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Abstract

Given a simple, simply connected, complex algebraic group G, a flat projective con-
nection on the bundle of non-abelian theta functions on the moduli space of semistable
parabolic G-bundles over any family of smooth projective curves with marked points
was constructed by the authors in an earlier paper. Here, it is shown that the identi-
fication between the bundle of non-abelian theta functions and the bundle of WZW
conformal blocks is flat with respect to this connection and the one constructed by
Tsuchiya—Ueno—Yamada. As an application, we give a geometric construction of the
Knizhnik—Zamolodchikov connection on the trivial bundle over the configuration
space of points in the projective line whose typical fiber is the space of invariants
of tensor product of representations.
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1 Introduction

The Wess—Zumino—Witten (WZW) model [52, 75] is a cornerstone of two dimensional
rational conformal field theories [9, 48]. The WZW conformal blocks were constructed
mathematically by Tsuchiya—Ueno—Yamada [72]. Let g be an affine Lie algebra and
(C, p) asmooth curve C with n-distinct marked points p = (p1, ---, p,). Choose
formal coordinates & = (&1, --- , &,) around p, and using these coordinates assign a
copy of g to each point p;. Fix a positive integer £. Then, for any choice of n-tuple of
integrable highest weights A= (A1, -+, Ay) oflevel £, the construction in [72] asso-
ciates a finite dimensional vector space \7; (C, p,&,g,0) tothe data (C, p, &).Fora
family of smooth curves 7 : € — § with n-distinct sections p, these vector spaces
patch together to produce a coherent sheaf \7; (g,£) — S.The Sugawara construction

[72] endows this sheaf with the structure of a twisted D-module, and hence V;{ (g, 0)is
actually a holomorphic vector bundle. The authors of [72] show that this vector bun-

dle extends to the Deligne-Mumford—Knudsen compactification ﬁ/g, » of the moduli
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spaces of n-pointed curves Mfg , With chosen formal coordinates. Moreover, the flat
projective connection on the interior J\/["g ,, extends to a flat projective connection with

logarithmic singularities over ﬁ;,n The bundle \7; (g, £) — S of conformal blocks
is sometimes called the Friedan—Shenker bundle. We refer to the above mentioned flat
projective connection on V)i» (g,£) — S as the WZW/TUY connection.

Later, Tsuchimoto [70] gave a coordinate free construction of the bundle of
conformal blocks and showed that it descends to a vector bundle V; (g, ¢) on the

Deligne-Mumford—Knudsen moduli space ﬁg,n of n-pointed stable nodal curves
(cf. Fakhruddin [28]). The flat projective connection also descends to a projective
connection with logarithmic singularities. In other words, there is a projectively flat
isomorphism between the conformal blocks V; (g, £) and the pullback F *V; (g,0)

under the natural forgetful map F : M;, . — Mg . We refer the reader to Sect. 2 for
aconstruction of conformal blocks and to Sect. 3 for the construction of the WZW/TUY
connection.

We now discuss how conformal blocks are related to moduli spaces of bundles on
curves. The moduli space M (C) of principal bundles, with a reductive structure group
G, on a smooth projective curve C, provides a natural non-abelian generalization of
the Jacobian variety J(C), which parametrizes line bundles of degree zero on C. The
moduli space of (semistable) principal G-bundles on a smooth projective algebraic
curve is itself a projective variety. It was originally constructed through Geometric
Invariant Theory. Its smooth locus parametrizes isomorphism classes of stable bundles
with minimal automorphism groups (see [19]), also known as the regularly stable loci.
There are various important variations on this construction. One can choose marked
points p = (p1, -+, pp) onthe algebraic curve C and decorate a principal G-bundle
P with a generalized flag structure over p, leading to the notion of quasi-parabolic
bundles. Additionally, one can choose weight data T = (t1, -+, T,) in the Weyl
alcoves, or equivalently weights A= (A1, - -+, An), and use them to define a suitable
notion of stability and semistability. The corresponding moduli spaces M ga: e, p)
can, in turn, be understood as the space of representations of the fundamental group
of the corresponding punctured surface C \ {p}, where the loops around the marked
points go to fixed conjugacy classes determined by T [47, 63]. This generalizes the
classical results of Narasimhan—Seshadri [51] and Ramanathan [57], proved in the
non-parabolic case.

The moduli space M{"**(C, p) is equipped with a natural ample determinant
of cohomology line bundle Det ., ¢(T) associated to a choice of faithful linear rep-
resentation ¢ of G. This generalizes the theta line bundle on the Jacobian variety
J(C). Therefore, the global sections of this line bundle on M g“: (o p) can thus be
thought of as a non-abelian generalization of the classical theta functions. We refer
the reader to Section A.1 for more details on the constructions of the moduli space
and the parabolic determinant line bundle on it.

Via the uniformization theorems of Harder and Drinfeld—Simpson [27, 34], moduli
spaces of parabolic bundles also have an adelic description that directly connects to
the representation theory of affine Lie algebras via the work of several authors (see [7,
30,41, 44,54, 65]). Using this, the corresponding moduli stack of principal G-bundles
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and its parabolic analog Parg(C, p, T) can be expressed as a double quotient

Parg(C, p.t) = G(I'(C,0c(xp)\ [ | G(C((EN))/P;

i=1

where the P; are parahoric subgroups of G(C[[&;]]) determined by the weights T;.
The weights also determine a homogeneous G(I'(C, O¢ (xp)))-equivariant line bun-
dle £ on Parg(C, p, T). The line bundle Det%;r7¢(r) coincides with ., where a
is a rational number determined by the Dynkin index of the representation ¢. Gen-
eralizations (see Kumar [40], Mathieu [46]) of the Borel-Weil theorems (see (B.3))
for affine flag varieties G(C((£)))/P;, coupled with the adelic description, give a

canonical isomorphism up to scalars (see (B.2)) with conformal blocks

V(C.p.£.0.0) = HOME™ (C. p). Detly, (7).
This isomorphism can be reinterpreted as the Chern-Simons/WZW correspondence.
More details are given in Section B.1. In the context of a family of curves, we refer
the reader to Sections 6, 7 in [11] for identification between the bundle of non-abelian
theta functions and conformal blocks.

Using differential geometric methods, Hitchin, [36], generalizes a construction of
Mumford—-Welters [74] to obtain a flat projective connection on the Friedan—Shenker
bundle with fibers H O(Mg(C), Det®?), from the viewpoint of geometric quantiza-
tion in the sense of Kostant-Souriau. This connection also appears in Witten’s [76]
interpretation of Jones polynomial link invariants as 3-manifold invariants. Hitchin’s
construction was reinterpreted by van Geemen—de Jong [73] sheaf theoretically in
terms of the existence of a “heat operator”, which in the relative setting is a dif-
ferential operator that is a combination of a first-order operator with one that is
second order on the fibers (see Sect.4). We recall the details of the general meth-
ods of Hitchin—van Geemen—de Jong [73] in Sect.4. We also refer to the several
complementary approaches of Andersen [1], Axelrod—Witten—della Pietra [3], Baier—
Bolognesi—-Martens—Pauly [55], Faltings [29], Ginzburg [33], Ran [58], Ramadas [56],
Sun-Tsai [67] and for generalizations to reductive groups, Belkale [10].

In [43], Laszlo showed that the connection constructed by Hitchin and the one in [72]
coincide under the natural identification of H%(Mg ), Det®£) with VS(C, g, 0. A
similar result for twisted Spin groups was also proved by Mukhopadhyay—Wentworth
[49]. The following questions are natural in the context of parabolic moduli spaces:

(1) Isthere a projective heat operator (see Sect.4 and Definition 4.1) on the line bundle

Detff’:r ¢(r)) that induces a flat projective connection on the vector bundle over

Mg, with fibers HY(ME" (C, p), Dethy, ,())?

(2) If such a connection exists, is the identification of conformal blocks with non-
abelian parabolic theta functions flat with respect to this connection and the
WZW/TUY connection?

For g(C) > 2, Scheinost—Schottenloher, [61], constructed a parabolic Hitchin con-
nection for G = SL, under the assumption that the canonical bundle of M S"ﬁr;“ (C,p)
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admits a square-root. Bjerre [23] removed the “restriction" in [61] for G = SL, by
working on a different parabolic moduli space with full flags. In both [23, 61], the
authors construct a connection on the push -forward “metaplecticly corrected" line

bundles of the form Det®ar ¢('r) ® K! ¥ ,,a, “Cp) We also refer the reader to Remark
SLr,T
6.3. In [20], we constructed a projective heat operator on Det (7) in general.

This was produced from a candidate parabolic Hitchin symbol (see (5 6)) satisfying a
Hitchin—van Geemen—de Jong type equation (see (5.2)).!-2

The following result answers the above question (2) and thus generalizes the result
of Laszlo, proved in the non-parabolic case.

Theorem 1.1 (MAIN THEOREM) Let S parametrize a smooth family of n-pointed
curves. Let wo © M; PA™IS s S be the relative moduli space parametrizing regularly
stable parabolic G bundles i.e., stable parabolic bundles with minimal automor-
phisms. The natural isomorphism

PVT (g.0) => P, Det®e (1)

constructed via the uniformization theorem, between the projectivizations of the
bundles of conformal blocks and non-abelian parabolic theta functions, is flat for
the WZW/TUY connection on ]P)V}i(g, £) and the parabolic Hitchin connection on

Pres Det%’gw5 (7).

We are guided by a fundamental observation that if an algebraic group G acts on a
smooth variety X and .Z is a G-equivariant line bundle on X, then the map induced by
the Beilinson—Bernstein localization functor Loc : Ug — ['(X, D(¥)) is a quantum
analog of the moment map for the G action on X, and the corresponding graded map
Symg — I'(X, gr(D(%))) is dual to the moment map. Hence, it is “independent” of
the line bundle .. Now in our set-up X will be the moduli of parabolic bundles and g
is a certain completion of the loop algebra. To produce a connection, we produce a heat
operator starting from a deformation of the family of pointed curves. This is enabled by
the Sugawara operators, which only depends on the level of the line bundle. Thus, an
essential point in the proof of this theorem is the fact that the symbols of the Sugawara
operators coming from affine Lie algebras do not depend on the highest weights.
This is checked via a direct calculation generalizing the non-parabolic counterparts
in the work of Laszlo [43] and Tsuchiya—Ueno—Yamada [72]. The counterpart to this
statement on the moduli of parabolic bundles side for the parabolic Hitchin symbol is
therefore the crux of the argument. This is carried out in Proposition 5.6 using Corollary
5.5. These are the key new features/differences in the proof of Theorem 1.1 to that
in non-parabolic case considered by Laszlo [43]. Another approach to identifying the
Hitchin connection with the TUY/WZW connection in the non-parabolic case has been

1 Subsequent to the submission of the papers [20, 21], in May 2023 a draft of the thesis by Zakaria Ouaras
appeared (followed by a preprint in October 2023 [53]) in which the author proves the existence of a unique
flat projective connection in the case of moduli spaces of parabolic vector bundles with arbitrary fixed
determinant and genus g > 2.

2 We have been informed [2] that in the case of genus zero, SL;, and equal weights A sufficiently small so
that conformal blocks are invariants, the Hitchin connection constructed in [ 1] agrees with the KZ equation.

@ Springer



85 Page6of39 . Biswas et al.

outlined in Section 1.3 of Ben-Zvi-Frenkel [15]. It would be interesting to reformulate
the constructions in the present article in the format considered in Ben-Zvi-Frenkel.

