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Abstract

The combinatorial interpretation of the persistence diagram as a Möbius inversion

was recently shown to be functorial. We employ this discovery to recast the Persistent

Homology Transform of a geometric complex as a representation of a cellulation on S
n

to the category of combinatorial persistence diagrams. Detailed examples are provided.

We hope this recasting of the PH transform will allow for the adoption of existing

methods from algebraic and topological combinatorics to the study of shapes.

1 Introduction

Persistent homology (PH) captures the “shape” of a topological space often arising from
data. It takes as input a �ltration of a space, usually paramterized by the reals, and outputs
a multiset of points in the extended plane known as the persistence diagram. Each point in
the persistence diagram represents a homological “feature” of the topological space and its
coordinates provide the interval of parameters for which that feature is present. Individually,
a persistence diagram is a powerful data analysis tool; however, a single descriptor is often
not rich enough to capture the intricacies of large, complex data. For example, the family of
�ltrations giving rise to the same persistence diagram can be arbitrarily large. One approach
for capturing more information about a space is to consider not just one �ltration of the space
but a family of �ltrations of the space and therefore a family of persistence diagrams.

One such family of descriptors and the focus of this paper is the persistent homology
transform, introduced initially in [25], which takes as input a space embedded in R

N+1 and
represents it—or transforms it—into a family of persistence diagrams parameterized by the
set of all directions S

N . The idea behind this transform goes back the early 2000s [1] and
was recently generalized to weighted simplicial complexes in [17]. The PH transform is a
complete representation of the original shape. That is, no two di�erent shapes have the same
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PH transform. Although S
N comprises an uncountable set of directions, if K is a nicely

embedded geometric simplicial complex, then it has a �nite representation [2, 9, 13, 22].
The PH transform and other topological transforms have been applied using a sample of
directions [3, 8, 16, 17, 20, 25], yet there is still a substantial gap between the theory and
this practice [12].

Our Contributions Consider a space X with an embedding � : X � R
N+1. The PH

transform of � is the assignment to every direction µ � S
N the sublevel set persistence

diagram of the height function �µ : X � R in that direction. As mentioned above, the
persistence diagram is the assignment to every interval of R a natural number often called
its multiplicity or, in our parlance, a charge. Unfortunately, there is a major downside to
this approach. In practice, � is �nitely generated; for example, � is a PL embedding of a
�nite simplicial complex. Its PH transform consists of an uncountable set of distinct persis-
tence diagrams; however, when ignoring exact birth/death coordinates and keeping track of
only the relations between birth/death coordinates, we observe that there are distinct places
where combinatorial changes in the diagrams happen. We call two persistence diagrams
combinatorially equivalent when the diagrams are related by a homeomorphism from R to
itself. In this setting, we expect that most directions µ � S

N have an open neighbor-
hood U � S

N such that the persistence diagrams associated to any two directions �, � � � U
are combinatorially equivalent.

In that light, we take a combinatorial approach to the PH transform by adopting the
combinatorial framework of persistent homology developed by McClearly and Patel [21].
In this setting, �ltrations are indexed by an abstract totally ordered, �nite poset P as
opposed to the real numbers. The combinatorial persistence diagram is then the assignment
to every non-empty (order-theoretic) interval [a, b] � P a charge. Given a PL embedding,
we show that there is a cellulation of Sn such that the combinatorial persistence diagrams
associated to any two directions on a common cell are exactly the same. This cellular
decomposition is the same decomposition observed in [2, 9, 14] for the PH transform and
in [7] for vineyards. Further, we harness functoriality of McClearly and Patel to express the
PH transform as a representation of the cellulation on S

n to the category of combinatorial
persistence diagrams and charge-preserving morphisms. The cellulation is �nite and every
combinatorial persistence diagram is �nite making our combinatorial PH transform a �nite
object. We hope that this recasting of the PH transform will allow for the adoption of
existing methods from algebraic and topological combinatorics to the study of shapes.

