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Kernel-based learning algorithms have been extensively studied over the past two
decades for their successful applications in scientific research and industrial problem-
solving. In classical kernel methods, such as kernel ridge regression and support vector
machines, an unregularized offset term naturally appears. While its importance can be
defended in some situations, it is arguable in others. However, it is commonly agreed
that the offset term introduces essential challenges to the optimization and theoretical
analysis of the algorithms. In this paper, we demonstrate that Kernel Ridge Regression
(KRR) with an offset is closely connected to regularization schemes involving centered
reproducing kernels. With the aid of this connection and the theory of centered repro-
ducing kernels, we will establish generalization error bounds for KRR with an offset.
These bounds indicate that the algorithm can achieve minimax optimal rates.

Keywords: Centered reproducing kernels; regularized least squares; offset; minimax opti-
mal rate.
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1. Introduction

Kernel methods, with kernel ridge regression, support vector machines and kernel
principal component analysis being the most typical examples, play important roles
in nonlinear data analysis [7, 18, 19, 24, 25]. They have been used in many machine
learning tasks such as classification, regression, clustering, and dimension reduction.
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Their success in a variety real applications has inspired extensive research in this
topic in the last two decades.

In supervised learning, let X be the input space, Y be the output space, and
assume the input variable x ∈ X and output variable y ∈ Y are linked via an
unknown probability measure ρ on X × Y. Given a data set of N observations
D = {(xi, yi) : i = 1, . . . , N} sampled independently and identically distributed
according to ρ, a machine learning algorithm aims to learning a function that can
predict the value y for any x ∈ X as accurate as possible. Given a reproducing
kernel K, denote by HK the corresponding reproducing kernel Hilbert space and
∥ · ∥K the norm on HK . A kernel-based learning algorithm with an unregularized
offset takes the form

(fD,λ, bD,λ) = arg min
f∈HK

b∈R

{
1
N

N∑

i=1

L(yi, f(xi) + b) + λ∥f∥2
K

}
,

where L is a loss function measuring the error made when f(x)+ b is used to predict
the value y and λ > 0 is the regularization parameter that trades off the fitting error
and model complexity. The constant term b is called offset (or bias, threshold) and
is usually not regularized in the traditional formula of kernel learning algorithms.
It appears naturally and is clearly necessary in linear model based learning such as
ridge regression and linear support vector machines. When nonlinear reproducing
kernels are used, its importance seems arguable. It is observed that the offset may
play a crucial role in spline based regression if the kernel is only positive semidef-
inite or in text processing applications where the distribution of labels is typically
uneven. From an approximation perspective, however, the offset term seems unnec-
essary if the kernel is universal, i.e. the reproducing kernel Hilbert space HK is
sufficiently rich and can approximate any function well. Nevertheless, it is com-
monly agreed that the offset term brings essential difficulty to the optimization
and theoretically analysis of these algorithms [4, 6, 26, 32]. In this paper, we focus
on the regression problem. As the kernel ridge regression without an offset term
has been well studied in the literature, we will consider the kernel ridge regression
with offset, study its similarity to and difference from the no-offset algorithm, and
derive its generalization error bounds.

A main tool for our analysis is the theory of centered reproducing kernels. Cen-
tered kernel matrix is closely related to the empirical covariance operator and arises
naturally in kernel principal component analysis and other kernel based dimension
reduction algorithms [23, 31]. Centered kernel alignment was found beneficial in
kernel based regression, classification, pairwise learning, as well multiple kernel
clustering [2, 5, 14, 28–30].

The two main contributions of this paper are as follows. (i) We will build a con-
nection between the kernel ridge regression with offset and regularization schemes
with centered reproducing kernels. (ii) By the aid of centered reproducing ker-
nel theory we derive the generalization bounds for KRR with offset and verify it
achieves minimax optimal learning rate.
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The rest of this paper will be arranged as follows. In Sec. 2, we will introduce the
algorithm for KRR with offset, discuss its relation to centered reproducing kernels,
and state our main theorem as well as the key ideas towards its proof. In Sec. 3,
we provide properties of centered reproducing kernels that play essential roles in
our analysis. The proof of the main theorem is given in Secs. 4–6, where some
preliminary lemmas are stated in four while Secs. 5 and 6 are devoted to present
our technical analysis. We close with some concluding remarks in Sec. 7.

2. Kernel Ridge Regression with Offset

In this paper, we set Y ⊂ R and use the least squares loss L(y, t) = (y − t)2. The
algorithm for KRR with offset can be written as

(fD,λ, bD,λ) = arg min
f∈HK

b∈R

{
1
N

N∑

i=1

(f(xi) + b − yi)2 + λ∥f∥2
K

}
. (2.1)

Our primary purpose is to understand how well the solution fD,λ + bD,λ can approx-
imate the mean regression function

fρ(x) = E[y|x] =
∫

Y
ydρ(y|x),

where ρ(y|x) is the conditional distribution of y for a given x ∈ X.
By the well-known representer theorem, fD,λ ∈ span{Kxi, 1 ≤ i ≤ N}, so we

write

fD,λ =
N∑

i=1

ciKxi ,

where Kxi = K(xi, ·). Let K = [K(xi, xj)]Ni,j=1 be the kernel matrix defined on
the sampled input values x = {x1, . . . , xN}, IN denote the identity matrix on RN ,
e = 1√

N
(1, . . . , 1)⊤ ∈ RN , and Pe = ee⊤ be the orthogonal projection operator. By

simple calculation we can verify that the solution of (2.1) is given by

c = (c1, . . . , cN )⊤

= (IN − Pe)(λNIN + (IN − Pe)K(IN − Pe))−1(IN − Pe)y

bD,λ =
1
N

N∑

i=1

yi −
1
N

N∑

i=1

fD,λ(xi).

Note that (IN −Pe)K(IN −Pe) is the centered kernel matrix, which naturally moti-
vates the potential relation between KRR with offset and centered reproducing
kernels. To investigate this relationship, we define an empirically centered repro-
ducing kernel

K̂(x, u) = K(x, u) − 1
N

N∑

i=1

K(x, xi) −
1
N

N∑

i=1

K(xi, u) +
1

N2

N∑

i=1

N∑

j=1

K(xi, xj),
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and an associated regularization scheme

(f̂D,λ, b̂D,λ) = arg min
f∈H

K̂
b∈R

{
1
N

N∑

i=1

(f(xi) + b − yi)2 + λ∥f∥2
K̂

}
. (2.2)

Let K̂ be the kernel matrix corresponding to K̂. Obviously, K̂ = (IN − Pe)K(IN −
Pe). Again, by the representer theorem and the properties of quadratic function we
have

f̂D,λ =
N∑

i=1

ĉiK̂xi ,

with

ĉ = (ĉ1, . . . , ĉN )⊤ = (λNIN + K̂)−1(IN − Pe)y,

and b̂D,λ = 1
N

∑N
i=1 yi. It is easy to verify that ĉ = c and

∑N
i=1 ĉi = 0. They

together with the definition of K̂ imply the equivalence between (2.1) and (2.2).

Proposition 2.1. We have

f̂D,λ = fD,λ − 1
N

N∑

i=1

fD,λ(xi).

Consequently,

f̂D,λ + b̂D,λ = fD,λ + bD,λ.

