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Abstract

We show that over a perfect field, every non-semisimple

finite tensor category with finitely generated cohomol-

ogy embeds into a larger such category where the tensor

product property does not hold for support varieties.
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1 INTRODUCTION

In the two recent papers [2, 3], we studied support varieties in the setting of finite tensor cate-
gories. When the cohomology of such a category is finitely generated— as conjectured by Etingof
and Ostrik to be always true — then the varieties contain much homological information on the
objects, and the theory resembles that for support varieties over group algebras and more general
cocommutative Hopf algebras.
In [3], we focused on the tensor product property for support varieties. That is, given a finite

tensor category ÿ with finitely generated cohomology, we studied conditions under which the
equality

ýÿ(ÿ ⊗ ý) = ýÿ(ÿ) ∩ ýÿ(ý)
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holds for all objects ÿ,ý ∈ ÿ. It is well known that there are non-braided finite tensor categories
where this property does not hold, as observed, for example, in [1, 12]. However, we showed in
[3] that when the category is braided, the tensor product property holds for all objects if and only
if it holds between indecomposable periodic objects. In general, the tensor product property is
potentially a useful tool if one for example wants to use support varieties to classify the thick ten-
sor ideals in the stable category, although there are examples of such classifications in situations
where the property fails; see, for example, [1, 8, 9].
In this paper, we show that when the ground field is perfect, then every non-semisimple finite

tensor category ÿ with finitely generated cohomology embeds into one such category ÿ where
the tensor product property does not hold. This is true even if the tensor product property does
hold in ÿ. The category ÿ that we construct is a crossed product category that is not braided;
along the way we collect facts about such crossed product categories that may be of independent
interest. It remains an open question whether the tensor product property always holds in the
braided case.

2 PRELIMINARIES

We fix a field ý that is not necessarily algebraically closed, together with a finite tensor ý-
category (ÿ,⊗, ÿ) in the sense of [6]. This means that ÿ is a locally finite ý-linear abelian
category, with a finite set of isomorphism classes of simple objects. Moreover, every object
admits a projective cover, and hence also a minimal projective resolution. Furthermore, there
is a bifunctor ⊗ from ÿ × ÿ to ÿ, associative up to functorial isomorphisms, and called the
tensor product. There is also a unit object ÿ with respect to the tensor product, and (ÿ,⊗, ÿ)

is a monoidal category. In particular, the tensor product satisfies the so-called pentagon axiom;
see [6, Section 2.1]. The unit object is simple, and the monoidal structure is compatible with
the abelian structure in that the tensor product is bilinear on morphisms. Finally, every object
admits a left and a right dual in the sense of [6, Section 2.10], so that ÿ is rigid as a monoidal
category.
The rigidity of ÿ has important consequences; we mention three of them. First of all, by

[6, Proposition 4.2.1], the tensor product is biexact, that is, exact in each argument. Second,
by [6, Proposition 4.2.12], the projective objects form a two-sided ideal in ÿ, so that the tensor
product between a projective object and any other object is again projective. Finally, by [6, Propo-
sition 6.1.3], the projective and the injective objects of ÿ are the same, so that the category is
actually quasi-Frobenius.
Given objects ý,ý ∈ ÿ, we denote the graded ý-vector space ⊕∞

ÿ=0
Extÿ

ÿ
(ý,ý) by

Ext∗
ÿ
(ý,ý). With the usual Yoneda product as multiplication, the space Ext∗

ÿ
(ý,ý) becomes

a graded ý-algebra, and of particular interest is the algebra Ext∗
ÿ
(ÿ, ÿ). This is the cohomol-

ogy ring of ÿ, and denoted by H∗(ÿ). By [13, Theorem 1.7], this is a graded-commutative
ý-algebra. Since the tensor product is exact in the first argument, the functor − ⊗ ý induces a
homomorphism

H∗(ÿ)
ÿý
���→ Ext∗

ÿ
(ý,ý)

of graded ý-algebras, turning Ext∗
ÿ
(ý,ý) into a left and a right H∗(ÿ)-module. Now since

Ext∗
ÿ
(ý,ý) is a leftExt∗

ÿ
(ý,ý)-module and a rightExt∗

ÿ
(ý,ý)-module (again using the Yoneda
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product), we see that it is both a left and a right module overH∗(ÿ), via ÿý and ÿý , respectively.
However, by [3, Lemma 2.2] the two module actions coincide for homogeneous elements, up to
a sign. In particular, it makes no difference whether we view Ext∗

ÿ
(ý,ý) as a left or as a right

module over H∗(ÿ).
Since the cohomology ring is graded-commutative, the graded ý-algebra defined by

H∙(ÿ) =

{

H∗(ÿ) if the characteristic of ý is two,

H2∗(ÿ) if not

is commutative in the ordinary sense. We denote by ÿ0 the ideal H
+(ÿ) of this ring, that is, the

ideal of H∙(ÿ) generated by the homogeneous elements of positive degree. This is a maximal
ideal, sinceH0(ÿ) = Homÿ(ÿ, ÿ) is a field; it is a division ring since the unit object is simple, and
commutative by the above discussion.