Application Now we discuss an application of the parabolic generalization of The-
orem 1.1 by giving a geometric reconstruction of the Knizhnik—Zamolodchikov (KZ)
equation. Let us now focus on the genus zero case. Since P! has a global coordinate and
a global meromorphic two form on P! x P! with second-order poles along the diagonal,
the WZW/TUY connection gives a flat (honest) connection on the bundle of confor-
mal blocks. The equations for the flat sections are known as Knizhnik—Zamolodchikov
equations [38]. Thus, the KZ equations constitute a system of first-order differential
equations, arising from the conformal Ward identities, that determines n-point cor-
relation functions in the Wess—Zumino—Witten—Novikov model of two-dimensional
conformal field theory. The KZ equations have remarkable realizations in many other
areas. For example, higher-dimensional generalizations of hypergeometric functions
are known to be solutions of these equations [60]. The KZ equations can also be
regarded as quantizations of the isomonodromy problem for differential equations of
Fuchsian type [59]. The Kohno-Drinfeld [26, 39] theorem relates the monodromy
representation of the braid group induced by the KZ connection with solutions of the
Yang-Baxter equation.

Here, we consider the KZ equations as equations for flat sections of the trivial vector
bundle A; over the configuration space X, of n-points in C with fibers

AX = Homg(V), ® --- ® V3, 0.

We restrict the projective heat operator constructed in [20] to the open substack
Parg (P!, p, 1) of quasi-parabolic bundles in case of genus zero, where the underlying
principal G-bundle is trivial. This turns out to be the quotient stack

Par&, (P, p, %) = [((G/Py, x --- x G/P,,) /G,

where P;, are parabolic subgroup determined by A; and the global sections of the
homogeneous line bundle .%; are just the invariants A;. Thus, we obtain a flat con-
nection on the vector bundle A; over X,,. Finally using Theorem 1.1, we identify this
connection with the KZ connection. This gives an alternative geometric construction
of the KZ equations. We refer the reader to Sect.7 and Corollary 7.1 for more details
and precise statements.

In recent years a number of papers discussing connections on twisted conformal
blocks (Szczesny, Damiolini, Hong-Kumar, and Deshpande—Mukhopadhyay [25] )
have appeared. The main goal of the present paper is to relate the WZW/TUY pro-
jective connection on conformal blocks with the projective connection constructed
by the authors ([20, 21]) on non-abelian theta functions on moduli of parabolic bun-
dles via uniformization. Since parabolic bundles on curves with marked points can
also be realized as orbifold bundles, it is natural to ask whether the coherent sheaf
of non-abelian theta functions for moduli of parahoric Bruhat-Tits groups carries a
projective connection constructed via heat operator methods and if it is equivalent to
the connections on twisted conformal blocks via uniformization theorems [35].
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The outline of this paper is as follows. In Sects.2 and 3 we review in some detail
the construction of the WZW/TUY connection in the parabolic setting. In Sect. 4, we
review the construction from [20] of the Hitchin connection in the parabolic setting.
This involves the metaplectic correction in a central way. An important step in this
section is the re-expression of one of the “controlling equations” of van Geemen—de
Jong for the existence of a projective heat operator on elements of the rational Picard
group (see Sect.4.2). Finally, in Sect.5.2 we state the fundamental result, Theorem
5.3, which provides a simplification of the expression for parabolic Hitchin symbol.
This is the geometric reflection of the aforementioned fact that the Sugawara operators
do not depend on the highest weights.

Finally, in Sect. 6, using this result we directly relate the symbols of the Sugawara
tensor and the parabolic Hitchin connection, thus proving Theorem 1.1 (see Sect. 6.4).
In the last Sect. 7 we elaborate on the special case of genus zero curves. In Appendix A,
we define the line bundles over moduli spaces of parabolic G-bundles whose sections
give rise to the Friedan—Shenker bundles. We also relate these line bundles to the
determinant of cohomology in the relative setting.

2 Conformal Blocks

In this section we recall the basic notions of conformal blocks, following Tsuchiya—
Ueno—Yamada [72]. Let g be a complex simple Lie algebra and ) C g a Cartan
subalgebra. Let A be a system of roots and «g the Cartan-Killing form, normalized
so that kq(0g, 0g) = 2 for the longest root . We let vg : h* —> b denote the
isomorphism induced by «g.

2.1 Affine Lie algebras and integrable modules

Let & be a formal parameter. The affine Lie algebra
g=90C(EN®C-c

is a central extension of the loop algebra C((£)) by c. The Lie bracket operation on'g
is given by the formula

(X®f, Y®gl:=I[X, YI® fg+«yg(X, Y)Res—o(gdf) - c, 2.1

where X, Y € gand f, g are elements of C((§)).

We now briefly recall the basic objects in the representation theory of g. It is well
known that the finite dimensional g modules are parametrized by the subset P, (g) C
b* consisting of dominant integral weights. The representation corresponding to a
weight A will be denoted by V). Let £ > 0 be a positive integer, and consider the
set Pe(g) := {A € Py(g9) | kg(r,03) < £}. The highest weight irreducible
integrable representations of g at level £ are classified by the set Py(g) defined above.
The g-module corresponding to A will be denoted by ;.
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2.2 Sheaf of conformal blocks

Integrable representations of affine Lie algebras were used by Tsuchiya—Ueno-—
Yamada [72] and Tsuchiya—Kanie [71] to define conformal blocks. In this paper,
we will restrict ourselves to conformal blocks associated to smooth curves. Let
w : € — S be afamily of smooth projective curves, and let p = (p1, ---, pn) be
n non-intersecting sections of the map 7 such that the complement C\ U?_, p;(S) is
an affine scheme.

Consider formal coordinates &1, - - - , &, around the sections p = (p1, -+, pn)
giving isomorphisms lim,, Op /ﬂ’l’fi = Ogll&1], where J, is the ideal sheaf of the
section p;. Let g be a simple Lie algebra. As before, we get a sheaf of Og-Lie algebras
defined by

n
Wm(S) =g® (@ Os((&'))) ®0s-c (2.2)
i=1

The Lie algebra g, (S) in (2.2) contains a natural subsheaf of Lie algebras g ®c
70 (D), where D = Z;l:l pi(S). That it satisfies the Lie algebra condition is
actually guaranteed by the residue theorem.

For any choice of n-tuple of weights A= (A1, -+, Ay) in Py(g), consider the
9n(S)-module (hence it is also a g ®¢ 7+ O@(+D)-module)

FH;08) == H, @H;, ® --- @ H;, ®¢ Os.

Definition 2.1 The sheaf of covacua VX (g,C/S, p, £)on S atlevel £ is defined to be
the largest quotient of 3{; (§) on which g ®c 7.Op(*D) acts trivially. The sheaf of

conformal blocks \7; (g,C/S, p, £) on S is defined to be the Og-dual of the sheaf of
covacua.

Since the above definition uses only the fact that the formal coordinates identify the
completed local ring with the Laurent series ring, the definition of sheaf of covacua
and the sheaf of conformal blocks can be extended in a straightforward manner to
families of nodal curves with Deligne—-Mumford stability property.

2.3 Coordinate free construction

The sheaf g, on S and its integrable modules can be defined without the choice of
formal coordinates &; we recall this from [70]. Letr : € — S be as above. Consider
the sheaf of formal meromorphic functions on € with poles along the marked sections

’%/e/p,- = lim lim Oe(ap,-(S))/fJ';i.

a—+00 m—4-00

This is a sheaf on S and upon a choice of formal coordinate &; at p;, it gets identified
with Og((&;)). Using this, the coordinate free affine Lie algebra is defined as follows:

8(C/pi) == g® He,, ®0s-c. (2.3)
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Its n-pointed analog is defined to be the following sheaf on S:

8(C/S) = (g ® @x@m> ® 05 - c.

i=1

The Lie bracket operation is defined as in the previous section.

The Verma module M, (C/S) (resp.the coordinate free highest weight integrable
module H, (C/S)) on S can be defined similarly by inducing representations (and
taking quotients) using a parabolic subalgebra

P = 0®0¢,,(5)®0s-c

on the finite dimensional module V) via evaluation. More precisely M,,(C/S) =

Indgf/ pi) V,.; refer the reader to [70] for more details.

Definition 2.2 The coordinate free sheaf of covacua Vs (g, C/S, £) on S is defined
to be the sheaf of coinvariants H; (C/S)/ (g Qc n*Oe(*D)HX(G/S)). As before, the
sheaf of coordinate free conformal blocks V:f\ (g, C/S, £) is defined to be the Og-
module dual of the sheaf of covacua V; (g, C/S, £).

Observe that a choice of formal coordinates around the marked points actually
induces isomorphisms between g(C/p;) and the sheaf §¢, := g ® Os((&)) ® Og - c.
This identifies the coordinate free conformal blocks and the sheaf of covacua with
those obtained by a choice of coordinates.

We now recall some important properties of the sheaf of conformal blocks. The
reader is referred to [28, 70, 72], and [64] for proofs and further exposition.

Theorem 2.3 Let g be a simple Lie algebra and £ > 0 a positive integer. Then, the
following statements hold:

(1) The sheaf of conformal blocks V; (g, C/S, £) carries a flat projective connection
and hence it is locally ]iree [70].The Verlinde formula, [30, 68], computes the rank
of the vector bundle Vi (g, 0).

(2) The sheaf of conformal blocks V; (g,C/S., L) a vector bundle V)l; (g, ) with a
flat projective connection on the moduli stack Mg ,,. Moreover, the vector bundle
V;{ (g, £) extends to a vector bundle over the Deligne—Mumford compactification
ﬁg,n, and the projective connection extends to a projective connection with log-
arithmic singularities along the boundary.

(3) Let Wg,n be the moduli stack of stable curves along with a choice of formal
coordinates around the marked points. Then the sheaf V; (g, C/S, £) givesavector
bundle with a flat projective connection with logarithmic singularities along the
boundary.

(4) The natural forgetful map form F : M’g,n — ﬁg,n identifies the vector bundle

(but not as a twisted D-module) V}t(g, £) with the pull-back F*V; (g, ).
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We will refer to the connections in Theorem 2.3 as the TUY/WZW connections;
their construction is recalled in Sect. 3.

Remark 2.4 There are several other important properties—e.g., “propagation of vacua"
and “factorization theorems"—exhibited by conformal blocks. We refer the reader to
[72] for more details.

We also point out that Vi (g, £) and V; (g, £) do not agree as twisted D-modules.
This issue does not appear in [43], as the weights (the trace anomaly of the weights)
there are zero. We refer the reader to [70] for the computation of the Atiyah algebra
of V% (g, £). We also refer the reader to Remark 3.2 for the failure of the identification
of these two bundles as twisted D-modules.

3 Energy momentum tensor and the Sugawara construction

In this section, following the discussion in [72] we recall the definition of the Sugawara
tensor, which will be used in defining the connections on the sheaf of covacua and
conformal blocks.

For any X € g, the element X ® £ € g will be denoted by X (m). The energy
momentum tensor 7 (z) at level £ is defined by the formula

dim g
1 a a .

a=1

where : : is the norm_al ordering (cf. [72, p. 467]), hV (g) is the dual Coxeter number of
g,and {J!, ..., J9M8} is an orthonormal basis of g with respect to the normalized
Cartan-Killing form. Also, define

X@) = ) Xz "
nez

for any element X € g. The n-th Virasoro operator L, is defined by the formula (see
[37D):

dim g
1
n = — J¢ J4n — : 3.2
Z(Hhv(g))’%; (m)J*(n — m) (3.2)

The operators L, act on the module J{, defined in Sect.2.1.
For X € g, f(2) € C((z)) and £ = £(z) %, define (as in [72])

X[f]:= Res;—o (X(2)f(2))dz, T[£]:= Res;—o (T (2)¢(z))dz.
3.1 Construction of the WZW/TUY connection

Let C be an irreducible smooth projective curve with n-marked points p =
(p1, -+, pn). Forevery 1 < i < n, we choose a formal coordinate &; around the
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marked point p; on the curve C. Following [72], let us briefly recall the construction
of a flat projective connection which also gives a twisted D-module.