The data dependent feature of K̂ makes it inappropriate to characterize the
approximation ability of the algorithm. To overcome this difficulty and for theoret-
ical analysis purpose, we define a population version of the centered kernel as

K̄(x, u) = K(x, u) − Eξ[K(ξ, u)] − Eξ′ [K(x, ξ′)] + Eξ,ξ′ [K(ξ, ξ′)]

and denote K̄ the corresponding kernel matrix. Define mean value of y as b̄ = E[y] =
E[fρ(x)] and the centered response values by ȳi = yi − b̄. Then D̄ = {(xi, ȳi) : i =
1, . . . , N} is a sample of (x, ȳ = y − b̄) which corresponds to a centered regression
function

f̄ρ(x) = E[y − b̄|x] = fρ(x) − b̄ = fρ(x) −
∫

X×Y
ydρ(x, y).

Define

f̄D,λ = arg min
f∈HK̄

{
1
N

N∑

i=1

(f(xi) − ȳi)2 + λ∥f∥2
K̄

}
. (2.3)

Note that both the kernel K̄ and sample D̄ are not computable, so f̄D,λ is not
computable either. But since ȳi ≈ yi − b̂D,λ and K̄ ≈ K̂, we would expect f̄D,λ

is close to for f̂D,λ and thus is able to serve as a good bridge to our theoretical
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analysis of KRR with offset. Our error bound analysis will be based on the follow
error decomposition:

∥fD,λ + bD,λ − fρ∥ρ = ∥f̂D,λ + b̂D,λ − fρ∥ρ = ∥f̂D,λ + b̂D,λ − f̄ρ − b̄∥ρ

≤ ∥f̂D,λ − f̄D,λ∥ρ + ∥f̄D,λ − f̄ρ∥ρ + |b̂D,λ − b̄|, (2.4)

where ∥ · ∥ρ denotes the L2
ρX

norm.
Now we state our assumptions and error bounds. Define the integral operator

associated to the kernel K by

LKf(x) =
∫

X
K(x, u)f(u)dρX(u).

It defines a symmetric, positive, and compact operator both on L2
ρX

and on HK . We
also analogously define the integral operator associated to K̄. Our first assumption
requires that f̄ρ be well approximated by HK̄ . We adopt classical source condition
in the interpolation space,

f̄ρ = Lr
K̄ h̄ρ, for some h̄ρ in L2

ρX
(X) and r > 0. (2.5)

The second condition is on the capacity of the reproducing kernel Hilbert space
as measured by the effective dimension. We assume the effective dimension of LK

satisfies

NLK (λ) := Tr(LK(LK + λI)−1) ≤ C0λ
−s, (2.6)

for some C0 ≥ 1 and s > 0. From Theorem 3.1, (2.6) implies NLK̄
(λ) ≤ C0λ−s.

With the assumptions above, we have the following error bounds.

Theorem 2.1. Assume |y| ≤ M almost surely, (2.5) holds with some 0 < r ≤ 1
and (2.6) holds with some 0 < s < 1.

(i) If 1
2 ≤ r ≤ 1, then with the choice λ = N− 1

2r+s we have

E[∥f̂D,λ + b̂D,λ − fρ∥ρ] ≤ C∗
1N− r

2r+s ;

(ii) If 0 < r < 1
2 , then with the choice λ = N− 1

1+s we have

E[∥f̂D,λ + b̂D,λ − fρ∥ρ] ≤ C∗
2N− r

1+s ,

where C∗
1 and C∗

2 , are constant independent of D, N, or λ and will be specified in
the proof.

Remark. It is proved in [1] that, under a similar source condition fρ ∈ Lr
K(L2

PX
)

(which is almost equivalent to the assumption (2.5)) and the assumption (2.6), the
minimax optimal rate of learning fρ by KRR without offset is O(n− r

2r+s ). As a
result, under the source condition (2.5) and (2.6) the minimax rate of learning f̄ρ

by the centered kernel K̄ via the scheme (2.3) is also O(n− r
2r+s ). Theorem 2.1 shows

that KRR with offset can also reach the minimax optimal rate if 1
2 ≤ r ≤ 1.
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3. Centered Reproducing Kernels

One easily verifies that LK̄ = (I −P )LK(I −P ), where P is the orthogonal pro-
jection on the subspace in L2

ρX
spanned by constant functions. Recall that LK is

compact and positive semi-definite on L2
ρX

, and so is LK̄ .

Theorem 3.1. Let λ1 ≥ λ2 ≥ · · · ≥ 0 be the eigenvalues of LK , and λ̄1 ≥
λ̄2 ≥ · · · ≥ 0 be the eigenvalues of LK̄. We count multiplicity for both eigenvalue
sequences. One has the interlacing relationship

λ1 ≥ λ̄1 ≥ λ2 ≥ λ̄2 ≥ · · ·λn ≥ λ̄n ≥ · · · .

Consequently, for any 0 < s < 1,

NLK (λ) − λ1

λ1 + λ
≤ NLK̄

(λ) ≤ NLK (λ)

and therefore, as λ ↓ 0,

NLK (λ) = O(λ−s) ⇔ NLK̄
(λ) = O(λ−s).

Proof. This is a direct corollary of the Cauchy interlacing theorem in linear alge-
bra. See for example, [10, p. 242]. We give a proof for the sake of completeness. For
n ≥ 0, denote En a subspace of L2

ρX
with dimension n. In particular, E0 = {0}.

For n ≥ 1, we use the min-max theorem to have

λ̄n = inf
En−1

sup
x∈E⊥

n−1\{0}

⟨x, (I − P )LK(I − P )x⟩ρ
∥x∥2

ρ

= inf
En−1

sup
x∈(En−1∪{1})⊥\{0}

⟨x, LKx⟩ρ
∥x∥2

ρ

≤ inf
En−1

sup
x∈E⊥

n−1\{0}

⟨x, LKx⟩ρ
∥x∥2

ρ

= λn.

On the other hand, for any subspace En−1 of L2
ρX

,

sup
x∈(En−1∪{1})⊥\{0}

⟨x, LKx⟩ρ
∥x∥2

ρ
≥ inf

v
sup

x∈(En−1∪{v})⊥\{0}

⟨x, LKx⟩ρ
∥x∥2

ρ

≥ inf
En

sup
x∈E⊥

n \{0}

⟨x, LKx⟩ρ
∥x∥2

ρ

= λn+1,

which implies that λ̄n ≥ λn+1. This verifies the interlacing relation. Therefore,

NLK (λ) − λ1

λ1 + λ
≤ NLK̄

(λ) ≤ NLK (λ).

The proof is complete.

In the following lemma, we state the relationship between K̂ and K̄.

Lemma 3.1. For K̂ and K̄, we have the following assertions.

(i) If we take the maps K -→ K̄ and K -→ K̂ as transformations of kernels and
denote them by ·̂ and ·, respectively, then we have the following relations:

ˆ̄K = K̂, ¯̂K = K̄, ¯̄K = K̄, ˆ̂K = K̂. (3.1)
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(ii) The associated kernel matrices satisfy

K̂ = (IN − Pe)K̄(IN − Pe). (3.2)

As a result, we have

K̂e = 0. (3.3)

So e is an eigenvector of K̂ associated with the eigenvalue 0.

