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Abstract

The combinatorial interpretation of the persistence diagram as a Mobius inversion
was recently shown to be functorial. We employ this discovery to recast the Persistent
Homology Transform of a geometric complex as a representation of a cellulation on S™
to the category of combinatorial persistence diagrams. Detailed examples are provided.
We hope this recasting of the PH transform will allow for the adoption of existing
methods from algebraic and topological combinatorics to the study of shapes.

1 Introduction

Persistent homology (PH) captures the “shape” of a topological space often arising from
data. It takes as input a filtration of a space, usually paramterized by the reals, and outputs
a multiset of points in the extended plane known as the persistence diagram. Each point in
the persistence diagram represents a homological “feature” of the topological space and its
coordinates provide the interval of parameters for which that feature is present. Individually,
a persistence diagram is a powerful data analysis tool; however, a single descriptor is often
not rich enough to capture the intricacies of large, complex data. For example, the family of
filtrations giving rise to the same persistence diagram can be arbitrarily large. One approach
for capturing more information about a space is to consider not just one filtration of the space
but a family of filtrations of the space and therefore a family of persistence diagrams.

One such family of descriptors and the focus of this paper is the persistent homology
transform, introduced initially in [25], which takes as input a space embedded in R¥*! and
represents it—or transforms it—into a family of persistence diagrams parameterized by the
set of all directions S. The idea behind this transform goes back the early 2000s [1] and
was recently generalized to weighted simplicial complexes in [17]. The PH transform is a
complete representation of the original shape. That is, no two different shapes have the same
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PH transform. Although SV comprises an uncountable set of directions, if K is a nicely
embedded geometric simplicial complex, then it has a finite representation [2, 9, 13, 22].
The PH transform and other topological transforms have been applied using a sample of
directions [3, 8, 16, 17, 20, 25], yet there is still a substantial gap between the theory and
this practice [12].

Our Contributions Consider a space X with an embedding ¢ : X — R¥*!. The PH
transform of ¢ is the assignment to every direction p € SV the sublevel set persistence
diagram of the height function ¢, : X — R in that direction. As mentioned above, the
persistence diagram is the assignment to every interval of R a natural number often called
its multiplicity or, in our parlance, a charge. Unfortunately, there is a major downside to
this approach. In practice, ¢ is finitely generated; for example, ¢ is a PL embedding of a
finite simplicial complex. Its PH transform consists of an uncountable set of distinct persis-
tence diagrams; however, when ignoring exact birth/death coordinates and keeping track of
only the relations between birth/death coordinates, we observe that there are distinct places
where combinatorial changes in the diagrams happen. We call two persistence diagrams
combinatorially equivalent when the diagrams are related by a homeomorphism from R to
itself. In this setting, we expect that most directions 1 € SV have an open neighbor-
hood U C S¥ such that the persistence diagrams associated to any two directions v, " € U
are combinatorially equivalent.

In that light, we take a combinatorial approach to the PH transform by adopting the
combinatorial framework of persistent homology developed by McClearly and Patel [21].
In this setting, filtrations are indexed by an abstract totally ordered, finite poset P as
opposed to the real numbers. The combinatorial persistence diagram is then the assignment
to every non-empty (order-theoretic) interval [a,b] C P a charge. Given a PL embedding,
we show that there is a cellulation of S™ such that the combinatorial persistence diagrams
associated to any two directions on a common cell are exactly the same. This cellular
decomposition is the same decomposition observed in [2, 9, 14] for the PH transform and
in [7] for vineyards. Further, we harness functoriality of McClearly and Patel to express the
PH transform as a representation of the cellulation on S™ to the category of combinatorial
persistence diagrams and charge-preserving morphisms. The cellulation is finite and every
combinatorial persistence diagram is finite making our combinatorial PH transform a finite
object. We hope that this recasting of the PH transform will allow for the adoption of
existing methods from algebraic and topological combinatorics to the study of shapes.

2 Preliminiaries

We use this section to establish background and notation. Section 2.1 introduces geometric
complexes and their height functions. Section 2.2 introduces the combinatorial persistent
homology pipeline of McClearly and Patel. See also Appendix A for a discussion of our
notation on posets and categories. As mentioned in Section 1, the combinatorial persistence
diagram is indexed by an abstract totally ordered, finite poset as opposed to the traditional



persistence diagram that is indexed by the real numbers. Since we are departing from
traditional persistent homology and focusing solely on its combinatorial version, we drop the
word “combinatorial” from our discussion of combinatorial persistent homology.