2 Preliminiaries

We use this section to establish background and notation. Section 2.1 introduces geometric
complexes and their height functions. Section 2.2 introduces the combinatorial persistent
homology pipeline of McClearly and Patel. See also Appendix A for a discussion of our
notation on posets and categories. As mentioned in Section 1, the combinatorial persistence
diagram is indexed by an abstract totally ordered, �nite poset as opposed to the traditional
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persistence diagram that is indexed by the real numbers. Since we are departing from
traditional persistent homology and focusing solely on its combinatorial version, we drop the
word “combinatorial” from our discussion of combinatorial persistent homology.

2.1 Embeddings of Simplicial Complexes

We start with an introduction to our main object of study: geometric complexes and their
height functions. We adopt notation similar to [15, Section 2.1].

Fix a simplicial complex K, let K0 � K be its vertices, and denote by |K| its underlying
space. For the purposes of this paper, we assume all simplicial complexes are �nite. Given a
function �̂ : K0 � R

N+1 de�ned on its vertices, we extend it to a PL function on the entire
underlying space |K| as follows. For a simplex � = [v0, · · · , vk], express every point x � |�|
by its barycentric coordinates (x0, x1, · · · , xk). Then, the linear extension of �̂ to |�| is the
map that sends x to the point x0�̂(v0) + x1�̂(v1) + · · ·+ xk�̂(vk). In this way, the function �̂

extends to a PL function � : |K| � R
N+1 on the entire complex. If such an extension is

injective, we call � a geometric complex.
We are interested in examining the geometric complex � : |K| � R

N+1 from all directions.
Denote by S

N := {µ � R
N+1 : ||µ|| = 1} the sphere of all directions in R

N+1. The height
function on � along a direction µ � S

N is the continuous function �µ : |K| � R
N+1 de�ned as

the dot product �µ(x) := �(x) ·µ. For L � |K|, we let �µ(L) := supx�L �µ(x). In particular,
if L is a simplex in K, then �µ(L) is the maximum height of the vertices that de�ne L.

2.2 Persistent Homology Pipeline

We now give a brief introduction to the persistent homology pipeline of McCleary and
Patel [21] restricted to the special case of combinatorial one-parameter �ltrations and to
a �xed simplicial complex K. This pipeline consists of three categories Fil(K), Mon(n),
and Fnc(n) and two functors ZB� and MI:

Fil(K) Mon(n) Fnc.

PH�:=MI�ZB�

ZB� MI

We call ZB� the birth-death functor, MI the Möbius inversion functor, and the composi-
tion PH� the persistent homology functor.

Filtrations Let �K be the poset consisting of subcomplexes of K ordered by inclusion.
Given a �nite, totally ordered poset P , a P -�ltration of K is a functor F : P � �K
such that F (�) = K. Let P and Q be �nite, totally ordered posets. A �ltration-preserving
morphism is a triple (F,G,�) where F : P � �K and G : Q � �K are P - and Q-�ltrations
of K, respectively, and � : P � Q is a bounded monotone function satisfying the following
axiom. For all a � Q, G(a) = F (a�), where a� := max��1[�, a], i.e., the maximal element
in P that maps to a:
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If (F,G,�) and (G,H, �) are �ltration-preserving morphisms, then the composition (F,H, ��
�) is a �ltration-preserving morphism:

P Q R

�K.

F

�

G

�

H

De�nition 2.1: Fix a simplicial complex K. Let Fil(K) be the category whose objects
are P -�ltrations of K, over all �nite, totally ordered posets P , and whose morphisms are
�ltration-preserving morphisms. We call Fil(K) the category of �ltrations of K.

Monotone Integral Functions Assume the usual total ordering on the integer Z. Let P
and Q be two �nite, totally ordered posets and let f : P � Z and g : Q � Z be two mono-
tone integral functions on their poset of intervals; see Appendix A. A monotone-preserving
morphism is a triple (f, g, �̄), where f : P � Z and g : Q � Z are monotone integral
functions and �̄ : P � Q is a bounded monotone function induced by a bounded monotone
function � : P � Q satisfying the following axiom. For all I � Q, g(I) = f(max �̄�1[�, I]).
In other words, for every interval I = [a, b], g(I) = f

�

[a�, b�]
�

where a� = max f�1[�, a]
and b� = max f�1[�, b].