Proof. For item (i) we only prove ¯̂K = K̄. Other relations in (3.1) follow from
similar calculation. Note that

¯̂K(s, t) = K̂(s, t) −
∫

X
K̂(ξ, t)dρX(ξ)

−
∫

X
K̂(s, ξ′)dρX(ξ′) +

∫

X×X
K̂(ξ, ξ′)dρX(ξ)dρX(ξ′)

= K(s, t) − 1
N

N∑

i=1

K(xi, t) −
1
N

N∑

i=1

K(s, xi) +
1

N2

N∑

p,q=1

K(xp, xq)

−
(∫

X
K(ξ, t)dρX(ξ) − 1

N

N∑

i=1

K(xi, t)

− 1
N

N∑

i=1

∫

X
K(ξ, xi)dρX(ξ) +

1
N2

N∑

p,q=1

K(xp, xq)

)

−
(∫

X
K(s, ξ′)dρX(ξ′) − 1

N

N∑

i=1

∫

X
K(xi, ξ

′)dρX(ξ′)

− 1
N

N∑

i=1

K(s, xi) +
1

N2

N∑

p,q=1

K(xp, xq)

)

+

(∫

X×X
K(ξ, ξ′)dρX(ξ)dρX(ξ′) − 1

N

N∑

i=1

∫

X
K(xi, ξ

′)dρX(ξ′)

− 1
N

N∑

i=1

∫

X
K(ξ, xi)dρX(ξ) +

1
N2

N∑

p,q=1

K(xp, xq)

)

= K(s, t) −
∫

X
K(ξ, t)dρX(ξ) −

∫

X
K(s, ξ′)dρX(ξ′)

+
∫

X×X
K(ξ, ξ′)dρX(ξ)dρX(ξ′)

= K̄(s, t).

We obtain ¯̂K = K̄ in (3.1).
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For item (ii), note

PeK̄ =
1√
N

e

(
N∑

i=1

K̄(xi, x1),
N∑

i=1

K̄(xi, x2), . . . ,
N∑

i=1

K̄(xi, xN )

)
,

K̄Pe =
1√
N

(
N∑

i=1

K̄(x1, xi),
N∑

i=1

K̄(x2, xi), . . . ,
N∑

i=1

K̄(xN , xi)

)⊤

e⊤,

PeK̄Pe =

⎛

⎝ 1
N

N∑

i,j=1

K̄(xi, xj)

⎞

⎠ ee⊤.

We can verify (3.2) by comparing each entry of both sides of the equation. In
particular, note that ˆ̄K = K̂ = (IN −Pe)K(IN −Pe) is the kernel matrix of ˆ̄K = K̂.
Equation (3.3) follows from (3.2) and the simple fact (IN − Pe)e = e− e = 0.

4. Useful Preliminary Lemmas

In this section, we collect some useful preliminary lemmas that will be used in the
proof of our main result. The first one is a well-known concentration inequality. It
is derived by simple calculation.

Lemma 4.1. Let ξ be a random variable on a Hilbert space and {ξi}N
i=1 be a sample

of N observations drawn independently for ξ. If ∥ξ∥ ≤ M almost surely, then

E
[∥∥∥∥∥

1
N

N∑

i=1

ξi − E[ξ]

∥∥∥∥∥

]
≤ M√

N
.

The following lemma allows to obtain expectation bound from probabilistic
bound. It is well known and a detailed proof can be found in [9].

Lemma 4.2. Let ξ be positive random variable. If there are constants a > 0, b >
0, τ > 0 such that for any 0 < δ ≤ 1, with confident at least 1 − δ, there holds
ξ ≤ a(log b

δ )τ , then for any θ > 0 we have E[ξθ] ≤ aθbΓ(τθ + 1).

For a Mercer kernel K, define the sampling operator Sx : HK -→ RN by
Sxf = (f(x1), . . . , f(xn))⊤. Its adjoint operator is S∗

x : RN -→ HK defined by
S∗

xa =
∑N

i=1 aiKxi for a = (a1, . . . , aN ) ∈ RN . Then LK,x = 1
N S∗

xSx is a positive
symmetric operator on HK such that

LK,xf =
1
N

N∑

i=1

f(xi)Kxi .

It is an empirical version of the integral operator LK . It is useful to note that for
any a ∈ RN we have

LK,x

⎛

⎝
N∑

j=1

ajKxj

⎞

⎠ =
1
N

S∗
x(Ka)
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and hence
∥∥∥∥∥∥
L1/2

K,x

⎛

⎝
N∑

j=1

ajKxj

⎞

⎠

∥∥∥∥∥∥
K

=

〈
N∑

j=1

ajKxj , LK,x

⎛

⎝
N∑

j=1

ajKxj

⎞

⎠

〉

K

=
1
N

a⊤K2a.

We can analogously define LK̄,x for the centered kernel K̄.
We need the following two quantities:

QD,λ = ∥(LK + λI)1/2(LK,x + λI)−1/2∥op(K)

and

Q̄D,λ = ∥(LK̄ + λI)1/2(LK̄,x + λI)−1/2∥op(K̄),

where ∥ · ∥op(K) represents the operator norm on HK and ∥ · ∥op(K̄) is the operator
norm on HK̄ . The following lemma can be found in [1, 3, 8, 13].

Lemma 4.3. For each 0 < δ < 1, we have with probability at least 1 − δ

Q2
D,λ ≤ 2

(
2(κ2 + κ)AD,λ log(2/δ)√

λ

)2

+ 2,

where

AD,λ =
1

N
√

λ
+
√
NLK (λ)√

N
.

We apply Theorem 3.1 to obtain

1
N
√

λ
+
√
NLK̄

(λ)
√

N
≤ AD,λ.

Moreover,
√

sup
x∈X

K̄(x, x) ≤ 2κ.

So we can obtain the following estimation for Q̄D,λ by adapting Lemma 4.3 for the
kernel K̄.

Lemma 4.4. For any 0 < δ < 1, we have with probability at least 1 − δ,

Q̄2
D,λ ≤ 2

(
4(2κ2 + κ)AD,λ log(2/δ)√

λ

)2

+ 2. (4.1)

Consequently, for any α > 0,

E[Q̄α
D,λ] ≤

(
8(2κ + 1)4

(
A2

D,λ

λ
+ 1

))α
2

2Γ(α + 1). (4.2)
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Proof. As we already mentioned, the bound (4.1) is an easy adaption of Lemma 4.3
for K̄. Note that 2 log(2/δ) > 1 for 0 < δ < 1. So we have with probability 1 − δ,

Q̄2
D,λ ≤ 8(2κ + 1)4

(
A2

D,λ

λ
+ 1

)(
log

2
δ

)2

.

Then the estimation (4.2) follows from Lemma 4.2. This finishes the proof.

To carry out the error analysis, we need to treat the difference between two
invertible operators on a Banach space. The following lemma from [13] will be
useful.

Lemma 4.5. Let A and B be two invertible operators on a Banach space. We have

A−1 − B−1 = B−1(B − A)A−1 = A−1(B − A)B−1 (4.3)

and

A−1 − B−1 = B−1(B − A)B−1 + B−1(B − A)A−1(B − A)B−1.

5. Error Analysis when f̄ρ is in HK̄

We are going to conduct the error analysis and derive the error bound in our main
result, Theorem 2.1. Recall the error decomposition in (2.4). The second term on
the right hand side can be easily bounded by the studies on KRR without offset
in the literature. The last term is the difference between the sample mean and
expected value of the response variable y and thus can be bounded easily. So our
main effort will be on a technical treatment of the first term. Note that f̄ρ ∈ HK̄

when r ≥ 1
2 while f̄ρ is not in HK̄ when r < 1

2 . The estimation techniques are
different for these two cases. In this section we consider r ≥ 1

2 first and we will
move to r < 1

2 in Sec. 5.1.

