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Abstract

Given a simple, simply connected, complex algebraic group G, a flat projective con-

nection on the bundle of non-abelian theta functions on the moduli space of semistable

parabolic G-bundles over any family of smooth projective curves with marked points

was constructed by the authors in an earlier paper. Here, it is shown that the identi-

fication between the bundle of non-abelian theta functions and the bundle of WZW

conformal blocks is flat with respect to this connection and the one constructed by

Tsuchiya–Ueno–Yamada. As an application, we give a geometric construction of the

Knizhnik–Zamolodchikov connection on the trivial bundle over the configuration

space of points in the projective line whose typical fiber is the space of invariants

of tensor product of representations.
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1 Introduction

The Wess–Zumino–Witten (WZW) model [52, 75] is a cornerstone of two dimensional

rational conformal field theories [9, 48]. The WZW conformal blocks were constructed

mathematically by Tsuchiya–Ueno–Yamada [72]. Let ĝ be an affine Lie algebra and

(C, p) a smooth curve C with n-distinct marked points p = (p1, · · · , pn). Choose

formal coordinates ξ = (ξ1, · · · , ξn) around p, and using these coordinates assign a

copy of ĝ to each point pi . Fix a positive integer �. Then, for any choice of n-tuple of

integrable highest weights �λ = (λ1, · · · , λn) of level �, the construction in [72] asso-

ciates a finite dimensional vector space V
†
�λ(C, p, ξ , g, �) to the data (C, p, ξ). For a

family of smooth curves π : C → S with n-distinct sections p, these vector spaces

patch together to produce a coherent sheaf V
†
�λ(g, �) → S. The Sugawara construction

[72] endows this sheaf with the structure of a twisted D-module, and hence V
†
�λ(g, �) is

actually a holomorphic vector bundle. The authors of [72] show that this vector bun-

dle extends to the Deligne–Mumford–Knudsen compactification M
′
g,n of the moduli
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spaces of n-pointed curves M′
g,n with chosen formal coordinates. Moreover, the flat

projective connection on the interior M′
g,n extends to a flat projective connection with

logarithmic singularities over M
′
g,n . The bundle V

†
�λ(g, �) → S of conformal blocks

is sometimes called the Friedan–Shenker bundle. We refer to the above mentioned flat

projective connection on V
†
�λ(g, �) → S as the WZW/TUY connection.

Later, Tsuchimoto [70] gave a coordinate free construction of the bundle of

conformal blocks and showed that it descends to a vector bundle V
†
�λ(g, �) on the

Deligne–Mumford–Knudsen moduli space Mg,n of n-pointed stable nodal curves

(cf. Fakhruddin [28]). The flat projective connection also descends to a projective

connection with logarithmic singularities. In other words, there is a projectively flat

isomorphism between the conformal blocks V
†
�λ(g, �) and the pullback F∗V

†
�λ(g, �)

under the natural forgetful map F : M
′
g,n → Mg,n . We refer the reader to Sect. 2 for

a construction of conformal blocks and to Sect. 3 for the construction of the WZW/TUY

connection.

We now discuss how conformal blocks are related to moduli spaces of bundles on

curves. The moduli space MG(C) of principal bundles, with a reductive structure group

G, on a smooth projective curve C , provides a natural non-abelian generalization of

the Jacobian variety J (C), which parametrizes line bundles of degree zero on C . The

moduli space of (semistable) principal G-bundles on a smooth projective algebraic

curve is itself a projective variety. It was originally constructed through Geometric

Invariant Theory. Its smooth locus parametrizes isomorphism classes of stable bundles

with minimal automorphism groups (see [19]), also known as the regularly stable loci.

There are various important variations on this construction. One can choose marked

points p = (p1, · · · , pn) on the algebraic curve C and decorate a principal G-bundle

P with a generalized flag structure over p, leading to the notion of quasi-parabolic

bundles. Additionally, one can choose weight data τ = (τ1, · · · , τn) in the Weyl

alcoves, or equivalently weights �λ = (λ1, · · · , λn), and use them to define a suitable

notion of stability and semistability. The corresponding moduli spaces M
par ,ss
G,τ (C, p)

can, in turn, be understood as the space of representations of the fundamental group

of the corresponding punctured surface C \ { p}, where the loops around the marked

points go to fixed conjugacy classes determined by τ [47, 63]. This generalizes the

classical results of Narasimhan–Seshadri [51] and Ramanathan [57], proved in the

non-parabolic case.

The moduli space M
par ,ss
G,τ (C, p) is equipped with a natural ample determinant

of cohomology line bundle Det par ,φ(τ ) associated to a choice of faithful linear rep-

resentation φ of G. This generalizes the theta line bundle on the Jacobian variety

J (C). Therefore, the global sections of this line bundle on M
par ,ss
G,τ (C, p) can thus be

thought of as a non-abelian generalization of the classical theta functions. We refer

the reader to Section A.1 for more details on the constructions of the moduli space

and the parabolic determinant line bundle on it.

Via the uniformization theorems of Harder and Drinfeld–Simpson [27, 34], moduli

spaces of parabolic bundles also have an adèlic description that directly connects to

the representation theory of affine Lie algebras via the work of several authors (see [7,

30, 41, 44, 54, 65]). Using this, the corresponding moduli stack of principal G-bundles
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and its parabolic analog ParG(C, p, τ ) can be expressed as a double quotient

ParG(C, p, τ ) = G(�(C,OC (∗ p))\
n∏

i=1

G(C((ξi )))/Pi

where the Pi are parahoric subgroups of G(C[[ξi ]]) determined by the weights τi .

The weights also determine a homogeneous G(�(C, OC (∗ p)))-equivariant line bun-

dle L�λ on ParG(C, p, τ ). The line bundle Det⊗a
par ,φ(τ ) coincides with L�λ, where a

is a rational number determined by the Dynkin index of the representation φ. Gen-

eralizations (see Kumar [40], Mathieu [46]) of the Borel–Weil theorems (see (B.3))

for affine flag varieties G(C((ξ)))/Pi , coupled with the adèlic description, give a

canonical isomorphism up to scalars (see (B.2)) with conformal blocks

V
†
�λ(C, p, ξ , g, �) ∼= H0(M

par ,ss

G,τ (C, p), Det⊗a
par ,φ(τ )).

This isomorphism can be reinterpreted as the Chern-Simons/WZW correspondence.

More details are given in Section B.1. In the context of a family of curves, we refer

the reader to Sections 6, 7 in [11] for identification between the bundle of non-abelian

theta functions and conformal blocks.

Using differential geometric methods, Hitchin, [36], generalizes a construction of

Mumford–Welters [74] to obtain a flat projective connection on the Friedan–Shenker

bundle with fibers H0(MG(C), Det⊗�), from the viewpoint of geometric quantiza-

tion in the sense of Kostant-Souriau. This connection also appears in Witten’s [76]

interpretation of Jones polynomial link invariants as 3-manifold invariants. Hitchin’s

construction was reinterpreted by van Geemen–de Jong [73] sheaf theoretically in

terms of the existence of a “heat operator", which in the relative setting is a dif-

ferential operator that is a combination of a first-order operator with one that is

second order on the fibers (see Sect. 4). We recall the details of the general meth-

ods of Hitchin–van Geemen–de Jong [73] in Sect. 4. We also refer to the several

complementary approaches of Andersen [1], Axelrod–Witten–della Pietra [3], Baier–

Bolognesi–Martens–Pauly [55], Faltings [29], Ginzburg [33], Ran [58], Ramadas [56],

Sun–Tsai [67] and for generalizations to reductive groups, Belkale [10].

In [43], Laszlo showed that the connection constructed by Hitchin and the one in [72]

coincide under the natural identification of H0(MG(C), Det⊗�) with V
†
0(C, g, �). A

similar result for twisted Spin groups was also proved by Mukhopadhyay–Wentworth

[49]. The following questions are natural in the context of parabolic moduli spaces:

(1) Is there a projective heat operator (see Sect. 4 and Definition 4.1) on the line bundle

Det⊗a
par ,φ(τ )) that induces a flat projective connection on the vector bundle over

Mg,n with fibers H0(M
par ,ss
G,τ (C, p), Det⊗a

par ,φ(τ ))?

(2) If such a connection exists, is the identification of conformal blocks with non-

abelian parabolic theta functions flat with respect to this connection and the

WZW/TUY connection?

For g(C) ≥ 2, Scheinost–Schottenloher, [61], constructed a parabolic Hitchin con-

nection for G = SLr under the assumption that the canonical bundle of M
par ,ss

SLr ,τ
(C, p)
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admits a square-root. Bjerre [23] removed the “restriction" in [61] for G = SLr by

working on a different parabolic moduli space with full flags. In both [23, 61], the

authors construct a connection on the push-forward “metaplecticly corrected" line

bundles of the form Det⊗a
par ,φ(τ ) ⊗ K

1/2

M
par ,ss

SLr ,τ
(C, p)

. We also refer the reader to Remark

6.3. In [20], we constructed a projective heat operator on Det⊗a
par ,φ(τ ) in general.

This was produced from a candidate parabolic Hitchin symbol (see (5.6)) satisfying a

Hitchin–van Geemen–de Jong type equation (see (5.2)).1,2

The following result answers the above question (2) and thus generalizes the result

of Laszlo, proved in the non-parabolic case.

Theorem 1.1 (Main Theorem) Let S parametrize a smooth family of n-pointed

curves. Let πe : M
par ,rs
G,τ → S be the relative moduli space parametrizing regularly

stable parabolic G bundles, i.e., stable parabolic bundles with minimal automor-

phisms. The natural isomorphism

PV
†
�λ(g, �) ∼−→ Pπe∗ Det⊗a

par ,φ(τ )

constructed via the uniformization theorem, between the projectivizations of the

bundles of conformal blocks and non-abelian parabolic theta functions, is flat for

the WZW/TUY connection on PV
†
�λ(g, �) and the parabolic Hitchin connection on

Pπe∗ Det⊗a
par ,φ(τ ).

We are guided by a fundamental observation that if an algebraic group G acts on a

smooth variety X and L is a G-equivariant line bundle on X , then the map induced by

the Beilinson–Bernstein localization functor Loc : Ug → �(X ,D(L )) is a quantum

analog of the moment map for the G action on X , and the corresponding graded map

Sym g → �(X , gr(D(L ))) is dual to the moment map. Hence, it is “independent" of

the line bundle L . Now in our set-up X will be the moduli of parabolic bundles and g

is a certain completion of the loop algebra. To produce a connection, we produce a heat

operator starting from a deformation of the family of pointed curves. This is enabled by

the Sugawara operators, which only depends on the level of the line bundle. Thus, an

essential point in the proof of this theorem is the fact that the symbols of the Sugawara

operators coming from affine Lie algebras do not depend on the highest weights.

