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Abstract

The formic acid-ammonia dimer is an important example of a hydrogen-bonded

complex in which a double proton transfer can occur. Its microwave spectrum has

recently been reported and rotational constants and quadrupole coupling constants

were determined. Calculated estimates of the double-well barrier and the internal

barriers to rotation were also reported. Here we report a full-dimensional potential

energy surface (PES) for this complex, using two closely related ∆-machine learning

methods to bring it to the CCSD(T) level of accuracy. The PES dissociates smoothly

and accurately. Using a 2d quantum model the ground vibrational-state tunneling

splitting is estimted to be less than 10−4 cm−1. The dipole moment along the intrinsic

reaction coordinate is calculated along with a Mullikan charge analysis and supports

mildly ionic character of the minimum and strongly ionic character at the double-well

barrier.

Introduction

Hydrogen bonds are ubiquitous in nature. They critically stabilize the structure of proteins

and DNA; they are essential to the structure, high heat capacity, high solvency, high boiling

and sublimation points of condensed phases of water; they are responsible for the structural

properties of such polymers as cellulose, nylon, and cotton; and they are important in the

design of orally administered drugs. To the quantum chemist, the movement of a hydrogen-

bonded atom or proton by tunneling through a barrier from one acceptor to another remains

a source of active investigation, especially in multidimensional systems.

One can distinguish several types of hydrogen transfer in which tunneling might be im-

portant. The simplest is where one hydrogen or proton is transferred between a donor and

acceptor. Good examples are hydrogen transfers in malonaldehyde1,2 and in tropolone.3 In

both cases the tunneling frequency has been accurately calculated.

A more complicated type is where a complex is doubly hydrogen bonded and in which
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the synchronous transfer of the two hydrogen bonds maintains a double hydrogen bond but

switches the locations of the hydrogen bonds. This is often called concerted proton tun-

neling. The formic acid dimer is a good example of a symmetric system which has been

studied both experimentally4 and theoretically.5–7 Many other experiments and calculations

on doubly hydrogen-bonded complexes have been performed.8 Other complexes composed

of two carboxylic acids with C2v(m) symmetry9 have a symmetric double-well potential for

this concerted proton motion. Early microwave measurements showed effects of the tun-

neling10, 11 and provided accurate measurements of the tunneling frequency.12 This double

hydrogen bonding is similar to the hydrogen bonding in the adenine - thymine nucleic acid-

base pair. Many other carboxylic acid complexes, for examples, formic acid – nitric acid,13

benzoic acid – formic acid14 and acetic acid – formic acid,15 have the C2v(m) symmetry and

have been shown to exhibit resolvable concerted proton tunneling splittings in microwave

spectra. Two other doubly hydrogen bonded dimers with C2v(m) symmetry, fomamidine -

formate16 and tropolone - formic acid,17 did not show measurable splitting. It is likely that

the barrier to the proton tunneling is too high for these complexes. Doubly-bonded com-

plexes with asymmetric double-well potentials and lacking the C2v(m) symmetry are much

less likely to show tunneling splittings in the spectra. Additional doubly hydrogen-bonded

complexes are are: formic acid triflouro acetic acid,18 formic acid – malemide,19 formic acid

- glyoxylic acid,20 formic acid – diflouro acetic acid,21 formic acid - acrylic acid,22 and formic

acid - perfluorobutyric acid.23 Double proton hopping is debated also regarding DNA nu-

cleobase pairs, like the guanine-cytosine pair, due to its importance in genetic transcription

and mutagenesis. Optical spectroscopy experiments and calculations could not point out

the presence of a tunneling-mediated double hydrogen hopping mechanism for the guanine-

cytosine pair,24,25 while kinetics calculations26,27 or NMR experiments28 point to the fact

that tunneling may not be negligible for the system.

