefficient that is positive (Figure 6).

The calculated reaction coefficients reveal how the garnet melting reaction changes with pressure (Figure 6). At 
pressures below 7 GPa, the olivine melting reaction coefficient is near zero, indicating that olivine does not have 
a strong control on the reaction. However, at 7 GPa neither orthopyroxene nor clinopyroxene is present in the 
melting reaction, and thus olivine becomes the phase consumed in addition to garnet. At pressures below 6 GPa, 
clinopyroxene is consumed (negative reaction coefficient) and orthopyroxene is precipitated (positive reaction 
coefficient). At 6 GPa, orthopyroxene is consumed, and the coefficient calculated using the phase proportions 
from LIME indicates clinopyroxene is also consumed. In contrast, the clinopyroxene reaction coefficient calcu-
lated from the reported phase proportions in Walter (1998) is positive. The positive clinopyroxene reaction coef-
ficient does not indicate a change in melting behavior but is instead an artifact of the negative reported modal 
abundance for clinopyroxene.

5.  Conclusion
LIME is a practical log-ratio approach to mass-balance calculations in igneous and metamorphic systems that 
provides benefits over traditional multiple linear regression techniques. When compositions are mapped from the 

Figure 5.  Comparison of reported and calculated phase proportions for the experiments bracketing the garnet-out melting 
reactions investigated by Walter (1998) (Section 4.2). The error bars on the values calculated from LIME represent the 
15.9 and 84.1 percentiles, which, if the distribution is Gaussian, represents a 1σ error on the phase proportion (Section 3). 
Walter (1998) used Monte Carlo simulations to assess uncertainty in calculated phase proportions. The error bars on the 
reported values from Walter (1998) represent the reported 1σ standard variation. The dashed line is a 1:1 line that illustrates 
the overall agreement between the reported and calculated phase proportions.
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inverse log-ratio space back to composition space, the algorithm reports solutions with realistic uncertainty on 
end-member abundances. In using LIME to determine phase abundances, we:

•	 �Estimate phase abundances based on user-input compositional uncertainties.
•	 �Report accurate uncertainties, which are often asymmetric.
•	 �Propagate uncertainty in phase proportions through subsequent calculations of magma crystallinity and melt-

ing reaction coefficients.

We have demonstrated herein the ability of LIME to provide accurate confidence estimates for fundamental 
quantitative calculations in petrology, and this utility can be extended to a variety of petrologic applications. 
The LIME algorithm can also be used to reassess cases where previously reported data yielded negative 
phase abundances or did not include estimates of uncertainty. Looking forward, we hope that the LIME 
approach may be established as a new standard benchmark for petrologic studies that require phase abundance 
calculations.

Appendix A:  Computing the Isometric Log-Ratio Transform
The ilr-transform of a D-component composition vector returns its projection on an orthonormal basis of S D (see 
Egozcue et al. (2003) and Chave (2017) for extensive definitions and detailed computation). Such a basis can be 

Figure 6.  Garnet-out melting reaction coefficients calculated from the phase abundances in experiments from Walter (1998) (Section 4.2, Figure 5). Coefficients are 
plotted as a function of pressure and each phase has a separate plot (“opx” = orthopyroxene, “cpx” = clinopyroxene). The uncertainties on phase modal proportions 
have been propagated through the reaction coefficient calculation and the plotted error bars represent the 1σ error.
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found by performing the Gram-Schmidt procedure on a known-set of D − 1 independent compositions in S D. This 
calculation is made especially convenient by the use of Aitchison's centered log-ratio transform (clr), defined by

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)𝑖𝑖 = log

[

𝑥𝑥𝑖𝑖

𝑔𝑔(𝑥𝑥)

]

,� (A1)

where g(x) denotes the geometric mean of vector x, that is,

𝑔𝑔(𝑥𝑥) =

[

𝐷𝐷
∏

𝑖𝑖=1

𝑥𝑥𝑖𝑖

]

1

𝐷𝐷

.� (A2)

Note that the inverse-clr transform (clr −1) is easily computed by taking the exponential of each component of 
clr(x), and then renormalizing them so they add up to one.