Definition. The support variety of an objectý ∈ ÿ is

ýÿ(ý) = {ÿ0} ∪ {ÿ ∈ MaxSpecH∙(ÿ) ∣ Ker ÿý ⊆ ÿ}.

Note that the presence of ÿ0 in the definition of support varieties is superfluous whenever ý

is non-zero, for then this maximal ideal automatically contains the homogeneous ideal Ker ÿý .
Without any finiteness condition on the cohomology ofÿ, these support varietiesmay not contain
any important homological information, and so we make the following definition.

Definition. The finite tensor category ÿ satisfies the finiteness condition Fg if the cohomology
ring H∗(ÿ) is finitely generated, and Ext∗

ÿ
(ý,ý) is a finitely generated H∗(ÿ)-module for every

objectý ∈ ÿ.

By [2, Remark 3.5], one can replace H∗(ÿ) by H∙(ÿ) in this definition; the two versions are
equivalent. It was conjectured by Etingof andOstrik in [7] that every finite tensor category satisfies
Fg, and this conjecture is still open. As shown in [2], when this finiteness condition holds, then
the theory of support varieties becomes quite powerful, as in the classical case for modules over
group algebras of finite groups.
In this paper, we are concerned with the question of whether support varieties respect tensor

products, in the following sense.

Definition. The finite tensor categoryÿ satisfies the tensor product property for support varieties
if ýÿ(ý ⊗ ý) = ýÿ(ý) ∩ ýÿ(ý) for all objectsý,ý ∈ ÿ.

This definition makes perfect sense without assuming that ÿ satisfies Fg. By [2, Proposition
3.3(v)], the inclusion ýÿ(ý ⊗ ý) ⊆ ýÿ(ý) ∩ ýÿ(ý) always holds when ÿ is braided, that is,
when for all objectsý,ý ∈ ÿ there are functorial isomorphisms ÿý,ý ∶ ý ⊗ ý ⟶ ý ⊗ ý that
satisfy the hexagonal identities in [6, Definition 8.1.1]. In [1, 12], examples are given of finite tensor
categories where the tensor product property does not hold, in fact not even the above inclu-
sion. These examples are then necessarily non-braided. It is an open question whether the tensor
product property always holds in the braided case, or under the stronger requirement that ÿ is
symmetric, that is, when the braiding isomorphisms satisfy ÿý,ý◦ÿý,ý = 1ý⊗ý for allý,ý ∈ ÿ.
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Other than categories of modules of some types of Hopf algebras, the only case that has been
completely settled is when the ground field is algebraically closed and of characteristic zero; over
such a field, every symmetric finite tensor category satisfies the tensor product property, by [3,
Theorem 4.9]. The proof provided relies on Deligne’s classification of such categories as certain
skew group algebras, from [5].
By [3, Theorem 3.6], when ÿ is braided and satisfies Fg, the tensor product property holds

if and only if the following holds for all ý,ý ∈ ÿ: if ýÿ(ý) ∩ ýÿ(ý) is not trivial, that is, if
ýÿ(ý) ∩ ýÿ(ý) ≠ {ÿ0}, thený ⊗ ý is not projective. Consequently, if the tensor product prop-
erty does not hold, then there must exist two non-projective objects ý,ý whose tensor product
ý ⊗ ý is projective, but for which ýÿ(ý) ∩ ýÿ(ý) is not trivial. They must be non-projective
since the variety of a projective object is necessarily trivial; see the paragraph following [2, Defi-
nition 3.1]. In the following result, we show that at least such a pair of objects withý = ý cannot
exist.

Proposition 2.1. Let ý be a field and (ÿ,⊗, ÿ) a braided finite tensor ý-category. Then an object

ý ∈ ÿ is projective if and only if the ÿ-fold tensor productý⊗ÿ is projective for some ÿ ⩾ 1.

Proof. Ifý is projective, then so is every tensor productý⊗ÿ, since the projective objects form an
ideal inÿ. Conversely, suppose thatý⊗ÿ is projective for some ÿ ⩾ 2. Sinceÿ is rigid, the object
ý admits a left dualý∗, which implies that there exist morphisms

ý ⟶ ý ⊗ ý∗ ⊗ ý ⟶ ý

whose composition equals the identity on ý; see [6, Definition 2.10.1]. Tensoring with ý⊗(ÿ−2),
and using the fact thatÿ is braided, we obtain morphisms

ý⊗(ÿ−1) ⟶ ý⊗ÿ ⊗ ý∗ ⟶ ý⊗(ÿ−1)

whose composition equals the identity on ý⊗(ÿ−1). This implies that ý⊗(ÿ−1) is a direct sum-
mand ofý⊗ÿ ⊗ ý∗, which is a projective object sinceý⊗ÿ is. Consequently, the objectý⊗(ÿ−1)

is also projective. Repeating the process, we eventually end up with ý, which must then be
projective. □