In the current study, we focus on a third type of hydrogen transfer system where there is

only one hydrogen bond, but in which the transfer between the two donors involves a change
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in the H atom identity and the binding site. An example which we will study in detail here

is the formic acid - ammonia (FA-NH3) heterodimer, and the transfer is illustrated in Figure

1 (the dipole moments in the figure will be discussed later). Other prominent examples are

formic acid complexed with CH4, H2O, HF and H2,
29 as well as with (CH3OH)n, n = 1−3.30

The doubly-bonded structure for the formic acid water complex was measured by Bauder,31

but tunneling was not observed.

Figure 1: Global minimum (GM) and transition state (TS1) structures of the formic acid –
NH3 heterodimer. Motion along the reaction coordinate involves rocking and translation of
the NH3 from GM1 to TS1 to GM2, the last of which is equivalent to GM1 by 180° rotation
around the vertical axis. The two out-of-plane N-H hydrogens at the bottom of each structure
overlap in this view. The red arrows indicate the direction and relative magnitude of the
dipole moment.

Microwave measurements and calculations for the formic acid-ammonia dimer were re-

cently published.32 Initial measurements were made in the 7-17 GHz range, followed by

double resonance measurements between 20 and 23 GHz. Accurate rotational constants and

quadrupole coupling parameters were reported by fitting the observed transitions for two

different states. These two states were assigned to possible 0+ and 0− tunneling states.

Tunneling transitions were not observed. This could be due to the high potential barrier or

further complication from the low barrier to internal rotation.
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Normally, double proton transfer is interpreted as the concerted proton tunneling in a

doubly hydrogen-bonded dimer, but Minyaev et al.29 consider the FA-NH3 case as a proton

migration through the ionic complex HCOO− - NH4
+. We examine this migration here by

a calculation of dipole moment along the Intrinsic Reaction Coordinate as well as standard

charge analysis and find a strong dependence of both the dipole moment and the charge

distribution on the motion.

Figure 1 shows the structures involved as well as the direction and relative magnitude

of the dipole moment, discussed in detail later. The calculations described below indicate

a more ionic character of the complex at the transition state. The IRC calculation shows

a fairly sharp increase in the dipole moment of the complex as the transition state is ap-

proached. Evidence for this ionic form is also suggested from the observation of HCOO– in

the IR studies of FA-NH3 ice complex paper by Hellebust, O’Riordan, and Sodeau.33 In that

study, the complex was modeled as a singly hydrogen-bonded complex leading to proton

transfer to produce ammonium formate.

The intriguing nature of this type of hydrogen bond led us to develop a full-dimensional

potential energy surface (PES) for this system. The surface was constructed using the ∆-

machine learning method34 that allowed us to bring the surface to CCSD(T)-level accuracy.

We then used the surface to examine the tunneling and dissociation energy in the complex.

We show below that there is substantial ionic character to FA-NH3, not only at the transition

state to double proton transfer but also at the global minimum, where there is one hydrogen

bond. We also investigate the dissociation energy of this hetero-dimer and show that its

high value is also consistent with substantial ionic character at the global minimum. Finally,

we investigate tunneling through the transition state barrier and show that it is negligibly

small.
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∆-machine learning potential

The goal of ∆-machine learning applied to potential surfaces is the correct a potential fit to

low-level electronic energies and gradients so as to bring it to the CCSD(T) level of accuracy.

The original implementation of ∆-machine learning method, as used in the present context,

has been described previously.34,35 The key equation for it is given by

VLL→CC = VLL +∆VCC−LL, (1)

where VLL→CC is the corrected PES, VLL is a PES fit to low-level DFT electronic data, and

∆VCC−LL is the correction PES based on high-level coupled cluster energies. It is noted that

the difference between CCSD(T) and DFT energies, ∆VCC−LL, is not as strongly varying as

VLL with respect to the nuclear configurations and therefore just a small number of high-level

electronic energies are adequate to fit the correction PES. Subsequently Liu and co-workers

suggested a similar strategy which results in a single expression for VLL→CC which is fit to the

DFT data plus difference energies.36 To summarize, in the original approach two potentials

are generated. In the second approach a data from the VLL→CC PES is use to generate a

new final fit VLL→CC Both approaches should lead to very similar final potentials VLL→CC .