Let 7w : € — S be a versal family of n-pointed stable curves equipped with n
non-intersecting sections p; : S — C.Let D = ) I, p;(S) be the corresponding
divisor on €. We have a short exact sequence of sheaves

0 — JT*‘J'G/S(*D) — JT*‘TGJT(*D) — Jg — 0 3.3)

on S. On the other hand, we also have the short exact sequence

T o, d
0 — mJe,5(+D) — P OslE; 1]d_€~ — R'mTe,(-D) — 0. (3.4)
i=1 !

obtained from pushing forward the following short exact sequence

T d
0 — TG/S(_D) - T@/s(*D) — GBOS[gi_l]d_%" — 0. 3.5)
i=1 !

Since the family of n-pointed curves C is versal, we have the Kodaira—Spencer
isomorphism Ty —> Rln*f]'e/s(—D). Combining (3.3) and (3.4), the following
commutative diagram of homomorphisms is obtained:

00— JT*‘IG/S(*D)  m— JT*‘JJGJ(*D) > Tg > 0

H s |xs
0 — m.Te,s(+D) — @, Ol 14— R'mTp,5(~D) — 0,
3.6)

where t is the projection to the polar part of the Laurent expansion of sections in terms
of the given coordinates &; around the divisors p;(S). This map t is an isomorphism
because the family C is versal.

Let{ = (Iy, -, ;) andm = (mq, ---, m,) be two formal vector ﬁelds; both
l; and m; are defined on a formal neighborhood of p; (S). The Lie bracket [£, m]y is
given by the formula

(€, Ml == [£, mlo + 6 (D)(m) — 0(m) (D), (3.7)

where [ ]o is the usual Lie bracket of formal vector fields and 6 (E)_’acts componentwise
using the formal parameters &;. Now for any formal vector field ¢, define the operator
Z(£) on H; by the formula

FAO(F ®|®)) = 0@)(F)®|®) = F- | > pj(TIL]) | 1®), (3.8)
j=1

where p; is the action on 3(; ; defined on [72, p. 475] and |®) € H;.
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3.2 WZW/TUY connection

After possibly shrinking S, we can find a symmetric bidifferential w on € x g € with
a pole of order two on the diagonal such that the biresidue is 1. For any formal vector
field £ define

ay(0) = —% ; Resz,—o (& (&) So(E)dE) .

£dimg s the

where S, is the projective connection associated to w, and ¢, = m i
g

central charge.
Now let T be a vector field on S. Take a lift of 7 to JT*‘J'G / s(xD) and denote it by

£. With the choice of a bidifferential w as above, we define the following operator on
the sheaf of conformal blocks: For any section (V| of the sheaf of conformal blocks

Vig, ).
VIO (W) = 2O (WD) + au (O (V). (3.9

We recall the following result (see [72, Thm. 5.3.3]).

Proposition 3.1 The operator Viw) in (3.9) defines a flat projective connection on the
sheaf of conformal blocks \7; (g, 0).

3.3 Sheaf of twisted differential operators

Now recall that a sheaf of twisted differential operators on a smooth manifold M is
an isomorphism class of sheaf of Lie algebra extensions of the form

L
0— 0y A2 A2 T, —o0.

These are also known as Atiyah algebras, and the above exact sequence is known as
the fundamental exact sequence of Atiyah algebras.

Isomorphism class of twisted differential operators are in one-to-one correspon-
dence withthe H' (M, Q}V’Id), where Q}V’Id is the sheaf of closed one-form. One natural
source of such extensions is to consider differential operators up to order one on line
bundles and multiples of that. Giving an action of the sheaf of twisted differential
operators or an Atiyah algebra on a vector bundle V amounts to the following [70,

Section 2.3]

e A section « of A acts as a first-order differential operator ® («) on V.
o The principal symbol of ®(a) is just pr(a) ® idy.
o O(t (1)) acts by identity.

Now if we choose a splitting of the fundamental exact sequence of sheaf of Lie
algebras, an action of the Atiyah algebra A on V induces an action of Tj; on the
projective bundle P(V). The induced action is indeed a flat projective connection.

Following Beilinson—Schechtman [16], Tsuchimoto [70] proves that following:
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(1) The Atiyah algebra z(fﬂl—%Dfl(H) acts on V; (g, £) where H is the Hodge
bundle on M, ,,.

(2) The Atiyah algebra z(ﬁz—%Dfl(H) R ALD W) ®--- @ A;, D= () acts

on VX (g, £) where H is the Hodge bundle on M ,,, ¥; is the i-th psi class, and
A;, are rational numbers known as trace anomalies and are given by the formula

(i hi+2p) .
ACE (@) foreach1 <i <n.

Remark 3.2 Consider the natural forgetful map F : M%’n — Mg, constructed by
forgetting the choice of formal parameters at the n-marked points. Then, the natural
identification between F *V;\ (g, £) and \7;\ (g, £) as locally free sheaves intertwines,
up to a first-order operator, the pull-back of the coordinate free TUY connection on
F *VX (g, ©) and the TUY connection on V5 (g, £). This is due to the fact that the trace
anomalies of the weights s may not be integers and hence the action of the Lie algebra
of Aut(C[[&;]]) on JH, given via the Sugawara construction may not integrate to an
action of Aut(C[[£;]]). This is necessary for the twisted D-module on M;,,n to descend
to a twisted D-module on My ;.

4 Projective connections via heat operators

4.1 Heat operators and the Hitchin-van Geemen-de Jong equation

Let7 : M — S be a smooth map of smooth varieties, and let £ be a line bundle on
M. The Kodaira—Spencer infinitesimal deformation map is given by:

KSyvs : Ts — RIJT*‘TM/S.
On the other hand, we have the coboundary map
Mg, T Sym2 Tm/s — Rln*‘J'M/s,

occurring in the long exact sequence obtained from the push forward . of the funda-
mental short exact sequence of differential operators

0 —> Thys = @fj/s(a)/oM — @ff/s(ﬁ,)/oM 2, Sym? Ty ys — 0,

where 7 is the symbol map and Df,[i /s (L) is the sheaf of relative differential operators
of order at most i. Following [73], consider the sheaf W(L) defined by

WL) = D3 (L) + D/ (L), (4.1)
There is a natural short exact sequence

0 — Dis(L) — W(L) > 7*Ts & Sym* Tyyys —> 0. 4.2)
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Definition 4.1 A heat operator D : ©n*Tg — W(L) is a section of the natu-
ral projection map W(L) — n*Ts. A projective heat operator is a section of
WL)/ Oy — 7*Ts.

A projective heat operator evidently lifts, locally, to a heat operator. Given a homo-
morphism p : 7*Tg — Sym2 JTmys, one can ask whether there is a canonical
projective heat operator D : w*Tg — W(L)/Oy such that gy oD = p. The fol-
lowing theorems of Hitchin [36] and van Geemen—de Jong [73], answer a fundamental
question on existence of projective heat operators.

Theorem 4.2 ([36, 73]) Assume that the following conditions hold:

(1) KSmys +pugop = 0;
(2) UL] @ mTyys — RO is an isomorphism;
(3) 7T*OM = Os.

Then there exists a unique projective heat operator D lifting any candidate symbol
p : m*Tg — Sym? Tmys. Moreover the coherent sheaf w.L carries a projective
connection.

Remark 4.3 We can take L to be an object in the rational Picard group Pic(M) ® Q.
All the sheaves that appear in the statement of Theorem 4.2 are well-defined, and the
proof in [73] does not require the assumption that £ be a line bundle. Though the heat
operator may be defined abstractly, it may not have any natural space to acts unless
7, Ll exists as a non-trivial coherent sheaf.

4.2 Heat operators and metaplectic quantization

We are interested in the case where the Kodaira—Spencer map K Sy, s, the candidate
symbol p : Ts — m, Sym? Ty /s and the class of L are intertwined by the equation:

K Sys +UlLlop = 0. 4.3)

We refer to (4.3) as the equation controlling the deformations. Recall that the connect-
ing homomorphism

Kpek n*SyszM/S — Rln*‘J'M/s

is given by the formula (see [55])
/1«£®k = k-L 5 KM/S . 4.4

4.2.1 Rewriting the deformation equation

We will now rewrite (4.3) to produce a projective heat operator on L. We will assume
that for any positive k € @, the connecting homomorphism u 8k in (4.4) is an
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isomorphism. This condition holds, for example, in the case of moduli spaces of
parabolic bundles.
Now

KSms +U[L]op

1 1 1
KSpys + A (U (k[L] - EKM/S) + UE[KM/S]> op
1
k

1
KSys + K@k 0 (1 + M£®k o (UE[KM/S])> o

= KSmys+ipero Dk

where p; = (1 + 'LLL‘X’A o (Ui [KM/S])) 1p is the symbol map. Again assuming
that the conditions (ii) and (iii) of Theorem 4.2 are satisfied for the line bundle L,
we get a projective heat operator ID on L8 with symbol py such that the following
diagram commutes

T W(LBK)
; lsymb 4.5)

T LN T« Sym2 Tmys-
This induces a projective connection on 7, LB for any positive k € Z with symbol
Pk
4.2.2 Metaplectic correction d’aprées Scheinost-Schottenloher

We can rewrite the left-hand side of (4.3) as follows:

1 1 1
KSpyys +UL]lop = KSuys + % (U ([k <L+ E[KM/S]) - UE[KM/S]> o

:KSM/S"'/‘L@/( L Pk

Ki1)s

where p; 1= %p and L& @ K /lw/ ZS is considered as an element of the rational Picard
group. Thus, from (4.3) the following equation is obtained:

KSM/s—i-/LL@k@ 1 oopk = 0. 4.6)

Kiys

Assume that the other conditions (ii) and (iii) of Theorem 4.2 (Hitchin—van
Geemen—de Jong existence theorem) are satisfied. Then, Theorem 4.2 tells us that
there exists a unique projective heat operator ID with symbol p; and a connection on

7L ® K My 5)- As pointed out in Remark 4.3, the projective heat operator makes
sense even if the square-root of Kys/s does not exist.
It is easy to see that for any candidate symbol, there exists a second-order projec-

. =~ Lo . . .
tive operator D on K2 with the same given symbol. However, this operator is not a
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projective heat operator, since the natural projection of it to 7 *J is zero. On the other
hand, we have a projective heat operator ID on L% with the same symbol p;. The
following is then a natural question.

Question 4.4 Using the prOJectlve heat operator I for the line bundle L%* and the

projective operator Don K M/ S with the same symbol pi, can we construct a projective
heat operator D on L% ® K iys?

Remark 4.5 Observe that the equations in Theorem 4.2 imply that there exists at most
one heat operator provided

ML@‘@K% D Tl Symz‘J'M/S — Rln*‘.TM/S
M/s

isanisomorphism. A positive answer to Question 4.4 would immediately imply that the
symbol of ID satisfies the equation for pi given in (4.6). This will provide a necessary
relation that the linear maps U[L] and U[K 3/, 5] are scalar multiples of each other. This
would give an alternative, more conceptual understanding of Theorem 4.1 in [20].