Let us now in the last part of this section recall a construction that will play an important role
in the main result. Suppose that (ÿ,⊗ÿ , ÿÿ) and (ÿ,⊗ÿ , ÿÿ) are two finite tensor ý-categories.
Their Deligne tensor product, denotedÿ ⊠ ÿ, is a ý-linear abelian category that is universal with
respect to right exact bifunctors on ÿ × ÿ. In other words, there is a bifunctor ÿ∶ ÿ × ÿ ⟶

ÿ ⊠ ÿ of ý-linear abelian categories, right exact in both variables, with the property that for
every bifunctor ý∶ ÿ × ÿ ⟶ ý of ý-linear abelian categories, the following hold: if ý is also
right exact in both variables, then there exists a unique right exact functor ý′ ∶ ÿ ⊠ ÿ ⟶ ý of
ý-linear abelian categories, with the property that the diagram
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commutes. TheDeligne tensor productwas introduced in [4]; it exists, is unique up to equivalence,
and is again a finite tensor category. Moreover, the bifunctor ÿ is actually exact in both variables;
for details, we refer to [6, Sections 1.11 and 4.6].
Given objects ÿ ∈ ÿ and ÿ ∈ ÿ, it is standard to denote the image in ÿ ⊠ ÿ of the object

(ÿ, ÿ) ∈ ÿ × ÿ by ÿ ⊠ ÿ. When we restrict the tensor product inÿ ⊠ ÿ to such objects, we are
basically using the original tensor products. Thus if ÿ, ÿ′ ∈ ÿ and ÿ,ÿ′ ∈ ÿ, then

(ÿ ⊠ ÿ) ⊗ (ÿ′ ⊠ ÿ′) = (ÿ ⊗ÿ ÿ′) ⊠ (ÿ ⊗ÿ ÿ′),

where⊗ denotes the tensor product inÿ ⊠ ÿ. The unit object inÿ ⊠ ÿ is ÿÿ ⊠ ÿÿ . Moreover,
there is an isomorphism

Homÿ⊠ÿ(ÿ ⊠ ÿ,ÿ′ ⊠ ÿ′) ≃ Homÿ(ÿ, ÿ′) ⊗ý Homÿ(ÿ, ÿ′)

of vector spaces, and using this, one can show that

Ext∗
ÿ⊠ÿ

(ÿ ⊠ ÿ,ÿ ⊠ ÿ) ≃ Ext∗
ÿ
(ÿ, ÿ) ⊗ý Ext∗

ÿ
(ÿ, ÿ)

as graded ý-algebras for ÿ ∈ ÿ and ÿ ∈ ÿ. In particular, there is an isomorphism

H∗(ÿ ⊠ ÿ) ≃ H∗(ÿ) ⊗ý H∗(ÿ)

of cohomology rings. Therefore, if the categories ÿ and ÿ both satisfy Fg, then we see imme-
diately that H∗(ÿ ⊠ ÿ) is finitely generated, so that at least half of Fg also holds for ÿ ⊠ ÿ.
However, if the ground field ý is perfect, then by [10, Lemma 5.3] the Deligne tensor product sat-
isfies Fg if and only if it holds for bothÿ andÿ. Moreover, in this situation, the Krull dimension
of H∗(ÿ ⊠ ÿ) is the sum of the Krull dimensions of H∗(ÿ) and H∗(ÿ).

3 THEMAIN RESULT

In thismain section, we show that every finite tensor category that satisfiesFg embeds into a finite
tensor category that also satisfies Fg, but for which the tensor product property does not hold.
The construction of the bigger category uses the Deligne tensor product, as well as the notion
of crossed product categories that we recall next. As before, we fix a field ý and a finite tensor
ý-category (ÿ,⊗, ÿ).
Suppose that a finite groupÿ acts onÿ by tensor autoequivalences. Thismeans that there exists

a monoidal functor Mon(ÿ) ⟶ Aut⊗(ÿ), where Aut⊗(ÿ) is the monoidal category of tensor
autoequivalences on ÿ, and Mon(ÿ) is the monoidal category whose objects are the elements of
ÿ, the only morphisms are the identity maps, and the monoidal product is the multiplication in
ÿ. For an element ÿ ∈ ÿ, we denote by ÿ∗ the corresponding tensor autoequivalence on ÿ, so
that the action of ÿ on an object ý ∈ ÿ is ÿ∗(ý). Note that if ÿ ∈ ÿ is another element, then by
definition there is a coherent isomorphism (ÿÿ)∗ ≃ ÿ∗◦ÿ∗ in Aut⊗(ÿ).
Following [11, 14], when ÿ acts on ÿ as above, we define the crossed product category ÿ ⋊ ÿ

as follows. As a ý-linear abelian category, it is ÿ-graded, and equal toÿ in each degree. Thus the
objects in ÿ ⋊ ÿ are of the form ⊕ÿ∈ÿ(ýÿ, ÿ), with ýÿ an object in ÿ for each ÿ ∈ ÿ, and a
morphism from ⊕ÿ∈ÿ(ýÿ, ÿ) to ⊕ÿ∈ÿ(ýÿ, ÿ) is a sum ⊕ÿ∈ÿ(ÿÿ, ÿ), where ÿÿ ∶ ýÿ ⟶ ýÿ is a
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morphism inÿ. We define the tensor product on homogeneous objects and morphisms by

(ý, ÿ) ⊗ (ý, ÿ) = (ý ⊗ ÿ∗(ý), ÿÿ),

(ÿ, ÿ) ⊗ (g , ÿ) = (ÿ ⊗ ÿ∗(g), ÿÿ).