This is checked via a direct calculation generalizing the non-parabolic counterparts

in the work of Laszlo [43] and Tsuchiya–Ueno–Yamada [72]. The counterpart to this

statement on the moduli of parabolic bundles side for the parabolic Hitchin symbol is

therefore the crux of the argument. This is carried out in Proposition 5.6 using Corollary

5.5. These are the key new features/differences in the proof of Theorem 1.1 to that

in non-parabolic case considered by Laszlo [43]. Another approach to identifying the

Hitchin connection with the TUY/WZW connection in the non-parabolic case has been

1 Subsequent to the submission of the papers [20, 21], in May 2023 a draft of the thesis by Zakaria Ouaras

appeared (followed by a preprint in October 2023 [53]) in which the author proves the existence of a unique

flat projective connection in the case of moduli spaces of parabolic vector bundles with arbitrary fixed

determinant and genus g ≥ 2.

2 We have been informed [2] that in the case of genus zero, SL2, and equal weights λ sufficiently small so

that conformal blocks are invariants, the Hitchin connection constructed in [1] agrees with the KZ equation.
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outlined in Section 1.3 of Ben-Zvi-Frenkel [15]. It would be interesting to reformulate

the constructions in the present article in the format considered in Ben-Zvi-Frenkel.

Application Now we discuss an application of the parabolic generalization of The-

orem 1.1 by giving a geometric reconstruction of the Knizhnik–Zamolodchikov (KZ)

equation. Let us now focus on the genus zero case. Since P1 has a global coordinate and

a global meromorphic two form on P1×P1 with second-order poles along the diagonal,

the WZW/TUY connection gives a flat (honest) connection on the bundle of confor-

mal blocks. The equations for the flat sections are known as Knizhnik–Zamolodchikov

equations [38]. Thus, the KZ equations constitute a system of first-order differential

equations, arising from the conformal Ward identities, that determines n-point cor-

relation functions in the Wess–Zumino–Witten–Novikov model of two-dimensional

conformal field theory. The KZ equations have remarkable realizations in many other

areas. For example, higher-dimensional generalizations of hypergeometric functions

are known to be solutions of these equations [60]. The KZ equations can also be

regarded as quantizations of the isomonodromy problem for differential equations of

Fuchsian type [59]. The Kohno–Drinfeld [26, 39] theorem relates the monodromy

representation of the braid group induced by the KZ connection with solutions of the

Yang-Baxter equation.

Here, we consider the KZ equations as equations for flat sections of the trivial vector

bundle A�λ over the configuration space Xn of n-points in C with fibers

A�λ := Homg(Vλ1 ⊗ · · · ⊗ Vλn , C) .

We restrict the projective heat operator constructed in [20] to the open substack

Par c
G(P1, p, �λ) of quasi-parabolic bundles in case of genus zero, where the underlying

principal G-bundle is trivial. This turns out to be the quotient stack

Par c
G(P1, p, �λ) = [

(
G/Pλ1 × · · · × G/Pλn

)
/G],

where Pλi
are parabolic subgroup determined by λi and the global sections of the

homogeneous line bundle L�λ are just the invariants A�λ. Thus, we obtain a flat con-

nection on the vector bundle A�λ over Xn . Finally using Theorem 1.1, we identify this

connection with the KZ connection. This gives an alternative geometric construction

of the KZ equations. We refer the reader to Sect. 7 and Corollary 7.1 for more details

and precise statements.

In recent years a number of papers discussing connections on twisted conformal

blocks (Szczesny, Damiolini, Hong-Kumar, and Deshpande–Mukhopadhyay [25] )

have appeared. The main goal of the present paper is to relate the WZW/TUY pro-

jective connection on conformal blocks with the projective connection constructed

by the authors ([20, 21]) on non-abelian theta functions on moduli of parabolic bun-

dles via uniformization. Since parabolic bundles on curves with marked points can

also be realized as orbifold bundles, it is natural to ask whether the coherent sheaf

of non-abelian theta functions for moduli of parahoric Bruhat-Tits groups carries a

projective connection constructed via heat operator methods and if it is equivalent to

the connections on twisted conformal blocks via uniformization theorems [35].
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The outline of this paper is as follows. In Sects. 2 and 3 we review in some detail

the construction of the WZW/TUY connection in the parabolic setting. In Sect. 4, we

review the construction from [20] of the Hitchin connection in the parabolic setting.

This involves the metaplectic correction in a central way. An important step in this

section is the re-expression of one of the “controlling equations” of van Geemen–de

Jong for the existence of a projective heat operator on elements of the rational Picard

group (see Sect. 4.2). Finally, in Sect. 5.2 we state the fundamental result, Theorem

5.3, which provides a simplification of the expression for parabolic Hitchin symbol.

This is the geometric reflection of the aforementioned fact that the Sugawara operators

do not depend on the highest weights.

Finally, in Sect. 6, using this result we directly relate the symbols of the Sugawara

tensor and the parabolic Hitchin connection, thus proving Theorem 1.1 (see Sect. 6.4).

In the last Sect. 7 we elaborate on the special case of genus zero curves. In Appendix A,

we define the line bundles over moduli spaces of parabolic G-bundles whose sections

give rise to the Friedan–Shenker bundles. We also relate these line bundles to the

determinant of cohomology in the relative setting.

2 Conformal Blocks

In this section we recall the basic notions of conformal blocks, following Tsuchiya–

Ueno–Yamada [72]. Let g be a complex simple Lie algebra and h ⊂ g a Cartan

subalgebra. Let 	 be a system of roots and κg the Cartan-Killing form, normalized

so that κg(θg, θg) = 2 for the longest root θg. We let νg : h∗ ∼−→ h denote the

isomorphism induced by κg.

2.1 Affine Lie algebras and integrable modules

Let ξ be a formal parameter. The affine Lie algebra

ĝ := g ⊗ C((ξ)) ⊕ C · c

is a central extension of the loop algebra C((ξ)) by c. The Lie bracket operation on ĝ

is given by the formula

[X ⊗ f , Y ⊗ g] := [X , Y ] ⊗ f g + κg(X , Y ) Rest=0(gd f ) · c, (2.1)

where X , Y ∈ g and f , g are elements of C((ξ)).

We now briefly recall the basic objects in the representation theory of ĝ. It is well

known that the finite dimensional g modules are parametrized by the subset P+(g) ⊂
h∗ consisting of dominant integral weights. The representation corresponding to a

weight λ will be denoted by Vλ. Let � > 0 be a positive integer, and consider the

set P�(g) := {λ ∈ P+(g) | κg(λ, θg) ≤ �}. The highest weight irreducible

integrable representations of ĝ at level � are classified by the set P�(g) defined above.

The ĝ-module corresponding to λ will be denoted by Hλ.
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2.2 Sheaf of conformal blocks

Integrable representations of affine Lie algebras were used by Tsuchiya–Ueno–

Yamada [72] and Tsuchiya–Kanie [71] to define conformal blocks. In this paper,

we will restrict ourselves to conformal blocks associated to smooth curves. Let

π : C → S be a family of smooth projective curves, and let p = (p1, · · · , pn) be

n non-intersecting sections of the map π such that the complement C\ ∪n
i=1 pi (S) is

an affine scheme.

Consider formal coordinates ξ1, · · · , ξn around the sections p = (p1, · · · , pn)

giving isomorphisms limm OC/Im
pi

∼= OS[[ξi ]], where Ipi
is the ideal sheaf of the

section pi . Let g be a simple Lie algebra. As before, we get a sheaf of OS-Lie algebras

defined by

ĝn(S) := g ⊗
(

n⊕

i=1

OS((ξi ))

)
⊕ OS · c (2.2)

The Lie algebra ĝn(S) in (2.2) contains a natural subsheaf of Lie algebras g ⊗C

π∗OC(∗D), where D = ∑n
i=1 pi (S). That it satisfies the Lie algebra condition is

actually guaranteed by the residue theorem.

For any choice of n-tuple of weights �λ = (λ1, · · · , λn) in P�(g), consider the

ĝn(S)-module (hence it is also a g ⊗C π∗OC(∗D)-module)

H�λ(S) := Hλ1 ⊗ Hλ2 ⊗ · · · ⊗ Hλn ⊗C OS .

Definition 2.1 The sheaf of covacua V�λ(g,C/S, p, �) on S at level � is defined to be

the largest quotient of H�λ(S) on which g ⊗C π∗OC(∗D) acts trivially. The sheaf of

conformal blocks V
†
�λ(g,C/S, p, �) on S is defined to be the OS-dual of the sheaf of

covacua.

Since the above definition uses only the fact that the formal coordinates identify the

completed local ring with the Laurent series ring, the definition of sheaf of covacua

and the sheaf of conformal blocks can be extended in a straightforward manner to

families of nodal curves with Deligne–Mumford stability property.

2.3 Coordinate free construction

The sheaf ĝn on S and its integrable modules can be defined without the choice of

formal coordinates ξ ; we recall this from [70]. Let π : C → S be as above. Consider

the sheaf of formal meromorphic functions on C with poles along the marked sections

KC/pi
:= lim

a→+∞
lim

m→+∞
OC(api (S))/Im

pi
.

This is a sheaf on S and upon a choice of formal coordinate ξi at pi , it gets identified

with OS((ξi )). Using this, the coordinate free affine Lie algebra is defined as follows:

ĝ(C/pi ) := g ⊗ KC/pi
⊕ OS · c. (2.3)
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Its n-pointed analog is defined to be the following sheaf on S:

ĝn(C/S) :=
(

g ⊗
n⊕

i=1

KC/pi

)
⊕ OS · c.

The Lie bracket operation is defined as in the previous section.

The Verma module Mλ(C/S) (resp.the coordinate free highest weight integrable

module Hλ(C/S)) on S can be defined similarly by inducing representations (and

taking quotients) using a parabolic subalgebra

p̂pi
:= g ⊗ ÔC/pi

(S) ⊕ OS · c

on the finite dimensional module Vλ via evaluation. More precisely Mλi
(C/S) =

Ind
ĝ(C/pi )

p̂pi
Vλi

refer the reader to [70] for more details.

Definition 2.2 The coordinate free sheaf of covacua V�λ(g, C/S, �) on S is defined

to be the sheaf of coinvariants H�λ(C/S)/
(
g ⊗C π∗OC(∗D)H�λ(C/S)

)
. As before, the

sheaf of coordinate free conformal blocks V
†
�λ(g, C/S, �) is defined to be the OS-

module dual of the sheaf of covacua V�λ(g, C/S, �).

Observe that a choice of formal coordinates around the marked points actually

induces isomorphisms between ĝ(C/pi ) and the sheaf ĝξi
:= g ⊗ OS((ξi )) ⊕ OS · c.

This identifies the coordinate free conformal blocks and the sheaf of covacua with

those obtained by a choice of coordinates.

We now recall some important properties of the sheaf of conformal blocks. The

reader is referred to [28, 70, 72], and [64] for proofs and further exposition.

Theorem 2.3 Let g be a simple Lie algebra and � > 0 a positive integer. Then, the

following statements hold:

(1) The sheaf of conformal blocks V
†
�λ(g,C/S, �) carries a flat projective connection

and hence it is locally free [70].The Verlinde formula, [30, 68], computes the rank

of the vector bundle V
†
�λ(g, �).

(2) The sheaf of conformal blocks V
†
�λ(g,C/S., �) a vector bundle V

†
�λ(g, �) with a

flat projective connection on the moduli stack Mg,n . Moreover, the vector bundle

V
†
�λ(g, �) extends to a vector bundle over the Deligne–Mumford compactification

Mg,n , and the projective connection extends to a projective connection with log-

arithmic singularities along the boundary.