5 Parabolic Hitchin symbol as in Biswas—Mukhopadhyay-Wentworth

In this section, we first briefly recall the construction of the Hitchin connection for the
moduli space of parabolic bundles M p """ obtained in [20]. We refer the reader to
Appendices A.1 and A.3 for a brief reV1eW of the moduli stack of parabolic bundles
and the parabolic determinant of cohomology line bundles. We will freely use the
correspondence between parabolic G bundles on a curve C and equivariant (I'-G)-
bundles on a Galois cover C of the curve C with Galois group I'. This is recalled in
Appendix A.2.

In particular, we focus on the parabolic Hitchin symbol defined in the paper [20].
Using restriction to fibers of the Hitchin map, we give a simplification of the expression
for the symbol that enables us to compare the parabolic Hitchin symbol with the symbol
of the Sugawara operators as constructed in [72]. The main result of this section is
Proposition 5.6. This is a key new feature and one of the main technical difficulties in
the parabolic set-up that does not appear in [43].

5.1 The Hitchin symbol

In [20] (recalled in Appendix A.2), we identified the moduli space M(", of parabolic
bundles with the moduli space M (T;’” of (I', G)-bundles on a Ga101s cover C of the
curve C via the invariant pushforward functor [4, 5].

This includes the following identifications: Let P be a regularly stable parabolic
bundle and P the corresponding (I", G) bundle (see Appendix A.2). Let Par(P) (resp.
Spar(P)) denote the bundle of parabolic (resp. strictly parabolic) automorphisms of
P. Then,

H(C, Spar(P) ® Kc(D)) = H(C, adP ® Kp)" (5.1)
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and R
HY(C, Par(P)) = H'(C, adP)". (5.2)

The Hitchin symbol was defined using the natural map
HC, adP® Kp)' @ H'(C, adP)’ =55 H'(C, Kp)¥ = C; (5.3)

where the last isomorphism is given by the Serre duality on C. Asin [36, Prop. 2.16],
this induces a natural map in the relative setting (we refer here to the fundamental
diagrams [55, p. 465] and [20, eq. (3.3)]):

Psym Rln*‘Ie/S(—D) —> Tlex Sym2 ‘TM(’;'”/S’ 5.4

where 7, : M§;" — Sandw : C — S are the projections. On the other hand, we

also have the pairing

R'7, Par(P) ® m,(Spar(P) ® Ke5(D))
l (5.5)
Rln*(Spar(fP)(D) ® Par(P) ® KG/S) L} RIJT*KG/S = Os.

This also induces a map

Psym Rln*‘.Te/S(—D) — Tl Sym2 TM(‘;“:'”/& (5.6)

The isomorphisms Rln*Ke/S >~ 95 in (5.5) and R]’y?*l(é/s =~ (O are both given
by the residue theorem and Serre duality, but for different curves. Hence, the map on
Hitchin symbols psy, and pgy, do not commute under the identifications given by
(5.1) and (5.2). However, they are related as follows:

Lemma5.1 Let pgym and psym be as above. Then |U'| - psym = Psym-

Proof This is immediate from the commutativity of

1 ~ 1> 7. T
R n*K@/S — (R JT*KG/S)

| |

OsLOS

5.2 Parabolic Hitchin connection via heat operators

Let ¢ : G — SL(V) be a linear representation satisfying the hypothesis of
Sect. A.3. Let Ly be the pullback of the determinant of cohomology line bundle
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to Mé’”. Via the identification of parabolic G-bundles as equivariant bundles and
Proposition A.8, we have identified it with the parabolic determinant of cohomology
Detpar (vsi(v) (¢ (t))). For notational convenience, we will drop ¢ when denoting the
line bundle Det 4,4 (P, T) and simply write Det 4, (P, 7).

In [20], the authors produced a projective heat operator on the line bundle
whose symbol satisfies the following Hitchin—van Geemen—de Jong equation:

®k
Ly

1 1
KSMpw ra/S—HLLko( Id—}-pLLk o (U ¢k[KM"“’”/ ]))opsymoKS@/S =0.

5.7
Setting p = Pgym © KS(?/S gives

1 1
KSMIW s yg Tt gk o (Id —HLU o (UE[KMgf’:’”/s]>> o mp =0, (5.9

where k is a rational number.

Let k = ¢/|T'|. Using the identification Ly = (Detpqr (P, 7))
A.8, from (5.8) we get that

||
¢ in Proposition

KSMP“r”/S—i_l’LDetpar(? T)®K Par “/S m¢, ep =0

Definition 5.2 For any rational number a, we will denote the projective heat operator
on Det®‘r ¢(fP 7) obtained in [20] by D(g, a - mg - £).

The following is one of the main results of [20, Theorem 4.1].

Theorem 5.3 Ler IL be an element ofPic(Mg‘f;’r‘v) ® Q of level a (see definition A.7).
Then, there is an equality U[IL] = Ua[Det] as linear maps m,. Sym2 ‘J'Mgar,rs /s~
R'7,. T M where Det is the determinant of cohomology (non-parabolic) line

bundle.

Remark 5.4 The above result should be put in the more general context of deformation
theory of the moduli space of the parabolic bundles as studied in Boden-Yokogawa
[24], and the birational variation of these moduli spaces as the weights vary.

Since line bundles on M{'," are pull-backs of rational powers of line bundles

from MS”L(V) o, for an appropriate choice of representation (¢, V) of G, the following
is an immediate consequence of Theorem 5.3.

Corollary 5.5 Let A//}G and Mpar’” be as in Sect. A.3. Let (¢, V) be a representation

of G. Then, the line bundle K ; . /s restricted to Mpar " is of level —%ﬁz‘m with
respect to SL(V'), and hence

[KA?G/S]

ugzzress) = Vg
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. 2 1 "
as linear maps from m, Sym TMg‘_‘,””/S to R T[*‘IM(’;‘:’”/S'

Proof On the one hand, we have the fact from [41] that K 75 Ve/s is —2hY (9)Ly, where
Ly is the ample generator of the Picard group of the moduh stack of SL(V) bundles
on C, where C — C is a I'-cover. Moreover, L restricted to M4 /S is of level
IT"| (see Appendix A.3). On the other hand, the canonical bundle K METTS /S has a

component that is —24Y(g) times the ample generator of the Picard group of the
moduli stack of G bundles on C, which in turn is of level m%b with respect to the s[(V)

embedding of g. This proves the result. O

Corollary 5.5 further simplifies the parabolic Hitchin symbol, as shown by the follow-
ing.

Proposition 5.6 Assume that mg - £ + h”(g) # 0. Then

1 1+ lU[K ar.rs o o P _ﬂ (5.9
my Tl /“LDetpa,(r) 2 MG" /S Psym = mg - €+ hV(g) .

Proof Since ,B}ym is invertible, we need to show that

meg - {+ hv(g) 1
T 1 + Delpar(f) U [KMparu/S] = 1d.

So it suffices to prove that

s (1o U[K paris ] Y R A
Det par Mg /S mg - ¢ _I_h\/(g)

By multiplying with wpet,,,, (r), it suffices to show that

—2hY (g)

_— . 5.10
g+ hV(g)> HDet por (T) (5.10)

ULK ypperrs sl = (

Now by [41, 42], applied to the moduli space MG of principal G bundle on C,we get
that
(K1 = —2h"(g).mg.[Ly]. (5.11)

By Corollary 5.5,

—2h"(@IL —2hY T'|[Det par
U[KMgfl:”/S] — (g)[ ¢] = U (9) <| |[ ep (T)])

o-ITI " mg-IT| ¢
Rewriting the above equation, we find
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—2hY . -2\ |T'|[Det
Umg 'E[KMgf’:v”/S] _ U( (9) me ) |T"|[De par(r)]

|r| m ¢
u#’iv@[ Wz 5] = <Um¢ T (- 2hv(g)[Detpa,])),
ULK yporrs] = (Um¢_i}i ;gv)( ) ([Detpa,(t)] - %[KM%” /S]>>,
U%[KM% ol = <m¢ _ehjr(:)v(g)) ety (1) (from (4.4)).
This completes the proof. O

6 Proof of Theorem 1.1

In this section, we give a proof of the main theorem in this article by comparing the
Sugawara tensor and the parabolic analog of the heat operator with a given symbol
constructed by the authors in [20].

Let Parg (C, p, T) be the open substack parametrizing regularly stable parabolic
bundles of parabolic type 7. Then the natural map Par (C, p, ) — Mg par. ”(C , D)
is a gerbe banded by the center Z(G) of the group G.

Similarly, let Q7° be the open ind-subscheme of Q, parametrizing the regularly
stable bundles. The natural map 7“4 given by the composition

re

" QP — Parg () — Mpar .

isa LG ¢/ Z(G) torsor which is étale locally trivial. Here, LG G is the loop group
associated to a punctured curve.

6.1 Twisted D-modules via quasi-section of Drinfeld-Simpson

Letmy : € — S beaversal family of n-pointed smooth curves of genus g. We choose
formal coordinates § = (&, ---, &,) along the sections p.

Lett = (71, ---, T,) be as in Section B.1, and let Q;, be the affine flag variety
associated to 7;. The above choice of coordinates gives an identification of Q; with
]_[ 1 LG /P . By the dlscuss10n in [8, Secs. 5.2.9—5.2.12], the infinitesimal action,
of the central extension L¢ of the loop group, on Q, gives a map

ﬁ@gi)opp N HO(QT,-, DQTI-/S(XX))'

Here DQp / S(g)\i) is the ring of relative %5, -twisted differential operators on Q,,

and ﬁ(ﬁgi) is a suitable completion of the universal enveloping algebra of g, and
U (g¢,)°PP is the opposite algebra. Summing over all the coordinates, we get a map
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D UG)™") — HQr, Do, () ©.1)
i=1

which via further restriction gives amap €}, (ﬁ(’g}[)"p”) — H O(QQS, ®Qr /S(XX)).
Both sides of (6.1) carry natural filtrations and the map in (6.1) is a map of filtered
sheaves of algebras.

As in [43], we consider a quasi-section of 7"¢. The result of [27] implies that

the natural étale locally trivial torsor 7" : Q7 — MJ’  has a quasi-section

par,rs r par,rs . A . . .
Ng —> Mg " such that r is an étale epimorphism, and there is a map

o @ NEU™ — Q7 such that the following diagram commutes
rs
QT

/ |

par,rs r par,rs
NG,r MG,r
\ lﬂe
S

Now since the map r is étale, we get an isomorphism

(6.2)

par,rs

0 par,rs k ) _ 0 .
H (NG "> r Mg‘f;*”/s) = H (NG ¢ vTNgf’{'”/s)-

Given any relative differential operator © on the line bundle %5, we can pull it
back via o (see Section 8.1 and 8.7 in [43]) to a differential operator on the line bundle
o*%; which, by an abuse of notation, is again denoted by .%;. Thus, (6.1) gives the
following map of filtered sheaves of algebras

n

he. @(ﬁ(’g}i)””p) — HO(Ng’a,r’”, @Ng?:v"s/s(of;)). (6.3)
i=1

The sheaf of Lie algebras @, (ﬁ (gg,)°rP ) carries a natural PBW filtration and

we let (B, (ﬁ(ﬁgi)"pp))fm be the m-th part of the filtration. Then, the following
diagram is commutative

0 par,rs <m ).
e HOWNG' "™, D wparrs 150
L= ’ <m
(@) [T HOWNE"™ Syt T s )
\T
O HO(NGPW’”, .DS';IW,N. (ON‘M"” )) ’
T NG /S Gt

6.4)
where symb=" denotes the principal m-th-order symbol map of a differential operator.
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6.2 Projective heat operator from Sugawara

We now give a local description of the map £ .. Let P be a regularly stable parabolic

G-bundle in the moduli space of parabolic bundles of parabolic weights X on a curve
C with parabolic structure over p. We consider it as a point in N5,""". The tangent
space at P is given by H!(C, Par(?P)), where Par(?P) is the sheaf of L1e algebras given
by parabolic endomorphisms of the bundle P.