2.1 Embeddings of Simplicial Complexes

We start with an introduction to our main object of study: geometric complexes and their
height functions. We adopt notation similar to [15, Section 2.1].

Fix a simplicial complex K, let K® C K be its vertices, and denote by |K| its underlying
space. For the purposes of this paper, we assume all simplicial complexes are finite. Given a
function gg : K9 — RY*! defined on its vertices, we extend it to a PL function on the entire

underlying space [K| as follows. For a simplex o = [vg, -, vg], express every point z € |o|
by its barycentric coordinates (rg, 1, -+ ,2;). Then, the linear extension of b to o] is the
map that sends z to the point zod(vg) + a:lqﬁ(vl) -+ 2£6(vy,). In this way, the function ¢

extends to a PL function ¢ : |K| — RY*! on the entire complex. If such an extension is
injective, we call ¢ a geometric complez.

We are interested in examining the geometric complex ¢ : | K| — RY*! from all directions.
Denote by SV := {u € RY¥*! : ||u|| = 1} the sphere of all directions in RN*!. The height
function on ¢ along a direction u € S" is the continuous function ¢,, : |K| — R¥*! defined as
the dot product ¢, (x) := ¢(z) - p. For L C |K|, we let ¢,,(L) := sup,c;, ¢.(x). In particular,
if L is a simplex in K, then ¢, (L) is the maximum height of the vertices that define L.

2.2 Persistent Homology Pipeline

We now give a brief introduction to the persistent homology pipeline of McCleary and
Patel [21] restricted to the special case of combinatorial one-parameter filtrations and to
a fixed simplicial complex K. This pipeline consists of three categories Fil(K), Mon(n),
and Fnc(n) and two functors ZB, and MI:

PH..:=MloZB.

/\

Fil(K) B Mon(n) —™— Fnc.

We call ZB, the birth-death functor, Ml the Mdbius inversion functor, and the composi-
tion PH, the persistent homology functor.

Filtrations Let AK be the poset consisting of subcomplexes of K ordered by inclusion.
Given a finite, totally ordered poset P, a P-filtration of K is a functor F : P — AK
such that F/(T) = K. Let P and @ be finite, totally ordered posets. A filtration-preserving
morphism is a triple (F, G, «) where F' : P — AK and G : Q — AK are P- and Q-filtrations
of K, respectively, and « : P — @ is a bounded monotone function satisfying the following
axiom. For all a € Q, G(a) = F(a*), where a* := maxa~![L,a], i.e., the maximal element
in P that maps to a:



If (F,G, ) and (G, H, B) are filtration-preserving morphisms, then the composition (F, H, o
a) is a filtration-preserving morphism:

P—"=Q > R
N lew
AK.

Definition 2.1: Fix a simplicial complex K. Let Fil(K) be the category whose objects
are P-filtrations of K, over all finite, totally ordered posets P, and whose morphisms are
filtration-preserving morphisms. We call Fil(K') the category of filtrations of K.

Monotone Integral Functions Assume the usual total ordering on the integer Z. Let P
and @ be two finite, totally ordered posets and let f : P — Z and ¢ : Q — Z be two mono-
tone integral functions on their poset of intervals; see Appendix A. A monotone-preserving
morphism is a triple (f,g,a), where f : P — Z and g : Q — 7 are monotone integral
functions and @ : P — @ is a bounded monotone function induced by a bounded monotone
function a : P — @Q satisfying the following axiom. For all I € Q, g(I) = f(maxa~'[L,I]).
In other words, for every interval I = [a,b], g(I) = f([a*,b*]) where a* = max f~'[L,d]

and b* = max f~![L,d].
P 2 y Q
!
g
4.

If (f, g, @) and (g, h, B) are two monotone-preserving morphisms, then the composition (f, h, 3o
@) is a monotone-preserving morphism:

P—=Q » R
NEA

Definition 2.2: Let Mon be the category whose objects are monotone integral functions,
over all finite, totally ordered posets, and whose morphisms are monotone-preserving mor-
phisms. We call Mon the category of monotone functions.

Integral Functions Let P and @) be finite, totally ordered posets and let o : P> 7Z
and 7 : @ — Z be two integral functions on their poset of intervals. Let o : P — @) be a
bounded poset function such that for all I € @,

gd)y= > f(J). (1)

Jea~(I)



Here, if a=1(I) is empty, then we interpret the sum as 0. We call the triple (o,7,a@) a
charge-preserving morphism, where @ : P — (@ is the bounded poset function induced
by a. If (¢, 7, @) and (7, v, B) are charge-preserving morphisms, then (o, v, 3oa) is a charge-
preserving morphism:

P20 57
Z.
Definition 2.3: Let Fnc be the category whose objects are integral functions over finite,

totally ordered posets, and whose morphisms are charge-preserving morphisms. We call Fnc
the category of integral functions.