(3) Let M′
g,n be the moduli stack of stable curves along with a choice of formal

coordinates around the marked points. Then the sheaf V
†
�λ(g, C/S, �) gives a vector

bundle with a flat projective connection with logarithmic singularities along the

boundary.

(4) The natural forgetful map form F : M
′
g,n → Mg,n identifies the vector bundle

(but not as a twisted D-module) V
†
�λ(g, �) with the pull-back F∗V

†
�λ(g, �).
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We will refer to the connections in Theorem 2.3 as the TUY/WZW connections;

their construction is recalled in Sect. 3.

Remark 2.4 There are several other important properties—e.g., “propagation of vacua"

and “factorization theorems"—exhibited by conformal blocks. We refer the reader to

[72] for more details.

We also point out that V
†
�λ(g, �) and V

†
�λ(g, �) do not agree as twisted D-modules.

This issue does not appear in [43], as the weights (the trace anomaly of the weights)

there are zero. We refer the reader to [70] for the computation of the Atiyah algebra

of V
†
�λ(g, �). We also refer the reader to Remark 3.2 for the failure of the identification

of these two bundles as twisted D-modules.

3 Energymomentum tensor and the Sugawara construction

In this section, following the discussion in [72] we recall the definition of the Sugawara

tensor, which will be used in defining the connections on the sheaf of covacua and

conformal blocks.

For any X ∈ g, the element X ⊗ ξm ∈ ĝ will be denoted by X(m). The energy

momentum tensor T (z) at level � is defined by the formula

T (z) = 1

2(� + h∨(g))

dim g∑

a=1

:J a(z)J a(z): , (3.1)

where : : is the normal ordering (cf. [72, p. 467]), h∨(g) is the dual Coxeter number of

g, and {J 1, · · · , J dim g} is an orthonormal basis of g with respect to the normalized

Cartan-Killing form. Also, define

X(z) :=
∑

n∈Z

X(n)z−n−1

for any element X ∈ g. The n-th Virasoro operator Ln is defined by the formula (see

[37]):

Ln := 1

2(� + h∨(g))

∑

m∈Z

dim g∑

a=1

:J a(m)J a(n − m): (3.2)

The operators Ln act on the module Hλ defined in Sect. 2.1.

For X ∈ g, f (z) ∈ C((z)) and � = �(z) d
dz

, define (as in [72])

X [ f ] := Resz=0 (X(z) f (z)) dz, T [�] := Resz=0 (T (z)�(z)) dz.

3.1 Construction of theWZW/TUY connection

Let C be an irreducible smooth projective curve with n-marked points p =
(p1, · · · , pn). For every 1 ≤ i ≤ n, we choose a formal coordinate ξi around the
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marked point pi on the curve C . Following [72], let us briefly recall the construction

of a flat projective connection which also gives a twisted D-module.

Let π : C → S be a versal family of n-pointed stable curves equipped with n

non-intersecting sections pi : S → C. Let D = ∑n
i=1 pi (S) be the corresponding

divisor on C. We have a short exact sequence of sheaves

0 −→ π∗TC/S(∗D) −→ π∗TC,π (∗D) −→ TS −→ 0 (3.3)

on S. On the other hand, we also have the short exact sequence

0 −→ π∗TC/S(∗D) −→
n⊕

i=1

OS[ξ−1
i ] d

dξi

−→ R1π∗TC/S(−D) −→ 0. (3.4)

obtained from pushing forward the following short exact sequence

0 −→ TC/S(−D) −→ TC/S(∗D) −→
n⊕

i=1

OS[ξ−1
i ] d

dξi

−→ 0. (3.5)

Since the family of n-pointed curves C is versal, we have the Kodaira–Spencer

isomorphism TS
∼−→ R1π∗TC/S(−D). Combining (3.3) and (3.4), the following

commutative diagram of homomorphisms is obtained:

0 π∗TC/S(∗D) π∗TC,π (∗D) TS 0

0 π∗TC/S(∗D)
⊕n

i=1 OS[ξ−1
i ] d

dξi
R1π∗TC/S(−D) 0,

t K S

θ

(3.6)

where t is the projection to the polar part of the Laurent expansion of sections in terms

of the given coordinates ξi around the divisors pi (S). This map t is an isomorphism

because the family C is versal.

Let �� = (l1, · · · , ln) and �m = (m1, · · · , mn) be two formal vector fields; both

li and mi are defined on a formal neighborhood of pi (S). The Lie bracket [��, �m]d is

given by the formula

[��, �m]d := [��, �m]0 + θ(��)( �m) − θ( �m)(��), (3.7)

where [ ]0 is the usual Lie bracket of formal vector fields and θ(��) acts componentwise

using the formal parameters ξi . Now for any formal vector field ��, define the operator

D(��) on H�λ by the formula

D(��)(F ⊗ |
〉) := θ(��)(F) ⊗ |
〉 − F ·

⎛
⎝

n∑

j=1

ρ j (T [l j ])

⎞
⎠ |
〉, (3.8)

where ρ j is the action on Hλ j
defined on [72, p. 475] and |
〉 ∈ H�λ.
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3.2 WZW/TUY connection

After possibly shrinking S, we can find a symmetric bidifferential ω on C ×S C with

a pole of order two on the diagonal such that the biresidue is 1. For any formal vector

field �� define

aω(��) := − cv

12

n∑

i=1

Resξi =0 (�i (ξi )Sω(ξi )dξi ) ,

where Sω is the projective connection associated to ω, and cv = � dim g

� + h∨(g)
is the

central charge.

Now let τ be a vector field on S. Take a lift of τ to π∗TC/S(∗D) and denote it by

��. With the choice of a bidifferential ω as above, we define the following operator on

the sheaf of conformal blocks: For any section 〈�| of the sheaf of conformal blocks

V
†
�λ(g, �).

∇(ω)
τ (〈�|) := D(��)(〈�|) + aω(��)(〈�|). (3.9)

We recall the following result (see [72, Thm. 5.3.3]).

Proposition 3.1 The operator ∇(ω)
τ in (3.9) defines a flat projective connection on the

sheaf of conformal blocks V
†
�λ(g, �).

3.3 Sheaf of twisted differential operators

Now recall that a sheaf of twisted differential operators on a smooth manifold M is

an isomorphism class of sheaf of Lie algebra extensions of the form

0 −→ OM

ιA−→ A
pr−→ TM −→ 0.

These are also known as Atiyah algebras, and the above exact sequence is known as

the fundamental exact sequence of Atiyah algebras.

Isomorphism class of twisted differential operators are in one-to-one correspon-

dence with the H1(M,�
1,cl
M ), where �

1,cl
M is the sheaf of closed one-form. One natural

source of such extensions is to consider differential operators up to order one on line

bundles and multiples of that. Giving an action of the sheaf of twisted differential

operators or an Atiyah algebra on a vector bundle V amounts to the following [70,

Section 2.3]

• A section α of A acts as a first-order differential operator 
(α) on V.

• The principal symbol of 
(α) is just pr(α) ⊗ idV.

• 
(ιA(1)) acts by identity.

Now if we choose a splitting of the fundamental exact sequence of sheaf of Lie

algebras, an action of the Atiyah algebra A on V induces an action of TM on the

projective bundle P(V). The induced action is indeed a flat projective connection.

Following Beilinson–Schechtman [16], Tsuchimoto [70] proves that following:
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(1) The Atiyah algebra
� dim g

2(�+h∨(g))
D≤1(H) acts on V�λ(g, �) where H is the Hodge

bundle on M′
g,n .

(2) The Atiyah algebra
� dim g

2(�+h∨(g))
D≤1(H)⊗	λ1D

≤1(ψ1)⊗ · · ·⊗	λn D
≤1(ψn) acts

on V�λ(g, �) where H is the Hodge bundle on Mg,n , ψi is the i-th psi class, and

	λi
are rational numbers known as trace anomalies and are given by the formula

(λi ,λi +2ρ)
2(�+h∨(g))

for each 1 ≤ i ≤ n.

Remark 3.2 Consider the natural forgetful map F : M′
g,n → Mg,n constructed by

forgetting the choice of formal parameters at the n-marked points. Then, the natural

identification between F∗V�λ(g, �) and V�λ(g, �) as locally free sheaves intertwines,

up to a first-order operator, the pull-back of the coordinate free TUY connection on

F∗V�λ(g, �) and the TUY connection on V�λ(g, �). This is due to the fact that the trace

anomalies of the weights �λ may not be integers and hence the action of the Lie algebra

of Aut(C[[ξi ]]) on Hλ given via the Sugawara construction may not integrate to an

action of Aut(C[[ξi ]]). This is necessary for the twisted D-module on M′
g,n to descend

to a twisted D-module on Mg,n .

4 Projective connections via heat operators

4.1 Heat operators and the Hitchin–van Geemen–de Jong equation

Let π : M → S be a smooth map of smooth varieties, and let L be a line bundle on

M . The Kodaira–Spencer infinitesimal deformation map is given by:

K SM/S : TS −→ R1π∗TM/S .

On the other hand, we have the coboundary map

μL : π∗ Sym2 TM/S −→ R1π∗TM/S,

occurring in the long exact sequence obtained from the push forward π∗ of the funda-

mental short exact sequence of differential operators

0 −→ TM/S
∼= D

≤1
M/S(L)/OM −→ D

≤2
M/S(L)/OM

s2−→ Sym2 TM/S −→ 0 ,

where s2 is the symbol map and D
≤i
M/S(L) is the sheaf of relative differential operators

of order at most i . Following [73], consider the sheaf W(L) defined by

W(L) := D
≤1
M (L) + D

≤2
M/S(L). (4.1)

There is a natural short exact sequence

0 −→ D
≤1
M/S(L) −→ W(L)

q0−→ π∗TS ⊕ Sym2 TM/S −→ 0. (4.2)
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Definition 4.1 A heat operator D : π∗TS → W(L) is a section of the natu-

ral projection map W(L) → π∗TS . A projective heat operator is a section of

W(L)/OM → π∗TS .

A projective heat operator evidently lifts, locally, to a heat operator. Given a homo-

morphism ρ : π∗TS → Sym2 TM/S , one can ask whether there is a canonical

projective heat operator D : π∗TS → W(L)/OM such that q1 ◦ D = ρ. The fol-

lowing theorems of Hitchin [36] and van Geemen–de Jong [73], answer a fundamental

question on existence of projective heat operators.

Theorem 4.2 ([36, 73]) Assume that the following conditions hold:

(1) K SM/S + μL ◦ ρ = 0;

(2) ∪[L] : π∗TM/S → R1π∗OM is an isomorphism;

(3) π∗OM = OS .

Then there exists a unique projective heat operator D lifting any candidate symbol

ρ : π∗TS → Sym2 TM/S . Moreover the coherent sheaf π∗L carries a projective

connection.

Remark 4.3 We can take L to be an object in the rational Picard group Pic(M) ⊗ Q.