P Q

Z.

f

�̄

g

If (f, g, �̄) and (g, h, �̄) are two monotone-preserving morphisms, then the composition (f, h, �̄�
�̄) is a monotone-preserving morphism:

P Q R

Z.

f

�̄

g

�̄

h

De�nition 2.2: Let Mon be the category whose objects are monotone integral functions,
over all �nite, totally ordered posets, and whose morphisms are monotone-preserving mor-
phisms. We call Mon the category of monotone functions.

Integral Functions Let P and Q be �nite, totally ordered posets and let � : P � Z

and � : Q � Z be two integral functions on their poset of intervals. Let � : P � Q be a
bounded poset function such that for all I � Q,

g(I) =
�

J���1(I)

f(J). (1)
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Here, if ��1(I) is empty, then we interpret the sum as 0. We call the triple (�, �, �̄) a
charge-preserving morphism, where �̄ : P � Q is the bounded poset function induced
by �. If (�, �, �̄) and (�, �, �̄) are charge-preserving morphisms, then (�, �, �̄ � �̄) is a charge-
preserving morphism:

P Q R

Z.

�

�̄

�

�̄

�

De�nition 2.3: Let Fnc be the category whose objects are integral functions over �nite,
totally ordered posets, and whose morphisms are charge-preserving morphisms. We call Fnc
the category of integral functions.

Remark 2.4: An important observation is that Fnc does not have arbitrary colimits. For
example, the following two integral functions do not have a colimit. Let P = Q be totally-
ordered posets on four elements; in particular, we write P = Q = {1 < 2 < 3 < 4}.
Let � : P � Z be the function

�([i, j]) =

�

�

�

�

�

1, if i = 1, j = 3

1, if i = 2, j = 4

0, otherwise,

and let � : Q � Z be the function

� ([i, j]) =

�

�

�

�

�

1, if i = 1, j = 4

1, if i = 2, j = 3

0, otherwise.

If a colimit existed, then it would come from gluing elements in P and gluing elements in Q
until there is a common integral function. This leaves two contenders for the colimit:

1. The integral function µ : Z � Z on the poset Z = {a < b < c} that maps [a, b] �� 1,
[a, c] �� 1, and everything else to zero. This is obtained by mapping 1 and 2 in both P
and Q to a, 3 in P and Q to b, and 4 in P and Q to c.

2. The integral function � : Z � Z on the poset Z = {a < b < c} that maps [a, c] �� 1,
[b, c] �� 1, and everything else to zero. This is obtained by mapping 1 in both P and Q
to a, 2 in P and Q to b, and 3 and 4 in P and Q to c.

We note that neither of these integral functions can be obtained from the other by gluing
elements. This means that arbitrary colimits do not exist in Fnc.

Birth-Death Functor Fix a �eld k. The d-th birth-death functor ZBd assigns to a �l-
tration F : P � �K the monotone integral function ZBd(F ) : P � Z de�ned as follows.
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For every interval [a, b] � P , where b �= �, ZBd[a, b] is the dimension of the k-vector space
of d-cycles in the simplicial complex F (a) that are d-boundaries in the larger simplicial com-
plex F (b). For an interval [a,�], ZBd[a,�] is simply the dimension of the vector space of d-
cycles in F (a). The birth-death functor takes a �ltration-preserving morphism (F,G,�) to
the monotone-preserving morphism

�

ZBi(F ),ZBd(G), �̄
�

, which turns out to be a monotone-
preserving morphism.

Möbius Inversion Functor Given a monotone integral function f : P � Z, there is a
unique integral function � : P � Z, called the Möbius inversion of f , such that for all J � P ,

f(J) =
�

I�P :I�J

�(I). (2)

The functor MI assigns to every monotone-integral function its Möbius inversion. For ev-
ery monotone-preserving morphism (f, g, �̄) in Mon,

�

MI f,MI g, �̄) is a charge-preserving
morphism in Fnc.

De�nition 2.5: We call the composition PH� := MI � ZB� : Fil(K) � Fnc the persistent

homology functor. It assigns to every �ltration P in Fil(K) its persistence diagram PH�(F )
and to every �ltration-preserving morphism (F,G,�) in Fil(K) the charge-preserving mor-
phism (PH�(F ),PH�(G), �̄).