Remark 2.4: An important observation is that Fnc does not have arbitrary colimits. For
example, the following two integral functions do not have a colimit. Let P = @ be totally-
ordered posets on four elements; in particular, we write P = @ = {1 < 2 < 3 < 4}.
Let 0: P — 7 be the function

1,ifi=1,7=3
o([i,j) =<1, ifi=2,j=4
0, otherwise,

and let 7: Q — Z be the function

1, ifi=1,j=4
r([i,j) =<1, ifi=2j=3

0, otherwise.

If a colimit existed, then it would come from gluing elements in P and gluing elements in ()
until there is a common integral function. This leaves two contenders for the colimit:

1. The integral function y : Z — Z on the poset Z = {a < b < ¢} that maps [a,b] > 1,
la, ] — 1, and everything else to zero. This is obtained by mapping 1 and 2 in both P
and ) to a, 3in P and ) to b, and 4 in P and @ to c.

2. The integral function v : Z — Z on the poset Z = {a < b < ¢} that maps [a, ] ~ 1,
b, c] — 1, and everything else to zero. This is obtained by mapping 1 in both P and @
to a, 2in P and () to b, and 3 and 4 in P and @ to c.

We note that neither of these integral functions can be obtained from the other by gluing
elements. This means that arbitrary colimits do not exist in Fnc.

Birth-Death Functor Fix a field k. The d-th birth-death functor ZB, assigns to a fil-
tration F' : P — AK the monotone integral function ZB4(F') : P — Z defined as follows.



For every interval [a,b] € P, where b # T, ZBg4[a, b] is the dimension of the k-vector space
of d-cycles in the simplicial complex F'(a) that are d-boundaries in the larger simplicial com-
plex F(b). For an interval [a, T|, ZBg[a, T] is simply the dimension of the vector space of d-
cycles in F'(a). The birth-death functor takes a filtration-preserving morphism (F, G, «) to
the monotone-preserving morphism (ZBi(F ), ZB4(G), 07), which turns out to be a monotone-
preserving morphism.

Mobius Inversion Functor Given a monotone integral function f : P — Z, there is a
unique integral function o : P — 7Z, called the Mobius inversion of f, such that for all J € P,

f(= Y o) (2)

IeP:I<J

The functor MI assigns to every monotone-integral function its Mobius inversion. For ev-
ery monotone-preserving morphism (f, g, @) in Mon, (MI fyMlg, @) is a charge-preserving
morphism in Fnc.

Definition 2.5: We call the composition PH, := Ml o ZB, : Fil(K) — Fnc the persistent
homology functor. It assigns to every filtration P in Fil(K) its persistence diagram PH, (F)
and to every filtration-preserving morphism (F, G, «) in Fil(K) the charge-preserving mor-

phism (PH,(F),PH.(G), @).

An obvious but important observation is the following proposition, which follows imme-
diately from the definition of the birth-death function and Equation (2).

Proposition 2.6: Let F' be a filtration in Fil(K). Then, the total charge of its d-th persis-
tence diagram, X, .5PHq(F)(1), is the dimension of the d-th cycle space of K.

3 Combinatorial Transform for Geometric Complexes

Fix a geometric embedding ¢ : |K| — R¥*! of a simplicial complex K.

3.1 Constructing the Cellulation

Let E := {(v,?") : v,v" € K"} be the set of all unordered, distinct pairs of vertices of K.
For each pair of vertices e = (v,v') € E, there is a unique plane in R¥*! perpendicular
to the vector ¢(v) — ¢(v') through the origin; we denote that plane H.. The intersection
of H, with the N-sphere, S, := H, NS, is a great (N — 1)-sphere of S". By the Jordan-
Brouwer separation theorem, SV \ S, has two connected components (often called sides or
hemispheres) denoted arbitrarily by S and S ; see [5, 15, 19]. Let A := {S, : e € E} be
the multiset of all such great N-spheres. We call A along with an assignment of a sign to
each side of S, over all e € E, a signed arrangement of spheres. The signed arrangement A
is essential if the following condition holds: (),. 4 Se = 0.