All the sheaves that appear in the statement of Theorem 4.2 are well-defined, and the

proof in [73] does not require the assumption that L be a line bundle. Though the heat

operator may be defined abstractly, it may not have any natural space to acts unless

π∗L exists as a non-trivial coherent sheaf.

4.2 Heat operators andmetaplectic quantization

We are interested in the case where the Kodaira–Spencer map K SM/S , the candidate

symbol ρ : TS → π∗ Sym2 TM/S and the class of L are intertwined by the equation:

K SM/S + ∪[L] ◦ ρ = 0. (4.3)

We refer to (4.3) as the equation controlling the deformations. Recall that the connect-

ing homomorphism

μ
L

⊗k : π∗ Sym2 TM/S −→ R1π∗TM/S

is given by the formula (see [55])

μ
L

⊗k = ∪
(

[k · L] − 1

2
[KM/S]

)
. (4.4)

4.2.1 Rewriting the deformation equation

We will now rewrite (4.3) to produce a projective heat operator on L. We will assume

that for any positive k ∈ Q, the connecting homomorphism μ
L

⊗k in (4.4) is an
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isomorphism. This condition holds, for example, in the case of moduli spaces of

parabolic bundles.

Now

K SM/S + ∪[L] ◦ ρ = K SM/S + 1

k

(
∪

(
k[L] − 1

2
KM/S

)
+ ∪1

2
[KM/S]

)
◦ ρ

= K SM/S + μ
L

⊗k ◦
(

1 + μ−1

L
⊗k ◦ (∪1

2
[KM/S])

)
◦ 1

k
ρ

= K SM/S + μ
L

⊗k ◦ ρ̃k,

where ρ̃k =
(

1 + μ−1

L
⊗k ◦

(
∪ 1

2
[KM/S]

))
◦ 1

k
ρ is the symbol map. Again assuming

that the conditions (i i) and (i i i) of Theorem 4.2 are satisfied for the line bundle L,

we get a projective heat operator D on L⊗k with symbol ρ̃k such that the following

diagram commutes

π∗W(L⊗k)

TS π∗ Sym2 TM/S .

symb

ρk

(4.5)

This induces a projective connection on π∗L⊗k for any positive k ∈ Z with symbol

ρ̃k

4.2.2 Metaplectic correction d’après Scheinost–Schottenloher

We can rewrite the left-hand side of (4.3) as follows:

K SM/S + ∪[L] ◦ ρ = K SM/S + 1

k

(
∪

(
[k · L] + 1

2
[KM/S]

)
− ∪1

2
[KM/S]

)
◦ ρ,

= K SM/S + μ
L

⊗k⊗K
1
2
M/S

◦ ρk,

where ρk := 1
k
ρ and L⊗k ⊗ K

1/2
M/S is considered as an element of the rational Picard

group. Thus, from (4.3) the following equation is obtained:

K SM/S + μ
L

⊗k⊗K
1
2
M/S

◦ ρk = 0. (4.6)

Assume that the other conditions (i i) and (i i i) of Theorem 4.2 (Hitchin–van

Geemen–de Jong existence theorem) are satisfied. Then, Theorem 4.2 tells us that

there exists a unique projective heat operator D̂ with symbol ρk and a connection on

π∗(L⊗k ⊗ K
1
2

M/S). As pointed out in Remark 4.3, the projective heat operator makes

sense even if the square-root of KM/S does not exist.

It is easy to see that for any candidate symbol, there exists a second-order projec-

tive operator D̂ on K
1
2 with the same given symbol. However, this operator is not a
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projective heat operator, since the natural projection of it to π∗TS is zero. On the other

hand, we have a projective heat operator D on L⊗k with the same symbol ρ̃k . The

following is then a natural question.

Question 4.4 Using the projective heat operator D for the line bundle L⊗k and the

projective operator D̂ on K
1
2

M/S with the same symbol ρk , can we construct a projective

heat operator D̃ on L⊗k ⊗ K
1
2

M/S?

Remark 4.5 Observe that the equations in Theorem 4.2 imply that there exists at most

one heat operator provided

μ
L

⊗k⊗K
1
2
M/S

: π∗ Sym2 TM/S −→ R1π∗TM/S

is an isomorphism. A positive answer to Question 4.4 would immediately imply that the

symbol of D̃ satisfies the equation for ρk given in (4.6). This will provide a necessary

relation that the linear maps ∪[L] and ∪[KM/S] are scalar multiples of each other. This

would give an alternative, more conceptual understanding of Theorem 4.1 in [20].

5 Parabolic Hitchin symbol as in Biswas–Mukhopadhyay–Wentworth

In this section, we first briefly recall the construction of the Hitchin connection for the

moduli space of parabolic bundles M
par ,rs

G,τ obtained in [20]. We refer the reader to

Appendices A.1 and A.3 for a brief review of the moduli stack of parabolic bundles

and the parabolic determinant of cohomology line bundles. We will freely use the

correspondence between parabolic G bundles on a curve C and equivariant (�-G)-

bundles on a Galois cover Ĉ of the curve C with Galois group �. This is recalled in

Appendix A.2.

In particular, we focus on the parabolic Hitchin symbol defined in the paper [20].

Using restriction to fibers of the Hitchin map, we give a simplification of the expression

for the symbol that enables us to compare the parabolic Hitchin symbol with the symbol

of the Sugawara operators as constructed in [72]. The main result of this section is

Proposition 5.6. This is a key new feature and one of the main technical difficulties in

the parabolic set-up that does not appear in [43].

5.1 The Hitchin symbol

In [20] (recalled in Appendix A.2), we identified the moduli space M
par
G,τ of parabolic

bundles with the moduli space M
τ ,ss
G of (�, G)-bundles on a Galois cover Ĉ of the

curve C via the invariant pushforward functor [4, 5].

This includes the following identifications: Let P be a regularly stable parabolic

bundle and P̂ the corresponding (�, G) bundle (see Appendix A.2). Let Par(P) (resp.

Spar(P)) denote the bundle of parabolic (resp. strictly parabolic) automorphisms of

P. Then,

H0(C, Spar(P) ⊗ KC (D)) ∼= H0(Ĉ, ad P ⊗ KĈ )� (5.1)
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and

H1(C, Par(P)) ∼= H1(Ĉ, ad P)�. (5.2)

The Hitchin symbol was defined using the natural map

H0(Ĉ, ad P ⊗ KĈ )� ⊗ H1(Ĉ, ad P)�
κg−−→ H1(Ĉ, KĈ )� ∼= C; (5.3)

where the last isomorphism is given by the Serre duality on Ĉ . As in [36, Prop. 2.16],

this induces a natural map in the relative setting (we refer here to the fundamental

diagrams [55, p. 465] and [20, eq. (3.3)]):

ρsym : R1π∗TC/S(−D) −→ πe∗ Sym2 TM
τ ,rs
G /S , (5.4)

where πe : M
τ ,rs
G → S and π : C → S are the projections. On the other hand, we

also have the pairing

R1π∗ Par(P) ⊗ π∗(Spar(P) ⊗ KC/S(D))

R1π∗(Spar(P)(D) ⊗ Par(P) ⊗ KC/S) R1π∗KC/S
∼= OS .

κg

(5.5)

This also induces a map

ρ̃sym : R1π∗TC/S(−D) −→ πe∗ Sym2 TM
par ,rs
G,τ /S . (5.6)

The isomorphisms R1π∗KC/S
∼= OS in (5.5) and R1π̂∗K

Ĉ/S
∼= OS are both given

by the residue theorem and Serre duality, but for different curves. Hence, the map on

Hitchin symbols ρsym and ρ̃sym do not commute under the identifications given by

(5.1) and (5.2). However, they are related as follows:

Lemma 5.1 Let ρsym and ρ̃sym be as above. Then |�| · ρsym = ρ̃sym .

Proof This is immediate from the commutativity of

R1π∗KC/S (R1π̂∗K
Ĉ/S

)�

OS OS

∼

×|�|

��

5.2 Parabolic Hitchin connection via heat operators

Let φ : G → SL(V ) be a linear representation satisfying the hypothesis of

Sect. A.3. Let Lφ be the pullback of the determinant of cohomology line bundle

123



   85 Page 18 of 39 I. Biswas et al.

to M
τ ,ss
G . Via the identification of parabolic G-bundles as equivariant bundles and

Proposition A.8, we have identified it with the parabolic determinant of cohomology

Det par (νsl(V )(φ(τ ))). For notational convenience, we will drop φ when denoting the

line bundle Det par ,φ(P, τ ) and simply write Det par (P, τ ).

In [20], the authors produced a projective heat operator on the line bundle L
⊗k
φ

whose symbol satisfies the following Hitchin–van Geemen–de Jong equation:

K SM
par ,rs
G,τ /S+μ

L
k

φ

◦
(

1

mφk
Id +μ−1

L
k

φ

◦
(

∪ 1

2mφk
[KM

par ,rs
G,τ /S]

))
◦ρsym ◦K SC/S = 0.

(5.7)

Setting ρ = ρsym ◦ K SC/S gives

K SM
par ,rs
G,τ /S + μ

L
k

φ

◦
(

Id +μ−1

L
k

φ

◦
(

∪1

2
[KM

par ,rs
G,τ /S]

))
◦ 1

mφ · k
ρ = 0, (5.8)

where k is a rational number.

Let k = �/|�|. Using the identification Lφ
∼=

(
Det par (P, τ )

) |�|
� in Proposition

A.8, from (5.8) we get that

K SM
par ,rs
G,τ /S + μ

Det par (P,τ )⊗K
1/2

M
par ,ss
G,τ

/S

◦ |�|
mφ · �

ρ = 0.

Definition 5.2 For any rational number a, we will denote the projective heat operator

on Det⊗a
par ,φ(P, τ ) obtained in [20] by D(g, a · mφ · �).

The following is one of the main results of [20, Theorem 4.1].

Theorem 5.3 Let L be an element of Pic(M
par ,rs
G,τ ) ⊗ Q of level a (see definition A.7).

Then, there is an equality ∪[L] = ∪a[Det] as linear maps πe∗ Sym2 TM
par ,rs
G,τ /S →

R1πe∗TM
par ,rs
G,τ /S , where Det is the determinant of cohomology (non-parabolic) line

bundle.

Remark 5.4 The above result should be put in the more general context of deformation

theory of the moduli space of the parabolic bundles as studied in Boden-Yokogawa

[24], and the birational variation of these moduli spaces as the weights vary.

Since line bundles on M
par ,rs
G,τ are pull-backs of rational powers of line bundles

from M
par ,s

SL(V ),α for an appropriate choice of representation (φ, V ) of G, the following

is an immediate consequence of Theorem 5.3.

Corollary 5.5 Let M̂G and M
par ,rs
G,τ be as in Sect.A.3. Let (φ, V ) be a representation

of G. Then, the line bundle K M̂G/S restricted to M
par ,rs
G,τ is of level − 2h∨(g).|�|

mφ
with

respect to SL(V ), and hence

∪[KM
par ,rs
G,τ /S] = ∪

[K M̂G/S]
|�|
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as linear maps from π∗ Sym2 TM
par ,rs
G,τ /S to R1π∗TM

par ,rs
G,τ /S .