An obvious but important observation is the following proposition, which follows imme-
diately from the de�nition of the birth-death function and Equation (2).

Proposition 2.6: Let F be a �ltration in Fil(K). Then, the total charge of its d-th persis-
tence diagram, �I�PPHd(F )(I), is the dimension of the d-th cycle space of K.

3 Combinatorial Transform for Geometric Complexes

Fix a geometric embedding � : |K| � R
N+1 of a simplicial complex K.

3.1 Constructing the Cellulation

Let E := {(v, v�) : v, v� � K0} be the set of all unordered, distinct pairs of vertices of K.
For each pair of vertices e = (v, v�) � E, there is a unique plane in R

N+1 perpendicular
to the vector �(v) 	 �(v�) through the origin; we denote that plane He. The intersection
of He with the N -sphere, Se := He 
 S

N , is a great (N 	 1)-sphere of Sn. By the Jordan-
Brouwer separation theorem, SN \ Se has two connected components (often called sides or
hemispheres) denoted arbitrarily by S+

e and S�
e ; see [5, 15, 19]. Let A := {Se : e � E} be

the multiset of all such great N -spheres. We call A along with an assignment of a sign to
each side of Se, over all e � E, a signed arrangement of spheres. The signed arrangement A
is essential if the following condition holds:

�

e�A Se = �.
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The signed arrangement A induces a cell complex on S
N where every cell is described by

whether it lies in S�
e , Se, or S

+
e over every Se � A. To de�ne this cell complex, let {	, 0,+}E

denote the set of all functions from E to {	, 0,+}. Consider the following partial order
on {	, 0,+}: 0 < 	 and 0 < +. This partial order extends to a partial order on the set of
functions {	, 0,+}E , where f � g if f(e) � g(e), for all e � E. Let � : SN � {	, 0,+}E

be the function that assigns to every direction µ � S
N the following vector indexed by

elements e � E:

�(µ)e :=

�

�

�

�

�

	 if µ � S�
e

0 if µ � Se

+ if µ � S+
e .

(3)

Consider the subposet P(A) := {�(µ) : µ � S
N} � {	, 0,+}E . The following proposition is

a rewording of [4, Proposition 5.1.5].

Proposition 3.1: Let � : |K| � R
N+1 be geometric embedding and let A be an induced

signed arrangement of spheres on S
N . If A is essential, then the sets �

�1(f) � S
N , over

all f � P(A), are the cells of a cell complex (SN , C). Furthermore, for every pair of such
cells C1 := �

�1(f) and C2 := �
�1(g) in C, C1 � C2 if and only if f � g in P(A).

The signed arrangement A associated to the piecewise linear embedding � is essential if
and only if

�

e�A Se �= � if and only if there is not a direction µ � S
n such that the height

function �µ is constant on all of K. For example, if � embedds K into a linear N -subspace
of RN+1, then A is not essential and we cannot apply Proposition 3.1. However, we can easily
�x this problem by adding one more (N	1)-great sphere to the arrangement that is di�erent
from any of the (N 	 1)-great spheres already in A. In general, for dim

�
�

e�A Se

�

= k, we
have to add k + 1 great spheres to the arrangement A.

3.2 Filtrations over Cellulation

Fix a geometric embedding � : |K| � R
N and let (SN , C) be the induced cellulation on

the N -sphere as constructed above. Recall C is a poset where C1 � C2 if C1 is a face of C2.
For every direction µ � S

n, the height function �µ gives rise to an object of Fil(K). By
construction of the cellulation, any two directions µ1 and µ2 give rise to the same object
in Fil(K). Further, for every face relation C1 � C2, there is a natural �ltration-preserving
morphism from the �ltration associated to C2 to the �ltration associated to C1. We now
formalize this data as a functor F : C � Fil(K).

