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1 | INTRODUCTION

In the two recent papers [2, 3], we studied support varieties in the setting of finite tensor cate-
gories. When the cohomology of such a category is finitely generated — as conjectured by Etingof
and Ostrik to be always true — then the varieties contain much homological information on the
objects, and the theory resembles that for support varieties over group algebras and more general
cocommutative Hopf algebras.

In [3], we focused on the tensor product property for support varieties. That is, given a finite
tensor category € with finitely generated cohomology, we studied conditions under which the
equality

Ve(X®Y) = Ve (X) N Vip(Y)
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holds for all objects X, Y € €. It is well known that there are non-braided finite tensor categories
where this property does not hold, as observed, for example, in [1, 12]. However, we showed in
[3] that when the category is braided, the tensor product property holds for all objects if and only
if it holds between indecomposable periodic objects. In general, the tensor product property is
potentially a useful tool if one for example wants to use support varieties to classify the thick ten-
sor ideals in the stable category, although there are examples of such classifications in situations
where the property fails; see, for example, [1, 8, 9].

In this paper, we show that when the ground field is perfect, then every non-semisimple finite
tensor category ¥ with finitely generated cohomology embeds into one such category & where
the tensor product property does not hold. This is true even if the tensor product property does
hold in €. The category & that we construct is a crossed product category that is not braided;
along the way we collect facts about such crossed product categories that may be of independent
interest. It remains an open question whether the tensor product property always holds in the
braided case.

2 | PRELIMINARIES

We fix a field k that is not necessarily algebraically closed, together with a finite tensor k-
category (¢, ®,1) in the sense of [6]. This means that € is a locally finite k-linear abelian
category, with a finite set of isomorphism classes of simple objects. Moreover, every object
admits a projective cover, and hence also a minimal projective resolution. Furthermore, there
is a bifunctor @ from € X € to ¥, associative up to functorial isomorphisms, and called the
tensor product. There is also a unit object 1 with respect to the tensor product, and (¢, ®,1)
is a monoidal category. In particular, the tensor product satisfies the so-called pentagon axiom;
see [6, Section 2.1]. The unit object is simple, and the monoidal structure is compatible with
the abelian structure in that the tensor product is bilinear on morphisms. Finally, every object
admits a left and a right dual in the sense of [6, Section 2.10], so that € is rigid as a monoidal
category.

The rigidity of ¢ has important consequences; we mention three of them. First of all, by
[6, Proposition 4.2.1], the tensor product is biexact, that is, exact in each argument. Second,
by [6, Proposition 4.2.12], the projective objects form a two-sided ideal in €, so that the tensor
product between a projective object and any other object is again projective. Finally, by [6, Propo-
sition 6.1.3], the projective and the injective objects of € are the same, so that the category is
actually quasi-Frobenius.

Given objects M,N € ¢, we denote the graded k-vector space EB;":O Ext%(M ,N) by
EXt%(M ,N). With the usual Yoneda product as multiplication, the space EXt%(M , M) becomes
a graded k-algebra, and of particular interest is the algebra Ext (1,1). This is the cohomol-
ogy ring of €, and denoted by H*(®). By [13, Theorem 1.7], this is a graded-commutative
k-algebra. Since the tensor product is exact in the first argument, the functor — ® M induces a
homomorphism

H* (@) 25 Bt (M, M)

of graded k-algebras, turning ExtZ (M, M) into a left and a right H*(¢)-module. Now since
Ext’ (M, N)is aleft Ext? (N, N)-module and a right ExtZ, (M, M)-module (again using the Yoneda
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product), we see that it is both a left and a right module over H*(%), via ¢ and ¢,,, respectively.
However, by [3, Lemma 2.2] the two module actions coincide for homogeneous elements, up to
a sign. In particular, it makes no difference whether we view Ext? (M, M) as a left or as a right
module over H*(¥).