Let P, C G be the parabolic subgroup determined by the weight A; attached to
the point p; € p, and let p; be the corresponding Lie algebra. We denote by p;”
the opposite parabolic and by n;” the nilpotent radical of p,”. We have a short exact
sequence of sheaves

n n m; )
0 — Par(P) — Par(P) (Zmipi) — @ n; @@g@)gi] — 0,
i=1

i=1 = j=1
(6.5)
where m1, ---, m, are non-negative integers. Taking the long exact sequence of
cohomologies associated to (6.5), we get a homomorphism
n
P (v @secly ") — H'(C, Par()). 6.6)

i=1

Combining this with the natural projection g ® C((§;)) — n; ®g® C[§ l._l]éi_l for
each 1 < i < n, we get a homomorphism

g®C((&)) — n; @g®CIE g — H'(C, Par(P)). 6.7)

The composition of maps p; in (6.7) is the local description of /i (defined in (6.3))
S— @ ¢
(U@pi)o[?[)) LN HO(NGp‘,lrr’”’ DNgaTr_m/S(O)), (6.8)

The operator 2 (Z) defined in (3.8) gives arelative second-order differential operator
D on Np”r " which acts on the i-th factor by (T'[/;]) (see (3.3) and (6.7)). Thus we
have the followmg diagram

By Os(EN) = = HONET"™, DN,M/S@% )

l‘) (6.9)
HO(S, Ts).

We can realize ® as a projective heat operator by taking a lift of a vector field on
S to an element of P, OS((Si))d%. Now as described in the previous section, the

difference between two lifts can be understood as a Og-module homomorphism a,,.
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Thus the map © descends to a projective heat operator, and we will also denote the
descended operator by ©. In the rest of this section, we show that the symbol of 2 is
the Hitchin symbol py,,, which will complete the proof of Theorem 1.1.

6.3 The parabolic duality pairing and the Hitchin symbol

Recall that the Cartan-Killing form induces a non-degenerate bilinear form between
the sheaves
kg : Spar(P)(D) ® Par(P) — Oc.

Let D, be a formal disk around each marked point p; in C, and let C* =
C\{p1, ---, pn} be the complement. Consider the following open covering:

C=C"u (uzr'llePi) :

A section of Spar(P) restricted to D, consists of an element of g ® C[[;]] whose
image under the natural evaluation map

evp, 1 g®C[E]] — g

is contained in the nilradical n; of the parabolic subalgebra p;. Similarly, Par(P)
consists of sections whose restriction to any formal disk D, has the property that the
image of the evaluation map is in p;.

Let { P;} be a Cech cocycle representative in [T, (Par(iP) (D;*,i )) of a cohomology

class of H!(C, Par(?P)) with respect to the covering C = C* U (l_ID,,,.). Here, we

have P; € g® C((£)), under a trivialization of P restricted to D p; - Similarly we let
(pid&} € g ® C((&))dE; denote the restriction of an element of H%(C, Spar(P) ®
Kc(D)) to uD;i .

The natural pairing in (5.5) takes the form

H°(C, Spar(P) ® Kc(D)) ® H'(C, Par(P)) — C (6.10)

{pide,} x {Pi} —> ) Resg—okq(¢i, Pi)dé;. (6.11)
i=1

Now consider a Cech representative (= {I;} € @?ZIC((Ei))d% of a cohomology
class in H'(C, Tc(—D)). Let ¢ be a global section of the sheaf Spar(P) @ K¢ (D).

For each i, we have
> d
_ 2 : +1
éi - li,msim _d";:i ,
m=—m;

and ¢ restricted to D;; is of the form

¢idei = Y Xim& " "'dE € 9@ C((5)dEi.

mez
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Since the diagramin (6.4) commutes, we can evaluate the symbol of © by computing
the following:

Pp@¢, D TN =) (¢ ®pidE’, D limLm)

i=1 i=1 m=—mj

Lim($i ® ¢idE?, L)

Il
M=
Mz

i=1 m=—m;

=

I
WK

1

lim(pi ® ¢ide}, ————
m{di ® pidE 20+ 1 ()

1m

i —mj

dimg
D TR T (m = k).

keZ a=1

Now if [, = gl.”i“d%,we get that

n s d n
(¢ ® ¢, ZT[SZ»‘“ED = > (¢ ® pidE}. Ln,)
i=1 ! i=1
1 n dimg
S i @ gidE?, T (k)T (n; — k):).
Z(Hhv(g));k%;w ® pidk (k) J*(ni — k):)
If n; # 0, then we get that
R 1 dim g 5
i id&f, Lp,) = ———— i ,‘d,«,J”kJa i —k
(6 ® ¢idE7, Ln,) z(Hhv(g))k%;@ ® gidg], (k)] (ni — k)
1 dim g
= Resg —o (i, JO(k))dE;.
2(E+hv(9)),§; esg=0(gi, J10)dE

Resg; —o (¢, J4(n; — k))dg;

dim g
= ; . aygk—m—1 ;5.
T 20+ hY(9) 22 (Z Resgi=0 kg (Xim, J7)§ ds,)

keZ a=1 \meZ
x <Z Resg, 0 kg (Xim, J”)g"i’”"‘dg,-)
mez
1 dim g
= s g (Xi ks g (Xini—t, I
2(¢+h¥(9)) k%; e g
1

- Xi 0o Xim0).
ST ) e X
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The zero-th Virasoro operator Lo can be rewritten without normal ordering as
follows:

dim
1 oy

= — JYJ  — J4(=k)J*(k
W) 2 +(z+hV(>)Z 070

Thus, we get the following:

(¢ ® pidE}?, Lo)

dimg 0o
1
= o i @ pidE7, JTY) + ipide?, JU(—k)J° (k
T % O (e+hv<g))k§¢¢ &, 11 m)
1 dimg ]
= R Xl . a m—
200+ hV(g)) Z <mZ€Z esg;=0 Kg( JOETTdE;
oo dimg
Ress. — Xim, Je fkfmfld ]
(Z+hv(g)) ,; ; <(,§ e85=0 g (Xim, TS 5)
x (Z Resg —0 kg (Xim, J“)gf'"ldg,-)>
meZ
1 dim g
= 2011 () Z kg(Xi0, JDKg(Xi0, JO).
oo dimg
- Xl ,J“ Xz , Je
(Z—I—hv(g))/;;ICQ( —k )Kg( k ")

1 1
= v ke (Xio, Xi0) + 5o ieg (Xi,—ks Xi.x)
2+hv(@) T T 20+ hY (@) kezz\(o} R

1
= Ty & KoKk Koo

We summarize the above calculations in the following proposition.
Proposition 6.1 Forany 1| < i # n, and for anym; € Z,

1
i ® ¢id ,'27 Lyp,)) = ——— Xik, Xim:—k)-
(9i ® pid§ i) TR ékg( J> Xiomi—k)

6.4 Proof of the Main theorem (Theorem 1.1)

Recall that the product
R'm.T,(=D) ® m(SPar(P) ® Ke (D)) —> R'm, ParP
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induces a homomorphism
Psym R]nn*Txgar/M(p;a:.m(—D) —> 7,4 Sym? TMS”:‘”/S’ (6.12)

where

par par.,rs
Xg = Cxg MG,r

and m, : %ZM M J ar’rs is the projection. Consider the Cech cover of C given by

cC = C*u ( D ) In particular, given any Cech cohomology class {S" i+l d }

in H'(C, Tc(-D)), using Serre duality and the identification of SPar(P)(D) w1th
Par(P)V, we get a symmetric bilinear form on H(C, SPar(P) ® K¢ (D)).

As in the previous section, consider a section ¢ € H 0(c, SPar(P) ® Kc(D)). For
each i, the section ¢ restricted to D;,' is of the form

¢ide = Y Xiw& " dE € g ® C(E))dE.

mez

Thus evaluating a cocycle class {é"’Jrl d } against a section ¢ written in the Cech
cover as {¢;d&;}, we get that

(gt 4y ‘= Resg—0 kg ($idE ® (£ e

7 dg;’
= Resg =0 kg (¢id&;, Z X&' ™)
meZ
= Resg =0 KE(Z X,',kél»_k_l, Z Xi,mfini_m)dg"
keZ mez
= ZKg(Xi’k, Xi,n,'fk)‘
keZ

We summarize the discussion in this subsection in the following proposition, which
completes the proof Theorem 1.1.

Proposition 6.2 Let a be any rational number and ¢ be a faithful representation
with Dynkin index mgy. Then the symbol of the projective heat operator ® acting

a m¢. ~ ®a
on .,Z Detpar ¢

(see Sect. 6.2) coincides with

(t) constructed from the Sugawara tensor and uniformization

1
2(a-mgy - L+ hV(g))

Psym -

Hence, the projective heat operator ® and the projective heat operator constructed
in [20] via Theorem 4.2 coincide.
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Remark 6.3 If a square-root of K M /s exists, then it follows that the push-forward

1
of the line bundle Detp,,(0) ® K AT/IS,”L“” /s produces conformal blocks of level £ —
hY (sl(r)), where h¥(g) is the dual Crbxeter number of a Lie algebra g. From the
calculations in this section, and the fact that the tangent and cotangent spaces of the
moduli space M\’ are only dependent on the flag type of e, it follows that the
symbol pgyn /£ equals the symbol of the differential operator that induces the TUY
connection. However, it should be mentioned that even if K ML /s has a square-root,

1
the pushforward <Det par (@) ® K AZ/[,WJ y s) may not have any sections.
SLy,a

7 Geometrization of the KZ equation on invariants

In this section, we show a geometric construction of the Knizhnik—Zamolodchikov
connection (KZ). This question was suggested to us by Professor P. Belkale. Let us
first recall the classical construction of the KZ connection [38].

7.1 KZ connection

Let g be a fixed semisimple Lie algebra, and let A= (A1, -+, An) be an n-tuple of
highest weights. Consider the vector space of invariants of tensor product of represen-
tations

A;(g) := Homg(V), ® --- ®@ V3, C).

n’

The space of invariants sits inside the zero weight space (Vy, ® --- ® Vj,, ) of the
dual of the tensor product of representations.

Let X, = {z = (z1, ---, z») € C* | z; # z;}, and consider the trivial vector
bundle A; on the configuration space of points X, whose fiber is Az (g). It is well

known [31, 32, 72] that the space of conformal blocks V:f\ (C,g,¢,z)onP!' = Cu{oo}
with n marked points (z, ---, z,) for g at level £ and weights s injects into A; (g):

L V;(Pl,g,ﬁ,z) < A;(g). (7.1

This map is actually an isomorphism for £ > 0. Specific bounds for £ are given in
Belkale—Gibney—Mukhopadhyay ([13, 14]).

Asin Sect. 3, consider an orthonormal basis J1, ---, J dim g of the Lie algebra g for
the normalized Cartan-Killing form. Define the Casimir operator 2 = Zggg Jege.
For pairs of integers 1 < i # j < n,and vectorsv; ®---®Quv, € V;, ®---@V,,,,
let

dim g
Qi ® - ®u) = Y ® RV RV ® By

a=1
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For any complex number x # 0, the formula

af f Z (W]€2;,j(9))

(V('Q)(f@)(‘l’I) (I19)) = . — (VD) — , (7.2)
9z i —Zj

/#l

defines a flat connection on (Vy, ® --- ® Vj,)5 ® Oy, over X,, that preserves the
subbundle A;. Hence, its monodromy gives a representation of the pure braid group
71 (Xn, 2).