The next section describes the data sets used for the fits as well as the specific permuta-

tional symmetry used for FA-NH3.

Computational Methods

The potential energy surfaces used in this work were constructed using permutational in-

variant polynomials (PIPs).37–40 These ensure that permutations of identical atoms in a

molecule that should permute at the energies considered, do permute. The basis sets used

for the current surfaces have the permutational symmetry 42111, meaning that the potential

is explicitly invariant with respect to the permutations of the four hydrogens associated with

6



the nitrogen atom, and similarly for the two oxygens. Permutations involving the hydrogen

on the carbon atom are infeasible at the energies of this study. We used polynomials of

order 2 and 3 for the ∆VCC−LL correction CCSD(T) surfaces and of order 4 for the VLL DFT

surface as well as for the VLL→CC PES surfaces. The fits will be described in more detail

below, but first we describe the data sets.

A DFT-B3LYP/aug-cc-pVDZ data set was made from several direct molecular dynamics

trajectories as well as from grids of points around important paths or stationary points.

All electronic structure calculations were performed in Molpro.41,42 For the trajectories we

typically used every fifth geometry (5 a.u. step time) and set the kinetic energy at a particular

value. Trajectories were terminated in any interatomic distance exceeded 20 bohr. The

trajectories were started either at the global minimum, GM, or at the cyclic transition state,

TS1, shown in Fig. 1. The trajectory starting position, kinetic energy (in cm−1), and yield

of points are as follows: (GM, 1000, 1200), (GM, 2000, 1200), (TS1, 3500, 800), (GM, 4000,

1200), (GM, 4000, 1200), (GM, 7000, 1200), (GM, 8000, 1200), (GM, 9000, 1200), (GM,

10000, 1200), (TS1, 10000, 1020), (TS1, 13000, 1200), (GM, 18000, 373), (GM 19000, 1200),

and (GM, 22000, 451), (GM, 25000, 415).

Grids were used to choose geometries near the GM, near TS1, or near points on the

imaginary coordinate (qim) or the intrinsic reaction coordinate (irc), discussed below. Typ-

ically, each grid consisted of 100 grid points near a starting geometry. For each grid point,

geometries were chosen by setting each of the 27 Cartesian coordinates to be a value chosen

at random between c ± del, where c is the Cartesian coordinate in Å and del, also in Å,

is selected for a particular grid. The following starting points and values of del were used:

(TS1: 0.001, 0.005, 0.01), (point qim1: 0.001), (point qim2: 0.001), (GM: 0.001, 0.005,

0.01), (point qim1: 0.005, 0.01), (point qim2: 0.005, 0.01), (point irc2: 0.005, 0.01, 0..05,

0.1), (point irc7: 0.005, 0.01), (point irc12: 0.005, 0.01, 0.05,, 0.1), (point irc17: 0.005, 0.01,

0.05, 0.1), (point irc22: 0.005, 0.01, 0.05, 0.1), (point irc27: 0.005, 0.01, 0.05, 0.1), (point

irc32: 0.005, 0.01, 0.05, 0.1), where the geometries of the starting points are given in the
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Supporting Information.

In addition to the calculations described above, a few dozen or so more geometries were

calculated in order to ensure that the potential function did not produce an energy lower than

that of the global minimum. This situation can occur when there is over-fitting or when there

are two few calculated energies in a critical region. The geometries where new points were

needed were identified by using diffusion Monte Carlo techniques, as, for example, in previous

work.43 These techniques are normally used to calculate the energy and wavefunction of the

zero point vibrational level, but they are also useful for identifying places where the fit

produces unreasonable results.

The ∆-ML method also requires a smaller dataset of high-level calculations, in this case

using CCSD(T)/aug-cc-pVDZ. Geometries were chosen at random from those used in an

early version of the larger, DFT data set. We calculated 3532 geometries from that set. An

even smaller dataset, with 472 energies and geometries was taken from a random subset of

the set of 3532. Figure 2 shows histograms of the energy distribution for the energies of the

DFT and the 3532 CCSD(T) data sets.

