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For a simple, simply connected, complex group G, we prove an explicit formula to compute the Atiyah
class of parabolic determinant of cohomology line bundle on the moduli space of parabolic G-bundles.
This generalizes an earlier result of Beilinson-Schechtman.

1 Introduction

Lie algebroids play an important role in the geometry of sheaves on manifolds. For the case of Atiyah
algebras associated to principal bundles, the Atiyah exact sequence packages the information of
connections and, more generally, twisted differential operators on the bundle. Of particular interest
are Atiyah algebras associated to line bundles on moduli spaces of bundles on curves. These are almost
always constructed via descent from a bigger parameter space. A fundamental question is therefore how
torelate the behavior of Atiyah algebras of these natural line bundles to infinitesimal joint deformations
of the moduli spaces under this correspondence.

This question was addressed in the fundamental work of Beilinson-Schechtman [4]. In the context
of relative moduli stacks of vector bundles over families of smooth projective curves, the main result
of [4] describes the Atiyah algebra of the determinant of cohomology in terms of a direct image of a
trace complex constructed from the Atiyah algebra of the universal bundle. This construction is closely
related to the “localization functor” [3, 5].

In [13], Ginzburg gave an alternative construction that is more amenable to the case of principal
bundles. This is based on a general correspondence between quasi-Lie algebras and certain differential
graded Lie algebras. Applied to the moduli problem, this time for principal bundles, it can be seen from
work of Bloch-Esnault [10] that the direct image of the dgla constructed by Ginzburg also computes the
Atiyah algebra of the determinant of cohomology.

The main goal of this paper is to extend these constructions to the case of moduli stacks of principal
bundles with parabolic structures. In order to state the result, let us introduce some notation. Let
C —> Sbe a versal family of smooth projective curves with n marked points pa, -+, pn. Fix a simple,
simply connected complex algebraic group G with Lie algebra g. Choose parabolic subgroups Py, --- , P,
of G and associated weights & = (a1, -+, an). Let Mg™ = ME™(C/S) — S be the relative moduli space
(over S) of regularly stable parabolic G-bundles. On C xs M{™ there exists local universal bundles P.
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2 | I Biswasetal.

Let parG'CXSME,s »5(P) denote the relative Ginzburg complex associated to P. These local complexes glue
together to give a global complex on C xs M&™ (even though the global P does not exist).

On the other hand, we consider the sheaf of strongly parabolic relative Atiyah algebras
P At e e (P) defined via the parabolic orbifold correspondence satisfying the short exact

sequence

0 — SPar(P) — # Ate, e s (P) = Teyamers e (D) — 0,
where SPar(P) is the sheaf of strongly parabolic endomorphisms and D is the divisor of marked points.
Now consider the sheaf of quasi Lie algebras SP‘”HCXSMEJS e (P) obtained as the pull back of the
following sequence:

0 = Qe e = (P Ate, e e (P)(D))” — (SPar(P)(D)” — O,

via the isomorphism of sheaf of parabolic endomorphisms Par(P) = (SPar(P)(D))V. Moreover, by
construction Rz, P Atc e e (P) is @ sheaf of relative Atiyah algebras on Mg, where 7 : C xsMg"™ —
MZ™ is the projection. We first show that

R (OTSY, s s(P) = R CTS L s (P)) = RU (P B e s (P)
We refer the reader to Sections 3 and 4 for more details. Finally, we related it to relative Atiyah algebras
of parabolic determinant of cohomologies.

Given a nontrivial holomorphic embedding ¢ : G — SL,, there is an associated determinant of
cohomology line bundle £, — M. Let Aty 5(Ly) denote the relative Atiyah algebra of £,,. Then the
main result of this paper is the following.

Theorem 1.1. On M{"™ there is a natural isomorphism of Atiyah algebras

1 - —
m—d)AtMgw/s(ﬁd,) > RIS e s (P) 2 R (P At e ez (P)),

xsME™

where my is the Dynkin index of the associated homomorphism ¢, : g — s, given by the ratio
of the normalized Killing forms.