Once the clr of composition x is known, we need to define a simple orthonormal (in the Euclidian sense) basis 
of a (D − 1) dimensional subspace of 𝐴𝐴 ℝ

𝐷𝐷 , termed 𝐴𝐴 𝔹𝔹 . A convenient one is the set of (D − 1) unit vectors 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ ℝ
𝐷𝐷 , 

i = 1, 2, …, D − 1 defined by

�� =
√

�
� + 1

⎡

⎢

⎢

⎢

⎢

⎣

1
�
. . . 1

�
⏟⏞⏟⏞⏟

i times

− 1 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎦

� (A3)

We then store these vectors as rows of a (D − 1) × D matrix U, and obtain the following relation between the 
ilr- and clr- transforms:

𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)𝑈𝑈𝑇𝑇� (A4)

and

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)𝑈𝑈� (A5)

Other transition matrices U can be obtained by choosing a different orthonormal basis of 𝐴𝐴 𝔹𝔹 . Ad-hoc choices (for 
detailed compositional inference studies) could be based on sequential binary partitions that make physical sense, 
but these are beyond the scope of this contribution.

Appendix B:  Eliminating Zeroes in Petrologic Data Sets
Because the logarithm of zero is undefined, values of zero cannot serve as inputs to the log-ratio transform, 
which is the critical part of the LIME algorithm. Compositional data in petrology can include values of “zero” 
for multiple reasons. For instance, when an element is not analyzed, such as Al2O3 in plagioclase, or when the 
concentration of an element is below the analytical detection limit and an author chose to represent this as a zero. 
To make data that include zeros suitable for LIME, we have developed a normative-type calculation that recom-
putes phase compositions in a way that eliminates zeroes.

We accomplished this using a balanced approach of amalgamation and replacement of zero values. Amalgama-
tion involves the addition of two or more oxides to make a parameter for fitting that is a combination of the two. 
This reduces the amount of available data to make a fit and can make the system less over-determined. However, 
this amalgamation often has the benefit of preventing the algorithm's iterations from getting stuck in local minima 
and over-emphasizing the importance of elements whose abundances are poorly constrained (i.e., near detection 
limit values).

There are times when amalgamation must be avoided in order to preserve data that are critical to the mass 
balance. These cases primarily include calculations where an element resides in a single phase at high 
abundance and is rare or absent in the other phases. A good example of this is when a phosphate, such as 
apatite, is present in an assemblage. In this case, phosphorus is a critical element in determining the abundance 
of the phosphate phase, so amalgamating the phosphorus data with another element will significantly increase 
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the uncertainty in the calculated phosphate abundance. In cases such as these, we have chosen not to remove 
zeroes by amalgamation, and instead replace zeroes with a trivial amount of an element (usually 0.01 wt%). In 
this way, the minor amount of the element in the phases with zero abundance does not affect the overall mass 
balance in an appreciable way, but the element can still be used in the LIME algorithm to mass balance the 
phase with high abundance. The cut-off values for whether zero data get amalgamated or replaced have been 
specifically defined with certain minerals in mind, and these minerals are noted within each amalgamation 
step description.

Below, we detail the normative calculation procedures implemented by LIME to help the user understand the data 
processing and the meaning of the amalgamated output:

To begin, LIME converts all input compositions to wt.% monocation oxides and converts all FeO and Fe2O3 
to FeOtotal. At this point all compositions are normalized to 100 wt.%. All bulk compositions of igneous and 
metamorphic rocks will have at least the following oxides: SiO2, CaO, MgO, AlO1.5. These oxides comprise the 
CMAS system, which is a basic building block in natural magmatic systems and commonly used in experimental 
systems (e.g., haplobasalt). Bulk compositions in LIME should always have at least these four oxides. Follow-
ing the assumption that a bulk composition contains CMAS, the subsequent steps provide a framework for the 
remaining relevant rock-forming elements.