We start by de�ning F on the cells of C. Choose a cell C � C and a direction µ � C.
Two vertices v, v� � K0 are related, denoted v 
µ v�, if �µ(v) = �µ(v

�). The relation 
µ is
an equivalence relation. Note that v 
µ v� if and only if µ � S(v,v�). Denote by Pµ the set of
equivalence classes K0/ 
µ union the singleton {�}. For two equivalence classes [v]µ, [v

�]µ
in Pµ, let [v]µ � [v�]µ if �µ(v) � �µ(v

�). Make � the top element. Thus Pµ is a �nite, totally
ordered lattice that is independent of the choice of µ � C. Note that [v]µ �= [v�]µ if and
only if µ � S+

(v,v�) or µ � S�

(v,v�). We now de�ne the �ltration F (C) := Fµ : Pµ � Fil. For
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every [v]µ, let
Fµ

�

[v]µ
�

:=
	

� � K : �µ(�) � �µ(v)



. (4)

Let Fµ(�) be the entire simplicial complex K. Note that Fµ

�

[v]µ
�

is a subcomplex of K
and for [v]µ � [v�]µ, Fµ

�

[v]µ
�

is a subcomplex of Fµ

�

[v�]µ
�

. In other words, Fµ is an object
of Fil(K).

We now de�ne F on the face relations C1 � C2 of C. Choose directions v � C1 and µ � C2.
There is a canonical bounded lattice function � : Pµ � P� that turns out to be a �ltration-
preserving morphism

�

F (C2), F (C1),�
�

as follows. Since �(v) � �(µ), [v]µ � [v]� for
every vertex v � K0. Let �

�

[v]µ
�

:= [v]� . Again, since �(v,v�)(µ) � �(v,v�)(v), we have
that [v]µ � [v�]µ implies [v]� � [v�]� . Let �(�) := �. Thus � is a bounded lattice function.
By piecewise linearity of �, a simplex � � Fµ

�

[v]µ
�

if and only if �µ(vi) � �µ(v) for every
vertex vi of �. Since � is order-preserving, �µ(vi) � �µ(v) implies ��(vi) � ��(v) and
thus � � F�

�

[v]�
�

. Thus
�

Fµ, F� ,�
�

is a �ltration-preserving morphism. Now consider a
third cell C3 such that C1 � C2 � C3 and choose a direction w � C3. Let � : Pw � Pµ

be the corresponding bounded lattice function. Then, the assignment [v]w �� [v]µ is the
composition � � �

�

[v]w
�

. Thus the composition F (C1 � C2) � F (C2 � C3) of �ltration-
preserving morphisms equals F (C1 � C3).

3.3 Persistence Diagrams over Cellulation

Finally, we de�ne the combinatorial PH transform associated to a geometric complex.

De�nition 3.2: Let � : |K| � R
N+1 be a geometric complex, (SN , C) the induced cellulation

on theN -sphere, and F : C � Fil the functor as constructed above. The d-th combinatorial

PH transform of � is the functor PHd �F : C � Fnc. The combinatorial PH transform

of � is the indexed set
	

PHd � F



d�N
, over all dimensions d.

Fix an embedding � : |K| � R
N+1 and let F̃d : C � Fnc be its d-th combinatorial PH

transform. The display locale [10, 11] of F̃d, or generalized vineyard [7], has an interesting
structure. By Proposition 2.6, there is a constant n � N such that, for each cell C � C,
the total charge of the persistence diagram F̃d(C) is n. Further, for every cell relation C1 �
C2, the morphism F̃ (C1 � C2) taking the persistence diagram F̃ (C2) to the persistence
diagram F̃ (C1) is charge-preserving. Thus, there is a unique charge associated to each
connected component of the display locale.
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the totally ordered lattice:
[v1]µ < [v2]µ < [v3]µ < [�]µ.

Denote this lattice Pµ. Associated to Pµ is the �ltration Fµ of Equation (4). Speci�cally,

Fµ([v1]µ) := {v1}

Fµ([v2]µ) := {v1, v2, {v1, v2}}

Fµ([v3]µ) := {v1, v2, v3, {v1, v2}, {v2, v3}} = K

Fµ([�]µ) := K.

Notice that Fµ([v1]µ) � Fµ([v1]µ) � Fµ([v1]µ) � Fµ([�]µ). Moreover, this lattice and �l-
tration are independent of the choice of µ. Therefore, we can de�ne [vi](+++) := [vi]µ,
[�](+++) := [�]µ, P(+++) := Pµ, and F(+++) := Fµ.