Since the cohomology ring is graded-commutative, the graded k-algebra defined by

H'(%) H*(®) if the characteristic of k is two,
| H*(®) ifnot

is commutative in the ordinary sense. We denote by m,, the ideal H*(%) of this ring, that is, the
ideal of H*(¥) generated by the homogeneous elements of positive degree. This is a maximal
ideal, since H(%) = Homg(1,1) is a field; it is a division ring since the unit object is simple, and
commutative by the above discussion.

Definition. The support variety of an object M € € is
Ve(M) = {my} U {m € MaxSpec H*(¥) | Ker ), C m}.

Note that the presence of m in the definition of support varieties is superfluous whenever M
is non-zero, for then this maximal ideal automatically contains the homogeneous ideal Ker ¢,,.
Without any finiteness condition on the cohomology of &, these support varieties may not contain
any important homological information, and so we make the following definition.

Definition. The finite tensor category ¢ satisfies the finiteness condition Fg if the cohomology
ring H*(%) is finitely generated, and Ext; (M, M) is a finitely generated H*(%)-module for every
object M € &.

By [2, Remark 3.5], one can replace H*(%) by H*(%) in this definition; the two versions are
equivalent. It was conjectured by Etingof and Ostrik in [7] that every finite tensor category satisfies
Fg, and this conjecture is still open. As shown in [2], when this finiteness condition holds, then
the theory of support varieties becomes quite powerful, as in the classical case for modules over
group algebras of finite groups.

In this paper, we are concerned with the question of whether support varieties respect tensor
products, in the following sense.

Definition. The finite tensor category % satisfies the tensor product property for support varieties
ifVe(M @N) = Va(M)N Vg (N) for all objects M,N € €.

This definition makes perfect sense without assuming that € satisfies Fg. By [2, Proposition
3.3(v)], the inclusion V(M ® N) C V(M) N V4 (N) always holds when ¥ is braided, that is,
when for all objects M, N € € there are functorial isomorphisms by, y : M @ N — N @ M that
satisfy the hexagonal identities in [6, Definition 8.1.1]. In [1, 12], examples are given of finite tensor
categories where the tensor product property does not hold, in fact not even the above inclu-
sion. These examples are then necessarily non-braided. It is an open question whether the tensor
product property always holds in the braided case, or under the stronger requirement that & is
symmetric, that is, when the braiding isomorphisms satisfy by ys0by v = 1y gy forallM,N € €.
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Other than categories of modules of some types of Hopf algebras, the only case that has been
completely settled is when the ground field is algebraically closed and of characteristic zero; over
such a field, every symmetric finite tensor category satisfies the tensor product property, by [3,
Theorem 4.9]. The proof provided relies on Deligne’s classification of such categories as certain
skew group algebras, from [5].

By [3, Theorem 3.6], when € is braided and satisfies Fg, the tensor product property holds
if and only if the following holds for all M,N € &: if V(M) N Vx(N) is not trivial, that is, if
Ve (M) N Ve (N) # {my}, then M @ N is not projective. Consequently, if the tensor product prop-
erty does not hold, then there must exist two non-projective objects M, N whose tensor product
M ® N is projective, but for which V(M) N V(N) is not trivial. They must be non-projective
since the variety of a projective object is necessarily trivial; see the paragraph following [2, Defi-
nition 3.1]. In the following result, we show that at least such a pair of objects with M = N cannot
exist.

Proposition 2.1. Let k be a field and (¢, ®, 1) a braided finite tensor k-category. Then an object
M € € is projective if and only if the n-fold tensor product M®" is projective for some n > 1.

Proof. If M is projective, then so is every tensor product M®", since the projective objects form an
ideal in . Conversely, suppose that M®" is projective for some n > 2. Since & is rigid, the object
M admits a left dual M*, which implies that there exist morphisms

M—MM"®M — M

whose composition equals the identity on M; see [6, Definition 2.10.1]. Tensoring with M®("=2),
and using the fact that € is braided, we obtain morphisms

M®("—1) — M®n ®QM* —s M®(n—1)

whose composition equals the identity on M®"~1D_ This implies that M®"~1 is a direct sum-
mand of M®" @ M*, which is a projective object since M®" is. Consequently, the object M®(*—1
is also projective. Repeating the process, we eventually end up with M, which must then be
projective. O