In this discussion, we restrict ourselves to the case where k = £ + h¥(g), and
kg(Ai, 0g) < 1 for all i. In this case it is known that the connection v (e (8)
preserves the bundle Vi (g, £) of conformal blocks and it is equal to the TUY/WZW
connection [31, 32, 72].

7.2 Invariants as global sections

Asin Section A.1 consider the moduh stack of quasi-parabolic bundles Parg Pz, 1)
of local type T on P!, where 7 and X are related by the usual exponential map as before.
Consider the open substack fParG (P!, z, 7) of Parg(P', z, 1) parametrizing quasi-
parabolic bundle on P! whose underlying bundle is trivial. By construction, we have
an isomorphism of ?aré (]P’l, z, T) with the quotient stack

[(G/Prx---xG/Py) /G, (7.3)

where Py, ---, P, arethe parabolics determined by 71, --- , 7, and G acts diagonally
on the product of partial flag varieties.

Let .%; be the Borel-Weil-Bott line bundle on Parg (Pl ,Z, T), and consider the
restriction of .Z5 to Parg; (P!, z, 7). We get a natural map

HO(Parg (P, z, 1), L) — HO(fParE;(IP’l,z, 1), £3). (7.4)

Now the restriction of ZX to [(G/Py x---xG/Py)/G]is Ly, ®W---KW L, , where
the L, are the natural homogeneous line bundles on G/ P; determined by the weights
Ai. Moreover, by the Borel-Weil theorem, we have H G /P, Ly,) = Vx*,- . Thus,
from the restriction we get the natural commutative diagram

HOParg P, 2.0, %) = HOParg @', 2,7), %) == (@, HG/P, LM))g

l; lz i;

T pl '
V(P! g, 6. 2) " Homg(Vy, ® - ® Vj,.C) == (V, ® - @ V;\ )%

(7.5)
Here the left vertical isomorphism is due to Laszlo-Sorger [44]; the diagram was used
in [13]. Now it follows that the complement of Parg (P!, z, ) in Parg(P', z, 7) is
just the ordinary theta divisor.
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7.3 Differential operators

Recall the notion of a good stack from Beilinson—Drinfeld [8]: an equidimensional
algebraic stack Y over complex numbers is good if the dimension of Y is half the
dimension of the cotangent stack Ty;. Let Y, be the smooth topology of Y. For any
object S € Y, and a smooth 1-morphism 75 € Y, we have the exact sequence

U'S/y — Tg — 75Ty — 0.

Consider the sheaf of differential operators D on § and the leftideal I = D sTg Y C
Dg. Set iDy (S) := Dg/I,. This Dg is an OH module along with a natural filtration
such that Sym ‘J'y = gr Dy. The above also works for differential operators twisted
by a line bundle.

Since the nilpotent cone of the moduli space of parabolic Higgs bundles is isotropic
of exactly half the dimension [6, 29, 45], it follows that the stack Parg (P, z, 7) is
good. Moreover, since both Parg, (P!, z, v) and Pary (P!, z, T) are quotients of a
smooth scheme by a reductive group, they are also good.

Now we know that the line bundle .#; descends to a line bundle on Parg (P!, z, 7).
The construction of the projective heat operator (cf. Definition 5.2) with symbol
(5.2) gives a second-order differential operator D on .%; over the moduli stack
Pary (P!, z, 7). Since the sheaf sz(fj\) is coherent and Parg; (P!, z, T) has com-
plement of dimension at least two (provided  satisfies the conditions in the statement
of Theorem B.1) applying Hartogs theorem, we get a differential operator on .5 over
the entire stack Parg (IE”l, Z, ), which we will still denote by D.

Recall that via the uniformization theorem and the Sugawara construction, we
have a degree two differential operator Z on .Z5, which by Theorem 1.1 agrees with
ID. Since the Sugawara construction restricted to the open substack Parg P!, z, 1)
induces the KZ connection, we have the following corollary obtained by restricting D
to fParg(]P’l, zZ, 7).

Corollary 7.1 Let ¢ : Parg(r) — X, be the relative open substack of quasi-
parabolic bundles whose underlying bundle is trivial. Then, the heat operator D
induces a flat connection on the vector bundle w; %; over X, whose fiber at a point z is
Ho(ﬂ’ar& (C, z, 1), £5). Moreover, the natural identification of g 25 with A; is flat
for the geometric connection on 7§25 and the Knizhnik—Zamolodchikov connection
on A;.

Appendix A Moduli spaces of parabolic bundles

In this section, we briefly recall the basic notion of parabolic bundles and the natural
line bundles on their moduli spaces.

Let C, p be as in Sect.3.1. Let E be a vector bundles on C. A quasi-parabolic
structure on E at a point p € p is a strictly decreasing flag

_ 1 2 k kp+1 _
E, = F'E, > F’E,--- > --- D> FE, 5 FFHE, = 0.
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of linear subspaces in E,. The above integer k is the length of the flag at p, and the
tuple
(F(F*Ep), -+, 1, (F*E}p))

records the jumps in the dimension of the subspaces and is defined by
ri(F*Ep) := dim F/E, — dim F/*'E,.

A parabolic structure on E at p is a quasi-parabolic structure as above together with
a sequence of rational numbers

O§a1<a2<~-~<akp<l

known as the weights. A parabolic bundle (E, «, r) on C with parabolic divisor p is
a vector bundle E on C along with parabolic structure over the points in p. Using the
weights a, the parabolic degree of E is defined to be

n kl’i

pdeg(E) := deg(E)+ Y Y rj(F*(Ep))a;(F*(Ep))

i=1 j=I

Stable and semistable parabolic bundles are defined using the parabolic degree (see
[47]). Mehta and Seshadri constructed the moduli space ML of semistable parabolic
bundles [47].

We now discuss some natural ample line bundles on My“", following [22]. Let o
be a fixed set of weights for fixed flag type r, and let (E, o, r) be a parabolic bundle
on (C, p). Define the parabolic Euler characteristic

n kPi

Xp(E) = x(E) =Y > rj(F*(Ep))a;j(F*(Ep)).

i=1 j=I

Let £ be a family of parabolic bundles on C, parametrized by a scheme 7', of rank
r, weight o and flag type r. For each point p;, we have a string of rational numbers

ap = 0 < ai(pi) < <aj(p) < <o, (p) <1

which are the parabolic weights. Observe that the parabolic Euler characteristic xp
remains constant in a connected family.

Let £ be the least common multiple of all denominators of all the rational numbers
appearing in o.
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Definition A.1 The parabolic determinant bundle of level £ on ME“" is the element of
the rational Picard group Pic(T ) given by

C.oj(pi
n k!’i C‘j([’l)

ParDet(€, @) := Det(€) X) | X) | Q) det Gt/ Z, , (€7 )

i=1 \ j=I

exp©)
® (det&rxpy)” "~ (A1)

where py is a fixed point of C, and Gr/ denotes the j-th graded piece of the filtration
Fa,p; ON 7% p; (cf. [22, Prop. 4.5]).

Let M{" " be the moduli space of semistable parabolic SL, bundles or equivalently
parabolic bundles with trivialized determinant. Then, ParDet(&, o) descends to a line
bundle on Mé’l_ar ;Y, which will be denoted by Det 4, (et).

A.1 Parabolic G bundles

We shall follow the notation in [20, App. A] and refer the reader there for more details.
Consider the fundamental alcove ®¢, andlett = (71, ---, 7,) be achoice of n-tuple
of weights in ®p which will be referred to as parabolic weights.

Definition A.2 Let G be a connected complex reductive group. A parabolic struc-
ture on a principal G-bundle £ — C with parabolic structures at the points
p = (p1, ---, pn) is a choice of parabolic weights T along with a section o; of
the homogeneous space E ),/ P(z;), foreach 1 < i < n, where P(t;) is the standard
parabolic associated to 7;. Throughout this paper, we will assume that 0,4(t;) < 1 for
alll <i < n.

We observe that when G = GL,, the associated bundle constructed via the standard
representation of GL, recovers the notion of parabolic bundles and parabolic weights
as in the beginning of the present section. The notions of stability and semistability for
parabolic G-bundles appear in the work of Bhosle-Ramanathan [17]; for G = GL,
they coincide with the notions of stable and semistable parabolic vector bundles.

Let T be an n-tuple of parabolic weights in the interior of the Weyl alcove of G.
The corresponding moduli space M. " (respectively, Mo ) of semistable (respec-
tively, stable) parabolic G- bundles Was constructed in [4] These moduli spaces are
normal irreducible quasi-projective varieties. The smooth locus of M2 a: *%is denoted

by M PAT-"S and it parametrizes regularly stable parabolic bundles [19] or equivalently
stable parabohc bundles with minimal automorphisms.

Lett: G — G’ be an embedding of connected semisimple groups. This homo-
morphlsm ¢ produces a map Mpar R Mgfirt’fs which is a finite morphism. The
weights T/ and T are related by t. This plays a key role in construction of the mod-
uli spaces. In fact, choosing an appropriate representation of the group G, one can
reduce the question of construction to the corresponding question on parabolic vector

bundles.
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RemarkA.3 Let C — S be a family of smooth curves with n disjoint sections.
We will denote the corresponding semistable and regularly stable moduli spaces
also by M{"""" and M{'", respectively. When there is a scope of confusion, for

any n-pointed smooth curve (C, p), we will use the notation M{"**(C, p) and

M (C, p), respectively.

A.2 Parabolic bundles as equivariant bundles

We now discuss parabolic bundles from the point of view of equivariant bundles. We
refer the reader to [5, 18, 63], and [20, App. B] for more details. This was used in [20]
to construct a Hitchin type connection for parabolic bundles and it will be crucial here
as well.

Definition A.4 Let p : C —> Cbea Galois cover of curves with Galois group I'. A
(I', G)-bundle is a principal G-bundle EonC together with a lift of the action of T’
on E as bundle automorphism that commutes with the action of G on E.

Assume that the map p : C — C is ramified over pi € C,1 <i < n.
LetI'y, C I' = Gal(p) be the isotropy subgroup for some g; over p;. A (I', G)—
bundle on a formal disk around g; is uniquely determined by the conjugacy class of a
homomorphism p; : 'y, — G given by the action of I'; on the fiber of the principal
G-bundle over the point g; (see [5, 69]). Fix a generator y; of the cyclic group I'y,.
Now consider a string of parabolic weights T = (1, ---, 7,) such that p;(y;) is
conjugate to 7; for each 1 < i < n. We will refer to this 7 as the local type of a
(", G)-bundle.

The notions of stability and semistability for (I, G)-bundles are similar to those
for the usual principal G-bundles; more precisely, the inequality is checked only for the
I" equivariant reductions of the structure group to a parabolic subgroup of G ([4, 57]).
Let M (respectively, M) denote the moduli spaces of semistable (respectively,
stable) (I', G) bundles of local type 7.

Recall the isomorphism vy : g¥ —> g from the Killing form. Given a string
of parabolic weights T = (71, ---, 7,), choose a minimal integer £ such that
exp (Zn\/_ (Z vg(Ti) )) = 1. Then by [50, 62], we can find a ramified Galois
cover p : C — C with ramification exactly over n-points {p;}7_, whose isotropy
at any ramification point is a cyclic group of order £. From now on we will restrict
ourselves only to such Galois covers. The following theorem is due to [4, 5, 18].