The signed arrangement 4 induces a cell complex on SV where every cell is described by
whether it lies in S, S,, or S over every S, € A. To define this cell complex, let {—, 0, +}Z
denote the set of all functions from E to {—,0,+}. Consider the following partial order
on {—,0,+}: 0 < —and 0 < +. This partial order extends to a partial order on the set of
functions {—,0,+}¥, where f < g if f(e) < g(e), for all e € E. Let ® : S¥ — {—,0,+}F
be the function that assigns to every direction p € S the following vector indexed by
elements e € £

— ifpesS;
Q(p)e =40 ifpues, (3)
+ ifpe St

Consider the subposet P(A) := {®(u) : p € SV} C {—,0,+}¥. The following proposition is
a rewording of [4, Proposition 5.1.5].

Proposition 3.1: Let ¢ : |K| — RY*! be geometric embedding and let A be an induced
signed arrangement of spheres on SV. If A is essential, then the sets ®~1(f) C SV, over

all f € P(A), are the cells of a cell complex (SV,C). Furthermore, for every pair of such
cells Cy := ®71(f) and Cy := & !(g) in C, C; < Cy if and only if f < g in P(A).

The signed arrangement A associated to the piecewise linear embedding ¢ is essential if
and only if (,c 4 Se # 0 if and only if there is not a direction y € S™ such that the height
function ¢, is constant on all of K. For example, if ¢ embedds K into a linear N-subspace
of RV*! then A is not essential and we cannot apply Proposition 3.1. However, we can easily
fix this problem by adding one more (N — 1)-great sphere to the arrangement that is different
from any of the (N — 1)-great spheres already in A. In general, for dim (ﬂeeA Se) =k, we
have to add k + 1 great spheres to the arrangement A.

3.2 Filtrations over Cellulation

Fix a geometric embedding ¢ : |K| — RY and let (SV,C) be the induced cellulation on
the N-sphere as constructed above. Recall C is a poset where C < (5 if C is a face of (.
For every direction 1 € S”, the height function ¢, gives rise to an object of Fil(K). By
construction of the cellulation, any two directions p; and ug give rise to the same object
in Fil(K). Further, for every face relation C; < Cs, there is a natural filtration-preserving
morphism from the filtration associated to Cs to the filtration associated to C;. We now
formalize this data as a functor F': C — Fil(K).

We start by defining F' on the cells of C. Choose a cell C' € C and a direction u € C.
Two vertices v,v" € K are related, denoted v ~, v/, if ¢,(v) = ¢,(v'). The relation ~, is
an equivalence relation. Note that v ~, v" if and only if ;1 € S, ). Denote by P, the set of
equivalence classes K/ ~, union the singleton {T}. For two equivalence classes [v],, [v'],
in P, let [v], <[], if ¢,(v) < ¢,(v"). Make T the top element. Thus P, is a finite, totally
ordered lattice that is independent of the choice of p € C. Note that [v], # [v'], if and
only if p € S(J;’v,) or pp € S, - We now define the filtration F(C) := F, : P, — Fil. For

(U’UI



every [v],, let
Fu([v]u) = {0 €K :¢yuo) < Cbu(v)} (4)

Let F,(T) be the entire simplicial complex K. Note that F}([v],) is a subcomplex of K
and for [v], < [v'],, F,([v].) is a subcomplex of F,([v'],). In other words, F), is an object
of Fil(K).

We now define F' on the face relations C'; < C5 of C. Choose directions v € C and p € Cs.
There is a canonical bounded lattice function a : P, — P, that turns out to be a filtration-
preserving morphism (F(C»), F(C1),a) as follows. Since ®(v) < ®(), [v], € [v], for
every vertex v € K% Let a([v],) = [v],. Again, since @, (1) < Prow)(v), we have
that [v], < [v'], implies [v], < [v'],. Let a(T) := T. Thus « is a bounded lattice function.
By piecewise linearity of ¢, a simplex o € F#([U]H) if and only if ¢,(v;) < ¢,(v) for every
vertex v; of 0. Since « is order-preserving, ¢,(v;) < ¢,(v) implies ¢,(v;) < ¢,(v) and
thus 0 € F,([v],). Thus (F,, F,,a) is a filtration-preserving morphism. Now consider a
third cell C3 such that €} < Uy < C5 and choose a direction w € Cs. Let 8 : P, — P,
be the corresponding bounded lattice function. Then, the assignment [v],, +— [v], is the
composition o 3([v],). Thus the composition F(C; < Cs) o F(Cy < Cs) of filtration-
preserving morphisms equals F/(C; < Cs).

s

3.3 Persistence Diagrams over Cellulation

Finally, we define the combinatorial PH transform associated to a geometric complex.