Step 1. � LIME eliminates oxides with zero values in the bulk composition. If an oxide absent from the bulk 
has a reported abundance <5 wt.% in a phase, the oxide will be removed from the end-member phase 
composition and the composition will be renormalized to 100 wt.% without that particular oxide. If 
there is a phase with ≥5 wt.% of an oxide that has a zero value in the bulk composition, that phase will 
not be included in the mass-balance calculation (and will be assumed of trivial abundance). If there 
exists a phase  (e.g., chromite) for which an important oxide is missing from the input bulk composition 
(e.g., CrO1.5), this suggests that the input bulk composition is not an accurate representation of the bulk 
sample. In this case, we suggest modifying the bulk composition (i.e., include a non-zero estimate) so 
that the phase of interest is not excluded from the LIME calculation.

Step 2. � For any compositions which report HO0.5, F, Cl, or NiO as compositional components, LIME will 
remove the components from the composition (bulk or end-member phase) and renormalize the compo-
sition to 100 wt.%.

Step 3. � LIME assesses AlO1.5 and TiO2 for potential amalgamation with SiO2. For AlO1.5, if an end-member 
phase is found to contain >19.4 wt.% (albite), then AlO1.5 will not be amalgamated and 0.01 wt.% will 
be substituted for any zero values of AlO1.5. For TiO2, if there is an end-member phase with >8 wt.% 
(magnetite-ülvospinel solid solution), TiO2 will not be amalgamated and zero values will be replaced by 
0.01 wt.%. If the reported abundance of AlO1.5 and/or TiO2 in all end-member phases is less than these 
pre-defined values (including zero), the oxide(s) will be amalgamated with SiO2 for the bulk and phase 
compositions. For all amalgamation calculations, the command window will display the result for the 
user (i.e., Amalgamating Si and Al or substituting zero Ti by 0.01% Ti). Oxide 
labels will also be adjusted to reflect any amalgamation (i.e., “SiO2” becomes “SiO2-Al2O3-TiO2” if 
both Al and Ti are amalgamated).

Step 4. � LIME inspects CrO1.5 and MnO with a method similar to that described in Step 3. If there exists 
an end-member phase with >4 wt.% CrO1.5 or MnO (e.g., Cr- or Mn-bearing spinels), then a value 
of 0.01  wt.% will be substituted in all phases with zero reported CrO1.5 or MnO. Otherwise, if no 
end-member phase contains >4 wt.% CrO1.5 or MnO, the amount of these oxides will be set to zero and 
the compositions will be renormalized to 100 wt.%.

Step 5.  If there is no MgO reported for a phase, LIME will substitute a value of 0.01 wt.%.
Step 6. � If one end-member phase has no FeO reported, LIME will add the amount of FeO to MgO in all phases, 

thereby amalgamating FeO and MgO.
Step 7.  If there is no CaO reported for an end-member phase, LIME will substitute a value of 0.01 wt.%.
Step 8. � If there is no NaO0.5 reported for an end-member phase, LIME will amalgamate NaO0.5 with CaO in 

all phases.
Step 9. � If an end-member phase contains >6 wt.% KO0.5, LIME will substitute a value of 0.01 wt.% KO0.5 for 

any phase with zero KO0.5. Otherwise, KO0.5 will be set to zero in all phases and the compositions will 
be renormalized.
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Step 10. � If there is a phase with >42.2 wt.% PO2.5 (fluorapatite), LIME will replace any zero reported PO2.5 in 
an end-member phase with 0.01 wt.%. If there is no phase with >42.2 wt.% PO2.5, LIME will remove 
PO2.5 from all phases and renormalize the compositions.

Appendix C:  Assembling Covariance Matrices for Compositional Uncertainty
All the procedures described below assume zeroes have been eliminated from the data set following the method 
of Appendix B. At this stage, the data set should contain P mineral phases and C possibly amalgamated compo-
nents (oxides).

C1.  Covariance Matrix for the Bulk Composition

Uncertainties on bulk compositions are rarely reported in the experimental literature. When reported, the bulk 
composition uncertainties can be directly incorporated into LIME (Appendix E). When bulk uncertainty is not 
available, we assume that each component of the bulk composition vector is known within the same relative 
uncertainty (e.g., 1%, user-specified input parameter on Line 10 of lime_input.m). We then use the bulk 
uncertainty (either reported or estimated) to draw 1,000 random bulk compositions, which we transform into 
their ilr counterparts. The variance of each component of the ilr-transformed vectors is then used to populate the 
diagonal of matrix CD, which is of size (C − 1) × (C − 1).