Table 1 describes properties of the potential energy surfaces fit to the datasets. Surface

∆VCC−LL(1) is a fit to a small data set of CCSD(T)-DFT/B3LYP difference energies cal-

culated at geometries of what we will call the “DFT” data set. Surface ∆VCC−LL(2) is a

somewhat larger set of similar difference energies. All fits use 42111 permutational symme-

try. Weighting was used for the VLL DFT surface: the weight as a function of energy was

given by the formula wt = dwt/(dwt + dE), where dwt = 0.02 hartree, and the weight of

the fit to the gradients was 1/3 that of the fit to the potential energies. Both weighted and

unweighted rms values for the energy and gradients are reported in the table. Given the

much improved rmse for the ∆VCC−LL(2) fit as compared to the ∆VCC−LL(1) fit, we did not

further pursue the ∆VCC−LL(1) fit.

Figure 3 shows correlation plots comparing the potential energies calculated using the

PES to the ab initio energies in the data set. Fig. 3a is for the ∆VCC−LL(2), while Figs
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Figure 2: Energy Histograms. a) data set of 17664 DFT/B3LYP geometries; b) data set of
3532 CCSD(T) geometries
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Table 1: Properties of the potential energy surfaces

PES ∆VCC−LL(1) ∆VCC−LL(2) VLL

Polynomial order 2 3 4
Num. geometries 472 3532 17664
Level CCSD(T) CCSD(T) DFT/B3LYP
Num. coefficients 118 883 5882
Datasize 472 3532 395662
Num. E with G 0 0 14000
Total Number E 472 3532 17664
rmse 21.1 5 37.7
rmsg - - 43.4
Weighting no no yes
wrmse - - 22.1
wrmsg - - 37.5

3b and c show, for the VLL DFT surface, the correlation plots for energies and gradients,

respectively. The CCSD(T) calculation for the difference energy does not provide gradients,

but these can be calculated analytically from the fit and used to construct the ∆-ML surfaces

discussed below.
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Figure 3: Correlation plots. a) for 42111 3 fit to 3532 CCSD(T)-B3LYP difference energies;
b) and c) for 43111 4 fit to 17664 B3LYP energies and gradients, respectively. R2 coefficients
for the correlations are a) 0.999732 b) 0.999991, c) 0.999889.
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Results and Discussion

Properties of the VLL DFT and VLL→CC PESs

The VLL DFT and the ∆VCC−LL(2) surfaces described above were used to form two CCSD(T)-

corrected surfaces. Metrics with respect to DFT/B3LYP or CCSD(T) benchmark calcula-

tions are shown in Table 2. We considered three stationary states on the PES, the global

minimum (GM), the transition-state TS1, mentioned above, and a transition-state to hin-

dered rotation of the GM NH3 around the N-O bond, TS2. For each stationary state, we

found the optimized geometry and used it in a normal mode analysis to calculate the har-

monic vibrational frequencies at that geometry. These form an excellent test of the first and

second derivatives of the energy with respect to the Cartesian coordinates. We then com-

pared the mean absolute errors (MAEs) of the frequencies from a benchmark calculation to

those found for the geometry on the PES. As can be seen from the first two rows of the table,

the DFT PES has quite good fidelity with respect to the B3LYP benchmark, both for the

GM energy, the energies of transition states TS1 and TS2, and the vibrational frequencies.

We calculated the ∆-ML surfaces by two related methods. The basic equation common

to both is given by equation 1

In the first, we used the method described by Nandi et al.3,34,44 At each desired geometry,

the results for the difference energy and gradients predicted by the ∆VCC−LL(2) fit were added

to the energy and gradients predicted by the DFT fit to produce the result. This surface is

called ∆−ML PES-1 and can be described briefly as the “sum-of-fits” method represented

by equation 1.