Definition 3.2: Let ¢ : |[K| — RY*! be a geometric complex, (SV, C) the induced cellulation
on the N-sphere, and F' : C — Fil the functor as constructed above. The d-th combinatorial
PH transform of ¢ is the functor PH 0 F' : C — Fnc. The combinatorial PH transform
of ¢ is the indexed set {PHd o F} gen over all dimensions d.

Fix an embedding ¢ : |K| — RV*! and let Fy : C — Fnc be its d-th combinatorial PH
transform. The display locale [10, 11] of F,, or generalized vineyard [7], has an interesting
structure. By Proposition 2.6, there is a constant n € N such that, for each cell C' € C,
the total charge of the persistence diagram Fd(C’ ) is n. Further, for every cell relation C; <
Cy, the morphism F (C1 < () taking the persistence diagram F (C3) to the persistence
diagram F (C1) is charge-preserving. Thus, there is a unique charge associated to each
connected component of the display locale.



Vi V3
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Figure 1: The V, embedded in R?. This simplicial complex has three vertices and two edges.
By exploring the combinatorial PH transform for this example, we illustrate each step of the
construction.

4 Examples

In this section, we walk through two examples, one in R? and one in R?.

4.1 The V Example

We start with a simple example to step through the construction of the combinatorial PH
transform of Definition 3.2. Specifically, our abstract simplicial complex consists of two edges
connected along a single vertex: K = {{uv1}, {va}, {vs}, {v1,v2}, {v2,v3}}. This complex is
piecewise linearly embedded into R? through the function ¢: |K| — R? with ¢(v;) = (=1, 1),
¢(ve) = (0,0), and ¢(vs) = (1,1). See Figure 1.

Cellulation The embedding ¢ induces a cellulation on the unit circle S! of directions
in R2. We now walk through the construction of this cellulation. Let E be the set of
unique pairs of vertices in K. In other words, let E := {(v1,v2), (v1,v3), (v2,v3)}. For
every (v;,v;) € E, let H; ;) be the unique line through the origin that is perpendicular to
the vector ¢(v;) — ¢(v;). That is, H; ;) is the line perpendicular to the line through the
embeddings of v; and v;, as shown in Figure 2(a). The intersection S ;) := Hy ;) NS is a
zero-sphere separating S! into two components. As an arbitrary choice of signs, we denote the
connected component containing (1,0) as S(t',j) and the other connected component as S@j).

We now have a function ®: St — {—,0,+}¥ as in Equation (3). Finally, let (S*,C) be the
cell complex as defined in Proposition 3.1; in particular, C has six zero-cells and six one-cells.
See Figure 2(b), where the 12 cells are labeled with their images under ®. Notice that in
this example, we have an essential arrangement. Since no two cells have the same label,
we use C'x to denote the cell of C labeled X € {—,0,+}? (if such a cell exists). Again, by
Proposition 3.1, we also have a partial order on the cells (e.g., Cio14) < Cry14))-

Objects of Filtration Functor The geometric embedding ¢ induces a functor F' : C — Fil
of filtrations and filtration-preserving morphisms. We now walk through the construction
of F on the four cells in the highlighted region of Figure 2(b).

Let p be a direction in C(y ). Using the height function ¢,: |[K| — R, we obtain the
following totally ordered lattice [v1], < [v2], < [v3],; see Figure 3 (far left). To this, we add
an additional equivalence class [T], as the top element of the lattice; in other words, we have



(a) Lines Intersecting S* (b) Cellulation of St

Figure 2: In (a), we see the three linear subpaces of R? that are used to define the cellulation
over St. In (b), each cell is labeled by a vector in {—,0,+}* according to which side of S 2, S 3,
and Sy 3 the cell falls. For example, the vector (— + +) labels the one-cell whose points are all
in Sp,, Si?), and 5;3. The vector (0 + +) labels the zero-cell that is in Sy o, Si?), and 5;3. In
fact, Ciopq) = S12N Si?) N 5;3. Note that no label is (000), and that all labels are distinct. The
partial order of the cells is denoted by arrows (where a — b indicates that b < a).