Theorem A5 Consider the moduli stack Bun. (C) of (T, G)-bundles of fixed local
type t. The invariant direct image functor identifies the stack BunlE’G(a) with the
moduli stack Parg(C, p, t) of quasi-parabolic bundles of flag type t. Moreover,
the invariant push-forward functor also induces an isomorphism between the moduli
spaces M gi‘;’” (respectively, M parss . Jand M5 L3 (respectively, M 7).
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A.3 Parabolic determinants as equivariant determinants
Consider the moduli space M(T;’” of (I', G) bundles associated to a Galois cover
p C — C with Galois group I'. Let MG be the moduli space of semistable
principal G-bundles on the curve C. There is a natural forgetful map M(""* — Mg
that simply forgets the action of T.

Given a representation ¢ : G — SL,, consider the associated morphism 5 :
MG — MSL, between the corresponding moduli spaces. Let £ be the determinant of
cohomology line bundle on 1\79_,. Let

Ly =@ L

be its pullback to Mg. If G = SL,, then ¢ can be taken to be the standard repre-
sentation. Now Theorem A.5 realizes the moduli space M(;"*** of parabolic bundles
as a moduli space M5"" of (I', G)-bundles on C, which maps further into Mg by
forgetting the action of T'. Thus using the identification between M7* and M[""*,
we get a natural line bundle L4 on M, ga: 9

On the other hand, using the parabolic determinant of cohomology, one can con-
struct natural line bundles on M[","*" as follows:

Lett = (11, ---, 1) be a string of parabolic weights such that 64(t;) < 1 for
all 1 < i < n. Take a faithful representation (¢, V) of the group G satisfying the

following condition:
e The local type ¢ () = (¢(71), -+, ¢(7,)) is rational, and Og((v) (¢ (7)) < 1.

Here, 65 and 65((v) are the highest roots of the Lie algebras g and sl(V), respectively.
We now recall the definition of the parabolic determinant of cohomology for G-
bundles.

Definition A.6 Let £ be a family of parabolic G-bundles on a curve C with n-marked
points, and let ¢ : G — SL(V) be a faithful representation. Then, the parabolic
G-determinant bundle Det,, 4(7) with weight 7 is defined to be the line bundle

Detpar (vs1(v) (¢ (T))).

Let as before my be the Dynkin index of the embedding ¢, i.e., the ratio of the
normalized Cartan-Killing forms.

Definition A.7 We define the level of Det 4, 4(T), to be my times the level of the
determinant bundle Det 4, (Vs (v) (¢ (T))).

More generally any element £ of the rational Picard group Picg (M, ss) is up to
a multiple a a parabolic G-determinant of cohomology line bundle Ds. Hence, we
define the level of L to be the level of D¢ divided by a.

The following is recalled from [22].
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Proposition A.8 Let £ be the order of the stabilizer at each ramification point of the
Galois cover p : C — C with Galois group T, then under the isomorphism in
Theorem A.5, the parabolic determinant of cohomology is related to Ly by the formula

N ry
Ly = (Detpar,qb('f)) “,

where the T cover C is determined by the parabolic weight data vvy(¢(7)).

Appendix B Uniformization of moduli spaces and conformal blocks

In this section, following the work of Belkale—Fakhruddin [11], Laszlo [43], and
Laszlo-Sorger [44], we discuss the universal isomorphism between the sections of
the parabolic determinant of cohomology bundle and the spaces of conformal blocks.
If (C, p) is a fixed smooth n-pointed curve, this identification is due to Beauville—
Laszlo [7] (G = SL, and n = 0), Faltings [30], Kumar—Narasimhan—Ramanathan
[41] (for n = 0), Pauly [54] (for G = SL,) and Laszlo-Sorger [44]. The result has
been extended to nodal curves by Belkale—Fakhruddin [11]. All of the results use a key
uniformization theorem of Harder [34] and Drinfeld—Simpson [27] in the smooth case
and its generalization in [11, 12] for the nodal case. We mostly follow the discussion
in [11, Sec. 6].

B.1 The line bundle on the universal moduli stack

Consider the moduli stack M, ,, parametrizing smooth n-pointed curves of genus g.
Recall from Section A.1 that givenatuplet = (tq, - -, T,) inthe fundamental Weyl
alcove @ of a simple Lie algebra g, we have the moduli stack Parg (C, p, ) of quasi-
parabolic G bundles of type T on a smooth curve C. This construction for families of
smooth n-pointed curves gives relative moduli stacks 7, : Parg(r) — M, , such
that for any smooth curve (C, p) we have ne_l (C, p) = Parg(C, p, ). Throughout
this discussion, it is assumed that 64(7;) < 1foralll < i < n.

Following [11] and [43], we construct a line bundle ZX — Parg (1), such that
w25 = Vi(g,{), where % and ¢ are related to T by the exponential map. The
construction 1n [11] extends to the stable nodal curves.

B.1.1 The relative affine flag varieties

Let € — S be a family of smooth n-pointed curves, and let S = Spec R. Consider
the affine curve ¢’ = @ — L, pi(S).Let €4 = € x g Spec(A) for an R algebra A
and similarly define €;. Let C4 denote the completion of C4 along the sections p.
The sections p induce sections of C4, and (314 denotes its complement.

Consider the following:
(1) LG’,G(A) = Mor (¢, G).
(2) LY(4) = G(' (€}, 0)).
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Each 1; determines a parabolic subgroup P(t;) C G, and we consider the standard
parahoric subgroup P given by the inverse image of []'_, P(;) under the natural
evaluation map Lg(A) — G". Proposition 6.3 of [11] shows that the R group
LG’, ¢ 1s relatively ind-affine and formally smooth with connected integral geometric
fibers over Spec(A). Observe thatifn = 1and A = 0, and if 7 is a formal coordinate
at the marked point p1, then LG gets identified with the loop group L and P is the
group of positive loops LJGF.

B.1.2 The central extension

Faltings ([30], and also [7, Lemma 8.3], [44]) constructed a projective representation
of LG on ]HIX = RQ® (® Fy, (g, 6)) whose derivative coincides with the natural
projective action of the Lie algebra of £G. This gives us a central extension

1 — G — LG — LG — 1. (B.1)

”1;}\16 extension E? splits over P; (see [66, Lemmaq7.3.5]), and the central extension
LG is independent of the chosen representations A. Moreover, the extension (B.1)
splits over LG’ G ([65], [11, Lemma 6.5]).

B.2 The relative uniformization and parabolic theta functions

Let ’33, = P x G,,. The weight vectors X give natural characters on ??5, and the
product of characters induces a line bundle
L — Q= E?//ﬂs,.

Moreover, from the uniformization theorems [7, 11, 27, 34], it follows that the quotient
of Q; by Lo o is isomorphic to the pullback Parg(t)s of the stack Parg(t) to S.
Now since the extension in (B.1) splits over L(i” G the line bundle -ZX descends to a
line bundle over the stack Parg(t) which we will also denote by .#;. Observe that
the line bundle . is trivialized along the trivial section of Parg(t) over S, and such

data determine the line bundle up to canonical isomorphism. We will refer to the line
bundle .Z; as the Borel-Weil-Bott line bundle.

B.2.1 Parabolic determinant as the Borel-Weil-Bott line bundle

We now compare the parabolic determinant of cohomology of the universal bundle
with the line bundle .%;.

Recall from Definition A.6 the notion of the parabolic determinant Det,, ¢ (T) of
cohomology associated to a family of parabolic G bundles on € — S and a suitable
representation ¢ : G — SL(V). Now for the fixed n-pointed curve (C, p), it is
known that the line bundles $-®m¢ and Det 4, ¢ (7) on Parg (C, p, T) are isomorphic,
where my is the Dynkin index of the embedding ¢. Since these line bundles are
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determined up to a normalizing factor, it follows that the corresponding projective
bundles are identified as

Pr,s (Detpar. (1)) = Pne*( X‘X”"‘”), (B.2)

where 7, : Parg(r) — Mg, is the natural projection.

B.2.2 Parabolic theta functions and conformal blocks

For any choice of formal parameters, the ind-scheme Q, can be identified with the
product of affine flag varieties [ ;_; L /P, and the line bundle .%; pulls back to the
corresponding line bundle on Lg /P, given by the character A;. Now by Kumar [40]
and Mathieu [46], we get that

H(Q,, %) = H. (B.3)

We end this discussion with the following theorem (see [11, Theorem 1.7] and [43,
Sec. 5.7]) which we will refer to as the universal identification of the parabolic theta
functions and the conformal blocks. In the case when S is a point, the result can be
found in [7, 30, 41, 44].

Theorem B.1 The push-forward of £; along the map m, : Parg(t) — Mg , can be
identified canonically with the bundle of coordinate free conformal blocks V}; (g, £).

Moreover, ,,% descends to a line bundle on M ar,rs’ and T ppPar.rs *g‘ s iSOWlO}"phiC
A G,t |M A
’ G,t

to V; (g, £) provided the following conditions hold:

o The genus of the orbifold curve determined by T is at least 2, if G is not SL,.
e The genus of the orbifold curve is at least 3, if G = SL;.

Remark B.2 The last conditions ensure that for any smooth pointed curve (C, p), the
codimension of the moduli space M g‘z’”(C , p) in the moduli stack Parg(C, p, T)
is at least two. We refer the reader to [20, App. C].

Acknowledgements We thank Prakash Belkale for suggesting the question of constructing the Knizhnik—
Zamolodchikov connection geometrically. S. M. would like to thank Arvind Nair for useful discussions.
Finally, the authors are grateful to the anonymous referee for a careful reading of the manuscript and for
many helpful suggestions.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no Conflict of
interest.

@ Springer



Geometrization of the TUY/WZW/KZ... Page370f39 85

References

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

. Andersen, J.E.: Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quanti-

zation. Quantum Topol. 3(3—4), 293-325 (2012)

. Andersen, J.E., Egsgaard, J.K.: The equivalence of the Hitchin connection and the Knizhnik-

Zamolodchikov connection, personal communication

. Axelrod, S., Della Pietra, D., Witten, E.: Geometric quantization of Chern-Simons gauge theory. J.

Differ. Geom. 33(3), 787-902 (1991)

. Balaji, V., Biswas, 1., Nagaraj, D.S.: Ramified G-bundles as parabolic bundles. J. Ramanujan Math.

Soc. 18(2), 123-138 (2003)

. Balaji, V., Seshadri, C.S.: Moduli of parahoric ¢-torsors on a compact Riemann surface. J. Algebraic

Geom. 24(1), 1-49 (2015)

. Baraglia, D., Kamgarpour, M., Varma, R.: Complete integrability of the parahoric Hitchin system. Int.

Math. Res. Not. IMRN 21, 6499-6528 (2019)

. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys.

164(2), 385-419 (1994)

. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s Integrable System and Hecke Eigensheaves,

unpublished

. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional

quantum field theory. Nuclear Phys. B 241(2), 333-380 (1984)

. Belkale, P.: Strange duality and the Hitchin/WZW connection. J. Differ. Geom. 82(2), 445-465 (2009)
. Belkale, P., Fakhruddin, N.: Triviality properties of principal bundles on singular curves. Algebr. Geom.

6(2), 234-259 (2019)

. Belkale, P., Fakhruddin, N.: Triviality properties of principal bundles on singular curves. II. Canad.

Math. Bull. 63(2), 423-433 (2020)

. Belkale, P., Gibney, A., Mukhopadhyay, S.: Vanishing and identities of conformal blocks divisors.