In a recent paper [16] the result of Beilinson-Schechtman was used in an integral way to give an
algebraic proof of the existence of a flat projective connection (a Hitchin connection) on the bundle of
generalized theta functions for vector bundles on families of curves. One of the main motivations of
the present paper was to apply Theorem 1.1 in the same way to obtain a Hitchin connection for theta
functions associated to parabolic G-bundles. This is carried out in [9].

2 Quasi-Lie Algebras and Extensions of Atiyah Algebras
2.1 Basic definitions

In this section, we recall a correspondence stated in Ginzburg [13] between quasi-Lie algebras and their
associated differential graded Lie algebras. We also recall from Beilinson-Schechtman [4] a natural
classes of Atiyah algebras associated to a family of curves.

2.1.1 Quasi-Lie algebras

First we recall the definition of a quasi-Lie algebra. Let g be a vector space equipped with a skew-
symmetric bilinear map

[1:

=¥
X

L=}

=¥

Let Z C g be a linear subspace.
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Definition 2.1. A triple (g, Z, [ ]) as above is called a quasi-Lie algebra if the following holds:

1) the subspace Z is central with respect to [ ], and
2) the bracket [ ] descends to give a Lie algebra structure on g/Z.

We will see that in the setting of Atiyah algebras, these quasi-Lie algebras arise naturally. Now recall
the notion of a differential graded Lie algebra (dgla).

Definition 2.2. A differential graded Lie algebra (dgla) is a vector space & := ¢, &' together with a
bilinear map {&', &} ¢ & and a differential d : &' — &' satisfying the following:

o (x,y) = (=DFYHYy x} where |z| = iforz € &,
o (=DXIENx, {y, z}} + (= DYy, {z, x}} + (=DHYI?z, {y, x}} = 0,and
e d{x, y} = {dx, y} + (=D¥{x, dy}.

A morphism of dglas is a graded linear map & — &’ that preserves the Lie bracket and commutes
with the differentials.

The following lemma of Ginzburg [13, Lemma 7.7] gives a correspondence between quasi-Lie algebras
and a certain class of dglas.

Lemma 2.3. Let (g, Z, [ ]) be a quasi-Lie algebra equipped with a symmetric Z-valued, Z-invariant
bilinear form ( ) : Sym2 § — Z such that the following hold:

* (xyl 22+, [x,2]) = 0,and
* XA+ [z Xl +z [x ] = d[x, y], 2).

Then there exists a dgla 6 = 62 &' @ &°, where 6° = g, &' = § 6% = Z the
differential is given by inclusion and quotient, and with the bracket given by the formula
{x,y} = (x,y); and {x,dy} = [x,y]+ (x,y) for x,y € §. Conversely given a dgla as above
satisfying {&72,d&™!} c kerd, there exists a quasi-Lie algebra along with a symmetric Z-
valued, Z-invariant bilinear form.

2.1.2 Dglas associated to families of curves

Let 7 : X — T be a smooth morphism of relative dimension one parametrized by T; the curves in this
family are not assumed to be proper. The relative holomorphic tangent bundle 7x,r fits in the exact
sequence of Ox-modules

O_>’7§</T—>7}ﬂ>n*’7}—>0.

Let Tx. C Tx denote the subsheaf dz~'(x~177). Clearly the sheaf 7x . has the structure of Lie algebra
with Lie bracket coming from that on 7x and there is an exact sequence of Lie algebras

0 — Tx;r — Txr LN 7 ' — 0.

Consider the dgla given by 7,* = @, 7', where T is zero fori # {0, =1}, 7T~ := Tyrand 7° = Txn.
This dgla 7,* carries a natural action of #7'Or and a map

€T — HAT) = x 1 (Tn) (1)

given by dx. The relative de Rham complex Q% = (Ox — wyr) wWith V0 := Ox and V! = Qxr
is naturally a dg-module V* := V° @ V! for 7, which is compatible with the #~'Or action on both
sides.
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2.1.3 Atiyah algebras as R, of dglas

Letw : X — Tbe a family of curves as before. We discuss the notion of = -algebras following Beilinson-
Scechtman [4], which are quasi-isomorphic to extensions of a complex of Atiyah algebras by the de
Rham complex Q% r.