[vi]

Figure 3: The bounded lattice functions for the three highlighted face relations in Figure 2(b).
Notice that the two maps into P, ;) are nearly bijections, except for two vertices (v1 and v9) that
map to the same equivalence class for both maps. This corresponds to the transposition of the two
vertices between directions in Cy ;) and C(_ ). In fact, this property holds more generally for
any face relation between codimension-one cells.



the totally ordered lattice:
[y < [Vl < [vs], < [T]p

Denote this lattice P,. Associated to P, is the filtration F), of Equation (4). Specifically,

Fu([oi]n) = {oi}
Fu([“ﬂu) {v1, v, {v1,v2}}
Fu([vs]y) = {Uhvzav&{vlavz} {va, 031} = K
Fu([T]) =

Notice that F,([v1],) C F.([n],) € Fu([v1],) € Fu([T],). Moreover, this lattice and fil-
tration are independent of the choice of p. Therefore, we can define [v;](414) = [v]]
[Tl++) = [Ty, Pla+t) = Py, and Fyppy = F.

Next, consider the cell C_ ). We proceed as above and observe that P__ ) is the totally
ordered lattice [vo](—4+4) < [1)(—4+4) < [U3](—44) < [T](=+4); see Figure 3 (mlddle right). For
simplicity, we drop the subscripts of the equivalence classes when the cell (or direction) is
clear from context and simply write [vy] from here on. Again, we use Equation (4) to define
the filtration F(_, ) is defined by

s

Feqp)([va]) := {va}

Fiespy([v1]) = {vr, vz, {v1, v2}}

Foiy([vs]) = {v1, 02,03, {v1, 2}, {02, 03} } = K
Fen([T]) =K.

We note the partial order on P_,) given by the heights of vertices in direction pu in-
duces the following partial order on the simplicial complexes: F(_y1y([v2]) C F_yqy([v1]) C

Fioy([ts) € Fios([T))-

The zero-cells of C are exactly the directions that two vertices are seen at the same height.
For example, in C(g44),the heights of v; and v, are the same (since ¢,(v1) = ¢,(v2)), and
this height is less than ¢,(vs). Thus, the lattice P44y is the following total order on the
induced equivalence classes: [v1] < [vs] < [T]. In addition, the filtration Fio,) is defined by

Floy+)([n1]) := {v1, 02, {v1, v2}}
Flop+)([vs]) := {v1,v2, v, {v1, 02}, {v2, 03} } = K
Fopn([T]) = K.

Again, we notice the inclusion of subcomplexes: Fo;4)([v1]) C Flot4)([vs]) € Florn)([T])-
Finally, P_o4) is the lattice [vs] < [v3] < [T], with corresponding filtration F(_q) defined

by F_op)([v2]) = {va} and F_op)([vs]) = {v1,v2,v3, {v1,va}, {va,v3}} = K = F_o)([T]).
See Figure 3.

Arrows of the Filtration Functor We now walk through the construction of F' on the
three arrows in the highlighted region of Figure 2(b). Consider the face relation Cg44) <

11



C(11+). We define the filtration-preserving morphism (F(C(y44)), F(Clo4+), @) as follows.
For each vertex v;, we have the inclusion [v](14+) € [vi](04+). Indeed,

(1] (444) = {1} € {v1, 02} = [n1]014)
[Ug](+++) = {v2} C {v1,v2} = [v2]0+44)
(V3] (444 = {v3} € {vs3} = [vs3](0+4)
[T](++ =0C0=[Tlo++

As a consequence, F([v]14+4))) C F([v]@44)) for all objects [v] € P 14). Thus, we can
define a(F([v](4+44))) = F([v]o++)). In other words, we have collapsed two equivalence
classes in the lattice and consequently the filtration, and left the rest untouched. See Figure 3.

Combinatorial PH Transform Now that we have a filtration functor, we can apply
the persistent homology pipeline of [21] and described in Section 2.2. Our next step is to
apply the birth-death functor ZB: Fil = Mon. To keep the notation as simple as possible,
we use the field k = Z/2Z. We explain this functor by looking at how it behaves on the
objects F(4 1) and Fgy4), and the arrow F(i ;) — Fo4). Recall from above that P, )
is the totally ordered lattice [v;] < [va] < [v3] < [T]. For simplicity of notation, we use [, j]
to represent [[v;], [v;]]. Thus, P4 is the nine element poset shown on the left hand side
of Figure 4(a). Similarly, Py is the poset shown on the right hand side of Figure 4(a).
The bounded lattice function a: P41y = P44) (the leftmost map in Figure 3) induces a
bounded lattice function a: P14y — Po44). In particular,

(1, Yoty = @1, Yray) = @([1, 2] (444)) = @([2, 2] (444))
[1,3J(0++) = a([L, 3](+++) = a([2, 3](+4+),

(L, T+ = al[L, Tlg4+) = a((2, Tl+4),
3, 3J(0++) = a([3, 3] (+++)),

3, Tho++) = a([3, T](+++)), and

[T, Tlo++) = a([T, Tlr++)

These three equivalences are illustrated with pink shading in Figure 4(a). If i # 1, then K has
no i-cycles and hence ZB; is trivial everywhere. The values of ZBj on the objects in P14
and Py, are illustrated in Figure 4(b), with the induced monotone-preserving morphism.