5.1. Bounding the difference between f̂D,λ and f̄D,λ

Note that the solution to (2.3) takes the form

f̄D,λ =
N∑

i=1

c̄iK̄xi ,

with the coefficients

c̄ = (c̄1, . . . , c̄N )⊤ = (λNIN + K̄)−1ȳ,

where ȳ = (ȳ1, . . . , ȳN)⊤ = y −
√

N b̄e.
In the sequel, for notational simplicity, we write Ḡ = 1

N K̄ and Ĝ = 1
N K̂. By the

preliminary fact (IN − Pe)e = e − e = 0, we have (IN − Pe)ȳ = (IN − Pe)y. Note
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further that Pe commutes with K̂. We can now rewrite

ĉ =
1
N

(IN − Pe)(Ĝ + λIN )−1ȳ, (5.1)

c̄ =
1
N

(Ḡ + λIN )−1ȳ. (5.2)

By K̂ = ˆ̄K in (3.1) and
∑N

i=1 ĉi = 0 we verify that

f̂D,λ =
N∑

i=1

ĉi

⎛

⎝K̄xi −
1
N

N∑

j=1

K̄xj −
1
N

N∑

j=1

K̄(xi, xj) +
1

N2

∑

1≤p,q≤N

K̄(xp, xq)

⎞

⎠

=
N∑

i=1

ĉiK̄xi −
1
N

N∑

i=1

N∑

j=1

ĉiK̄(xi, xj).

Thus we can decompose

f̂D,λ − f̄D,λ =
N∑

i=1

(ĉi − c̄i)K̄xi −
1
N

N∑

i=1

N∑

j=1

ĉiK̄(xi, xj) =: J1 − J2. (5.3)

Note that J1 is a function in HK̄ and J2 is a constant.

Lemma 5.1. Let ỹ = 1√
N

(y1−fρ(x1), . . . , yN−fρ(xN ))⊤ ∈ RN . Assume f̄ρ ∈ HK̄ .
We have

∥∥∥∥∥

N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
ρ

≤ B̄x,λ

(
|e⊤(Ḡ + λIN )−1ỹ| + 1√

λ
∥f̄ρ∥K̄

)
, (5.4)

with B̄x,λ = Q̄D,λ(3
√

λ∥Ḡ1/2e∥2 + 2∥Ḡ1/2e∥2
2) and

∥∥∥∥∥

N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
K̄

≤ 2∥Ḡ1/2e∥2

(∣∣e⊤(Ḡ + λIN )−1ỹ
∣∣+ 1√

λ
∥f̄ρ∥K̄

)
.

Proof. Note that
∥∥∥∥∥

N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
ρ

=

∥∥∥∥∥L
1/2
K̄

(
N∑

i=1

(ĉi − c̄i)K̄xi

)∥∥∥∥∥
K̄

≤

∥∥∥∥∥(LK̄ + λI)1/2

(
N∑

i=1

(ĉi − c̄i)K̄xi

)∥∥∥∥∥
K̄
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≤ Q̄D,λ

∥∥∥∥∥(LK̄,x + λI)1/2
N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
K̄

= Q̄D,λ

√

(ĉ − c̄)
(

1
N

K̄2 + λK̄
)

(ĉ − c̄)

≤ Q̄D,λ

(∥∥∥∥
1√
N

K̄(ĉ − c̄)
∥∥∥∥

2

+
√

λ∥K̄1/2(ĉ − c̄)∥2

)

:= Q̄D,λ(Υ1 +
√

λΥ2). (5.5)

By the expression of ĉ in (5.1) and c̄ in (5.2), we have

Υ1 =
∥∥∥∥Ḡ[(IN − Pe)(Ĝ + λIN )−1 − (Ḡ + λIN )−1]

1√
N

ȳ
∥∥∥∥

2

2

.

Recall that

(IN − Pe)(Ḡ − Ĝ) = (IN − Pe)(PeḠ + ḠPe − PeḠPe) = (IN − Pe)ḠPe.

By (4.3) and noting the facts Pe commutes with Ĝ and (IN − Pe)2 = (IN − Pe),
we obtain

(IN − Pe)(Ĝ + λIN )−1 − (Ḡ + λIN )−1

= (IN − Pe)[Ĝ + λIN )−1 − (Ḡ + λIN )−1] − Pe(Ḡ + λIN )−1

= (IN − Pe)(Ĝ + λIN )−1(IN − Pe)[Ḡ − Ĝ](Ḡ + λIN )−1 − Pe(Ḡ + λIN )−1

= (IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 − Pe(Ḡ + λIN )−1.

Therefore,

Ḡ[(IN − Pe)(Ĝ + λIN )−1 − (Ḡ + λIN )−1]
1√
N

ȳ

= Ḡ(IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ

− ḠPe(Ḡ + λIN )−1 1√
N

ȳ

= (IN − Pe)Ḡ(IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ

− ḠPe(Ḡ + λIN )−1 1√
N

ȳ + PeḠ(IN − Pe)

× (Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ
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= (Ĝ(Ĝ + λIN )−1 − IN )ḠPe(Ḡ + λIN )−1 1√
N

ȳ

+ PeḠ(IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ

= −λ(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ

+ PeḠ(IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1 1√
N

ȳ

=: Υ11 + Υ12.

For Υ11, note that by (3.2), we have

∥(Ĝ + λIN )−1/2(IN − Pe)Ḡ1/2∥2

= ∥(Ĝ + λIN )−1/2(IN − Pe)Ḡ(IN − Pe)(Ĝ + λIN )−1/2∥1/2
2

= ∥(Ĝ + λIN )−1/2Ĝ(Ĝ + λIN )−1/2∥1/2
2 ≤ 1.

So,

∥Υ11∥2 ≤
√

λ∥(Ĝ + λIN )−1/2Ḡ1/2∥2∥Ḡ1/2e∥2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣

≤
√

λ∥(Ĝ + λIN )−1/2(IN − Pe)Ḡ1/2∥2∥Ḡ1/2e∥2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣

+
√

λ∥(Ĝ + λIN )−1/2PeḠ
1/2∥2∥Ḡ1/2e∥2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣

≤ (
√

λ∥Ḡ1/2e∥2 + ∥Ḡ1/2e∥2
2)
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

ȳ
∣∣∣∣.

For Υ12, we have

∥Υ12∥2 ≤ ∥Ḡ1/2e∥2∥Ḡ1/2(IN − Pe)(Ĝ + λIN )−1Ḡ1/2∥2∥Ḡ1/2e∥2

×
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

ȳ
∣∣∣∣

≤ ∥Ḡ1/2e∥2
2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣.

Combining the estimation for Υ11 and Υ12, we obtain

Υ1 ≤ (
√

λ∥Ḡ1/2e∥2 + 2∥Ḡ1/2e∥2
2)
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

ȳ
∣∣∣∣.
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For Υ2, note that

∥Ḡ1/2(Ĝ + λIN )−1(IN − Pe)Ḡ1/2∥2

= ∥Ḡ1/2(IN − Pe)(Ĝ + λIN )−1/2(Ĝ + λIN )−1/2(IN − Pe)Ḡ1/2∥2

= ∥(Ĝ + λIN )−1/2Ĝ(Ĝ + λIN )−1/2∥2
2 ≤ 1. (5.6)

We have

Υ2 ≤
∥∥∥∥Ḡ

1/2Pe(Ḡ + λIN )−1 1√
N

ȳ
∥∥∥∥

2

+
∥∥∥∥Ḡ

1/2(Ĝ + λIN )−1(IN − Pe)ḠPe(Ḡ + λIN )−1 1√
N

ȳ
∥∥∥∥

≤ 2∥Ḡ1/2e∥2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣.