In the second method, at each geometry in the DFT data set, the difference energy

and gradients were calculated from the ∆VCC−LL(2) fit. These results were added to those

in the DFT data base to form a new, CCSD(T)-corrected, database. This database was

then fit using the same fourth-order 4221 basis. The fit is called ∆−ML PES-2 and can be

described briefly as a “fit-of-the-sum” method, a method first used by Liu and Li.36 As can
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be seen in the table, these two methods give nearly identical results, and both are in good

agreement with the CCSD(T) benchmark values. The supporting information (SI) provides

the potential energy surfaces for ∆VCC−LL(2), DFT, ∆-ML PES-1 and ∆-ML PES-2, as

well as datasets and CCSD(T) geometries, energies, and vibrational frequencies for the three

stationary points.

Table 2: Properties of the potential energy surfaces

Property: GM TS1 TS2 MAE GM MAE MAE
Energy Barrier Barrier GM TS1 TS2

Benchmark freqs. freqs. freqs.
or PES: (hartree) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

B3LYP -246.257815 3573.9 138.9 - - -
VLL DFT PES -246.257885 3604.8 148.4 3.1 17.3 4.9

CCSD(T) -245.800588 4168.3 156.2 - - -
∆-ML PES-1∗ -245.800601 4228.4 136.2 5.8 40.4 10.0
∆-ML PES-2∗∗ -245.800602 4229.5 137.7 5.9 40.5 9.9

∗ Sum of fits to DFT (energies and gradients) and ∆VCC−LL(2) (energies and gradients)
∗∗ Fit to sum of DFT and ∆VCC−LL(2) results (both energies and gradients)

Dissociation to Formic Acid and Ammonia

We calculated the CCSD(T)/aug-cc-pVDZ optimized potential energies and structures of

the GM for FA-NH3, an isolated NH3 and an isolated FA. The dissociation energy, De, is

given, as usual, by the difference between the energies of the isolated fragments and the GM,

and this equals 4143.7 cm−1. It is of interest to investigate the behavior of the ∆-ML PES 2

as the fragments separate, This is shown in Fig. 4. We started from the energy and structure

of the GM and then separated the NH3 from the formic acid along the direction of the bond

between the N and the hydrogen-bonded H; the zero of energy is taken to be that of the

GM, at which geometry the distance between the N and the hydrogen-bonded H atom is

about 1.774 Å.The geometries along this path were used to calculate both CCSD(T)/aug-cc-

pVDZ potential energies (red points) and potential energies from the ∆-ML PES-2 surface
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(blue line). It is clear that the asymptote is slightly higher than De. . This difference is

expected and is due to the fact that the structures of the FA and NH3 were fixed at the

geometries in the complex and are not the minimum structures of the free NH3 and FA. The

asymptote thus provides an upper limit on the dissociation energy. Because no points along

this potential energy cut were intentionally used in the PES fit, the agreement between the

CCSD(T) calculations and the PES results serves as a test of the accuracy of the PES.

4143.7 cm
-1

V(FA)+V(NH3)-V(GM)

GM

0 2 4 6 8 10

0

1000

2000

3000

4000

5000

Figure 4: Potential energy cut showing the dependence on the distance between the N and
the hydrogen-bonded H as the NH3 is displaced along the N-(HO) bond direction. The red
points are the results of direct CCSD(T)/aug-cc-pVDZ calculations, whereas the blue line
is the prediction of the ∆-ML PES2 surface. The black dotted line shows the dissociation
energy, De obtained from CCSD(T) calculations of the potentials of FA-NH3, free NH3, and
free FA.

A first look at multidimensional tunneling

We now address the motion involving TS1, shown in Fig. 1. The reaction through and across

this saddle point could take place by tunneling or by synchronous double proton transfer,

both are possible and appear to be present. We first address tunneling. As can be surmised by

the sudden change in the potential along te IRC there is strong multi-dimensional tunneling.