Let us now in the last part of this section recall a construction that will play an important role
in the main result. Suppose that (¢, ®¢, 1) and (2, ®y, 15,) are two finite tensor k-categories.
Their Deligne tensor product, denoted € [X] 9, is a k-linear abelian category that is universal with
respect to right exact bifunctors on € x 2. In other words, there is a bifunctor T: € X 2 —
€ XD of k-linear abelian categories, right exact in both variables, with the property that for
every bifunctor F : € X 2 — & of k-linear abelian categories, the following hold: if F is also
right exact in both variables, then there exists a unique right exact functor F’ : € X2 —  of
k-linear abelian categories, with the property that the diagram

CXD

NS

A
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commutes. The Deligne tensor product was introduced in [4]; it exists, is unique up to equivalence,
and is again a finite tensor category. Moreover, the bifunctor T is actually exact in both variables;
for details, we refer to [6, Sections 1.11 and 4.6].

Given objects C € € and D € 9, it is standard to denote the image in € X 9 of the object
(C,D) € € X D by C [X] D. When we restrict the tensor product in € [X] 2 to such objects, we are
basically using the original tensor products. Thus if C,C’ € € and D,D’ € 9, then

(CRXD)®(C'RD)=(C®yxC)X (D ®y D),

where ® denotes the tensor product in € [X] <. The unit object in € X 2 is 1¢ [X] 1. Moreover,
there is an isomorphism

Homgyg (C XD, C’' X D') ~ Homg(C,C") ®; Homg,(D,D")
of vector spaces, and using this, one can show that
Ext;;&@ (CXD,C K D) ~ Extz(C,C) ® Ext, (D, D)
as graded k-algebras for C € € and D € 9. In particular, there is an isomorphism
H' (¢ X 2) ~ H' (%) ® H'(2)

of cohomology rings. Therefore, if the categories € and & both satisfy Fg, then we see imme-
diately that H*(% [X] 9) is finitely generated, so that at least half of Fg also holds for € X 9.
However, if the ground field k is perfect, then by [10, Lemma 5.3] the Deligne tensor product sat-
isfies Fg if and only if it holds for both € and &. Moreover, in this situation, the Krull dimension
of H*(%¢ X @) is the sum of the Krull dimensions of H*(%) and H*(2).

3 | THE MAIN RESULT

In this main section, we show that every finite tensor category that satisfies Fg embeds into a finite
tensor category that also satisfies Fg, but for which the tensor product property does not hold.
The construction of the bigger category uses the Deligne tensor product, as well as the notion
of crossed product categories that we recall next. As before, we fix a field k and a finite tensor
k-category (¢, ®,1).

Suppose that a finite group G acts on & by tensor autoequivalences. This means that there exists
a monoidal functor Mon(G) — Autg (%), where Autg (%) is the monoidal category of tensor
autoequivalences on €, and Mon(G) is the monoidal category whose objects are the elements of
G, the only morphisms are the identity maps, and the monoidal product is the multiplication in
G. For an element o € G, we denote by a, the corresponding tensor autoequivalence on &, so
that the action of « on an object M € ¥ is «,.(M). Note that if 8 € G is another element, then by
definition there is a coherent isomorphism (), ~ a,of, in Autg(%).

Following [11, 14], when G acts on & as above, we define the crossed product category € X G
as follows. As a k-linear abelian category, it is G-graded, and equal to € in each degree. Thus the
objects in € X G are of the form @, ;(M,, a), with M, an object in € for each a € G, and a
morphism from @, c5(M,, @) to B cq(N,, @) is a sum B, (f. ), where f,: M, — N isa
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morphism in €. We define the tensor product on homogeneous objects and morphisms by

M, a) @ (N, ) = (M ® a.(N),ap),
(f,0)® (9.8 = (f ® a.(9), aB).

In this way, the crossed product category becomes a G-graded finite tensor category, with unit
object (1, e), where e is the identity element of G. The construction is in some sense a categorifi-
cation of skew group algebras. Note that € embeds as a finite tensor category into € X G, via the
assignment M — (M,e),for M € €.