Plugging the estimation for Υ1 and Υ2 into (5.5), we obtain

∥∥∥∥∥

N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
ρ

≤ Q̄D,λ(3
√

λ∥Ḡ1/2e∥2 + 2∥Ḡ1/2e∥2
2)

×
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

ȳ
∣∣∣∣. (5.7)

Since 1√
N

ȳ = ỹ + 1√
N

S̄xf̄ρ, we have

|e⊤(Ḡ + λIN )−1 1√
N

ȳ| ≤ |e⊤(Ḡ + λIN )−1ỹ| +
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

S̄xf̄ρ

∣∣∣∣.

By

∥∥∥∥(Ḡ + λIN )−1/2 1√
N

S̄xf̄ρ

∥∥∥∥
2

2

=
〈

(Ḡ + λIN )−1/2 1√
N

S̄xf̄ρ, (Ḡ + λIN )−1/2 1√
N

S̄xf̄ρ

〉

2

=
1
N

⟨S̄∗
x(Ḡ + λIN )−1S̄xf̄ρ, f̄ρ⟩K̄

=
1
N

〈
S̄∗

x

(
1
N

S̄xS̄∗
x + λIN

)−1

S̄xf̄ρ, f̄ρ

〉

K̄
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=
1
N

〈(
1
N

S̄∗
xS̄x + λIN

)−1( 1
N

S̄∗
xS̄x + λIN

)

×S̄∗
x

(
1
N

S̄xS̄∗
x + λIN

)−1

S̄xf̄ρ, f̄ρ

〉

K̄

=

〈(
1
N

S̄∗
xS̄x + λIN

)−1 1
N

S̄∗
xS̄xf̄ρ, f̄ρ

〉

K̄

≤ ∥f̄ρ∥2
K̄ , (5.8)

we obtain
∣∣∣∣e

⊤(Ḡ + λIN )−1 1√
N

ȳ
∣∣∣∣ ≤ |e⊤(Ḡ + λIN )−1ỹ| + 1√

λ
∥f̄ρ∥K̄ .

Plugging this estimation into (5.7), we prove the bound in (5.4).
Note that

∥∥∥∥∥

N∑

i=1

(ĉi − c̄i)K̄xi

∥∥∥∥∥
K

=
√

(ĉ − c̄)⊤K̄(ĉ − c̄) = Υ2,

which has already been estimated above. We finish the proof of Lemma 5.1.

Lemma 5.2. For any vector η = (η1, . . . , ηN )⊤ ∈ RN we have

E[|η⊤ỹ||x] ≤ 2M∥η∥2√
N

.

Proof. For each i, recall ỹi = 1√
N

(yi − fρ(xi)). Note that E[ỹi|xi] = 1√
N

(E[yi|xi]−
fρ(xi)) = 0. Since |ỹi| ≤ 2M√

N
, by the independence between ȳi and ȳj , we have

E[|η⊤ỹ|2|x] = E

⎡

⎣
N∑

i=1

N∑

j=1

ηiηj ỹiỹj

∣∣∣∣x

⎤

⎦ = E
[

N∑

i=1

η2
i ỹ2

i

∣∣∣∣x
]
≤ 4M2∥η∥2

2

N
.

By Cauchy’s inequality E[|η⊤ỹ||x] ≤
√

E[|η⊤ỹ|2|x] we obtain the desired bound.

Lemma 5.3. We have

E[e⊤Ḡe] ≤ 4κ2

N
and E[(e⊤Ḡe)2] ≤ 48κ4

N2
.

Consequently, by Hölder’s inequality, we have E[∥Ḡ1/2e∥r
2] ≤ ( 2κ√

N
)r for any r ∈

(0, 2].
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Proof. Since

e⊤Ḡe =
1

N2

N∑

i=1

N∑

j=1

K̄(xi, xj) =
1

N2

N∑

i=1

K̄(xi, xi) +
1

N2

N∑

i=1

N∑

j=1
j ̸=i

K̄(xi, xj)

and

E[K̄(xi, xj)|xi] = 0, for j ̸= i, (5.9)

we have

Ee⊤Ḡe =
1

N2

N∑

i=1

E[K̄(xi, xi)] ≤
(2κ)2

N
.

Write

(e⊤Ḡe)2 =

⎛

⎜⎝
1

N2

N∑

i=1

K̄(xi, xi) +
1

N2

N∑

i=1

N∑

j=1
j ̸=i

K̄(xi, xj)

⎞

⎟⎠

2

=
1

N4

⎧
⎪⎨

⎪⎩

(
N∑

i=1

K̄(xi, xi)

)2

+ 2

(
N∑

i=1

K̄(xi, xi)

)⎛

⎜⎝
N∑

k=1

N∑

l=1
l ̸=k

K̄(xk, xl)

⎞

⎟⎠

+

⎛

⎜⎝
N∑

i=1

N∑

j=1
j ̸=i

K̄(xi, xj)

⎞

⎟⎠

2⎫⎪⎬

⎪⎭
.

By the degenerate property (5.9), we obtain

E

⎡

⎢⎣

(
N∑

i=1

K̄(xi, xi)

)⎛

⎜⎝
N∑

k=1

N∑

l=1
l ̸=k

K̄(xk, xl)

⎞

⎟⎠

⎤

⎥⎦ = 0

and

E

⎛

⎜⎝
N∑

i=1

N∑

j=1
j ̸=i

K̄(xi, xj)

⎞

⎟⎠

2

= E

⎡

⎢⎣
N∑

i=1

N∑

j=1
j ̸=i

N∑

k=1

N∑

l=1
l ̸=k

K̄(xi, xj)K̄(xk, xl)

⎤

⎥⎦

= 2E

⎡

⎢⎣
N∑

i=1

N∑

j=1
j ̸=i

K̄(xi, xj)2

⎤

⎥⎦ ≤ 32κ4N(N − 1).

Since
(

N∑

i=1

K̄(xi, xi)

)2

≤ 16N2κ4,
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we get

E(e⊤Ḡe)2 ≤ 48κ4

N2
.

This completes the proof.

Lemma 5.4. If |y| ≤ M almost surely and f̄ρ ∈ HK̄ , then

E[∥J1∥ρ] ≤ C1

(
1 +

AD,λ√
λ

)(
1

N
√

λ
+

1√
N

+
1

Nλ
√

N

)
, (5.10)

with some constant C1 independent of D, N or λ.

Proof. We estimate J1 according to (5.4). By the obvious bound ∥(Ḡ+λIN )−1e∥2

≤ ∥e∥2
λ = 1

λ and Lemma 5.2, we obtain

E[|e⊤(Ḡ + λIN )−1ỹ||x] =
2M2

λ
√

N
.

Thus,

E[∥J1∥ρ] = E[E[.∥J1∥ρ|x]]

≤ E
[
B̄x,λ(E[|e⊤(Ḡ + λIN )−1ỹ||x] +

1√
λ
∥f̄ρ∥K̄)

]

≤ E[B̄x,λ]
(

2M2

√
Nλ

+
∥f̄ρ∥K̄√

λ

)
.