Definition 2.4 ([4, § 1.2.1]). An Os-Lie algebra A* on X is a dgla together with a 7#~'Os-module

structure and a morphism €4 : A* — 7 that satisfies the condition [a, fb] = €4(a)(f)b +
fla,b], where €4 = €oe€4 (see (1)). A m-algebra A® is an Os-Lie algebra together with a three
term filtration

0= A"y C A, C A, C Ay = A

such that the following hold:

1) [AL AT C A7, Os- A C AL,

2) A%, >~ Q3 c[2] as Os-modules,

3) A*, /A2, is acyclic,

4 eyt A — A°JA*, ~ T2 and

5) the ad action of A*/A?, on A*, coincides with the 77-action on Q% [2].

By the above definition of a n-algebra, we get an exact sequence

00— Ay — A — A*/A*, — 0. 2)

This will be called an Q-extension of .A°/.A°*,. Now assume that the map = is proper. Suppose we are
given any w-algebra A* fitting in an exact sequence of complexes

0 — Q2] — A — A°/A%, — 0. 3)

Proposition 2.5 ([4, § 1.2.3]). The short exact sequence

0 — Or — R'7,4° — Tt — O

defines an Atiyah algebra on T.

2.1.4 mw-algebras associated to Atiyah algebras

Let # : X — T be a family of curves that are not necessarily projective, and let A be an R-Atiyah
algebra on X. There is a natural w-algebra associated to .A. Consider the Or-Lie algebra A2 defined by:

A7l = €' Txr and AY = €;'7x. There is a canonical surjective map €4 : A, —> 7, whose kernel
is Coneidg .

Definition 2.6. A Q-extension *A* of (A, R) is a Q extension of A% together with an Ox-module

structure on *.4-! such that

¢ the Ox-action is compatible with the action on A;?, and
¢ the component []_.; 1 : *A T @*A1 — #A=2 = Oy is a differential operator along the fibers.
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There is a commutative diagram:

0

|
0 Ox * A2 0

| | 0
0 Qx/T # AL A;l = .Ax/T — 0

|| !

0 —— #¥A" —— A0 :=Ax, —— O.

Observe that the Qy r-extension is, by definition, a w-algebra, where the filtration ".A'_2 is given by
@ r[2).

Later will also need to vary T with respect to S and consider 7,*s where degree —1 term is same as 7
and the degree zero term is Tx s = dz (w1 (T1/s)). In the relative set-up one similarly defines ASxs
by modifying the zero-th term to be A>_<,?1,s := €' Tx»s. The resulting pushforward RO, A3 s is a relative
Atiyah algebra satisfying the fundamental exact sequence

0— Or - RO:’[*(.A;(Y”'S) — Tr;s =0

2.2 Principal bundles

2.2.1 The Ginzburg complex

We continue with the earlier notation. Let G be a complex simple Lie group with Lie algebra g. We will
denote by k4 the normalized Cartan-Killing form on g and consider the corresponding isomorphism

vgig — g (5)

LetI1 : P — X be a holomorphic principal G bundle; we use the convention that G acts on the
right of P. Automorphisms Aut(P)|y of P over U C X are by definition G-equivariant automorphisms of
-1(U), thatis, F : Py — P|y satisfying F(pg) = F(p)g for all g € G; we do not assume that o F = II.
The group of automorphisms Aut(P)|y is generated by the invariant vector fields

auty(P) == {Y e T Y(U), TP) | R)),Y = Y, V g € G}.