Proof On the one hand, we have the fact from [41] that K M̂G/S is −2h∨(g)Lφ , where

Lφ is the ample generator of the Picard group of the moduli stack of SL(V ) bundles

on Ĉ , where Ĉ → C is a �-cover. Moreover, Lφ restricted to M
par ,rs
G,τ /S is of level

|�| (see Appendix A.3). On the other hand, the canonical bundle KM
par ,rs
G,τ /S has a

component that is −2h∨(g) times the ample generator of the Picard group of the

moduli stack of G bundles on C , which in turn is of level 1
mφ

with respect to the sl(V )

embedding of g. This proves the result. ��

Corollary 5.5 further simplifies the parabolic Hitchin symbol, as shown by the follow-

ing.

Proposition 5.6 Assume that mφ · � + h∨(g) �= 0. Then

1

mφ�

(
1 + μ−1

Det par (τ )
◦

(
1

2
∪ [KM

par ,rs
τ ,G /S]

))
◦ ρ̃sym = ρ̃sym

mφ · � + h∨(g)
. (5.9)

Proof Since ρ̃sym is invertible, we need to show that

mφ · � + h∨(g)

mφ · �

(
1 + μ−1

Det par (τ )

(
1

2
∪ [KM

par ,rs

�α,SLr
/S]

))
= Id .

So it suffices to prove that

μ−1
Det par

(τ ) ◦
(

1

2
∪ [KM

par ,rs
G,τ /S]

)
=

(
−1 + mφ · �

mφ · � + h∨(g)

)
Id .

By multiplying with μDet par (τ ), it suffices to show that

∪ [KM
par ,rs
G,τ /S] =

( −2h∨(g)

mφ · � + h∨(g)

)
μDet par (τ ). (5.10)

Now by [41, 42], applied to the moduli space M̂G of principal G bundle on Ĉ , we get

that

[K M̂G
] = −2h∨(g).mφ .[Lφ]. (5.11)

By Corollary 5.5,

∪[KM
par ,rs
G,τ /S] = ∪−2 h∨(g)[Lφ]

mφ · |�| = ∪−2 h∨(g)

mφ · |�|

( |�|[Det par (τ )]
�

)
.

Rewriting the above equation, we find
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∪mφ · �[KM
par ,rs
G,τ /S] = ∪

(−2h∨(g) · mφ · �

|�| · mφ

) |�|[Det par (τ )]
�

,

∪ mφ · �

mφ · � + h∨(g)
[KM

par
G,τ /S] =

(
∪ 1

mφ · � + h∨(g)

(
−2h∨(g)[Det par ]

))
,

∪[KM
par ,rs
G,τ /S] =

(
∪ −2h∨(g)

mφ · � + h∨(g)

(
[Det par (τ )] − 1

2
[KM

par ,rs
τ ,G /S]

))
,

∪1

2
[KM

par
τ ,G /S] =

( −h∨(g)

mφ · � + h∨(g)

)
· μDet par (τ ) (from (4.4)).

This completes the proof. ��

6 Proof of Theorem 1.1

In this section, we give a proof of the main theorem in this article by comparing the

Sugawara tensor and the parabolic analog of the heat operator with a given symbol

constructed by the authors in [20].

Let Parrs
G (C, p, τ ) be the open substack parametrizing regularly stable parabolic

bundles of parabolic type τ . Then the natural map Parrs
G (C, p, τ ) → M

par ,rs
G,τ (C, p)

is a gerbe banded by the center Z(G) of the group G.

Similarly, let Qrs
τ be the open ind-subscheme of Qτ parametrizing the regularly

stable bundles. The natural map πreg given by the composition

πreg : Qrs
τ −→ Parrs

G (τ ) −→ M
par ,rs

G,τ

is a LC
′
,G

/Z(G) torsor which is étale locally trivial. Here, LC
′
,G

is the loop group

associated to a punctured curve.

6.1 TwistedD-modules via quasi-section of Drinfeld–Simpson

Let πs : C → S be a versal family of n-pointed smooth curves of genus g. We choose

formal coordinates ξ = (ξ1, · · · , ξn) along the sections p.

Let τ = (τ1, · · · , τn) be as in Section B.1, and let Qτi
be the affine flag variety

associated to τi . The above choice of coordinates gives an identification of Qτ with∏n
i=1 LG/Pτi

. By the discussion in [8, Secs. 5.2.9−5.2.12], the infinitesimal action,

of the central extension L̂G of the loop group, on Qτi
gives a map

U (̂gξi
)opp −→ H0(Qτi

, DQτi
/S(L�λ)).

Here DQτi
/S(Lλi

) is the ring of relative Lλi
-twisted differential operators on Qτi

,

and U (̂gξi
) is a suitable completion of the universal enveloping algebra of ĝξi

, and

U (̂gξi
)opp is the opposite algebra. Summing over all the coordinates, we get a map
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n⊕

i=1

(
U (̂gξi

)opp
)

−→ H0(Qτ , DQτ /S(L�λ)) (6.1)

which via further restriction gives a map
⊕n

i=1

(
U (̂gξi

)opp
)

→ H0(Qrs
τ , DQτ /S(L�λ)).

Both sides of (6.1) carry natural filtrations and the map in (6.1) is a map of filtered

sheaves of algebras.

As in [43], we consider a quasi-section of πrs . The result of [27] implies that

the natural étale locally trivial torsor πrs : Qrs
τ → Mrs

G,τ has a quasi-section

N
par ,rs

G,τ

r−−→ M
par ,rs

G,τ such that r is an étale epimorphism, and there is a map

σ : N
par ,rs
G,τ → Qrs

τ such that the following diagram commutes

Qrs
τ

N
par ,rs
G,τ M

par ,rs
G,τ

S

πrs

r

σ

πe

(6.2)

Now since the map r is étale, we get an isomorphism

H0(N
par ,rs

G,τ , r∗TM
par ,rs
G,τ /S) = H0(N

par ,rs

G,τ , TN
par ,rs
G,τ /S).

Given any relative differential operator D on the line bundle L�λ, we can pull it

back via σ (see Section 8.1 and 8.7 in [43]) to a differential operator on the line bundle

σ ∗L�λ which, by an abuse of notation, is again denoted by L�λ. Thus, (6.1) gives the

following map of filtered sheaves of algebras

�L�λ :
n⊕

i=1

(
U (̂gξi

)opp
)

−→ H0(N
par ,rs
G,τ , DN

par ,rs
G,τ /S(L�λ)). (6.3)

The sheaf of Lie algebras
⊕n

i=1

(
U (̂gξi

)opp
)

carries a natural PBW filtration and

we let
(⊕n

i=1

(
U (̂gξi

)opp
))≤m

be the m-th part of the filtration. Then, the following
diagram is commutative

H0(N
par ,rs
G,τ ,D

≤m

N
par ,rs
G,τ

/S
(L�λ))

(⊕n
i=1

(
U (̂gξi

)opp
))≤m

H0(N
par ,rs
G,τ , Symm T

N
par ,rs
G,τ

/S
)

H0(N
par ,rs
G,τ ,D

≤m

N
par ,rs
G,τ

/S
(O

N
par ,rs
G,τ

))

symb≤m
�

≤m
L �λ

�
≤m

O
symb≤m

(6.4)

where symb≤m denotes the principal m-th-order symbol map of a differential operator.
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6.2 Projective heat operator from Sugawara

We now give a local description of the map �L�λ . Let P be a regularly stable parabolic

G-bundle in the moduli space of parabolic bundles of parabolic weights �λ on a curve

C with parabolic structure over p. We consider it as a point in N
par ,rs
G,τ . The tangent

space at P is given by H1(C, Par(P)), where Par(P) is the sheaf of Lie algebras given

by parabolic endomorphisms of the bundle P.

Let Pi ⊂ G be the parabolic subgroup determined by the weight λi attached to

the point pi ∈ p, and let pi be the corresponding Lie algebra. We denote by p−
i

the opposite parabolic and by n−
i the nilpotent radical of p−

i . We have a short exact

sequence of sheaves

0 −→ Par(P) −→ Par(P)

(
n∑

i=1

mi pi

)
−→

n⊕

i=1

⎛
⎝n−

i ⊕
mi⊕

j=1

g ⊗ ξ
j

i

⎞
⎠ −→ 0,

(6.5)

where m1, · · · , mn are non-negative integers. Taking the long exact sequence of

cohomologies associated to (6.5), we get a homomorphism

n⊕

i=1

(
n−

i ⊕ g ⊗ C[ξ−1
i ]ξ−1

i

)
−→ H1(C, Par(P)). (6.6)

Combining this with the natural projection g ⊗ C((ξi )) → n−
i ⊕ g ⊗ C[ξ−1

i ]ξ−1
i for

each 1 ≤ i ≤ n, we get a homomorphism

ρi : g ⊗ C((ξi )) −→ n−
i ⊕ g ⊗ C[ξ−1

i ]ξ−1
i −→ H1(C, Par(P)). (6.7)

The composition of maps ρi in (6.7) is the local description of �O (defined in (6.3))

(
U (̂gpi

)opp
)⊕n −→ H0(N

par ,rs
G,τ , DN

par ,rs
G,τ /S(O)). (6.8)

The operator D(��) defined in (3.8) gives a relative second-order differential operator

D on N
par ,rs
G,τ which acts on the i-th factor by (T [l i ]) (see (3.3) and (6.7)). Thus we

have the following diagram

⊕n
i=1 OS((ξi ))

d
dξi

H0(N
par ,rs
G,τ , D

≤2

N
par ,rs
G,τ /S

(L�λ))

H0(S, TS).

D

θ
(6.9)

We can realize D as a projective heat operator by taking a lift of a vector field on

S to an element of
⊕n

i=1 OS((ξi ))
d

dξi
. Now as described in the previous section, the

difference between two lifts can be understood as a OS-module homomorphism aω.
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Thus the map D descends to a projective heat operator, and we will also denote the

descended operator by D. In the rest of this section, we show that the symbol of D is

the Hitchin symbol ρ̃sym , which will complete the proof of Theorem 1.1.

6.3 The parabolic duality pairing and the Hitchin symbol

Recall that the Cartan-Killing form induces a non-degenerate bilinear form between

the sheaves

κg : Spar(P)(D) ⊗ Par(P) −→ OC .

Let Dpi
be a formal disk around each marked point pi in C , and let C∗ =

C\{p1, · · · , pn} be the complement. Consider the following open covering:

C = C∗ ∪
(
�n

i=1 Dpi

)
.

A section of Spar(P) restricted to Dpi
consists of an element of g ⊗ C[[ξi ]] whose

image under the natural evaluation map

evpi
: g ⊗ C[[ξi ]] −→ g

is contained in the nilradical ni of the parabolic subalgebra pi . Similarly, Par(P)

consists of sections whose restriction to any formal disk Dpi
has the property that the

image of the evaluation map is in pi .

Let {P i } be a Čech cocycle representative in
∏n

i=1

(
Par(P)(D∗

pi
)
)

of a cohomology

class of H1(C, Par(P)) with respect to the covering C = C∗ ∪
(
�Dpi

)
. Here, we

have P i ∈ g ⊗ C((ξi )), under a trivialization of P restricted to Dpi
. Similarly we let

{φi dξi } ∈ g ⊗ C((ξi ))dξi denote the restriction of an element of H0(C, Spar(P) ⊗
KC (D)) to �D∗

pi
.