As an abelian category, the crossed product category is a Deligne product. Namely, let Vecg
be the category of G-graded finite dimensional vector spaces over k, and consider the functor
T: € X Vecg; —> € X G defined as follows. The image of an object (M, V) is @ 4c(MI™ Ve, @),
where M" denotes the direct sum of n copies of M. Given a morphism M — N in %, the image of
the corresponding morphism (M, V) — (N, V) is the obvious morphism from @ cq(M4™ Ve, a)
to @yeq(NU™ Ve, ). Finally, suppose that 3 : V — W is a morphism in Vecg, that is, a tuple
($q)aec Witheach ¢, : V, — W, alinear transformation. Fixing bases for V, and W, we may
view 9, as a matrix (¢;;) with each ¢;; € k, from which we obtain a corresponding morphism
MimVe s MdmWe in & given by the matrix (c; 1) One now checks that T is a well-defined
bifunctor of k-linear abelian categories, and right exact in each variable. Moreover, given any k-
linear abelian category & together with a k-linear bifunctor F : € X Vec; — & which is right
exact in each variable, we can construct a right exact functor F’ : € X G —  as follows. Given
an object @ (M, a)in € X G, let V be the G-graded vector space which is just k in each degree,
and define

F'(@0c0(Me, @) = F(@accMas V)-
A morphism
@ucc(for @)1 Baec My, @) — By (Ng» @)
in € X G induces a morphism between (&, oM, V) and (BN, V) in € X Vecs, and we

define F/(@®,c5(f4» @) to be the image under F of the latter. One now checks that F’ is a well-
defined functor of k-linear abelian categories, and that the diagram

% X Vecg

S

A

commutes. Furthermore, one checks that F’ is unique with this property. This shows that € X G
is the Deligne product € [X] Vec as an abelian category but not as a finite tensor category when
we view Vecg as a fusion category. After all, the monoidal structure in € [X] Vec; does not use
the categorical G-action on 6.

Since € X G = € [X] Vec; as a k-linear abelian category, the cohomology ring H*(€ X G) is
isomorphic to the tensor product H*(€) ®; H*(Vec); this does not use the monoidal structures
in the categories involved. Now as Vec is a fusion category, its cohomology ring is trivial, and
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so H*(€ X G) ~ H*(®). Consequently, when Fg holds for either € or € X G, then at least the
cohomology ring of the other category is finitely generated. However, the following lemma shows
that Fg holds for one of the categories if and only if it holds for the other. Moreover, the support
varieties for the objects of € X G are just unions of support varieties over €.

Lemma 3.1. Let k be a field, (€, ®,1) a finite tensor k-category with a categorical action from a
finite group G, and € X G the corresponding crossed product category. Then the following hold.

(1) There is an isomorphism H* (€ X G) ~ H*(€) of cohomology rings.
(2) € satisfies Fg if and only if € X G does.
B) If ®yec(M,, ) is an object in € X G, then

V%X]G(®O{EG(MQ9 a)) = U V%(M(X)
aeG

when we use the isomorphism from (1) to replace H' (€ X G) by H' (%).

Proof. We saw an argument for (1) above, but we now give an elementary argument for both (1)
and (2). Namely, since the morphisms in & X G respect the G-grading, the cohomology of € X G
takes place in each individual degree. The projective objects are of the form @_5(P,, a), with
each P, projective in &, and a (minimal) projective resolution of an object @, (M, @) is of the
form @, (P, o), with each P_ a (minimal) projective resolution of M_,. Therefore, given another
object @, (N, @), there is a natural isomorphism

EXt, . (BaecMy, @), Baec(Ny, @) = @D Ext, (M, N,), @)
aeG

which is an isomorphism of rings when @,c;(M,, a) = @ (N, a). Note that since the unit
object in € X G is (1, ), it follows immediately that H*(€ X G) ~ H*(%), proving (1).