Algebr. Geom. 2(1), 62-90 (2015)

Belkale, P., Gibney, A., Mukhopadhyay, S.: Nonvanishing of conformal blocks divisors on Mo’n.
Transform. Groups 21(2), 329-353 (2016)

Ben-Zvi, D., Frenkel, E.: Geometric Realization of the Segal-Sugawara Construction, Topology, Geom-
etry and Quantum Field Theory, London Mathematical Society Lecture Notes Series, vol. 308, pp.
46-97. Cambridge University Press, Cambridge (2004)

Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.
118(4), 651-701 (1988)

Bhosle, U., Ramanathan, A.: Moduli of parabolic G-bundles on curves. Math. Z. 202(2), 161-180
(1989)

Biswas, I.: Parabolic bundles as orbifold bundles. Duke Math. J. 88(2), 305-325 (1997)

Biswas, 1., Hoffmann, N.: Poincaré families of G-bundles on a curve. Math. Ann. 352(1), 133-154
(2012)

Biswas, 1., Mukhopadhyay, S., Wentworth, R.: A Hitchin connection on nonabelian theta functions for
parabolic G-bundles. J. Reine Angew. Math. 803, 137-181 (2023)

Biswas, 1., Mukhopadhyay, S., Wentworth, R.: A parabolic analog of a theorem of Beilinson and
Schechtman. Int. Math. Res. Not. rnae085 (2024)

Biswas, 1., Raghavendra, N.: Determinants of parabolic bundles on Riemann surfaces. Proc. Indian
Acad. Sci. Math. Sci. 103(1), 41-71 (1993)

Bjerre, M.: The Hitchin connection for the quantization of the moduli space of parabolic bundles on
surfaces with marked points, Ph.D. Thesis, 101 pp. Aarhus University (2018)

Boden, H.U., Yokogawa, K.: Moduli spaces of parabolic Higgs bundles and parabolic K (D) pairs over
smooth curves. I. Int. J. Math. 7(5), 573-598 (1996)

Deshpande, T., Mukhopadhyay, S.: Crossed modular categories and the Verlinde formula for twisted
conformal blocks. Camb. J. Math. 11(1), 159-297 (2023)

Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians,
Vol. 1, 2 (Berkeley, California., 1986), pp. 798-820. American Mathematical Society, Providence, RI
(1987)

Drinfeld, V.G., Simpson, C.: B-structures on G-bundles and local triviality. Math. Res. Lett. 2(6),
823-829 (1995)

@ Springer



85

Page 38 of 39 . Biswas et al.

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.
44.

45.

46.

47.

48.

49.

50.

51

52.

53.
54.

55.

56.

57.

58.

Fakhruddin, N.: Chern Classes of Conformal Blocks, Compact Moduli Spaces and Vector Bundles,
Contemporary Mathematics, vol. 564, pp. 145-176. American Mathematical Society, Providence
(2012)

Faltings, G.: Stable G-bundles and projective connections. J. Algebraic Geom. 2(3), 507-568 (1993)
Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347-374 (1994)

Feigin, B., Schechtman, V., Varchenko, A.: On algebraic equations satisfied by hypergeometric corre-
lators in WZW models. II. Commun. Math. Phys. 170(1), 219-247 (1995)

Feigin, B., Schechtman, V.V., Varchenko, A.: On algebraic equations satisfied by hypergeometric
correlators in WZW models. I. Commun. Math. Phys. 163(1), 173-184 (1994)

Ginzburg, V.: Resolution of Diagonals and Moduli Spaces, The Moduli Space of Curves (Texel Island,
1994), Progress in Mathematics, vol. 129, pp. 231-266. Birkhduser, Boston, MA (1994)

Harder, G.: Halbeinfache Gruppenschemata iiber Dedekindringen. Invent. Math. 4, 165-191 (1967)
Heinloth, J.: Uniformization of ¢-bundles. Math. Ann. 347(3), 499-528 (2010)

Hitchin, N.: Flat connections and geometric quantization. Commun. Math. Phys. 131(2), 347-380
(1990)

Kac, V.G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of
affine algebras. Adv. Math. 70(2), 156236 (1988)

Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions.
Nuclear Phys. B 247(1), 83-103 (1984)

Kohno, T.: Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier
(Grenoble) 37(4), 139-160 (1987)

Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89(2), 395-423
(1987)

Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G-
bundles. Math. Ann. 300(1), 41-75 (1994)

Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of G-bundles. Math. Ann. 308(1),
155-173 (1997)

Laszlo, Y.: Hitchin’s and WZW connections are the same. J. Differ. Geom. 49(3), 547-576 (1998)
Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G-bundles over curves and their
sections. Ann. Sci. Ecole Norm. Sup. (4) 30(4), 499-525 (1997)

Logares, M., Martens, J.: Moduli of parabolic Higgs bundles and Atiyah algebroids. J. Reine Angew.
Math. 649, 89-116 (2010)

Mathieu, O.: Formules de caracteres pour les algebres de Kac-Moody générales. Astérisque 159(160),
267 (1988)

Mehta, V., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann.
248(3), 205-239 (1980)

Moore, G., Seiberg, N.: Lectures on RCFT, Superstrings’89 (Trieste, 1989), pp. 1-129. World Scientific
Publishing, River Edge, NJ (1990)

Mukhopadhyay, S., Wentworth, R.: Generalized theta functions, strange duality, and odd orthogonal
bundles on curves. Commun. Math. Phys. 370(1), 325-376 (2019)

Namba, M.: Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics
Series, vol. 161. Longman Scientific & Technical, Harlow (1987)

Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface.
Ann. Math. (2) 82, 540-567 (1965)

Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat.
Nauk 37(5), 3-49 (1982)

Quaras, Z.: Parabolic Hitchin connection, arXiv:2310.02813 (2023)

Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84(1), 217-235
(1996)

Pauly, C., Martens, J., Bolognesi, M., Baier, T.: The Hitchin connection in arbitrary characteristic. J.
Inst. Math. Jussieu 22(1), 449-492 (2023)

Ramadas, T.R.: Faltings’ construction of the K-Z connection. Commun. Math. Phys. 196(1), 133-143
(1998)

Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129-152
(1975)

Ran, Z.: Jacobi cohomology, local geometry of moduli spaces, and Hitchin connections. Proc. Lond.
Math. Soc. (3) 92(3), 545-580 (2006)

@ Springer


http://arxiv.org/abs/2310.02813

Geometrization of the TUY/WZW/KZ... Page390f39 85

59. Reshetikhin, N.: The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem.
Lett. Math. Phys. 26(3), 167-177 (1992)

60. Schechtman, V.V., Varchenko, A.N.: Arrangements of hyperplanes and Lie algebra homology. Invent.
Math. 106(1), 139-194 (1991)

61. Scheinost, P., Schottenloher, M.: Metaplectic quantization of the moduli spaces of flat and parabolic
bundles. J. Reine Angew. Math. 466, 145-219 (1995)

62. Selberg, A.: On Discontinuous Groups in Higher-Dimensional Symmetric Spaces, Contributions to
Function Theory (internat. Colloq. Function Theory, Bombay, 1960), pp. 147-164. Tata Institute of
Fundamental Research, Bombay (1960)

63. Seshadri, C.S.: Moduli of 7-Vector Bundles Over an Algebraic Curve, Questions on Algebraic Varieties
(C.LM.E., III Ciclo, Varenna, 1969), pp. 139-260. Edizioni Cremonese, Rome (1970)

64. Sorger, C.: La formule de Verlinde, Séminaire Bourbaki, Vol. 1994/95, no. 237, Société Mathématique
de France, pp. Exp. No. 794, 3, 87-114 (1996)

65. Sorger, C.: On moduli of G-bundles of a curve for exceptional G. Ann. Sci. Ecole Norm. Sup. (4)
32(1), 127-133 (1999)

66. Sorger, C.: Lectures on moduli of principal G-bundles over algebraic curves, School on Algebraic
Geometry (Trieste, 1999), ICTP Lecture Notes, vol. 1, pp. 1-57. The Abdus Salam International
Centre for Theoretical Physics, Trieste (2000)

67. Sun, X., Tsai, I.-H.: Hitchin’s connection and differential operators with values in the determinant
bundle. J. Differ. Geom. 66(2), 303-343 (2004)

68. Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173(2), 265-311
(1995)

69. Teleman, C., Woodward, C.: Parabolic bundles, products of conjugacy classes and Gromov-Witten
invariants. Ann. Inst. Fourier (Grenoble) 53(3), 713-748 (2003)

70. Tsuchimoto, Y.: On the coordinate-free description of the conformal blocks. J. Math. Kyoto Univ.
33(1), 29-49 (1993)

71. Tsuchiya, A., Kanie, Y.: Vertex Operators in Conformal Field Theory on Pland Monodromy Repre-
sentations of Braid Group, Conformal field theory and solvable lattice models (Kyoto, 1986), Advanced
Studies in Pure Mathematics, vol. 16, pp. 297-372. Academic Press, Boston, MA (1988)

72. Tsuchiya, A., Ueno, K., Yamada Y.: Conformal Field Theory on Universal Family of Stable Curves
with Gauge Symmetries, Integrable Systems in Quantum Field Theory and Statistical Mechanics,
Advanced Studies in Pure Mathematics, vol. 19, pp. 459-566. Academic Press, Boston, MA (1989)

73. van Geemen, B., de Jong, A.J.: On Hitchin’s connection. J. Am. Math. Soc. 11(1), 189-228 (1998)

74. Welters, G.E.: Polarized abelian varieties and the heat equations. Compos. Math. 49(2), 173-194 (1983)

75. Witten, E.: Nonabelian bosonization in two dimensions. Commun. Math. Phys. 92(4), 455-472 (1984)

76. Witten, E.: Quantum Field Theory and the Jones Polynomial, Braid Group, Knot Theory and Sta-
tistical Mechanics, Advanced Series in Mathematical Physics, vol. 9, pp. 239-329. World Scientific
Publication, Teaneck, NJ (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Geometrization of the TUY/WZW/KZ connection
	Abstract
	1 Introduction
	2 Conformal Blocks
	2.1 Affine Lie algebras and integrable modules
	2.2 Sheaf of conformal blocks
	2.3 Coordinate free construction
	3 Energy momentum tensor and the Sugawara construction
	3.1 Construction of the WZW/TUY connection
	3.2 WZW/TUY connection
	3.3 Sheaf of twisted differential operators

	4 Projective connections via heat operators
	4.1 Heat operators and the Hitchin–van Geemen–de Jong equation
	4.2 Heat operators and metaplectic quantization


	5 Parabolic Hitchin symbol as in Biswas–Mukhopadhyay–Wentworth 
	5.1 The Hitchin symbol
	5.2 Parabolic Hitchin connection via heat operators

	6 Proof of Theorem 1.1 
	6.1 Twisted mathcalD-modules via quasi-section of Drinfeld–Simpson
	6.2 Projective heat operator from Sugawara
	6.3 The parabolic duality pairing and the Hitchin symbol
	6.4 Proof of the Main theorem (Theorem 1.1)


	7 Geometrization of the KZ equation on invariants
	7.1 KZ connection
	7.2 Invariants as global sections
	7.3 Differential operators

	Appendix A Moduli spaces of parabolic bundles
	A.1 Parabolic G bundles
	A.2 Parabolic bundles as equivariant bundles
	A.3 Parabolic determinants as equivariant determinants

	Appendix B Uniformization of moduli spaces and conformal blocks
	B.1 The line bundle on the universal moduli stack
	B.2 The relative uniformization and parabolic theta functions
	Acknowledgements
	References