Next, consider the cell C(�++). We proceed as above and observe that P(�++) is the totally
ordered lattice [v2](�++) < [v1](�++) < [v3](�++) < [�](�++); see Figure 3 (middle right). For
simplicity, we drop the subscripts of the equivalence classes when the cell (or direction) is
clear from context and simply write [v2] from here on. Again, we use Equation (4) to de�ne
the �ltration F(�++) is de�ned by

F(�++)([v2]) := {v2}

F(�++)([v1]) := {v1, v2, {v1, v2}}

F(�++)([v3]) := {v1, v2, v3, {v1, v2}, {v2, v3}} = K

F(�++)([�]) := K.

We note the partial order on P(�++) given by the heights of vertices in direction µ in-
duces the following partial order on the simplicial complexes: F(�++)([v2]) � F(�++)([v1]) �
F(�++)([v3]) � F(�++)([�]).

The zero-cells of C are exactly the directions that two vertices are seen at the same height.
For example, in C(0++),the heights of v1 and v2 are the same (since �µ(v1) = �µ(v2)), and
this height is less than �µ(v3). Thus, the lattice P(0++) is the following total order on the
induced equivalence classes: [v1] < [v3] < [�]. In addition, the �ltration F(0++) is de�ned by

F(0++)([v1]) := {v1, v2, {v1, v2}}

F(0++)([v3]) := {v1, v2, v3, {v1, v2}, {v2, v3}} = K

F(0++)([�]) := K.

Again, we notice the inclusion of subcomplexes: F(0++)([v1]) � F(0++)([v3]) � F(0++)([�]).
Finally, P(�0+) is the lattice [v2] < [v3] < [�], with corresponding �ltration F(�0+) de�ned
by F(�0+)([v2]) = {v2} and F(�0+)([v3]) = {v1, v2, v3, {v1, v2}, {v2, v3}} = K = F(�0+)([�]).
See Figure 3.

Arrows of the Filtration Functor We now walk through the construction of F on the
three arrows in the highlighted region of Figure 2(b). Consider the face relation C(0++) �

11



C(+++). We de�ne the �ltration-preserving morphism
�

F (C(+++)), F (C(0++),�
�

as follows.
For each vertex vi, we have the inclusion [vi](+++) � [vi](0++). Indeed,

[v1](+++) = {v1} � {v1, v2} = [v1](0++)

[v2](+++) = {v2} � {v1, v2} = [v2](0++)

[v3](+++) = {v3} � {v3} = [v3](0++)

[�](+++) = � � � = [�](0++)

As a consequence, F ([v](+++))) � F ([v](0++)) for all objects [v] � P(+++). Thus, we can
de�ne �(F ([v](+++))) := F ([v](0++)). In other words, we have collapsed two equivalence
classes in the lattice and consequently the �ltration, and left the rest untouched. See Figure 3.

Combinatorial PH Transform Now that we have a �ltration functor, we can apply
the persistent homology pipeline of [21] and described in Section 2.2. Our next step is to
apply the birth-death functor ZB : Fil � Mon. To keep the notation as simple as possible,
we use the �eld k = Z/2Z. We explain this functor by looking at how it behaves on the
objects F(+++) and F(0++), and the arrow F(+++) � F(0++). Recall from above that P(+++)

is the totally ordered lattice [v1] < [v2] < [v3] < [�]. For simplicity of notation, we use [i, j]
to represent

�

[vi], [vj ]
�

. Thus, P(+++) is the nine element poset shown on the left hand side

of Figure 4(a). Similarly, P(0++) is the poset shown on the right hand side of Figure 4(a).
The bounded lattice function � : P(+++) � P(0++) (the leftmost map in Figure 3) induces a
bounded lattice function �̄ : P(+++) � P(0++). In particular,

[1, 1](0++) = �̄([1, 1](+++)) = �̄([1, 2](+++)) = �̄([2, 2](+++)),

[1, 3](0++) = �̄([1, 3](+++)) = �̄([2, 3](+++)),

[1,�](0++) = �̄([1,�](+++)) = �̄([2,�](+++)),

[3, 3](0++) = �̄([3, 3](+++)),

[3,�](0++) = �̄([3,�](+++)), and

[�,�](0++) = �̄([�,�](+++)).