Then aut(P) defines a coherent sheaf of Ox-modules. We refer to the subsheaf Atx/r(P) C aut(P) that
projects by dIT to 7x,r C TX as the relative Atiyah algebra of P. We have an exact sequence

0 — ad(P) — Atyr(P) — Tx;r — O. (6)

We will explain the inclusion map on the left. Recall that a section of ad(P) is identified with a function
f P — g satisfying f(pg) = Adg1f(p). For Y e g, let Y* denote the fundamental vector field on
P generated by Y. Then Y¢¥(pg) = (Rg)+(Ady Y)*(p). The map ad(P) — aut(P) in (6) is f > Y, where
Y(p) = f(p)*. With this definition,

Y(pg) = (Adg fO) (Pg) = R(FP)* = Y(p),

so Y is invariant and lies in aut(P) as the kernel of dIl. The following will be important when we
investigate universal bundles.
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Remark 2.7. Let Z(G) denote the (finite) center of G, and let P := P/Z(G) the associated principal
bundle for the adjoint group G := G/Z(G). Then there are canonical isomorphisms ad(P) ~
ad(P) and Aty/r(P) ~ Atxr(P).

Dualizing (6) gives a quasi-Lie algebra structure on Atx,r(P)":

0 — Qur — Atgr(®) —> ad(P)’ —> O. %
Identify ad(P) with ad(P)" using v, in (5), and denote Atx,r(P)" by gp. We have the following quasi-Lie
algebra:

0 —— QX/T — Atx/T(P)V E— Eld(P)v — 0

H I [ ®

0 QX/T ﬁp ad(P) — 0.

As in Lemma 2.3, associated to gp is a dgla, G;UT(P), which we call the Ginzburg complex for P. Explicitly,

0 i#£-2,-1,0

i OX 1=-2
GX/T(P) =1~ .
g i=-1
gp 1=0.

We will later consider a relative version of it where T varies.

2.2.2 The Bloch-Esnault complex

Let &€ — X be a holomorphic vector bundle. Like the Ginzburg complex, the Bloch-Esnault complex
B (&), [10], is nonzero in degrees —2, -1, and 0, with B;fT(E) = Ox. To define the other terms, let
X =~ A C X xrX be the relative diagonal, and let Atx,r(£) denote the relative Atiyah algebra of X — T.
Then BQ/T(E) = End(€). Set & := € ® Qxr, and define

ENE(N)

Bi® = smeca

on X xt X. Note that Ox,,x(A)|, = Txr. Then BQ}T(E) is defined by pushing out with the trace:

EXE EXE(N) ENE(A)
ENRE(-AN) EXRE(-AN) EXE

0 — End(€) ® Qxyr — Byr(€) —— End(€) —— 0

[+ | H

0 Qx/7 By () —— End(€) —— 0.

Here tr denote the trace End(£) — Ox of endomorphisms.

We will actually need the traceless version B y (), where Bafm(é') = BQ/ZT(E) while B9 +(€) is
defined by the inclusion map into the traceless relative Atiyah algebra and B;"(€) is defined by pulling
back the extension B;}T(E) over the sheaf Endo(€) of traceless endomorphisms.

2.2.3 Associated bundles

For any simple Lie algebra g, recall vy in (5).
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Lemma 2.8. Let ¢, : g —> s be a nonzero homomorphism of simple Lie algebras. Consider the
linear map ¢ : s — g given by the following diagram:

v % v
s —— g

e s ©)

g—s —— ¢.

Then ¢ o ¢, = m,1d,, where as mentioned in the Introduction, m, is the Dynkin index of ¢,.
Moreover, replacing y by ¢ = (my)~'y,

Yoo, =1Idg.

Proof. This follows form a direct calculation and the definition of Dynkin index. |
The following lemma is straightforward.

Lemma 2.9. Let y = m%)(vg1 o @l ov,) be as in Lemma 2.8, and consider the map ¢ : g — s
defined by v;loylovg:

\/ (10)