The natural pairing in (5.5) takes the form

H0(C, Spar(P) ⊗ KC (D)) ⊗ H1(C, Par(P)) −→ C (6.10)

{φi dξi
} × {P i } �−→

n∑

i=1

Resξi =0 κg(φi , P i )dξi . (6.11)

Now consider a Čech representative �� = {l i } ∈ ⊕n
i=1C((ξi ))

d
dξi

of a cohomology

class in H1(C, TC (−D)). Let φ be a global section of the sheaf Spar(P) ⊗ KC (D).

For each i , we have

l i =
∞∑

m=−mi

li,mξm+1
i

d

dξi

,

and φ restricted to D∗
pi

is of the form

φi dξi =
∑

m∈Z

X i,mξ−m−1
i dξi ∈ g ⊗ C((ξi ))dξi .
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Since the diagram in (6.4) commutes, we can evaluate the symbol ofDby computing

the following:

〈φ ⊗ φ,

n∑

i=1

T [l i ]〉 =
n∑

i=1

〈φi ⊗ φi dξ2
i ,

∞∑

m=−mi

li,m Lm〉

=
n∑

i=1

∞∑

m=−mi

li,m〈φi ⊗ φi dξ2
i , Lm〉

=
n∑

i=1

∞∑

m=−mi

li,m〈φi ⊗ φi dξ2
i ,

1

2(� + h∨(g))

∑

k∈Z

dim g∑

a=1

:J a(k)J a(m − k):〉.

Now if l i = ξ
ni +1
i

d
dξi

, we get that

〈φ ⊗ φ,

n∑

i=1

T [ξni +1
i

d

dξi

]〉 =
n∑

i=1

〈φi ⊗ φi dξ2
i , Lni

〉

= 1

2(� + h∨(g))

n∑

i=1

∑

k∈Z

dim g∑

a=1

〈φi ⊗ φi dξ2
i , :J a(k)J a(ni − k):〉.

If ni �= 0, then we get that

〈φi ⊗ φi dξ2
i , Lni

〉 = 1

2(� + h∨(g))

∑

k∈Z

dim g∑

a=1

〈φi ⊗ φi dξ2
i , J a(k)J a(ni − k)〉

= 1

2(� + h∨(g))

∑

k∈Z

dim g∑

a=1

Resξi =0〈φi , J a(k)〉dξi .

Resξi =0〈φi , J a(ni − k)〉dξi

= 1

2(� + h∨(g))

∑

k∈Z

dim g∑

a=1

(∑

m∈Z

Resξi =0 κg(X i,m , J a)ξ k−m−1dξi

)

×
(∑

m∈Z

Resξi =0 κg(X i,m , J a)ξni −k−m−1dξi

)

= 1

2(� + h∨(g))

∑

k∈Z

dim g∑

a=1

κg(X i,k , J a)κg(X i,ni −k , J a)

= 1

2(� + h∨(g))

∑

k∈Z

κg(X i,k , X i,ni −k).
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The zero-th Virasoro operator L0 can be rewritten without normal ordering as

follows:

L0 = 1

2(� + h∨(g))

dim g∑

a=1

J a J a + 1

(� + h∨(g))

∞∑

k=1

J a(−k)J a(k).

Thus, we get the following:

〈φi ⊗ φi dξ2
i , L0〉

= 1

2(� + h∨(g))

dim g∑

a=1

〈φi ⊗ φi dξ2
i , J a J a〉 + 1

(� + h∨(g))

∞∑

k=1

〈φiφi dξ2
i , J a(−k)J a(k)〉

= 1

2(� + h∨(g))

dim g∑

a=1

(∑

m∈Z

Resξi =0 κg(X i,m , J a)ξ−m−1
i dξi

)2

+ 1

(� + h∨(g))

∞∑

k=1

dim g∑

a=1

( (∑

m∈Z

Resξi =0 κg(X i,m , J a)ξ−k−m−1
i dξi

)

×
(∑

m∈Z

Resξi =0 κg(X i,m , J a)ξ k−m−1
i dξi

) )

= 1

2(� + h∨(g))

dim g∑

a=1

κg(X i,0, J a)κg(X i,0, J a).

+ 1

(� + h∨(g))

∞∑

k=1

dim g∑

a=1

κg(X i,−k , J a)κg(X i,k , J a)

= 1

2(� + h∨(g))
κg(X i,0, X i,0) + 1

2(� + h∨(g))

∑

k∈Z\{0}
κg(X i,−k , X i,k)

= 1

2(� + h∨(g))

∑

k∈Z

κg(X i,k , X i,−k).

We summarize the above calculations in the following proposition.

Proposition 6.1 For any 1 ≤ i �= n, and for any mi ∈ Z,

〈φi ⊗ φi dξ2
i , Lmi

〉 = 1

2(� + h∨(g))

∑

k∈Z

κg(X i,k, X i,mi −k).

6.4 Proof of theMain theorem (Theorem 1.1)

Recall that the product

R1π∗TC/S(−D) ⊗ π∗(SPar(P) ⊗ KC/S(D)) −→ R1π∗ Par P
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induces a homomorphism

ρ̃sym : R1πn∗TX
par
G /M

par ,rs
G,τ

(−D) −→ πn∗ Sym2 TM
par ,rs
G,τ /S, (6.12)

where

X
par
G := C ×S M

par ,rs
G,τ

and πn : X
par
G → M

par ,rs
G,τ is the projection. Consider the Čech cover of C given by

C = C∗ ∪
(
�n

i=1 Dpi

)
. In particular, given any Čech cohomology class {ξni +1

i
d

dξi
}

in H1(C, TC (−D)), using Serre duality and the identification of SPar(P)(D) with

Par(P)∨, we get a symmetric bilinear form on H0(C, SPar(P) ⊗ KC (D)).

As in the previous section, consider a section φ ∈ H0(C, SPar(P) ⊗ KC (D)). For

each i , the section φ restricted to D∗
pi

is of the form

φi dξi =
∑

m∈Z

X i,mξ−m−1
i dξi ∈ g ⊗ C((ξi ))dξi .

Thus evaluating a cocycle class {ξni +1
i

d
dξi

} against a section φ written in the Čech

cover as {φi dξi }, we get that

{ξni +1
i

d

dξi

}(φ) := Resξi =0 κg(φi dξi ⊗ 〈ξni +1
i

d

dξi

, φi dξi 〉)

= Resξi =0 κg(φi dξi ,
∑

m∈Z

X i,mξ
ni −m
i )

= Resξi =0 κg(
∑

k∈Z

X i,kξ
−k−1
i ,

∑

m∈Z

X i,mξ
ni −m
i )dξi

=
∑

k∈Z

κg(X i,k, X i,ni −k).

We summarize the discussion in this subsection in the following proposition, which

completes the proof Theorem 1.1.

Proposition 6.2 Let a be any rational number and φ be a faithful representation

with Dynkin index mφ . Then the symbol of the projective heat operator D acting

on L
⊗a.mφ

�λ
∼= Det⊗a

par ,φ(τ ) constructed from the Sugawara tensor and uniformization

(see Sect.6.2) coincides with

1

2(a · mφ · � + h∨(g))
ρ̃sym .

Hence, the projective heat operator D and the projective heat operator constructed

in [20] via Theorem 4.2 coincide.
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Remark 6.3 If a square-root of KM
par ,s

SLr ,α
/S exists, then it follows that the push-forward

of the line bundle Det par (α) ⊗ K
1
2

M
par ,s

SLr ,α
/S

produces conformal blocks of level � −
h∨(sl(r)), where h∨(g) is the dual Coxeter number of a Lie algebra g. From the

calculations in this section, and the fact that the tangent and cotangent spaces of the

moduli space M
par ,s

SLr ,α
are only dependent on the flag type of α, it follows that the

symbol ρsym/� equals the symbol of the differential operator that induces the TUY

connection. However, it should be mentioned that even if KM
par ,s

SLr ,α
/S has a square-root,

the pushforward π∗

(
Det par (α) ⊗ K

1
2

M
par ,s

SLr ,α
/S

)
may not have any sections.

7 Geometrization of the KZ equation on invariants

In this section, we show a geometric construction of the Knizhnik–Zamolodchikov

connection (KZ). This question was suggested to us by Professor P. Belkale. Let us

first recall the classical construction of the KZ connection [38].

7.1 KZ connection

Let g be a fixed semisimple Lie algebra, and let �λ = (λ1, · · · , λn) be an n-tuple of

highest weights. Consider the vector space of invariants of tensor product of represen-

tations

A�λ(g) := Homg(Vλ1 ⊗ · · · ⊗ Vλn , C).

The space of invariants sits inside the zero weight space (Vλ1 ⊗ · · · ⊗ Vλn )
∗
0 of the

dual of the tensor product of representations.

Let Xn = {z = (z1, · · · , zn) ∈ Cn | zi �= z j }, and consider the trivial vector

bundle A�λ on the configuration space of points Xn whose fiber is A�λ(g). It is well

known [31, 32, 72] that the space of conformal blocks V
†
�λ(C, g, �, z) on P1 = C�{∞}

with n marked points (z1, · · · , zn) for g at level � and weights �λ injects into A�λ(g):

ι : V
†
�λ(P

1, g, �, z) ↪→ A�λ(g). (7.1)

This map is actually an isomorphism for � � 0. Specific bounds for � are given in

Belkale–Gibney–Mukhopadhyay ([13, 14]).

As in Sect. 3, consider an orthonormal basis J 1, · · · , J dim g of the Lie algebra g for

the normalized Cartan-Killing form. Define the Casimir operator � = ∑dim g
a=1 J a J a .

For pairs of integers 1 ≤ i �= j ≤ n, and vectors v1 ⊗ · · · ⊗ vn ∈ Vλ1 ⊗ · · · ⊗ Vλn ,

let

�i, j (v1 ⊗ · · · ⊗ vn) :=
dim g∑

a=1

v1 ⊗ · · · ⊗ J avi ⊗ · · · ⊗ J av j ⊗ · · · ⊗ vn .

123



   85 Page 28 of 39 I. Biswas et al.

For any complex number κ �= 0, the formula

(
∇(κ)

∂
∂zi

( f ⊗ 〈�|
)

(|
〉) := ∂ f

∂zi

〈�|
〉 − f

κ

∑

j �=i

〈�|�i, j (φ)〉
zi − z j

, (7.2)

defines a flat connection on (Vλ1 ⊗ · · · ⊗ Vλn )
∗
0 ⊗ OXn over Xn that preserves the

subbundle A�λ. Hence, its monodromy gives a representation of the pure braid group

π1(Xn, z).

In this discussion, we restrict ourselves to the case where κ = � + h∨(g), and

κg(λi , θg) < 1 for all i . In this case it is known that the connection ∇(�+h∨(g))

preserves the bundle V
†
�λ(g, �) of conformal blocks and it is equal to the TUY/WZW

connection [31, 32, 72].

7.2 Invariants as global sections

As in Section A.1 consider the moduli stack of quasi-parabolic bundles ParG(P1, z, τ )

of local type τ on P1, where τ and �λ are related by the usual exponential map as before.