These three equivalences are illustrated with pink shading in Figure 4(a). If i �= 1, thenK has
no i-cycles and hence ZBi is trivial everywhere. The values of ZB0 on the objects in P(+++)

and P0++ are illustrated in Figure 4(b), with the induced monotone-preserving morphism.
Finally, we apply the Möbius Inversion Functor MI : Mon � Fnc. Again, we illus-

trate this functor by describing how it behaves on ZB0(P(+++) � P(0++)). First, we de-
�ne MI(+++) := MI(ZB0(P(+++)) to be the unique function � : P(+++) � Z that satis�es
Equation (2), where f = ZB0(P(+++). In particular, for x � P(+++)

MI(+++)(x) =




1 x �
	

[2, 2], [3, 3], [1,�]



0 otherwise.
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by charge-preserving morohisms provides a categorical framework in which to talk about all
the persistence diagrams at once in a cohesive manner.

We hope this paper will start conversations on parameterized families of combinatorial
persistence diagrams in general and not just for the PH transform. There are many questions
to ask. For example, consider a cell complex (X, C) on any space X and a functor F : C �
Fnc. What are its global co-sections? Does the edit distance of McClearly and Patel lead to
a stability result for such functors? These are just a few questions worth asking.

Acknowledgements The �rst author acknowledges Vin de Silva for a late night conver-
sation about counting cells and David L. Millman for generating Figure 5(b).

References

[1] Pankaj K. Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang. Extreme
elevation on a 2-manifold. Discrete & Computational Geometry, 36(4):553–572, 2006.

[2] Robin Lynne Belton, Brittany Terese Fasy, Rostik Mertz, Samuel Micka, David L.
Millman, Daniel Salinas, Anna Schen�sch, Jordan Schupbach, and Lucia Williams. Re-
constructing embedded graphs from persistence diagrams. Computational Geometry:
Theory and Applications, 2020.

[3] Leo M. Betthauser. Topological Reconstruction of Grayscale Images. PhD thesis, Uni-
versity of Florida, 2018.

[4] A. Björner, M. Las Vergnas, B. Strumfels, N. White, and G. Ziegler. Oriented Matroids.
Cambridge University Press, 1993.

[5] Luitzen E. J. Brouwer. L.E.J. Brouwer Collected Works, volume 2: Geometry, Analysis,
Topology and Mechanics. North-Holland/American Elsevier, North Holland, Amster-
dam, 1976. Chapter 6. New Methods in Topology. Proof from 1911.

[6] Peter Bubenik and Michael J. Catanzaro. Multiparameter persistent homology via
generalized Morse theory. arXiv 2107.08856, 2021.

[7] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards
by updating persistence in linear time. In Proceedings of the Twenty-Second Annual
Symposium on Computational Geometry, pages 119–126, New York, NY, USA, 2006.
ACM.

[8] Lorin Crawford, Anthea Monod, Andrew X Chen, Sayan Mukherjee, and Raúl Rabadán.
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A Notation and De�nitions

Posets Given a �nite, totally ordered poset P , denote by � � P its smallest element and
by � � P the largest element. A function � : P � Q between two �nite, totally ordered
posets is a bounded monotone function if f(�) = �, f(�) = �, and for all a � b, �(a) � �(b).

For a �nite, totally ordered poset P , let P :=
	

[a, b] � P : a � b



be its set of non-empty
intervals with the following partial relation: [a, b] � [c, d] if a � c and b � d. Its bottom
element is [�,�] and its top element is [�,�]. A bounded monotone function � : P � Q
between two �nite, totally ordered posets induces a bounded monotone function �̄ : P̄ � Q̄
where �̄

�

[a, b]
�

:=
�

�(a),�(b)
�

; see [21] for a proof.

Categories and Functors In this paper, we assume that the reader is familiar with
categories and functors. We defer to [24] for an introduction to category theory. In Table 1,
we provide notations used in this paper.

Table 1: Notations for categories and functors. We assume C is a category and a, b, c � obC.

ob C objects in C

HomC(a, b) the set of morphisms or arrows between a and b in C

� composition of morphisms
1a the identity morphism in HomC(a, a)
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