Then ¢ = m%,d’*-

Let¢ : G — SL(V) be a nontrivial holomorphic representation and £ = P x¢ V the corresponding
vector bundle associated to a principal G-bundle IT : P — X. Sections of &, are functionso : P — V
satisfying the condition that o (pg) = ¢(g~')o(p) forallg € G.The adjoint bundle ad(P) = Pxggmaps to
the traceless endomorphism bundle Endo(€y) using ¢, = d¢ : g —> sl(V), and we shall use the same
notation ¢, for this map ad(P) — Endo(&s). Notice that in this case, the map ¢ defined in Lemma 2.8
is G-equivariant, and hence defines a homomorphism Endo(£,) — ad(P). A G-invariant vector field
Y on P defines a differential operator on sections by Y(o) (= do(Y)). Invariance of Y guarantees that
Y(0) is again equivariant with respect to ¢, and so defines a section of &,. It is clear that the symbol of
this operator is I1,Y. Therefore, denoting the relative Atiyah algebra of £ — X by Atx,r(&,), we have
constructed a map (cf. Atiyah [1, p. 188))

¢ 1 Atyr(P) — Atxr(Ep). (11)

The following is a consequence of the above.

Proposition 2.10. For a principal G-bundle P — X, a representation ¢ : G —> SL(V), and the
associated vector bundle & — X, there is a natural map Vo Atxr(€y) —> Atx/r(P) that
makes the following diagram commutative:

0 ad(P) AtX/T(P) *} 7;(/]" — 0

0 —— Endo(&ﬁ)) — AtX/T(5¢) ) + 73</T > 0 (12)
¥

0 ad(P) Atx/T(P) —_— 73(/]" — 0.
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8 | I Biswasetal.

Here ¢ : Endy(§;) — ad(P) is induced from the map y constructed in Lemma 2.8 and ¢ is
the map obtained by pushing out the exact sequence of Atk r(Ey) via ¥.

2.2.4 Relating the Ginzburg and Bloch-Esnault complexes

We now compare the Ginzburg complex for a principal bundle P with the Bloch-Esnault complex for the
bundle &; associated to P via a nontrivial representation ¢ : G — SL(V).Identifying the endomorphism
bundle Endy(&,) with its dual using the trace homomorphism, consider the map

¢t : Endo(&s) = (Endo(E))Y — ad(P)’.
Let Ky = kerg!. The following is important for us.

Proposition 2.11. There is a lift of the inclusion K, — Endo(&,):

B(;,)l(/T(S¢)
RN o

Ky — Endo(&,)

Proof. We begin by describing a general situation. Namely, for bundles &, F, we find a local lifting @, of
the map

EXF(A) ENRF'(A)

fRF (A —_ TR ~ Hom(F, &) — O.

Choose local trivializations of X — T and coordinate neighborhoods U,, z, on a fixed fiber. We set
Yop = Zy O z;,l, 80 ¢, = dza/dzg. The lift is defined by choosing a (holomorphic) connection V, on F*.
Given sections u and v of £ and F* respectively on U,, define on U, x U,

5 v(q)dza
o (U@ ®V(Q) = % +u@ ®Y,u(q) mod T, (14)

To show that this is well defined, let f(p, @) € Z». Multiplying on the right-hand side, we have

fo,9dze(@ |, of
(m + @(M)) u(p) Xu(q) mod Zx. (15)
Since
of ,
fop= 5q PP (@~ Z®) mod I3,

we see that (15) vanishes, and so (14) gives a well-defined lift. Set s = Vo —Vs and Ous = (¢5/¢55)d2.
Then <4 € End(F*)®%Qx,r1s a 1-cocycle representing the Atiyah class of 7*,and ©.4 € Qx/r1s a cocycle
for the affine structure (cf. [14, p. 164]).

Notice that

Zo(P) = Za (D = @ap(Zp(D)) — Pap(Zp(9))
1
= ¢5(Zs(@)(Zp(p) — Zp(D) + 5905,3 (@) (2p(D) — 2(@)" + -+

from which we have

dz, (q) _ dzs(q) _ }@aﬁ mod Zx.

Ze0) —Za(@  Zp(D) —2p(@) 2
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The cocycle @5 = @, — ¢ € Hom (Hom(F, &), Hom(F, &) ® Qx7) is then given by

1
(U V) = u®%ﬁu—§u®u®(~)aﬁ.

In the case of F = £, we may write simply
1
B - End(é’) —> End(é') ® QX/T Bp— B (%ﬁ — 59%3 I) .