To address tunneling in a simple way, we use m normal modes of the saddle point, and,
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ignoring the vibrational angular momentum, the reduced-dimensional Hamiltonian can be

written as

Ĥ = −
1

2

m∑

i=1

∂2

∂Q2
i

+ V (Q1, · · · , Qm), (2)

where V (Q1, · · · , Qm) is the m-mode potential. In this work, we used m = 2, and the two

normal modes used are Q21 (i.e., the imaginary-frequency mode) and Q4. These two modes

are chosen because they have the largest values at the global minimum (see Table S1 in the

SI). This 2-dimensional Schroedinger equation is solved by using a direct-product of particle-

in-a-box basis functions. The eigen energies, and thus the tunneling splittings, are obtained

by diagonalizing the corresponding H-matrix.

We used two different 2-mode potentials for this calculation: unrelaxed and relaxed

potential. By unrelaxed, we mean all the remaining 19 modes are kept at 0. Because of this,

the minima on this unrelaxed 2-mode potential are not the global minimum geometry, and

they are only about 1700 cm−1 below TS1. Therefore, the splitting would be overestimated.

To make a better estimate of the tunneling splitting, we relaxed the remaining normal

modes approximately, resulting in a relaxed 2-mode potential. The details of the relaxation

are given in the SI. Fig. 5 shows contour plots of unrelaxed and relaxed 2-mode potentials

as a function of Q21 and Q4. The locations of the GM and TS1 are indicated by black dots.

It can be seen from the upper panel (the unrelaxed potential) that the GM does not overlap

with the minimum of the unrelaxed potential, and the barrier is significantly lower than the

CCSD(T) barrier. Very strong curvature is seen in both plots, indicating strong correlation

between these two modes.

The splitting obtained using the unrelaxed potential is 0.0015 cm−1, which is already very

small. This number significantly overestimates the splitting because the barrier is about 2500

cm−1 lower than the actual one. By using the relaxed potential, the splitting decreases to

3×10−5 cm−1, which is almost is two orders of magnitude smaller. We do not claim that this

very small splitting is a quantitative prediction. Rather, we simply state that the splitting

is likely less than 10−4 cm−1.
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Figure 5: Contour plots of the potential energy (in cm−1) as a function of Q21 and Q4: (A)
unrelaxed potential; (B) relaxed. The locations of the GM and TS1 are indicated by black
dots.
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The dipole moment and charge transfer on the IRC

We also calculated the IRC motion from TS1 using Gaussian 09 and B3LYP/aug-cc-pVDZ.

The geometries were then used to calculate the energies using the same Molpro B3LYP/aug-

cc-pVDZ that we used for the DFT benchmarks and the DFT PES. The barrier height was

found to be 3573 cm−1 by this method, very similar to the benchmark and the value found on

the DFT PES. The IRC is shown by the black line in Fig. 6, which also shows in blue points

the dipole moment for these geometries calculated with Molpro using B3LYP/aug-cc-pVDZ.

The ordinate shows the dipole moment, while the abscissa shows the IRC coordinate. The

IRC path in black is scaled to have the same height on the diagram as the dipole. Thus, the

minima to the right and left of the barrier have the geometry of the GM, while TS in the

center has the geometry corresponding to the saddle point; these geometries are show in the

figure.

It is obvious that there is a rapid change in the dipole moment on the IRC. The geometry

at the barrier has four hydrogens near the nitrogen and far from the remaining atoms of the

complex, so that the structure looks more like ammonium formate than the complex of

formic acid and ammonia. Of course, the dipole moment of NH +
4 HCOO– is expected to be

larger than that of NH3−HCOOH.

A quantitative estimate of the degree of charge transfer is provided by a standard Mullikan

charge analysis. This was done at the global minimum and the saddle point barrier and the

results are shown in Figure 7 As seen there is large (0.72) charge transfer at the saddle point

but less than a third that amount at the global minimum.
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Figure 6: IRC path through the TS1, showing the change in dipole moment. The black line
gives the reaction coordinate calculated by Gaussian; the potential energy maximum, 3577
cm−1, has been scaled to the maximum dipole moment, 4.9 debye. The blue dots give the
dipole moment as a function of this reaction coordinate. The larger dipole moment at the
transition state is evidence that motion over the barrier involves proton transfer.
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Figure 7: Mulliken population analysis of charges of formic acid-ammonia at the global
minimum and saddle point barrier separating two equivalent minima.