By Hölder’s inequality, Lemmas 5.3 and 4.4, we obtain

E[B̄x,λ] ≤
√

E[Q̄2
D,λ](3

√
λ
√

E[∥Ḡ1/2e∥2
2] + 2

√
E[(e⊤Ḡe)2])

≤ 4
√

2(2κ + 1)2
(
AD,λ√

λ
+ 1
)(

6κ
√

λ√
N

+
8
√

3κ2

N

)
.

Therefore the desired estimation (5.10) holds with C1 = 4
√

2(2κ + 1)2 ×
max{12Mκ + 8

√
3κ2∥f̄ρ∥K̄ , 6κ∥f̄ρ∥K̄ , 16

√
3Mκ2}.

Lemma 5.5. We have

E[|J2|] ≤
4Mκ

N
√

λ
+

4κ∥f̄ρ∥K̄√
N

.
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Proof. Write

J2 =
1√
N

e⊤K̄ 1
N

(IN − Pe)(Ĝ + λIN )−1ȳ

= e⊤Ḡ(IN − Pe)(Ĝ + λIN )−1 1√
N

ȳ

= e⊤Ḡ(IN − Pe)(Ĝ + λIN )−1ỹ

+ e⊤Ḡ(IN − Pe)(Ĝ + λIN )−1 1√
N

S̄xf̄ρ

=: J21 + J22.

Apply Lemma 5.2 to η1 = (Ĝ + λIN )−1(IN − Pe)Ḡe. Since ∥η1∥2 ≤ ∥Ḡ1/2e∥2√
λ

, we
obtain

E[|J21||x] ≤ 2M∥η1∥2√
N

≤ 2M∥Ḡ1/2e∥2√
Nλ

.

For J22, by (5.8) we have

|J22| ≤ ∥Ḡ1/2e∥2∥Ḡ1/2(IN − Pe)(Ĝ + λIN )−1(Ḡ + λIN )1/2∥2

×
∥∥∥∥(Ḡ + λIN )−1/2 1√

N
S̄xf̄ρ

∥∥∥∥
2

≤ ∥Ḡ1/2e∥2(∥Ḡ1/2(IN − Pe)(Ĝ + λIN )−1Ḡ1/2∥2

+
√

λ∥Ḡ1/2(IN − Pe)(Ĝ + λIN )−1∥2)∥f̄ρ∥K̄

≤ 2∥f̄ρ∥K̄∥Ḡ1/2e∥2.

Combining the estimation for J21 and J22 and using Lemma 5.3, we obtain the
desired bound and complete the proof.

By (5.3), Lemmas 5.4 and 5.5 we obtain the error bound for the difference
between f̂D,λ and f̄D,λ. The result is summarized in the following proposition.

Proposition 5.1. Assume |y| ≤ M almost surely and f̄ρ ∈ HK̄ . We have

E[∥f̂D,λ − f̄D,λ∥ρ] ≤ C′
1

(
AD,λ√

λ
+ 1
)(

1
N
√

λ
+

1√
N

+
1

Nλ
√

N

)

with C′
1 = C1 + 4κ max{M, ∥f̄ρ∥K̄}.

5.2. Bounding total error

We are now in the position to estimate the total error and prove our main theorem.
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Proof of Theorem 2.1(i). We estimate the total error by bounding the three
terms on the right-hand side of (2.4). With the choice λ = N− 1

2r+s and using the
fact that NLK̄

(λ) ≤ NLK (λ) ≤ C0λ−s, we have

AD,λ =
1

N
√

λ
+
√
NLK (λ)√

N
≤ N−1+ 1/2

2r+s + C0N
− 1

2 + s/2
2r+s ≤ (C0 + 1)N− r

2r+s ,

A2
D,λ

λ
≤ (C0 + 1)2N− 2r−1

2r+s ≤ (C0 + 1)2,
1

Nλ
= N− 2r+s−1

2r+s ≤ 1,

thanks to the assumption r ≥ 1/2.
Proposition 5.1 implies the following bound for the first term:

E[∥f̂D,λ − f̄D,λ∥ρ] ≤ 3C′
1(C0 + 2)

1√
N

.

To bound the second term ∥f̄D,λ − f̄ρ∥ρ, we apply [13, Theorem 7] (for p = ∞)
to f̄D,λ and f̄ρ, which states that

E[∥f̄D,λ − f̄ρ∥ρ] ≤ (2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)
(

1 +
1

(Nλ)2
+

NLK̄
(λ)

Nλ

)

×
{(

1 +
1√
Nλ

)
∥f̄λ − f̄ρ∥ρ + 2M

√
NLK̄

(λ)
√

N

}
, (5.11)

where f̄λ = (LK̄ + λI)−1LK̄ f̄ρ. Under assumption (2.5), we have

∥f̄λ − f̄ρ∥ρ ≤ λr∥h̄ρ∥ρ = ∥h̄ρ∥ρN
− r

2r+s . (5.12)

This together with the fact
NLK̄

(λ)

Nλ ≤ C0N
− 2r−1

2r+s ≤ C0 leads to

E[∥f̄D,λ − f̄ρ∥ρ] ≤ C′
2(∥f̄λ − f̄ρ∥ρ + N− r

2r+s )

with C′
2 = (2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)(C0 + 2)max{2, 2

√
C0M}.

For the third term, we apply Lemma 4.1 to ξ = y and obtain

E[|b̂D,λ − b̄|] = E
[∣∣∣∣∣

1
N

N∑

i=1

yi − E[y]

∣∣∣∣∣

]
≤ M√

N
≤ MN− r

2r+s . (5.13)

Combining the estimation for all three terms, we obtain the desired estimation
with C∗

1 = 3C′
1(C0 + 2) + C′

2(∥h̄ρ∥ρ + 1) + M. This finishes the proof.

6. Error Analysis when f̄ρ is not in HK̄

When r < 1
2 , because f̄ρ /∈ HK̄ , most estimation techniques in previous section do

not apply anymore and new techniques are needed. But the proof process is quite
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similar to that in previous section. We still use (5.3) and estimate the J1 and J2

respectively. To this end we need to bound the following four quantities.

Lemma 6.1. Denote VD,λ = (A
2
D,λ

λ + 1)(1 + λr−1/2)AD,λ√
λ

. We have

E
[(

e⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]
≤ C̃1

N
(V2

D,λ + λ2r−1), (6.1)

E
[(

e⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]
≤ C̃2

Nλ2
(V2

D,λ + λ2r−1 + 1), (6.2)

E
[(

Q̄D,λe⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]
≤ C̃3

N
(V2

D,λ + λ2r−1)

(
A2

D,λ

λ
+ 1

)
and

(6.3)

E
[(

Q̄D,λe⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]
≤ C̃4

Nλ2
(V2

D,λ + (1 + λ2r−1))

(
A2

D,λ

λ
+ 1

)
.