In this way, the crossed product category becomes a ÿ-graded finite tensor category, with unit
object (ÿ, ÿ), where ÿ is the identity element of ÿ. The construction is in some sense a categorifi-
cation of skew group algebras. Note thatÿ embeds as a finite tensor category intoÿ ⋊ ÿ, via the
assignmentý ↦ (ý, ÿ), forý ∈ ÿ.
As an abelian category, the crossed product category is a Deligne product. Namely, let Vecÿ

be the category of ÿ-graded finite dimensional vector spaces over ý, and consider the functor
ÿ∶ ÿ × Vecÿ ⟶ ÿ ⋊ ÿ defined as follows. The image of an object (ý,ý) is⊕ÿ∈ÿ(ýdimýÿ , ÿ),
whereýÿ denotes the direct sum of ÿ copies ofý. Given amorphismý ⟶ ý inÿ, the image of
the correspondingmorphism (ý,ý) ⟶ (ý,ý) is the obvious morphism from⊕ÿ∈ÿ(ýdimýÿ , ÿ)

to ⊕ÿ∈ÿ(ýdimýÿ , ÿ). Finally, suppose that ÿ∶ ý ⟶ ÿ is a morphism in Vecÿ , that is, a tuple
(ÿÿ)ÿ∈ÿ with each ÿÿ ∶ ýÿ ⟶ ÿÿ a linear transformation. Fixing bases for ýÿ andÿÿ, we may
view ÿÿ as a matrix (ýÿÿ) with each ýÿÿ ∈ ý, from which we obtain a corresponding morphism
ýdimýÿ ⟶ ýdimÿÿ in ÿ given by the matrix (ýÿÿ1ý). One now checks that ÿ is a well-defined
bifunctor of ý-linear abelian categories, and right exact in each variable. Moreover, given any ý-
linear abelian categoryý together with a ý-linear bifunctor ý∶ ÿ × Vecÿ ⟶ ý which is right
exact in each variable, we can construct a right exact functor ý′ ∶ ÿ ⋊ ÿ ⟶ ý as follows. Given
an object⊕ÿ∈ÿ(ýÿ, ÿ) inÿ ⋊ ÿ, letý be theÿ-graded vector spacewhich is just ý in each degree,
and define

ý′
(

⊕ÿ∈ÿ(ýÿ, ÿ)
)

= ý
(

⊕ÿ∈ÿýÿ, ý
)

.

Amorphism

⊕ÿ∈ÿ(ÿÿ, ÿ)∶ ⊕ÿ∈ÿ (ýÿ, ÿ) ⟶ ⊕ÿ∈ÿ(ýÿ, ÿ)

in ÿ ⋊ ÿ induces a morphism between (⊕ÿ∈ÿýÿ, ý) and (⊕ÿ∈ÿýÿ, ý) in ÿ × Vecÿ , and we
define ý′(⊕ÿ∈ÿ(ÿÿ, ÿ)) to be the image under ý of the latter. One now checks that ý′ is a well-
defined functor of ý-linear abelian categories, and that the diagram

commutes. Furthermore, one checks that ý′ is unique with this property. This shows thatÿ ⋊ ÿ

is the Deligne product ÿ ⊠ Vecÿ as an abelian category but not as a finite tensor category when
we view Vecÿ as a fusion category. After all, the monoidal structure in ÿ ⊠ Vecÿ does not use
the categorical ÿ-action onÿ.
Since ÿ ⋊ ÿ = ÿ ⊠ Vecÿ as a ý-linear abelian category, the cohomology ring H∗(ÿ ⋊ ÿ) is

isomorphic to the tensor productH∗(ÿ) ⊗ý H∗(Vecÿ); this does not use the monoidal structures
in the categories involved. Now as Vecÿ is a fusion category, its cohomology ring is trivial, and
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so H∗(ÿ ⋊ ÿ) ≃ H∗(ÿ). Consequently, when Fg holds for either ÿ or ÿ ⋊ ÿ, then at least the
cohomology ring of the other category is finitely generated. However, the following lemma shows
that Fg holds for one of the categories if and only if it holds for the other. Moreover, the support
varieties for the objects ofÿ ⋊ ÿ are just unions of support varieties overÿ.

Lemma 3.1. Let ý be a field, (ÿ,⊗, ÿ) a finite tensor ý-category with a categorical action from a

finite group ÿ, andÿ ⋊ ÿ the corresponding crossed product category. Then the following hold.

(1) There is an isomorphismH∗(ÿ ⋊ ÿ) ≃ H∗(ÿ) of cohomology rings.

(2) ÿ satisfies Fg if and only ifÿ ⋊ ÿ does.