Finally, we apply the Mobius Inversion Functor MI: Mon — Fnc. Again, we illus-
trate this functor by describing how it behaves on ZBo(P(111) — Hoyy)). First, we de-
fine Ml(j 14y := MI(ZBo(P(;+4)) to be the unique function o: P4y — Z that satisfies
Equation (2), where f = ZBy(P44). In particular, for x € Py

1 2 e{[2,2,[33,[1,T]}

0 otherwise.

Mgyt (2) = {
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Int(P(444)) Int(Pg+4)) ZBo((+ ++)) ZBo((0++))

(a) Intervals (b) Image of ZBg

Figure 4: The maps P ;) = Pyt and ZBo(P. 1) — Foi ). In both maps, the objects in
the same pink region get mapped to the same object in the codomain. Using the field k = Z/2Z,
for b # T, ZBgla,b] counts the number of zero-cycles in the simplicial complex F'(a) that are zero-
boundaries in the larger simplicial complex F'(b). ZBg[a, T| is a count of the number of vertices
in F(a).

In other words, the augmented persistence diagram (defined in [13, Def. 1]) has three
points: (2,2),(3,3), and (1,00). This corresponds to the persistence diagram with one off-
diagonal point, namely (1, 0c), which corresponds to the connected component born at the

height of v;. Next, we consider the cell S;). Let x € Pgy1). Then,

e {[1,1],[3,3],[1, T}

0 otherwise.

Ml (z) = {

Moreover, the map Ml ) — Ml ) corresponds to mapping the points in the follow-

ing way: [2,2]114) = [1,10++) = [2,2014), B3]+ = [3:3]0r1), and [1, T]4sy —
[1,T)0++)- We note that while [2,2] and [1, T| have distinct birth heights in Ml ), their
images [1, 1] and [1,T] have the same birth height in Ml ).

4.2 3D Example

We now consider a geometric complex embedded in R?. Specifically, let K be the following
abstract simplicial complex known as a book with two pages (see Figure 5(a)):

K = {{n}, {va}, {vs}, {v1, 02}, {vo, v3}, {1, 03}, {1, v0,v3H{v1, va}, {2, va}, {01, 00,04} }.

This complex is piecewise linearly embedded into R? through the function ¢: |K| — R?
with ¢(v1) = (1,0,0), ¢(v2) = (0,1,0), ¢(vs) = (0,0,1) and ¢(vy) = (0,0,0). Note that the

affine space spanned by the points {vy, e, v3,v4} is R?, indicating that the vertices of K are
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V2
V4 Vi
(a) Complex in R? (b) Cellulation of §?

Figure 5: A geometric complex in R? with the induced cellulation of S2. The cellulation depends
only on the vetices of the complex. Since the vertices are in general position, each great circle on S?
is distinct.

in general position. Rather than go through the whole pipeline again, we investigate the cell
complex and the poset of equivalence classes of vertices associated to each cell.

Let (S?,C) be the cell complex defined in Proposition 3.1. This cellulation has 24 two-
cells, one for each permutation of the vertices. (Note that if we were to add one more vertex
to K that there would then be more permutations of the vertices than cells of the cellulation
due to geometric constraints). Each of the 36 one-cells correspond to where two vertices are
at the same height and the remaining two vertices are at distinct heights. There are two
types of zero-cells: (type-1) eight have degree six and correspond to exactly three vertices
at the same height, and (type-2) six have degree four and correspond to two vertices at one
height and the other two vertices at another height. See Figure 5(b).