(6.4)

Proof. Note that

∥∥∥∥
1√
N

Ḡ1/2(Ḡ + λIN )−1ȳ
∥∥∥∥

2

2

=
〈

Ḡ(Ḡ + λIN )−1 1√
N

ȳ, (Ḡ + λIN )−1 1√
N

ȳ
〉

2

=
〈

1
N

S̄xS̄∗
x(Ḡ + λIN )−1 1√

N
ȳ, (Ḡ + λIN )−1 1√

N
ȳ
〉

2

=
∥∥∥∥

1
N

S̄∗
x(Ḡ + λIN )−1ȳ

∥∥∥∥
2

K̄

=
∥∥∥∥(LK̄,x + λI)−1 1

N
S̄∗

xȳ
∥∥∥∥

2

K̄

= ∥f̄D,λ∥2
K̄ . (6.5)

By Cauchy’s inequality, we have

E
[
(e⊤Ḡ

(
Ḡ + λIN )−1 1√

N
ȳ
)2
]
≤ (E[∥Ḡ1/2e∥4

2])
1
2 (E[∥f̄D,λ∥4

K̄ ])
1
2 .
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To bound ∥f̄D,λ∥K̄ , write ∥f̄D,λ∥K̄ ≤ ∥f̄D,λ − f̄λ∥K̄ + ∥f̄λ∥K̄ . By the analysis in [3]
(Proposition 6 and the proof of Theorem 1) we know that with confidence 1 − δ,
we have

∥f̄D,λ − f̄λ∥K̄ ≤ 16(2κ + 1)
(

log
6
δ

)3
(

(4κ2 + 2κ)2A2
D,λ

λ
+ 1

)

× (M + 2κλr− 1
2 ∥hρ∥ρ)

AD,λ√
λ

≤ 16(2κ + 1)6(M + ∥hρ∥ρ)VD,λ

(
log

6
δ

)3

. (6.6)

By Lemma 4.2, we have

E[∥f̄D,λ − f̄λ∥4
K̄ ] ≤ (16(2κ + 1)6(M + ∥hρ∥ρ)VD,λ)46Γ(13).

For 0 < r < 1
2 , we can bound ∥f̄λ∥K̄ as

∥f̄λ∥K̄ ≤ ∥(LK̄ + λI)−1Lr+1/2
K̄

∥op(K̄)∥L
1/2
K̄

hρ∥K̄ ≤ λr−1/2∥hρ∥ρ. (6.7)

So we have

E[∥f̄D,λ∥4
K̄ ] ≤ 16(E[∥f̄D,λ − f̄λ∥4

K̄ ] + ∥f̄λ∥4
K̄)

≤ 165(2κ + 1)24(M + ∥hρ∥ρ)46Γ(13)(V4
D,λ + λ4r−2).

By Lemma 5.3, we obtain

E
[(

e⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]
≤ C̃1

N
(V2

D,λ + λ2r−1),

with C̃1 = 163κ
√

18Γ(13)(2κ + 1)12(M + ∥hρ∥ρ)2. This proves (6.1).
To show (6.2), note that, by (Ĝ + λIN )−1e = 1

λe and Ĝe = 0, we have

e⊤(Ḡ + λIN )−1ȳ = e⊤(Ḡ + λIN )−1ȳ − e⊤(Ĝ + λIN )−1ȳ + e⊤(Ĝ + λIN )−1ȳ

= [e⊤(Ĝ + λIN )−1(Ĝ − Ḡ)(Ḡ + λIN )−1ȳ] +
1
λ
e⊤ȳ

= − 1
λ
e⊤Ḡ(Ḡ + λIN )−1ȳ +

1
λ
e⊤ȳ. (6.8)

Thus

E
[(

e⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]

≤ 2
λ2

(
E
[(

e⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]

+ E
[(

1√
N

e⊤ȳ
)2
])

.
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By (6.1) and the fact

E
[(

1√
N

e⊤ȳ
)2
]

= E

⎡

⎣
(

1
N

N∑

i=1

ȳi

)2
⎤

⎦ ≤ 4M2

N
,

we prove (6.2) with C̃2 = 2 max{C̃1, 4M2}.
By (6.5) and Cauchy’s inequality, we have

E
[(

Q̄D,λe⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]

≤ (E(e⊤Ḡe)2])
1
2 (E[Q̄4

D,λ∥f̄D,λ∥4
K̄ ])

1
2

≤ 16
√

3κ2

N
(E[Q̄4

D,λ∥f̄D,λ − f̄λ∥4
K̄ ] + E[Q̄4

D,λ]∥f̄λ∥4
K̄)

1
2 .

By Lemma 4.4 and (6.6) we have with confidence 1 − δ that

Q̄D,λ∥f̄D,λ − f̄λ∥K̄ ≤ 32
√

2(2κ + 1)8(M + ∥hρ∥ρ)VD,λ

(
AD,λ√

λ
+ 1
)(

log
6
δ

)4

.

By Lemma 4.2, we obtain

E
[
Q̄4

D,λ∥f̄D,λ − f̄λ∥4
K̄

]

≤ (32
√

2)4(2κ + 1)32(M + ∥hρ∥ρ)4V4
D,λ

(
AD,λ√

λ
+ 1
)4

6Γ(17).

By (4.2) with α = 4 and (6.7), we obtain

E[Q̄4
D,λ∥f̄λ∥4

K̄ ] ≤ 48(8)2(2κ + 1)8∥hρ∥4
ρ

(
A2

D,λ

λ
+ 1

)2

λ4r−2.

One summarizes the above two estimates to get (6.3) with C̃3 = 323 × 6κ2(2κ +
1)16(M + ∥hρ∥ρ)2

√
2Γ(17).

To prove (6.4), we use (6.8) and write

E
[(

Q̄D,λe⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]

≤ 2
λ2

(
E
[(

Q̄D,λe⊤Ḡ(Ḡ + λIN )−1 1√
N

ȳ
)2
]

+ E
[(

Q̄D,λ
1√
N

e⊤ȳ
)2
])

.

By the facts E[ȳi] = 0 and |ȳi| ≤ 2M, it is easy to verify that

E
[(

1√
N

e⊤ȳ
)4
]

= E

⎡

⎣
(

1
N

N∑

i=1

ȳi

)4
⎤

⎦ ≤ (2M)4

N2
.



April 4, 2024 12:8 WSPC/S0219-5305 176-AA 2340001

Learning with centered reproducing kernels 529

So by (4.2) we obtain

E
[(

Q̄D,λ
1√
N

e⊤ȳ
)2
]
≤ (E[Q̄4

D,λ])
1
2

(
E
[(

1√
N

e⊤ȳ
)4
]) 1

2

≤ 32
√

3(2κ + 1)4(2M)2

N

(
A2

D,λ

λ
+ 1

)
.

This in combination with (6.3) proves (6.4) with C̃4 = 2C̃3.

With the preparation in Lemma 6.1, we can estimate J1 and J2 now.

Lemma 6.2. We have

E[∥J1∥ρ] ≤ C̃′
1

(
1

N
√

λ
+

1
Nλ

√
N

)(A2
D,λ

λ
+ 1

)2

(1 + λr− 1
2 ).

Proof. By (5.7), (6.4), and Lemma 5.3, we have

E[∥J1∥ρ] ≤ (E[18λe⊤Ḡe + 8(e⊤Ḡe)2])
1
2

×
(

E
[(

Q̄D,λe⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]) 1

2

≤ 8
√

3(2κ + 1)2κ

√
C̃4

(
1

N
√

λ
+

1
Nλ

√
N

)(A2
D,λ

λ
+ 1

)2

(1 + λr− 1
2 ).

This proves the lemma with C̃′
1 = 8

√
3(2κ + 1)2κ

√
C̃4.