Suppose that € satisfies Fg. Then by (1) the cohomology ring H*(% X G) is finitely gener-
ated. If X = @,;(M,, @) is an object of € X G, then using the above isomorphism (), we see
that the cohomology ring H*(% X G) acts on ExtZ, (X, X) in a way that respects the G-grading.
That is, the action is induced by the action of H*(¢) on each EXt%(M «»M_,). Since the latter is a
finitely generated H*(%)-module for each a € G, we see that Ext;;,>q G(X ,X) is finitely generated
as a module over H*(€ X G), and so € X G satisfies Fg. Conversely, if the crossed product cate-
gory satisfies Fg, then H*(%) is finitely generated by (1) again. Moreover, if M is an object of €,
then Ext*%x] G((M ,e),(M,e)) is a finitely generated H*(% X G)-module. Using the isomorphism
(1), we then see that Extj% (M, M) is finitely generated as a module over H*(%), so that € satisfies
Fg. This proves (2).

For (3), we use again that the cohomology of € X G respects the G-grading. Given an object
(M,a) € € X G concentrated in degree a, consider the composition

M,x)

H*(8) — H*( X G) —omh Bt (M, @), (M, @)) —> EXt..(M, M)

of graded ring homomorphisms, where the outer ones are the isomorphisms from (). The compo-
sition equals ¢, that is, the homomorphism — ® M. Thus when we compute support varieties by
using H*(®), we see that V. (M, a)) = V(M). For an arbitrary object @,¢q (M, ) of € X G,
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we then see that

V%NG(GBO{GG(MWOC)) = U Vesc((M, a)) = U VM),
aeG aeG

since support varieties respect direct sums by [2, Proposition 3.3(i)]. [l

The group G acts on the crossed product category & X G by tensor autoequivalences in a natural
way. Namely, for an element o € G, the action on objects and morphisms in € X G is given by

a, (@ﬁeG(Mﬁa ﬁ)) = ®ﬁeG <a>k(Mﬁ)s alga_l)’

o, (Bpec(fp:B)) = Bpeq (@ (fp) aba™),

where we have used the notation a, to denote the tensor autoequivalences on both € and ¢ X G.
The following result shows that when the tensor product property holds for &, then a twisted
version holds for the crossed product category.

Proposition 3.2. Let k be a field, and (€, ®, 1) a non-semisimple finite tensor k-category that sat-
isfies the tensor product property for support varieties. Furthermore, let G be finite group acting on ¢
by tensor autoequivalences. Then for any objects (M, &) and (N, ) of € X G, concentrated in degrees
a and (3, the following holds:

Vixc((M, @) ® (N, ) = Vigyc((M, ) N Vigyg (@ (N, B))-

Proof. By the definition of the tensor product in ¢ X G and Lemma 3.1(3), we have

Vixc(M,a) @ (N, B)) = Vigyc(M @ a,(N),af)
=VeM ® a,(N))
=VgM) NVg(a.(N))
= Vigsao(M, ) N Vigyig (@, (N), afa™)

= V?NG((M’ C()) N V%NG(C{*(N’ 6)) |:]

In general, it is not always the case that Vg (a..(N, 8)) is equal to Vg, (N, 8), or equivalently
(by Lemma 3.1(3)), that V(N) is equal to Vz(a,(N)). Therefore, the above proposition may be
used to construct examples where the tensor product property does not hold. However, it turns out
that it is in fact not necessary to assume that the tensor product property holds for & to construct
such examples. Inspired by the twisted version of the tensor product property given in the propo-
sition, we formalize such a class of examples in a larger context next. Specifically, we will combine
the Deligne tensor product with a crossed product of a specific kind. As we shall see, when the
finite tensor category & that we start with is not semisimple (that is, not a fusion category), then
the finite tensor category that we construct turns out not to satisfy the tensor product property.