(3) If⊕ÿ∈ÿ(ýÿ, ÿ) is an object inÿ ⋊ ÿ, then

ýÿ⋊ÿ

(

⊕ÿ∈ÿ(ýÿ, ÿ)
)

=
⋃

ÿ∈ÿ

ýÿ(ýÿ)

when we use the isomorphism from (1) to replaceH∙(ÿ ⋊ ÿ) byH∙(ÿ).

Proof. We saw an argument for (1) above, but we now give an elementary argument for both (1)
and (2). Namely, since the morphisms inÿ ⋊ ÿ respect the ÿ-grading, the cohomology ofÿ ⋊ ÿ

takes place in each individual degree. The projective objects are of the form ⊕ÿ∈ÿ(ÿÿ, ÿ), with
each ÿÿ projective inÿ, and a (minimal) projective resolution of an object⊕ÿ∈ÿ(ýÿ, ÿ) is of the
form⊕ÿ∈ÿ(ÿÿ, ÿ), with eachÿÿ a (minimal) projective resolution ofýÿ. Therefore, given another
object⊕ÿ∈ÿ(ýÿ, ÿ), there is a natural isomorphism

Ext∗
ÿ⋊ÿ

(

⊕ÿ∈ÿ(ýÿ, ÿ),⊕ÿ∈ÿ(ýÿ, ÿ)
)

≃
⨁

ÿ∈ÿ

Ext∗
ÿ

(ýÿ, ýÿ), (†)

which is an isomorphism of rings when ⊕ÿ∈ÿ(ýÿ, ÿ) = ⊕ÿ∈ÿ(ýÿ, ÿ). Note that since the unit
object inÿ ⋊ ÿ is (ÿ, ÿ), it follows immediately that H∗(ÿ ⋊ ÿ) ≃ H∗(ÿ), proving (1).
Suppose that ÿ satisfies Fg. Then by (1) the cohomology ring H∗(ÿ ⋊ ÿ) is finitely gener-

ated. If ÿ = ⊕ÿ∈ÿ(ýÿ, ÿ) is an object of ÿ ⋊ ÿ, then using the above isomorphism (†), we see
that the cohomology ringH∗(ÿ ⋊ ÿ) acts on Ext∗

ÿ⋊ÿ
(ÿ, ÿ) in a way that respects the ÿ-grading.

That is, the action is induced by the action of H∗(ÿ) on each Ext∗
ÿ
(ýÿ,ýÿ). Since the latter is a

finitely generated H∗(ÿ)-module for each ÿ ∈ ÿ, we see that Ext∗
ÿ⋊ÿ

(ÿ, ÿ) is finitely generated
as a module over H∗(ÿ ⋊ ÿ), and so ÿ ⋊ ÿ satisfies Fg. Conversely, if the crossed product cate-
gory satisfies Fg, then H∗(ÿ) is finitely generated by (1) again. Moreover, if ý is an object of ÿ,
then Ext∗

ÿ⋊ÿ
((ý, ÿ), (ý, ÿ)) is a finitely generated H∗(ÿ ⋊ ÿ)-module. Using the isomorphism

(†), we then see that Ext∗
ÿ
(ý,ý) is finitely generated as a module overH∗(ÿ), so thatÿ satisfies

Fg. This proves (2).
For (3), we use again that the cohomology of ÿ ⋊ ÿ respects the ÿ-grading. Given an object

(ý, ÿ) ∈ ÿ ⋊ ÿ concentrated in degree ÿ, consider the composition

H∗(ÿ) ⟶ H∗(ÿ ⋊ ÿ)
−⊗(ý,ÿ)
��������→ Ext∗

ÿ⋊ÿ
((ý, ÿ), (ý, ÿ)) ⟶ Ext∗

ÿ
(ý,ý)

of graded ring homomorphisms, where the outer ones are the isomorphisms from (†). The compo-
sition equals ÿý , that is, the homomorphism− ⊗ ý. Thus whenwe compute support varieties by
usingH∙(ÿ), we see thatýÿ⋊ÿ((ý, ÿ)) = ýÿ(ý). For an arbitrary object⊕ÿ∈ÿ(ýÿ, ÿ) ofÿ ⋊ ÿ,
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we then see that

ýÿ⋊ÿ

(

⊕ÿ∈ÿ(ýÿ, ÿ)
)

=
⋃

ÿ∈ÿ

ýÿ⋊ÿ((ý, ÿ)) =
⋃

ÿ∈ÿ

ýÿ(ýÿ),

since support varieties respect direct sums by [2, Proposition 3.3(i)]. □

The groupÿ acts on the crossed product categoryÿ ⋊ ÿ by tensor autoequivalences in a natural
way. Namely, for an element ÿ ∈ ÿ, the action on objects and morphisms inÿ ⋊ ÿ is given by

ÿ∗

(

⊕ÿ∈ÿ(ýÿ , ÿ)
)

= ⊕ÿ∈ÿ

(

ÿ∗(ýÿ), ÿÿÿ−1
)

,

ÿ∗

(

⊕ÿ∈ÿ(ÿÿ , ÿ)
)

= ⊕ÿ∈ÿ

(

ÿ∗(ÿÿ), ÿÿÿ−1
)

,

where we have used the notation ÿ∗ to denote the tensor autoequivalences on bothÿ andÿ ⋊ ÿ.
The following result shows that when the tensor product property holds for ÿ, then a twisted
version holds for the crossed product category.