Consider the open substack Par c
G(P1, z, τ ) of ParG(P1, z, τ ) parametrizing quasi-

parabolic bundle on P1 whose underlying bundle is trivial. By construction, we have

an isomorphism of Par c
G(P1, z, τ ) with the quotient stack

[(G/P1 × · · · × G/Pn) /G], (7.3)

where P1, · · · , Pn are the parabolics determined by τ1, · · · , τn and G acts diagonally

on the product of partial flag varieties.

Let L�λ be the Borel–Weil–Bott line bundle on ParG(P1, z, τ ), and consider the

restriction of L�λ to Par c
G(P1, z, τ ). We get a natural map

H0(ParG(P1, z, τ ), L�λ) −→ H0(Par c
G(P1, z, τ ), L�λ). (7.4)

Now the restriction of L�λ to [(G/P1 × · · · × G/Pn) /G] is Lλ1 � · · · � Lλn , where
the Lλi

are the natural homogeneous line bundles on G/Pi determined by the weights

λi . Moreover, by the Borel–Weil theorem, we have H0(G/Pi , Lλi
) = V ∗

λi
. Thus,

from the restriction we get the natural commutative diagram

H0(ParG (P1, z, τ ), L�λ) H0(Parc
G

(P1, z, τ ), L�λ)
(⊗n

i=1 H0(G/Pi , Lλi
)
)g

V
†
�λ(P1, g, �, z) Homg(Vλ1

⊗ · · · ⊗ Vλn , C)
(
V ∗

λ1
⊗ · · · ⊗ V ∗

λn

)g
.

∼=

res

∼= ∼=
ι

(7.5)

Here the left vertical isomorphism is due to Laszlo-Sorger [44]; the diagram was used

in [13]. Now it follows that the complement of Par c
G(P1, z, τ ) in ParG(P1, z, τ ) is

just the ordinary theta divisor.
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7.3 Differential operators

Recall the notion of a good stack from Beilinson–Drinfeld [8]: an equidimensional

algebraic stack Y over complex numbers is good if the dimension of Y is half the

dimension of the cotangent stack T∨
Y

. Let Ysm be the smooth topology of Y. For any

object S ∈ Ysm and a smooth 1-morphism πS ∈ Y, we have the exact sequence

TS/Y −→ TS −→ π∗
STY −→ 0.

Consider the sheaf of differential operators DS on S and the left ideal I = DSTS/Y ⊂
DS . Set DY(S) := DS/I ,. This DY is an OY module along with a natural filtration

such that Sym TY
∼= gr DY. The above also works for differential operators twisted

by a line bundle.

Since the nilpotent cone of the moduli space of parabolic Higgs bundles is isotropic

of exactly half the dimension [6, 29, 45], it follows that the stack ParG(P1, z, τ ) is

good. Moreover, since both Parc
G(P1, z, τ ) and Parrs

G (P1, z, τ ) are quotients of a

smooth scheme by a reductive group, they are also good.

Now we know that the line bundle L�λ descends to a line bundle on ParG(P1, z, τ ).

The construction of the projective heat operator (cf. Definition 5.2) with symbol

(5.2) gives a second-order differential operator D on L�λ over the moduli stack

Parrs
G (P1, z, τ ). Since the sheaf D≤2(L�λ) is coherent and Parrs

G (P1, z, τ ) has com-

plement of dimension at least two (provided τ satisfies the conditions in the statement

of Theorem B.1) applying Hartogs theorem, we get a differential operator on L�λ over

the entire stack ParG(P1, z, τ ), which we will still denote by D.

Recall that via the uniformization theorem and the Sugawara construction, we

have a degree two differential operator D on L�λ, which by Theorem 1.1 agrees with

D. Since the Sugawara construction restricted to the open substack Par c
G(P1, z, τ )

induces the KZ connection, we have the following corollary obtained by restricting D

to Parc
G(P1, z, τ ).

Corollary 7.1 Let πc : Par c
G(τ ) → Xn be the relative open substack of quasi-

parabolic bundles whose underlying bundle is trivial. Then, the heat operator D

induces a flat connection on the vector bundle πc
∗L�λ over Xn whose fiber at a point z is

H0(Par c
G(C, z, τ ),L�λ). Moreover, the natural identification of πc

∗L�λ with A�λ is flat

for the geometric connection on πc
∗L�λ and the Knizhnik–Zamolodchikov connection

on A�λ.

Appendix A Moduli spaces of parabolic bundles

In this section, we briefly recall the basic notion of parabolic bundles and the natural

line bundles on their moduli spaces.

Let C, p be as in Sect. 3.1. Let E be a vector bundles on C . A quasi-parabolic

structure on E at a point p ∈ p is a strictly decreasing flag

E p = F1 E p ⊃ F2 E p · · · ⊃ · · · ⊃ Fkp E p ⊃ Fkp+1 Ex = 0.
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of linear subspaces in E p. The above integer kp is the length of the flag at p, and the

tuple

(r1(F•E p), · · · , rkp (F•E p))

records the jumps in the dimension of the subspaces and is defined by

r j (F•E p) := dim F j E p − dim F j+1 E p.

A parabolic structure on E at p is a quasi-parabolic structure as above together with

a sequence of rational numbers

0 ≤ α1 < α2 < · · · < αkp < 1

known as the weights. A parabolic bundle (E, α, r) on C with parabolic divisor p is

a vector bundle E on C along with parabolic structure over the points in p. Using the

weights α, the parabolic degree of E is defined to be

pdeg(E) := deg(E) +
n∑

i=1

kpi∑

j=1

r j (F•(E pi
))α j (F•(E pi

))

Stable and semistable parabolic bundles are defined using the parabolic degree (see

[47]). Mehta and Seshadri constructed the moduli space M
par
α of semistable parabolic

bundles [47].

We now discuss some natural ample line bundles on M
par
α , following [22]. Let α

be a fixed set of weights for fixed flag type r , and let (E, α, r) be a parabolic bundle

on (C, p). Define the parabolic Euler characteristic

χ p(E) := χ(E) −
n∑

i=1

kpi∑

j=1

r j (F•(E pi
))α j (F•(E pi

)).

Let E be a family of parabolic bundles on C , parametrized by a scheme T , of rank

r , weight α and flag type r . For each point pi , we have a string of rational numbers

α pi
= (0 ≤ α1(pi ) < · · · < α j (pi ) < · · · < αkpi

(pi ) < 1)

which are the parabolic weights. Observe that the parabolic Euler characteristic χ p

remains constant in a connected family.

Let � be the least common multiple of all denominators of all the rational numbers

appearing in α.
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Definition A.1 The parabolic determinant bundle of level � on M
par
α is the element of

the rational Picard group Pic(T )Q given by

ParDet(E,α) := Det(E)�
⊗

⎛
⎜⎝

n⊗

i=1

⎛
⎝

kpi⊗

j=1

det Gr j
F•,pi

(E|T ×pi
)

⎞
⎠

�.α j (pi )
⎞
⎟⎠

⊗
(
det E|T ×p0

) �.χ p(E)

r , (A.1)

where p0 is a fixed point of C , and Gr j denotes the j-th graded piece of the filtration

F•,pi
on E|T ×pi

(cf. [22, Prop. 4.5]).

Let M
par ,ss

SLr ,α
be the moduli space of semistable parabolic SLr bundles or equivalently

parabolic bundles with trivialized determinant. Then, ParDet(E,α) descends to a line

bundle on M
par ,ss

SLr ,α
, which will be denoted by Det par (α).

A.1 Parabolic G bundles

We shall follow the notation in [20, App. A] and refer the reader there for more details.

Consider the fundamental alcove 
0, and let τ = (τ1, · · · , τn) be a choice of n-tuple

of weights in 
0 which will be referred to as parabolic weights.

Definition A.2 Let G be a connected complex reductive group. A parabolic struc-

ture on a principal G–bundle E → C with parabolic structures at the points

p = (p1, · · · , pn) is a choice of parabolic weights τ along with a section σi of

the homogeneous space E pi
/P(τi ), for each 1 ≤ i ≤ n, where P(τi ) is the standard

parabolic associated to τi . Throughout this paper, we will assume that θg(τi ) < 1 for

all 1 ≤ i ≤ n.

We observe that when G = GLr , the associated bundle constructed via the standard

representation of GLr recovers the notion of parabolic bundles and parabolic weights

as in the beginning of the present section. The notions of stability and semistability for

parabolic G-bundles appear in the work of Bhosle–Ramanathan [17]; for G = GLr

they coincide with the notions of stable and semistable parabolic vector bundles.

Let τ be an n-tuple of parabolic weights in the interior of the Weyl alcove of G.

The corresponding moduli space M
par ,ss

G,τ (respectively, M
par ,s

G,τ ) of semistable (respec-

tively, stable) parabolic G-bundles was constructed in [4]. These moduli spaces are

normal irreducible quasi-projective varieties. The smooth locus of M
par ,ss
G,τ is denoted

by M
par ,rs

G,τ and it parametrizes regularly stable parabolic bundles [19] or equivalently

stable parabolic bundles with minimal automorphisms.

Let ι : G → G ′ be an embedding of connected semisimple groups. This homo-

morphism ι produces a map M
par ,ss

G,τ → M
par ,ss

G ′,τ ′ which is a finite morphism. The

weights τ ′ and τ are related by ι. This plays a key role in construction of the mod-

uli spaces. In fact, choosing an appropriate representation of the group G, one can

reduce the question of construction to the corresponding question on parabolic vector

bundles.
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Remark A.3 Let C → S be a family of smooth curves with n disjoint sections.

We will denote the corresponding semistable and regularly stable moduli spaces

also by M
par ,ss
G,τ and M

par ,rs
G,τ , respectively. When there is a scope of confusion, for

any n-pointed smooth curve (C, p), we will use the notation M
par ,ss
G,τ (C, p) and

M
par ,rs
G,τ (C, p), respectively.

A.2 Parabolic bundles as equivariant bundles

We now discuss parabolic bundles from the point of view of equivariant bundles. We

refer the reader to [5, 18, 63], and [20, App. B] for more details. This was used in [20]

to construct a Hitchin type connection for parabolic bundles and it will be crucial here

as well.

Definition A.4 Let p : Ĉ → C be a Galois cover of curves with Galois group �. A

(�, G)-bundle is a principal G-bundle Ê on Ĉ together with a lift of the action of �

on Ê as bundle automorphism that commutes with the action of G on Ê .

Assume that the map p : Ĉ → C is ramified over pi ∈ C , 1 ≤ i ≤ n.

Let �qi
⊂ � = Gal(p) be the isotropy subgroup for some qi over pi . A (�, G)–

bundle on a formal disk around qi is uniquely determined by the conjugacy class of a

homomorphism ρi : �qi
→ G given by the action of �qi

on the fiber of the principal

G–bundle over the point qi (see [5, 69]). Fix a generator γi of the cyclic group �qi
.

Now consider a string of parabolic weights τ = (τ1, · · · , τn) such that ρi (γi ) is

conjugate to τi for each 1 ≤ i ≤ n. We will refer to this τ as the local type of a

(�, G)–bundle.