Summary and Conclusions

The two ∆-ML methods to bring a low-level DFT to CCSD(T) accuracy produce very

similar final results. This is not unexpected as both use the same approach to fit a difference

potential ∆VCC−LL. In the original approach this potential is just added to the fit to the

DFT data.34 In the subsequent approach36 ∆VCC−LL is used to create a dataset that is

fit to get a single corrected PES. Provided ∆VCC−LL is a precise fit to difference energies,

predictions from it should be very close to direct calculation of the difference energies. That

is evidently the case here.

We found that the dissociation energy of the formic acid-ammonia complex is 4144 cm−1

or about 11.8 kcal/mol. Because most N· · ·H-O hydrogen bonds have an energy of about

7.65 kcal/mol, our determination raises the question of why the dissociation energy should

be higher. A possible answer to this involves the ionic contribution to the binding energy.

The qualitative effect is seen from the dipole moments of the GM and TS1 structures in Figs.
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1 and 6. It is clear that the dipole moment increases rapidly as one approaches TS1 from

the GM on either side of the barrier. The stronger dipole implies more charge separation

between the positive NH4 end of the heterodimer and the negative HCOO end. This is

verified using a Mulliken charge analysis. However, a dipole is also present at the structure

of the GM and can contribute to the bonding. That it does is also supported by a symmetry

adapted perturbation theory (SAPT) analysis of the GM, performed using Molpro, which

shows that the largest contributions and the largest net contribution to the bonding are due

to E(1) polarization and E(1) exchange.

The large barrier of around 4200 cm−1 the SP separating the two minima immediately

suggests a small ground state tunneling splitting. (The corresponding splitting in the formic

acid dimer is 0.016 cm−1 with a barrier height of roughly 2850 cm−1.) Indeed, a 2d quantum

calculation of the tunneling splitting provides an approximation to the splitting of 10−5 cm−1.

It is safe to assume that the actual splitting is smaller than 10−4 cm−1.
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for support. RC thanks Università degli Studi di Milano for financial support under grant

PSR2022 DIP 005 PI RCONT. This material is partially based upon work supported by the

National Science Foundation under Grant No. CHE-1952289 at the University of Arizona.

Supporting Information Available

• Structural Information for the GM, TS1, and TS2

• Vibrational Frequencies and mode displacement vectors for the GM and TS1

20



• Computer files including those for the ∆VCC−LL(2), DFT, ∆-ML PES-1, and ∆-ML

PES-2 potential energy surfaces, the IRC structures and energies, and the data sets

used for the fits.

References

(1) Wang, Y.; Braams, B. J.; Bowman, J. M.; Carter, S.; Tew, D. P. Full-dimensional

quantum calculations of ground-state tunneling splitting of malonaldehyde using an

accurate ab initio potential energy surface. J. Chem. Phys. 2008, 128, 224314.

(2) Wang, Y.; Bowman, J. M. Mode-specific Tunneling Using the Qim Path: Theory and an

Application to Full-dimensional Malonaldehyde. J. Chem. Phys. 2013, 139, 154303:1–5.

(3) Nandi, A.; Laude, G.; Khire, S. S.; Gurav, N. D.; Qu, C.; Conte, R.; Yu, Q.; Li, S.;

Houston, P. L.; Gadre, S. R.; Richardson, J. O.; Evangelista, F. A.; Bowman, J. M.

Ring-Polymer Instanton Tunneling Splittings of Tropolone and Isotopomers using a ∆-

Machine Learned CCSD(T) Potential: Theory and Experiment Shake Hands. J. Amer.

Chem. Soc. 2023, 145, 9655–9664.
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