Proposition 3.2. Let ý be a field, and (ÿ,⊗, ÿ) a non-semisimple finite tensor ý-category that sat-

isfies the tensor product property for support varieties. Furthermore, letÿ be finite group acting onÿ

by tensor autoequivalences. Then for any objects (ý, ÿ) and (ý, ÿ) ofÿ ⋊ ÿ, concentrated in degrees

ÿ and ÿ, the following holds:

ýÿ⋊ÿ((ý, ÿ) ⊗ (ý, ÿ)) = ýÿ⋊ÿ((ý, ÿ)) ∩ ýÿ⋊ÿ(ÿ∗(ý, ÿ)).

Proof. By the definition of the tensor product inÿ ⋊ ÿ and Lemma 3.1(3), we have

ýÿ⋊ÿ((ý, ÿ) ⊗ (ý, ÿ)) = ýÿ⋊ÿ(ý ⊗ ÿ∗(ý), ÿÿ)

= ýÿ(ý ⊗ ÿ∗(ý))

= ýÿ(ý) ∩ ýÿ(ÿ∗(ý))

= ýÿ⋊ÿ((ý, ÿ)) ∩ ýÿ⋊ÿ

(

ÿ∗(ý), ÿÿÿ−1
)

= ýÿ⋊ÿ((ý, ÿ)) ∩ ýÿ⋊ÿ(ÿ∗(ý, ÿ)). □

In general, it is not always the case thatýÿ⋊ÿ(ÿ∗(ý, ÿ)) is equal toýÿ⋊ÿ(ý, ÿ), or equivalently
(by Lemma 3.1(3)), that ýÿ(ý) is equal to ýÿ(ÿ∗(ý)). Therefore, the above proposition may be
used to construct exampleswhere the tensor product property does not hold. However, it turns out
that it is in fact not necessary to assume that the tensor product property holds forÿ to construct
such examples. Inspired by the twisted version of the tensor product property given in the propo-
sition, we formalize such a class of examples in a larger context next. Specifically, wewill combine
the Deligne tensor product with a crossed product of a specific kind. As we shall see, when the
finite tensor categoryÿ that we start with is not semisimple (that is, not a fusion category), then
the finite tensor category that we construct turns out not to satisfy the tensor product property.
Let ÿ2 = {ÿ, ÿ} be the multiplicative group with two elements, where ÿ is the identity. Con-

sider the twisting map ÿ∶ ÿ × ÿ ⟶ ÿ × ÿ given by interchanging the factors, that is, mapping
an object (ý,ý) to (ý,ý), and similarly for morphisms. This is a bilinear functor, and exact
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in each variable. Composing with the biexact structure bifunctor ÿ∶ ÿ × ÿ → ÿ ⊠ ÿ, we use
the universal property of the Deligne tensor product to obtain a unique right exact functor
ÿ∗ ∶ ÿ ⊠ ÿ ⟶ ÿ ⊠ ÿ making the diagram

commute. The functors ÿ and ÿ are monoidal, hence so is ÿ∗, making it a functor of finite tensor
categories. Moreover, from the diagram above we obtain

ÿ∗◦ÿ∗◦ÿ = ÿ∗◦ÿ◦ÿ = ÿ◦ÿ◦ÿ = ÿ

and from the universal property of ÿ we may conclude that ÿ∗◦ÿ∗ is the identity. Thus ÿ∗ is an
autoequivalence of order two, and there is a monoidal functor

Mon(ÿ2) ⟶ Aut⊗(ÿ ⊠ ÿ)

mapping ÿ to ÿ∗. We shall say that ÿ2 acts on ÿ ⊠ ÿ by interchanging factors, since for objects
ÿ, ÿ′ ∈ ÿ there is an equality

ÿ∗(ÿ ⊠ ÿ′) = ÿ∗◦ÿ
(

(ÿ, ÿ′)
)

= ÿ
(

(ÿ′, ÿ)
)

= ÿ′ ⊠ ÿ.

Wemay now form the crossed product category (ÿ ⊠ ÿ) ⋊ ÿ2. When the ground field ý is per-
fect and ÿ satisfies Fg, then as mentioned in Section 2, the Deligne tensor product ÿ ⊠ ÿ also
satisfies Fg, by [10, Lemma 5.3]. Then in turn so does (ÿ ⊠ ÿ) ⋊ ÿ2, by Lemma 3.1(2). The fol-
lowing theorem, our main result, shows that ifÿ is not a fusion category, that is, not semisimple,
then (ÿ ⊠ ÿ) ⋊ ÿ2 does not satisfy the tensor product property for support varieties.