For each vector X € {—,0,+}%, we use C(x) to denote the cell of C labeled X according
to which side of S}, S13, So3, S14, S24, and Ss4 the cell falls (if such a cell exists). For
example, C( ) =S, NS 3N 83N 8, NS5, NSy, The faces of Cp___ ) are:

{C(+777++)7 Co———+4), Clo——+4), Clr———+0); C0-0+0), Clo———+0); 0(000—++)}-

In fact, every two-cell in this cellulation has seven faces (itself, three one-cells, and three
zero-cells). In other words, every two-cell is a topological triangle. Some labelings of zero-
cells do not exist. For example, no cell is labeled (00 — — + 4). By contradiction, suppose
there exists u € Cgo——14). Then, since the first coordinate is zero, p € S}, which implies
that [v1], = [vs],. In addition, since the second coordinate is zero, p € Sy 3, which implies
that [vs], = [vs],. Thus, [v1], = [vs],, which means that p € S 3, a contradiction.

To see what happens at a type-1 zero-cell, consider Fggo—14). In particular, the equiva-
lence classes for the vertices induced by a direction vector in Ciggg—4) is:

[’01](000—++) = [Uz](000—++) = [’03](000—++)

[’04] (000—++)
[T].

In general, all type-1 zero-cells have three vertices sharing an equivalence class. To see

14



[v1]
- /
[v1]
w\/ B

Figure 6: Face relations induce surjective poset maps. These maps, in turn, induce arrows in Fil.

what happens at a type-2 zero-cell, consider Po___ ). Here, we have the following equiva-
lence classess:

[v1]0-——+0) = [va](0———+0)
[wslo———+0) = [val0-——+0)
[T].

In general, all type-2 zero-cells partition the vertices into two equivalence classes, each of
size two (and one additional equivalence class for T).

For geometric complexes in R? or higher, we can look at compositions of proper face rela-
tions. Consider the following two face relations: Cgoo—1+) < Cro———1+) < C4——_14). These
face relations induced posets of equivalence classes of the vertices, as well as the maps con-
necting these posets, are given in Figure 6. These two maps corresponds to the equivalences
classes [v1](——— 1) # [v2](+———+) being mapped to the same equivalence class [v1]g-— 44
in Pg_— ), followed by the equivalences classes [v1]g-——44) # [vs]-——+4) equivalence
classes in Py being mapped to the same equivalence class [v1]o0—++) in Pooo—t+)-
Observe that the map Po___ ..y — Pooo—+4) is exactly this composition resulting in
collapsing three equivalence classes in Py ) (namely, [v1], [v2], and [v3]) to one equiva-
lence class.

5 Discussion

By taking a combinatorial approach to persistent homology, we are able to express the PH
transform of a geometric complex as a functor from the cellulation of a sphere to the category
of combinatorial persistence diagrams. This point of view may be applied to any application
that involves a parameterized family of persistence diagrams. For example, consider time-
varying data [6, 7, 18, 23]. Assuming the data is finite, there is a cellulation of the real line
(time parameter) such that any two times on the same cell have the same combinatorial
persistence diagram. The resulting family of combinatorial persistence diagrams connected
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by charge-preserving morohisms provides a categorical framework in which to talk about all
the persistence diagrams at once in a cohesive manner.

We hope this paper will start conversations on parameterized families of combinatorial
persistence diagrams in general and not just for the PH transform. There are many questions
to ask. For example, consider a cell complex (X,C) on any space X and a functor F': C —
Fnc. What are its global co-sections? Does the edit distance of McClearly and Patel lead to
a stability result for such functors? These are just a few questions worth asking.

Acknowledgements The first author acknowledges Vin de Silva for a late night conver-
sation about counting cells and David L. Millman for generating Figure 5(b).
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A Notation and Definitions

Posets Given a finite, totally ordered poset P, denote by L € P its smallest element and
by T € P the largest element. A function o : P — @ between two finite, totally ordered
posets is a bounded monotone function if f(T) =T, f(L) = L, and foralla < b, a(a) < a(b).

For a finite, totally ordered poset P, let P := {[a, b CP:a< b} be its set of non-empty
intervals with the following partial relation: [a,b] < [¢,d] if a < ¢ and b < d. Tts bottom
element is [L, L] and its top element is [T, T]. A bounded monotone function « : P — @
between two finite, totally ordered posets induces a bounded monotone function & : P — Q
where a([a,b]) := [a(a), a(b)]; see [21] for a proof.

Categories and Functors In this paper, we assume that the reader is familiar with
categories and functors. We defer to [24] for an introduction to category theory. In Table 1,
we provide notations used in this paper.

Table 1: Notations for categories and functors. We assume C is a category and a, b, c € ob C.

ob C | objects in C
Homc(a, b) | the set of morphisms or arrows between a and b in C
o | composition of morphisms
1, | the identity morphism in Homc(a, a)
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