Let C, = {e, a} be the multiplicative group with two elements, where e is the identity. Con-
sider the twistingmap 7 : € X € — % X € given by interchanging the factors, that is, mapping
an object (M, N) to (N, M), and similarly for morphisms. This is a bilinear functor, and exact
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in each variable. Composing with the biexact structure bifunctor T: € X ¢ — € X €, we use
the universal property of the Deligne tensor product to obtain a unique right exact functor
a,: € X€ — € X € making the diagram

€ X6

CNXE

commute. The functors T and 7 are monoidal, hence so is «,,, making it a functor of finite tensor
categories. Moreover, from the diagram above we obtain

a,oa, 0l =a,0Tor =Totor =T

and from the universal property of T we may conclude that «a oc, is the identity. Thus «, is an
autoequivalence of order two, and there is a monoidal functor

Mon(C,) — Autg (€ X E)

mapping « to «,. We shall say that C, acts on € [X] € by interchanging factors, since for objects
C,C’ € € there is an equality

a,(CRC") =a,oT((C,C")) =T((C",C)) =C' K C.

We may now form the crossed product category (€ X €) X C,. When the ground field k is per-
fect and ¥ satisfies Fg, then as mentioned in Section 2, the Deligne tensor product € [X] € also
satisfies Fg, by [10, Lemma 5.3]. Then in turn so does (€ [X €) X C,, by Lemma 3.1(2). The fol-
lowing theorem, our main result, shows that if & is not a fusion category, that is, not semisimple,
then (% [X €) X C, does not satisfy the tensor product property for support varieties.

Theorem 3.3. Let k be a perfect field and (€, ®, 1) a non-semisimple finite tensor k-category that
satisfies Fg. Furthermore, let C, be the multiplicative group of order two, acting on € [X| € by inter-
changing factors. Then the finite tensor k-category (€ [X] €) X C, satisfies Fg, but not the tensor
product property for support varieties.

Proof. For simplicity, we denote the crossed product category (€ [X] €) X C, by . In the course
of the proof, we shall be using the tensor products in all the three categories €, € [X] €, and 9.
To distinguish them, we therefore denote them by ®, ®,, and ®,, respectively.

We saw in the paragraph preceding the theorem that & satisfies Fg. Now, since € is not
semisimple, we may choose a non-projective object M € €, for example the unit object; if 1 were
projective, then so would be every object N € &, since N ~ N ® 1 and the projectives form an
ideal. Choose a projective object P € € for which there exists an epimorphism P — M; there
exists such an object since % has enough projectives. Note that P is non-zero since M is not pro-
jective. Let us denote the object (P X M, @) of @ by just X, where « is the element of C, of order
two. We shall show that

Vo (X ®,X) # Vo (X)
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and consequently that the tensor product property for support varieties in & does not hold, since
trivially Vg, (X) N V5 (X) = Vg (X).

By [2, Corollary 4.2], since & satisfies Fg and M is not projective, the support variety V(M) is
not trivial. Then by [2, Proposition 6.2], the k-vector space Ext%(M , M) is non-zero for infinitely
many »n > 1. Consider now the object P [X] M of € [X €. At the end of Section 2, we saw that there
is an isomorphism

EXt, (P RIM, P I M) = Ext, (P, P) ® Ext},(M, M)

of k-vector spaces, and so since P is non-zero we see that Extégg(P X M, P [X] M) must be non-
zero for infinitely many n > 1. The Deligne product € [X € satisfies Fg (again from the paragraph
preceding the theorem), hence by using [2, Proposition 6.2 and Corollary 4.2] again we see that
P XM is not projective in € [X] €. This implies that X = (P [X] M, ) is not projective in &, as
explained in the proof of Lemma 3.1. Consequently, the support variety V4, (X) is not trivial, again
by [2, Corollary 4.2].

Now consider the object X ®, X. By definition of the tensor product in &, we obtain

X®,X=(PKRM)®, a,(PKM),a?)
=(PXM)®, (M X P),e)
=(PM)X (M ® P),e),

where e is the identity element of C,. Let us denote the objects P @ M and M ® P in € by Q; and
Q,, respectively; these are both projective, since the projective objects form an ideal. As in the
previous paragraph, there is an isomorphism