Theorem 3.3. Let ý be a perfect field and (ÿ,⊗, ÿ) a non-semisimple finite tensor ý-category that

satisfies Fg. Furthermore, let ÿ2 be the multiplicative group of order two, acting onÿ ⊠ ÿ by inter-

changing factors. Then the finite tensor ý-category (ÿ ⊠ ÿ) ⋊ ÿ2 satisfies Fg, but not the tensor

product property for support varieties.

Proof. For simplicity, we denote the crossed product category (ÿ ⊠ ÿ) ⋊ ÿ2 byÿ. In the course
of the proof, we shall be using the tensor products in all the three categories ÿ, ÿ ⊠ ÿ, and ÿ.
To distinguish them, we therefore denote them by⊗,⊗1, and⊗2, respectively.
We saw in the paragraph preceding the theorem that ÿ satisfies Fg. Now, since ÿ is not

semisimple, we may choose a non-projective objectý ∈ ÿ, for example the unit object; if ÿwere
projective, then so would be every object ý ∈ ÿ, since ý ≃ ý ⊗ ÿ and the projectives form an
ideal. Choose a projective object ÿ ∈ ÿ for which there exists an epimorphism ÿ ⟶ ý; there
exists such an object since ÿ has enough projectives. Note that ÿ is non-zero since ý is not pro-
jective. Let us denote the object (ÿ ⊠ ý,ÿ) ofÿ by just ÿ, where ÿ is the element of ÿ2 of order
two. We shall show that

ýÿ(ÿ ⊗2 ÿ) ≠ ýÿ(ÿ)
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and consequently that the tensor product property for support varieties inÿ does not hold, since
trivially ýÿ(ÿ) ∩ ýÿ(ÿ) = ýÿ(ÿ).
By [2, Corollary 4.2], sinceÿ satisfies Fg andý is not projective, the support variety ýÿ(ý) is

not trivial. Then by [2, Proposition 6.2], the ý-vector space Extÿ
ÿ
(ý,ý) is non-zero for infinitely

many ÿ ⩾ 1. Consider now the object ÿ ⊠ ý ofÿ ⊠ ÿ. At the end of Section 2, we saw that there
is an isomorphism

Ext∗
ÿ⊠ÿ

(ÿ ⊠ ý,ÿ ⊠ ý) ≃ Ext∗
ÿ
(ÿ, ÿ) ⊗ý Ext∗

ÿ
(ý,ý)

of ý-vector spaces, and so since ÿ is non-zero we see that Extÿ
ÿ⊠ÿ

(ÿ ⊠ ý,ÿ ⊠ ý) must be non-
zero for infinitelymany ÿ ⩾ 1. The Deligne productÿ ⊠ ÿ satisfies Fg (again from the paragraph
preceding the theorem), hence by using [2, Proposition 6.2 and Corollary 4.2] again we see that
ÿ ⊠ ý is not projective in ÿ ⊠ ÿ. This implies that ÿ = (ÿ ⊠ ý,ÿ) is not projective in ÿ, as
explained in the proof of Lemma 3.1. Consequently, the support varietyýÿ(ÿ) is not trivial, again
by [2, Corollary 4.2].
Now consider the object ÿ ⊗2 ÿ. By definition of the tensor product inÿ, we obtain

ÿ ⊗2 ÿ =
(

(ÿ ⊠ ý) ⊗1 ÿ∗(ÿ ⊠ ý), ÿ2
)

= ((ÿ ⊠ ý) ⊗1 (ý ⊠ ÿ), ÿ)

= ((ÿ ⊗ ý) ⊠ (ý ⊗ ÿ), ÿ),

where ÿ is the identity element of ÿ2. Let us denote the objects ÿ ⊗ ý andý ⊗ ÿ inÿ by ý1 and
ý2, respectively; these are both projective, since the projective objects form an ideal. As in the
previous paragraph, there is an isomorphism

Ext∗
ÿ⊠ÿ

(ý1 ⊠ ý2, ý1 ⊠ ý2) ≃ Ext∗
ÿ
(ý1, ý1) ⊗ý Ext∗

ÿ
(ý2, ý2)

of ý-vector spaces, and so since ý1 and ý2 are projective in ÿ, we conclude this time that
Ext∗

ÿ⊠ÿ
(ý1 ⊠ ý2, ý1 ⊠ ý2) = 0 for all ÿ ⩾ 1. Therefore, by [2, Proposition 6.2 and Corollary 4.2],

the object ý1 ⊠ ý2 is projective in ÿ ⊠ ÿ. Again, as explained in the proof of Lemma 3.1, we
now see that ÿ ⊗2 ÿ = (ý1 ⊠ ý2, ÿ) is projective inÿ, hence the support variety ýÿ(ÿ ⊗2 ÿ) is
trivial. This shows that ýÿ(ÿ ⊗2 ÿ) ≠ ýÿ(ÿ). □

In general, each factor in a Deligne tensor product embeds into it, with a structure preserving
functor. Thus ifÿ andÿ are finite tensor categories, thenÿ embeds (as a finite tensor category)
into ÿ ⊠ ÿ via ÿ ↦ ÿ ⊠ ÿÿ , and similarly for morphisms. Using this, we see that ÿ embeds as
a finite tensor category into (ÿ ⊠ ÿ) ⋊ ÿ2 via ÿ ↦ (ÿ ⊠ ÿ, ÿ). Consequently, Theorem 3.3 shows
that over a perfect field, any finite tensor category that satisfies Fg embeds into one that also
satisfies Fg, but not the tensor product property for support varieties — even when the tensor
product property does hold for the original category.