C2.  Covariance Matrix for End-Member Compositions

The composition of end-member phases is typically determined from several geochemical analyses conducted 
on multiple grains or at various locations within a single grain. We take advantage of this redundancy and 
compute the ilr-transform of each individual measurement (a C-element composition vector). The resulting list of 
ilr-transformed vectors is used to compute a (C − 1) × (C − 1) covariance matrix 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝐸𝐸
 , which includes off-diagonal 

components describing possible covariation among certain oxides.

If only one compositional measurement exists for an end-member phase, we recommend generating a small 
number (∼10) of synthetic measurements assuming a known relative uncertainty (see draw_compos.m in 
Appendix E), and use these to determine 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝐸𝐸
 , as is systematically done for bulk composition uncertainty. This 

produces a diagonal matrix 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝐸𝐸
 , which does not account for possible covariations between oxide composi-

tions within each end-member phase (e.g., SiO2 and Al2O3 in plagioclase). Once a covariance matrix has been 
determined for each end-member composition, each 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

𝐸𝐸
 is assembled into a block-diagonal matrix CE of size 

P(C − 1) × P(C − 1).

C3.  Complete Covariance Matrix for End-Member Compositions and Phase Proportions

Our algorithm iterates on a model vector m that concatenates the ilr of the phase proportions and that of the 
end-member compositions. Its associated (prior) covariance matrix CPRIOR must therefore reflect this structure. 
We use CE as the upper-left block of CPRIOR. The lower-right block is simply a (P − 1) × (P − 1) diagonal matrix 
with constant coefficients set equal to 1 (or a large number).

Finally, if the end-member data is such that CE is poorly conditioned (conditioning number below 10 −15), we 
reduce CPRIOR to its diagonal to ensure its inverse is easily computed. When this occurs, the following text will 
display in the command window: WARNING - end-member covariance matrix badly condi-
tioned - was reduced to its diagonal.

Appendix D:  Synthetic Tests
Inverting synthetic data sets is a straightforward way to ensure that LIME yields accurate results across a wide 
range of compositions. Synthetic tests also assess the limits of the LIME approach and its handling of uncer-
tainties. To create synthetic data, we calculated mixtures of the glass, olivine, and plagioclase compositions 
reported by Draper and Johnston (1992). We generated 900 synthetic bulk compositions (Equation 1), each corre-
sponding to a three-end-member mixture uniformly sampled in the corresponding (2-D) ilr-transformed space. 
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To incorporate compositional variation for each end-member (glass, olivine, and plagioclase), we generated 15 
end-member compositions drawn from a normal distribution centered on the reported composition and a defined 
standard deviation of either 0.1%, 1%, or 5% relative to the mean for each oxide. These synthetic compositions 
are meant to represent individual analyses of a given mineral phase, which will inherently have uncertainty and 
spatial variability. This table of end-member compositions, along with the bulk composition, were then used as 
inputs for the LIME algorithm.

For each of the 900 synthetic experiments, we compared the LIME-estimated mineral proportions to the true 
proportion used when generating the synthetic mixture (Figure D1). Uncertainty or variability in the end-member 
composition is the strongest control on LIME's performance. End-member compositions are precisely known 
(0.1% uncertainty: Figures D1a–D1c), LIME recovers the true phase proportions almost perfectly, producing 
results with small error bars. When the oxide composition of individual end-members varies within 5%, LIME 
reflects this variability by attributing large posterior uncertainties to the phase proportions (large error bars in 
Figures D1g–D1i). Large uncertainties may also skew the estimate in non-straightforward ways that are specific 
to the chemistry of each mineral phase. As an example, in this synthetic test large end-member uncertainties 
make LIME underestimate large proportions of glass (Figure  D1g), overestimate low proportions of plagi-
oclase (Figure D1i), and leave olivine relatively unaffected (Figure D1h). For end-member uncertainties that 