The notions of stability and semistability for (�, G)–bundles are similar to those

for the usual principal G-bundles; more precisely, the inequality is checked only for the

� equivariant reductions of the structure group to a parabolic subgroup of G ([4, 57]).

Let M
τ ,ss
G (respectively, M

τ ,s
G ) denote the moduli spaces of semistable (respectively,

stable) (�, G) bundles of local type τ .

Recall the isomorphism νg : g∨ ∼−→ g from the Killing form. Given a string

of parabolic weights τ = (τ1, · · · , τn), choose a minimal integer � such that

exp
(
2π

√
−1

(
� · νg(τi )

))
= 1. Then by [50, 62], we can find a ramified Galois

cover p : Ĉ → C with ramification exactly over n-points {pi }n
i=1 whose isotropy

at any ramification point is a cyclic group of order �. From now on we will restrict

ourselves only to such Galois covers. The following theorem is due to [4, 5, 18].

Theorem A.5 Consider the moduli stack Bunτ
�,G(Ĉ) of (�, G)–bundles of fixed local

type τ . The invariant direct image functor identifies the stack Bunτ
�,G(Ĉ) with the

moduli stack ParG(C, p, τ ) of quasi-parabolic bundles of flag type τ . Moreover,

the invariant push-forward functor also induces an isomorphism between the moduli

spaces M
par ,ss

G,τ (respectively, M
par ,s

G,τ ) and M
τ ,ss
G (respectively, M

τ ,s
G ).
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A.3 Parabolic determinants as equivariant determinants

Consider the moduli space M
τ ,ss
G of (�, G) bundles associated to a Galois cover

p : Ĉ → C with Galois group �. Let M̂G be the moduli space of semistable

principal G-bundles on the curve Ĉ . There is a natural forgetful map M
par ,ss
G,τ → M̂G

that simply forgets the action of �.

Given a representation φ : G → SLr , consider the associated morphism φ :
M̂G → M̂SLr

between the corresponding moduli spaces. Let L be the determinant of

cohomology line bundle on M̂SLr
. Let

Lφ := φ
∗
L

be its pullback to M̂G . If G = SLr , then φ can be taken to be the standard repre-

sentation. Now Theorem A.5 realizes the moduli space M
par ,ss

G,τ of parabolic bundles

as a moduli space M
τ ,ss
G of (�, G)–bundles on Ĉ , which maps further into M̂G by

forgetting the action of �. Thus using the identification between M
τ ,ss
G and M

par ,ss
G,τ ,

we get a natural line bundle Lφ on M
par ,ss
G,τ .

On the other hand, using the parabolic determinant of cohomology, one can con-

struct natural line bundles on M
par ,ss
G,τ as follows:

Let τ = (τ1, · · · , τn) be a string of parabolic weights such that θg(τi ) < 1 for

all 1 ≤ i ≤ n. Take a faithful representation (φ, V ) of the group G satisfying the

following condition:

• The local type φ(τ ) = (φ(τ1), · · · , φ(τn)) is rational, and θsl(V )(φ(τi )) < 1.

Here, θg and θsl(V ) are the highest roots of the Lie algebras g and sl(V ), respectively.

We now recall the definition of the parabolic determinant of cohomology for G–

bundles.

Definition A.6 Let E be a family of parabolic G–bundles on a curve C with n-marked

points, and let φ : G → SL(V ) be a faithful representation. Then, the parabolic

G-determinant bundle Det par ,φ(τ ) with weight τ is defined to be the line bundle

Det par (νsl(V )(φ(τ ))).

Let as before mφ be the Dynkin index of the embedding φ, i.e., the ratio of the

normalized Cartan-Killing forms.

Definition A.7 We define the level of Det par ,φ(τ ), to be mφ times the level of the

determinant bundle Det par (νsl(V )(φ(τ ))).

More generally any element L of the rational Picard group PicQ(Mτ
G, ss) is up to

a multiple a a parabolic G-determinant of cohomology line bundle DG . Hence, we

define the level of L to be the level of DG divided by a.

The following is recalled from [22].
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Proposition A.8 Let � be the order of the stabilizer at each ramification point of the

Galois cover p : Ĉ → C with Galois group �, then under the isomorphism in

Theorem A.5, the parabolic determinant of cohomology is related to Lφ by the formula

Lφ
∼=

(
Det par ,φ(τ )

) |�|
� ,

where the � cover Ĉ is determined by the parabolic weight data νsl(V )(φ(τ)).

Appendix B Uniformization of moduli spaces and conformal blocks

In this section, following the work of Belkale–Fakhruddin [11], Laszlo [43], and

Laszlo-Sorger [44], we discuss the universal isomorphism between the sections of

the parabolic determinant of cohomology bundle and the spaces of conformal blocks.

If (C, �p) is a fixed smooth n-pointed curve, this identification is due to Beauville–

Laszlo [7] (G = SLr and n = 0), Faltings [30], Kumar–Narasimhan–Ramanathan

[41] (for n = 0), Pauly [54] (for G = SLr ) and Laszlo-Sorger [44]. The result has

been extended to nodal curves by Belkale–Fakhruddin [11]. All of the results use a key

uniformization theorem of Harder [34] and Drinfeld–Simpson [27] in the smooth case

and its generalization in [11, 12] for the nodal case. We mostly follow the discussion

in [11, Sec. 6].

B.1 The line bundle on the universal moduli stack

Consider the moduli stack Mg,n parametrizing smooth n-pointed curves of genus g.

Recall from Section A.1 that given a tuple τ = (τ1, · · · , τn) in the fundamental Weyl

alcove 
 of a simple Lie algebra g, we have the moduli stack ParG(C, p, τ ) of quasi-

parabolic G bundles of type τ on a smooth curve C . This construction for families of

smooth n-pointed curves gives relative moduli stacks πe : ParG(τ ) → Mg,n such

that for any smooth curve (C, �p) we have π−1
e (C, p) = ParG(C, p, τ ). Throughout

this discussion, it is assumed that θg(τi ) < 1 for all 1 ≤ i ≤ n.

Following [11] and [43], we construct a line bundle L�λ → ParG(τ ), such that

π∗L�λ = V∗
�λ(g, �), where �λ and � are related to τ by the exponential map. The

construction in [11] extends to the stable nodal curves.

B.1.1 The relative affine flag varieties

Let C → S be a family of smooth n-pointed curves, and let S = Spec R. Consider

the affine curve C′ = C − �n
i=1 pi (S). Let CA = C ×R Spec(A) for an R algebra A

and similarly define C′
A. Let ĈA denote the completion of CA along the sections p.

The sections p induce sections of ĈA, and Ĉ
′
A denotes its complement.

Consider the following:

(1) LC
′
,G

(A) = Mork(C
′
A, G).

(2) LG(A) = G(�(̂C
′
A, O)).
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Each τi determines a parabolic subgroup P(τi ) ⊂ G, and we consider the standard

parahoric subgroup Pτ given by the inverse image of
∏n

i=1 P(τi ) under the natural

evaluation map LG(A) −→ Gn . Proposition 6.3 of [11] shows that the R group

LC
′
,G

is relatively ind-affine and formally smooth with connected integral geometric

fibers over Spec(A). Observe that if n = 1 and λ = 0, and if t is a formal coordinate

at the marked point p1, then LG gets identified with the loop group LG and Pτ is the

group of positive loops L+
G .

B.1.2 The central extension

Faltings ([30], and also [7, Lemma 8.3], [44]) constructed a projective representation

of LG on H�λ = R ⊗
(⊗

Hλi
(g, �)

)
whose derivative coincides with the natural

projective action of the Lie algebra of LG. This gives us a central extension

1 −→ Gm −→ L̂G −→ LG −→ 1. (B.1)

The extension L̂G splits over Pτ (see [66, Lemma 7.3.5]), and the central extension

L̂G is independent of the chosen representations �λ. Moreover, the extension (B.1)

splits over LC
′
,G

([65], [11, Lemma 6.5]).

B.2 The relative uniformization and parabolic theta functions

Let P̂τ := Pτ × Gm . The weight vectors �λ give natural characters on P̂τ and the

product of characters induces a line bundle

L�λ −→ Qτ := L̂G/P̂τ .

Moreover, from the uniformization theorems [7, 11, 27, 34], it follows that the quotient

of Qτ by LC
′
,G

is isomorphic to the pullback ParG(τ )S of the stack ParG(τ ) to S.

Now since the extension in (B.1) splits over LC
′
,G

, the line bundle L�λ descends to a

line bundle over the stack ParG(τ ) which we will also denote by L�λ. Observe that

the line bundle L�λ is trivialized along the trivial section of ParG(τ ) over S, and such

data determine the line bundle up to canonical isomorphism. We will refer to the line

bundle L�λ as the Borel–Weil–Bott line bundle.

B.2.1 Parabolic determinant as the Borel–Weil–Bott line bundle

We now compare the parabolic determinant of cohomology of the universal bundle

with the line bundle L�λ.

Recall from Definition A.6 the notion of the parabolic determinant Det par ,φ(τ ) of

cohomology associated to a family of parabolic G bundles on C → S and a suitable

representation φ : G → SL(V ). Now for the fixed n-pointed curve (C, p), it is

known that the line bundles L
⊗mφ

�λ and Det par ,φ(τ ) on ParG(C, p, τ ) are isomorphic,

where mφ is the Dynkin index of the embedding φ. Since these line bundles are
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determined up to a normalizing factor, it follows that the corresponding projective

bundles are identified as

Pπe∗
(
Det par ,φ(τ )

) ∼= Pπe∗
(
L

⊗mφ

�λ

)
, (B.2)

where πe : ParG(τ ) → Mg,n is the natural projection.

B.2.2 Parabolic theta functions and conformal blocks

For any choice of formal parameters, the ind-scheme Qτ can be identified with the

product of affine flag varieties
∏n

i=1 LG/Pτi
and the line bundle L�λ pulls back to the

corresponding line bundle on LG/Pτi
given by the character λi . Now by Kumar [40]

and Mathieu [46], we get that

H0(Qτ , L�λ) = H∗
�λ. (B.3)

We end this discussion with the following theorem (see [11, Theorem 1.7] and [43,

Sec. 5.7]) which we will refer to as the universal identification of the parabolic theta

functions and the conformal blocks. In the case when S is a point, the result can be

found in [7, 30, 41, 44].

Theorem B.1 The push-forward of L�λ along the map πe : ParG(τ ) → Mg,n can be

identified canonically with the bundle of coordinate free conformal blocks V
†
�λ(g, �).

Moreover, L�λ descends to a line bundle on M
par ,rs
G,τ , and (πe |M par ,rs

G,τ
)∗L�λ is isomorphic

to V
†
�λ(g, �) provided the following conditions hold:

• The genus of the orbifold curve determined by τ is at least 2, if G is not SL2.

• The genus of the orbifold curve is at least 3, if G = SL2.

Remark B.2 The last conditions ensure that for any smooth pointed curve (C, p), the

codimension of the moduli space M
par ,rs

G,τ (C, p) in the moduli stack ParG(C, p, τ )

is at least two. We refer the reader to [20, App. C].
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