Corollary 3.4. Let ý be a perfect field and (ÿ,⊗ÿ , ÿÿ) a non-semisimple finite tensor ý-category

that satisfies Fg. Then (ÿ,⊗ÿ , ÿÿ) embeds as a finite tensor category into a finite tensor ý-category

(ÿ,⊗ÿ , ÿÿ) that also satisfies Fg, but not the tensor product property for support varieties.

We end the paper with the following remark, and an open question.
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Remark 3.5.

(1) In the proof of Theorem 3.3, we constructed an object ÿ in the crossed product categoryÿ =

(ÿ ⊠ ÿ) ⋊ ÿ2, with the property thatÿ is not projective, whereas the tensor productÿ ⊗2 ÿ

is (here ⊗2 denotes the tensor product in (ÿ ⊠ ÿ) ⋊ ÿ2, as in the proof). When the ground
field ý is algebraically closed, then this does not actually need the finiteness condition Fg; it
only requires the original categoryÿ to be non-semisimple.
To see this, suppose first thatÿ1 andÿ2 are finite tensor categories over such a field ý, and

take two non-zero objects ý ∈ ÿ1, ý ∈ ÿ2. Since ý is algebraically closed, the simple objects
of theDeligne productÿ1 ⊠ ÿ2 are the objects ÿ1 ⊠ ÿ2, where ÿÿ is a simple object ofÿÿ . There
is an isomorphism

Ext∗
ÿ1⊠ÿ2

(ý ⊠ ý, ÿ1 ⊠ ÿ2) ≃ Ext∗
ÿ1

(ý, ÿ1) ⊗ý Ext∗
ÿ2

(ý, ÿ2)

of ý-vector spaces, and so it follows that ý ⊠ ý is projective inÿ1 ⊠ ÿ2 if and only if both ý

and ý are projective.
Returning to the proof of Theorem 3.3, start with a non-projective object ý ∈ ÿ, and an

epimorphism ÿ ⟶ ý, with ÿ projective inÿ. In the proof, we used support varieties to show
that the object ÿ = (ÿ ⊠ ý,ÿ) is not projective in ÿ, but that ÿ ⊗2 ÿ is. However, when ý

is algebraically closed, then from the above we see that ÿ ⊠ ý is not projective in ÿ ⊠ ÿ,
and then ÿ = (ÿ ⊠ ý,ÿ) is not projective in ÿ. On the other hand, in the last part of the
proof we saw that the tensor productÿ ⊗2 ÿ is of the form (ý1 ⊠ ý2, ÿ), whereý1 andý2 are
projective inÿ. Then using the above oncemore, we see thatý1 ⊠ ý2 is projective inÿ ⊠ ÿ,
and consequently ÿ ⊗2 ÿ = (ý1 ⊠ ý2, ÿ) is projective inÿ.

(2) The crossed product category (ÿ ⊠ ÿ) ⋊ ÿ2 from Theorem 3.3 is not braided. This can be
seen directly from the proof, by involving Proposition 2.1: the object ÿ from the proof is not
projective in (ÿ ⊠ ÿ) ⋊ ÿ2, but the tensor product ÿ ⊗2 ÿ is. One can also convince oneself
in a more direct way. Namely, letý be an object in ÿ, and denote by⊗1 the tensor product in
ÿ ⊠ ÿ, again as in the proof of Theorem 3.3. Then

(ý ⊠ ÿ, ÿ) ⊗2 (ÿ ⊠ ÿ, ÿ) =
(

(ý ⊠ ÿ) ⊗1 ÿ∗(ÿ ⊠ ÿ), ÿ2
)

= ((ý ⊠ ÿ) ⊗1 (ÿ ⊠ ÿ), ÿ)

= (ý ⊠ ÿ, ÿ)

whereas

(ÿ ⊠ ÿ, ÿ) ⊗2 (ý ⊠ ÿ, ÿ) =
(

(ÿ ⊠ ÿ) ⊗1 ÿ∗(ý ⊠ ÿ), ÿ2
)

= ((ÿ ⊠ ÿ) ⊗1 (ÿ ⊠ ý), ÿ)

= (ÿ ⊠ ý, ÿ).

The objects (ý ⊠ ÿ, ÿ) and (ÿ ⊠ ý, ÿ) are isomorphic in (ÿ ⊠ ÿ) ⋊ ÿ2 if and only if the
objectsý ⊠ ÿ and ÿ ⊠ ý are isomorphic inÿ ⊠ ÿ. This is not the case in general.

In light of the remark, we ask the following question.
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Question. Does every braided finite tensor category that satisfies Fg also satisfy the tensor
product property for support varieties?
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