Figure D1.  Recovered versus true mineral proportions from 900 synthetic experiments constructed as mixtures of glass, 
olivine and plagioclase. 1:1 line is plotted in red. Error bars represent 25th and 75th percentile of LIME estimates. Each row 
corresponds to a different assumption on the (relative) uncertainty of the compositions of glass, olivine, and plagioclase: 
(a–c) 0.1%; (d–f) 1%; (g–i) 5%.
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are representative of typical experimental data (1%: Figures D1d–D1f), LIME recovers known phase mixtures 
with posterior uncertainties (error bar width) on the order of percents. From these synthetic tests, we conclude 
that LIME recovers balanced mixtures more accurately than mixtures where one or two end-members are in very 
small proportions (e.g., see the increased deviation from the red line and width of error bars close to 0 and 1 in 
Figures D1d–D1f).

Appendix E:  User Guide
Log-ratio Inversion of Mixed End-members (LIME) is a MATLAB (The MathWorks Inc, 2022) program for 
calculating the phase proportions in a rock given a bulk composition and the composition of each phase. The 
mathematical details, outputs, and example applications are fully described in the main text. Here, instructions 
are presented for performing calculations within LIME.

E1.  Getting Started

The plotting commands and statistical functions in the source code for LIME require that MATLAB version 
2019a or later, including the “Statistics and Machine Learning Toolbox,” be installed on your machine in order to 
perform a LIME calculation. To begin using LIME, download LIME.zip from the GitHub repository (github.
com/kprissel/LIME). Add the provided files to your MATLAB path.

Contents of LIME.zip:

lime_input.m: This is the front-end, user-interfacing file for computing with LIME. User inputs and prefer-
ences are given, and a calculation can be completed from start to finish by running this script.

Inputs (folder): Example input files for compositional data including.xlsx and.txt formats. Use these files 
as templates for entering your own data into LIME.

main_script.m: Serves as the main engine for the code by calling upon subscripts. Called in lime_input.m 
for each input composition.

preplime.m: Function that prepares user-input data for the formatting expected in subsequent scripts. This 
allows the user to input the compositional data with any oxide order and include phase labels that will be used 
in LIME figures.

clr.m: Function that computes the centered log-ratio transform from the D-dimensional S D simplex to 𝐴𝐴 ℝ
𝐷𝐷 

(Aitchison, 1982).

clrinv.m: Function that computes the inverse centered log-ratio transform from 𝐴𝐴 ℝ
𝐷𝐷 to the D-dimensional S D 

simplex (Aitchison, 1982).

draw_compos.m: Function that generates a set of random compositions with a specified mean and standard 
deviation.

forwardilr.m: Function that computes the forward composition problem in ilr formulation.

ilr.m: Function that computes the isometric log-ratio transform from the D-dimensional SD simplex to 𝐴𝐴 ℝ
𝐷𝐷−1 

(Egozcue et al., 2003).

ilrinv.m: Function that computers the inverse-isometric log-ratio transform from 𝐴𝐴 ℝ
𝐷𝐷−1 to the D-dimensional 

S D simplex (Egozcue et al., 2003).

lime.m: Function that computes the log-ratio-inversion of mixed end-members.

OKnorm.m: Function that amalgamates oxides in a pre-defined way, as described in the manuscript text 
(Section 2.2).

E2.  Data Inputs Required for LIME

Data required for LIME are the average bulk composition and the compositions of each phase, all reported as 
weight percent oxides (SiO2, TiO2, Al2O3, Fe2O3, Cr2O3, FeO, MnO, MgO, NiO, CaO, Na2O, K2O, P2O5, H2O). 
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Uncertainty on the bulk composition can be input as generalized percent or using specified values for each oxide. 
The uncertainty on each phase composition will be determined based on the standard deviation of all the compo-
sitions input for a given phase. Because of this, you must give at least two compositional analyses for each phase. 
For data that has been published as averages and standard deviations of n points, you can reproduce a synthetic 
data set with those statistics using draw_compos.m. To do this, run the function draw_compos(N, mean, 
std), where N is the number of analyses to be generated, mean is the average of those analyses, and std is the 
standard deviation of the normal distribution that will be used to randomly generate compositions. Note that for 
the compositional inputs, FeO and Fe2O3 get amalgamated to total FeO (FeOT), so the phase abundance calcu-
lation will not directly include variations in Fe oxidation state. Though NiO and H2O are accepted as inputs, the 
current version of LIME zeroes these oxides out prior to performing a calculation. Data should be appropriately 
quality checked and filtered before being input to LIME. If there is a compositional input with a total less than 
95 wt.%, a warning will be displayed in the command window.