Lemma 6.3. We have

E[|J2|] ≤ C̃′
2

(
1√
N

+
1

Nλ
√

N

)(A2
D,λ

λ
+ 1

) 3
2

(1 + λr− 1
2 ).

Proof. We decompose

J2 =
1√
N

e⊤Ḡ(Ĝ + λIN )−1(IN − Pe)ȳ

=
1√
N

e⊤Ḡ(IN − Pe)(Ḡ + λIN )−1ȳ

+
1√
N

e⊤Ḡ(IN − Pe)((Ĝ + λIN )−1 − (Ḡ + λIN )−1)ȳ
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=
1√
N

e⊤Ḡ(Ḡ + λIN )−1ȳ

− 1√
N

e⊤Ḡee⊤(Ḡ + λIN )−1ȳ

+
1√
N

e⊤Ḡ(IN − Pe)(Ĝ + λIN )−1ḠPe(Ḡ + λIN )−1ȳ

=: J̃21 − J̃22 + J̃23.

By (6.1), we have

E[|J̃21|] ≤
√

E[|J̃21|2] ≤
√

C̃1√
N

(
A2

D,λ

λ
+ 1

) 3
2

(1 + λr− 1
2 ).

By (6.2) and Lemma 5.3, we have

E[|J̃22|] ≤ (E[(e⊤Ḡe)2])
1
2

(
E
[(

e⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]) 1

2

≤ 4
√

3κ2
√

C̃2

Nλ
√

N

(
A2

D,λ

λ
+ 1

) 3
2

(1 + λr− 1
2 ).

For J̃23, we use (5.6) and (6.2) to obtain

E[|J̃23|] ≤ E
[
∥Ḡ1/2e∥2

2

∣∣∣∣e
⊤(Ḡ + λIN )−1 1√

N
ȳ
∣∣∣∣

]

≤ (E[(e⊤Ḡe)2])
1
2

(
E
[(

e⊤(Ḡ + λIN )−1 1√
N

ȳ
)2
]) 1

2

≤ 4
√

3κ2
√

C̃2

Nλ
√

N

(
A2

D,λ

λ
+ 1

) 3
2

(1 + λr− 1
2 ).

Therefore, the desired bound for J2 holds with C̃′
2 = max{

√
C̃1, 8κ2

√
3C̃2}.

Combining the results in Lemmas 6.2 and 6.3 and selecting appropriate regu-
larization parameters, we can bound f̂D,λ − f̄D,λ as follows.

Proof of Theorem 2.1(ii). We apply the decomposition (2.4) and (5.3) as above,

E[∥f̂D,λ + b̂D,λ − fρ∥ρ] ≤ E[∥J1∥ρ] + E[|J2|] + E[∥f̄D,λ − f̄ρ∥ρ] + E[|b̂D,λ − b̄|],
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of which we bound the four terms in the right-hand side, one by one. Recall λ =
N− 1

1+s and NLK (λ) ≤ C0λ−s. From definition,

A2
D,λ

λ
+ 1 =

1
λ

(
1

N
√

λ
+
√
NLK (λ)√

N

)2

+ 1

≤ N
1

1+s (N−1+ 1/2
1+s +

√
C0N

− 1
2+ s/2

1+s )2 + 1

≤ 2N
1

1+s (N−2+ 1
1+s + C0N

−1+ s
1+s ) + 1 ≤ 2C0 + 3.

Since 0 < r < 1/2,

1 + λr− 1
2 ≤ 2N

−r+ 1
2

1+s .

We apply Lemma 6.2 to give

E[∥J1∥ρ] ≤ C̃′
1(2C0 + 3)2 × 2N

−r+ 1
2

1+s (N−1+ 1/2
1+s + N− 3

2+ 1
1+s )

≤ 4C̃′
1(2C0 + 3)2N− r

1+s .

We apply Lemma 6.3 to give

E[|J2|] ≤ C̃′
2(2C0 + 3)3/2 × 2N

−r+ 1
2

1+s (N− 1
2 + N− 3

2+ 1
1+s )

≤ 4C̃′
2(2C0 + 3)3/2N− r

1+s .

To estimate E[∥f̄D,λ − f̄ρ∥ρ], we apply (5.11). Note that

1 +
1

(Nλ)2
+

NLK̄
(λ)

Nλ
≤ 1 + N−2+ 2

1+s + C0λ
−1−sN−1

≤ 2 + C0.

Here, 1
Nλ ≤ 1. Recall (5.12) and our assumption 0 < r < 1/2. We have

(
1 +

1√
Nλ

)
∥f̄λ − f̄ρ∥ρ + 2M

√
NLK̄

(λ)
√

N
≤ 2∥h̄ρ∥ρλ

r + 2M
√

C0λ
−s/2N−1/2

≤ 2(∥h̄ρ∥ρ + M
√

C0)N− r
1+s .

We summarize the above estimates and use (5.11) to obtain

E[∥f̄D,λ − f̄ρ∥ρ] ≤ C∗
2,1N

− r
1+s ,

where C∗
2,1 := (2 + 56(2κ)4 + 57(2κ)2)(1 + 2κ)(2 + C0) × 2(∥h̄ρ∥ρ + M

√
C0).

Lastly, we use (24) to derive

E[|b̂D,λ − b̄|] ≤ M√
N

≤ MN− r
1+s .

The proof is completed by letting

C∗
2 := 4C̃′

1(2C0 + 3)3 + 4C̃′
2(2C0 + 3)3/2 + C∗

2,1 + M.



April 4, 2024 12:8 WSPC/S0219-5305 176-AA 2340001

532 C. Wang, X. Guo & Q. Wu

7. Conclusions and Discussions

In this paper, we studied KRR with offset and characterized its equivalence to learn-
ing with centered reproducing kernels. By using KRR without offset as a bridge, we
derived the generalization error bound for KRR with offset and verified it reaches
the minimax optimal rate under appropriate source conditions on the target func-
tion and capacity assumptions on the kernels.

It is well understood that kernel ridge regression without offset penalizes the
whole output function, including its constant component which is not penalized in
Algorithm (2.1). By the operation K -→ K̂, we separate constant components from
the reproducing kernel Hilbert space HK . Consequently, our main result, Theo-
rem 2.1, uses a weak assumption (2.5), i.e.

f̄ρ = fρ − E[fρ] ∈ Lr
K̄(L2

ρX
),

which tolerates the constant component in the target function fρ. Note that this
is important improvement. For example, it is well understood that constant func-
tions are not included in reproducing kernel Hilbert spaces spanned by Gaussian
kernels [17]. Along this way, one can indeed separate any finite dimensional func-
tion spaces from a reproducing kernel Hilbert space.a The analysis is postponed as
future work, and would be useful for kernel-based semi-parametric regression [15],
scattered data interpolation [20, 33], and so on. An interesting question is how to
balance the model complexity and keep the curse of dimensionality back in the
bottle.

In future work, we aim to extend the application of our centered kernel to the
areas of distributed learning [13] and semi-supervised learning [22]. Another inter-
esting topic is to explore the extension of the centered kernel to the Neural Tangent
Kernel (NTK) setting, as indicated by [12], which is related to the universality of
deep neural networks [11, 16, 21, 34]. Considering that the centered reproducing
kernel adapts the capacity of the RKHS, comparing the capacities of the centered
NTK, the NTK, and deep neural networks in terms of universality would be an
intriguing research area.
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