EXt(*glz(g(Ql X Q,,Q; X Q) = Extz(Qy, Q) ® Ext;(Q,,Q,)

of k-vector spaces, and so since Q; and Q, are projective in &, we conclude this time that
Ext;’fggg(Q1 X Q,,Q; X1 Q,) = 0forall n > 1. Therefore, by [2, Proposition 6.2 and Corollary 4.2],
the object Q, X Q, is projective in € [X] €. Again, as explained in the proof of Lemma 3.1, we
now see that X ®, X = (Q; X Q,, e) is projective in &, hence the support variety V(X ®, X) is
trivial. This shows that Vg, (X ®, X) # Vg (X). O

In general, each factor in a Deligne tensor product embeds into it, with a structure preserving
functor. Thus if € and 9 are finite tensor categories, then € embeds (as a finite tensor category)
into € X @ via C — C [X] 15, and similarly for morphisms. Using this, we see that € embeds as
a finite tensor category into (¢ [X] ) X C, via C — (C [X 1, e). Consequently, Theorem 3.3 shows
that over a perfect field, any finite tensor category that satisfies Fg embeds into one that also
satisfies Fg, but not the tensor product property for support varieties — even when the tensor
product property does hold for the original category.

Corollary 3.4. Let k be a perfect field and (¢, ®¢, 1) a non-semisimple finite tensor k-category
that satisfies Fg. Then (€, ®, 1¢) embeds as a finite tensor category into a finite tensor k-category
(9, ®g,1g) that also satisfies Fg, but not the tensor product property for support varieties.

We end the paper with the following remark, and an open question.
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Remark 3.5.

(1) In the proof of Theorem 3.3, we constructed an object X in the crossed product category & =
(¢ X €) X C,, with the property that X is not projective, whereas the tensor product X ®, X
is (here ®, denotes the tensor product in (€ X €) X C,, as in the proof). When the ground
field k is algebraically closed, then this does not actually need the finiteness condition Fg; it
only requires the original category € to be non-semisimple.

To see this, suppose first that €, and &, are finite tensor categories over such a field k, and
take two non-zero objects U € &,V € %,. Since k is algebraically closed, the simple objects
of the Deligne product €, [X] %, are the objects S; [X] S,, where S; is a simple object of %;. There
is an isomorphism

sdny wosy

Bt oo (URIV, S, )S,) = Bxty, (U,S)) ® Extl, (V,S,)

of k-vector spaces, and so it follows that U [X] V is projective in 6, [X] 6, if and only if both U
and V are projective.

Returning to the proof of Theorem 3.3, start with a non-projective object M € €, and an
epimorphism P — M, with P projective in €. In the proof, we used support varieties to show
that the object X = (P [X] M, «) is not projective in 9, but that X ®, X is. However, when k
is algebraically closed, then from the above we see that P [X M is not projective in ¢ [X] €,
and then X = (P [X] M, ) is not projective in &. On the other hand, in the last part of the
proof we saw that the tensor product X ®, X is of the form (Q; X Q,, ), where Q, and Q, are
projective in €. Then using the above once more, we see that Q, [X] Q, is projective in ¢ [X] €,
and consequently X ®, X = (Q; X Q,, e) is projective in .

(2) The crossed product category (€ [X €) X C, from Theorem 3.3 is not braided. This can be
seen directly from the proof, by involving Proposition 2.1: the object X from the proof is not
projective in (€ X ) X C,, but the tensor product X ®, X is. One can also convince oneself
in a more direct way. Namely, let M be an object in C, and denote by @, the tensor product in
% Xl ¥, again as in the proof of Theorem 3.3. Then
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MK1L)®, 1KLa) = (MK Q, a,1K1),a*)
=(MX1)®; 1K 1),e)
=(MX1,e)

put-suiolwoo KA

whereas

IKL)® MKLa) =(1KDQ, a.(MKX1),a?)
=(OIXD® AKX M),e)
=(1XM,e).

The objects (M [X]1,¢e) and (1 [X] M, e) are isomorphic in (€ [X] €) X C, if and only if the
objects M X1 and 1 [X] M are isomorphic in € [X] €. This is not the case in general.
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In light of the remark, we ask the following question.
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Question. Does every braided finite tensor category that satisfies Fg also satisfy the tensor
product property for support varieties?
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