Data are input as either a spreadsheet or text file. There are multiple input file examples included in the Inputs 
folder. We suggest using TEMPLATE.xlsx to get started with your own data. The format of the input files 
has columns for the phase label and oxides. In this version of LIME, the phase label must be the first column 
but the oxides can be given in any order. After the row of column labels, each subsequent row corresponds to a 
composition.

The bulk composition is listed first in TEMPLATE.xlsx, and in this version of LIME the bulk composition 
must be given the “bulk” phase label. If the uncertainty (wt.%) is known for each oxide in “bulk,” include these 
values in a subsequent row labeled “U.” If no “U” labeled row is given for uncertainty on the bulk composition, 
the pct_err_bulk given in lime_input.m will be used instead (1% uncertainty default).

The remaining rows are compositional analyses for the phases, with the phase label corresponding to each row 
given in the first column (e.g., “phase1”). During a routine, the subfile preplime.m will find the “bulk” and 
“U” entries, rearrange the oxide columns to be in the expected order for the rest of the calculations, and group the 
rows of analyses according to the phase labels. Be careful to use the exact same label (matching characters and 
title case) for each row that is meant to represent the same phase. For example, if phases are labeled “clinopyrox-
ene” and one of the clinopyroxene rows is given as “cpx,” the code will treat these are separate phases. Another 
common issue when users first start with LIME is the oxide column labels. Be sure to use the oxide labels given in 
the example input files (e.g., “SiO2”); any additional spaces or characters in the oxide column names will prevent 
the code from finding the expected oxide (e.g., “wt% SiO2” or “SiO2”).

E3.  Running the Code

Aside from the input files, LIME users will only need to interface with lime_input.m to successfully perform 
a calculation. Once the input file is prepared, open lime_input.m in MATLAB. Give the file path for the input 
file in the filename variable at Line 7. Multiple file names can be given, with each file name string separated 
by a comma. When running multiple input files at once, we recommend saving the outputs (set ouput_yn = 1 
on Line 11), because variable names will be overwritten with each code iteration.

User-Specified Parameters, Lines 9–12: Here you can define a percent uncertainty in the bulk composition (Line 
10), choose whether to save the result outputs as a separate file (Line 11), and choose whether to display the result 
convergence plot to assess the performance of the code (Line 12).

Additional Parameters, Lines 19–28: These parameters relate to the ilr conversion and calculations in ilr-space. 
They also define how many synthetic compositions to generate for the bulk composition (Line 23) and how many 
samples to generate for the posterior distribution (Line 28). The specific details of these calculations are given 
in Section 2.3.

The variable NEWT.error_measure defines how the reported error will be calculated. When this variable is 
set to “1,” the reported errors on the posterior distribution will be the 1-sigma equivalent of a Gaussian distribu-
tion (15.9 and 84.1 percentiles). If the variable is set to “2,” the errors will be the 2-sigma error equivalent for a 
Gaussian distribution (2.3 and 97.7 percentiles). Because not all posterior distributions have a Gaussian distri-
bution (see asymmetry in Section 3), you can also define a vector of two percentile values to be used in the error 
calculation instead. If a vector of two values is specified, those percentiles will be used instead of the default 15.9 
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and 84.1. The provided lime_input.m file sets the reported errors to be the 25th and 75th percentiles of the 
posterior distribution.

E4.  Results and Outputs

Results are reported in the command window (Figure E1) and as probability density functions in MATLAB 
Figure 1. If plot_cvg = 1 on Line 12 of lime_input.m, then MATLAB Figure 2 will show the convergence 
plot of phase proportions at each iteration of the calculation.

The command window will first display text that details the modifications made by OKnorm.m to the compo-
sitions during the calculation (e.g., zero-ing oxides missing from the bulk composition 
or oxide amalgamation). Then, the results are given for each phase. The input phase strings are listed as column 
headers in the order corresponding to the order of the reported result values. The first set of phase proportions 
given in the command window are the mean and standard deviation (wt.%) for each phase. The second set of 
phase proportions corresponds to the best fitting phase abundance (wt.%, peak center) and the wt.% units to 
each user-specified percentile of the PDFs shown in Figure 1. We recommend reporting the second set of values, 
particularly if there is asymmetry in your results, and rounding the results to significant figures appropriate for 
your calculated uncertainties (see Section 3.2). The last section of the command window result gives the recalcu-
lated and input bulk compositions, reported in the oxide components as modified by OKnorm.m.

If output_yn = 1 in Line 11 of lime_input.m, a folder will be created when you run the code. It will be 
titled the name of your input file plus “_LIME” and contain an Excel file (_LIME_results.xlsx) with a tab for the 
command window output (“Main Output”) as well as the 80,000 modeled abundances used to generate the results 
(“Modeled abundances”). This folder will also contain a PDF of Figure 1 (_LIME_figure.pdf) and a duplicate 
file of the input compositions.

Figure E1.  Screenshot of command window after successful run of lime_input.m with provided input file J047.xlsx.
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E5.  Calculating Experimental Iron Loss

Reaction between Fe-rich samples and metal sample containers is a well-known occurrence in experimental 
petrology (Borisov & Jones, 1999; Grove, 1982). During an experiment, Fe can diffuse out of the experimental 
sample and into the metal container. The amount of iron “lost” to the capsule will depend on the metal alloy 
composition of the container as well as the oxygen fugacity, with increased partitioning of Fe into metal at lower 
oxygen fugacities.

We have developed a way to estimate Fe loss using LIME. To do this, we perform a phase abundance calculation 
excluding Fe from the bulk and phase compositions. Using the phase proportions from the Fe-free calculation 
and the average phase compositions (including Fe), we then recalculate the bulk Fe composition. Comparing the 
recalculated bulk Fe content to the initial bulk Fe content determines the percent of Fe that was lost from the bulk 
sample during the experiment. When performing this calculation, the Fe-bearing and Fe-free phase abundances 
should be compared to assess how influential Fe content is on the calculated phase abundances. For example, an 
Fe-free calculation will not be reliable if an experiment contains a phase that is primarily iron (e.g., magnetite or 
Fe metal), because that phase will no longer be included in the phase abundance calculation. We have used this 
method previously to estimate Fe loss for olivine- and glass-bearing experiments (Prissel et al., 2018) as well as 
ilmenite- and glass-bearing experiments (Prissel, 2020). In the case of ilmenite, zeroing out Fe makes the ilmenite 
proportion predominantly dependent on the Ti compositions of the ilmenite, glass, and bulk composition.

In Prissel et al. (2018), we analyzed the Fe content of Re metal sample containers using both electron microprobe 
and inductively coupled plasma mass spectrometry. The LIME-estimated amount of Fe lost from the experimen-
tal sample was greater than the amount of Fe in found in the Re sample container. This discrepancy indicated 
another source of Fe loss, evaporation, which was also supported by Fe isotopic analysis of the samples and metal 
containers.

To calculate Fe loss with LIME, begin by inputting your data as you would for a normal calculation. To zero 
out Fe, go to Line 5 of the main_script.m file and add “0” as a third input in the “preplime” function: 
0 = Fe-free, 1 = Fe-bearing (This optional input is used for the loop at Line 48–54 in preplime.m.) With “0” 
as the third input in the preplime function (i.e., preplime(filename{f},pct_err_bulk,0)), running 
lime_input.m will conduct an Fe-free phase abundance calculation. Then, the resulting proportions from the 
Fe-free calculation can be used to determine bulk Fe loss as described above.

Data Availability Statement
The initial version of the source code used for this manuscript, as well as the example input files, have been 
provided with DOI on Zenodo (Prissel et al., 2023) and future versions of the code will be maintained on GitHub 
(https://github.com/kprissel/LIME).
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