The extension class for B;*(€) is then given by the trace of endomorphisms
tr Qaﬁ : Endo(g) — QX/T; ,B — tr(ﬁ%f;) (16)

since trg = 0.

Finally, to complete the proof we must show thatif £ = &, then tr ®,4 vanishes on ;. When € = &,,
we may choose local holomorphic connections on P, so that .« is in the image of ¢.. But K4 consists
precisely of endomorphisms that are orthogonal to these under the trace pairing. Thus, the proposition
follows from the expression in (16). |

It is shown in [16, Thm. B.2.6] that the exact sequence for BOX/T(S) is dual to the (traceless)
Atiyah algebra sequence for £ using the trace map. In the case of &, we have the natural map
oL Atxr(E)Y — Atxr(P)Y. Then, by Proposition 2.11 we have the following:

Corollary 2.12. Let P —> X be a principal G-bundle, ¢ : G — SL(V) a holomorphic
representation, and £, — X the associated vector bundle. Then the degree —1 part of the
Bloch-Esnault complex Bg/lT(&i,) is the pullback of the —1 part of the Ginzburg complex in the
commutative diagram

0 — Qv — Byyr(€)) — Endo(&y) —— 0

la?i ld)i

0 — Qr —— Sy p(P) ad(P) 0.

Consider the map Vo Atx/T(€4) —> Atx/r(P) obtained in Proposition 2.10 along with its dual AR
Atxr(P)Y — Atx/1(€). We summarize the above discussions in the following commutative diagram:

0 — Qyr — &y;p(P) — ad(P) —— 0

AN\ A\

QX/T AtX/T(P) ad(P) 0
>¢ Id mald Py mw* 7¢ rniw‘ (17)
QX/T A ‘t></T(.£¢)v —> Endo(&y)Y —— 0
NONE N
0 Qx/7 O'X/T(€¢) —— Endo(§;) —— 0.

In (17), ¢ is just the map obtained by composition in the middle column of (17). Observe that
1
v;llm oMyY*ovg = m¢(v;,1(r) oy*ovg) = m¢(m—¢¢) = 9. (18)

Composing the maps that appear in the above diagram we get the following.
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10 | I.Biswas etal.

Proposition 2.13. The map ¢ : ad(P) — Endy(&,) extends to ¢ : &3/r(P) — By} r(&y) which
restricts to multiplication by the Dynkin index my on Qx,r. Taking push-forward by R'z yields
the commutative diagram

0 — Or —— R'm(&y(P)) — R'm.(ad(P)) — 0

Jm,,, " Is l—¢ (19)

0 — Or — R'm.(Byy1(Ep)) — R'm.(Endo(&y)) — 0.

2.2.5 The relative extension class

In this section we consider the special case where X — T is simply a product X = C x T.LetP — X
be a principal G-bundle such that the restriction of it to C x {t} is regularly stable for every t. We wish
to compute the extension class of the top (and hence also the bottom) row of (19). Since we assume
the curve is fixed, for future reference we call this the relative extension class. To state the result, let M
denote the moduli space of regularly stable bundles on C. Since this a coarse moduli space, there is a
morphism ¢ : T — M. By the deformation theory of principal G-bundles there is a homomorphism
TT — R'zm,(ad(P)). Via the Dolbeault isomorphism, we have

HY(T, R'z.(ad(P))) — HY(T, (TT)") = Hy (D)

and so the extension class of (19) defines a class in H%’l(T). On the other hand, there is another natural
class ¢*[®] € H%’l(T) due to Atiyah-Bott, which we define below. The result is then:

Theorem 2.14. Let X = Cx T as above. The image of the extension class of (19) in H%’l(T) is exactly
the pullback ¢*[®©] of the Atiyah-Bott-Narasimhan-Goldman form.

We first define ®. Under the assumptions, the direct image R'w,(ad(P)) — T is locally free and
its fiber at t e T isomorphic to H(C, ad(P;)), where P; = P|cy. By Dolbeault isomorphism, this is
isomorphic to H%l(C, ad(Py)).

Fix a maximal compact subgroup K C G. Let px be the Cartan involution of g that fixes Lie(K) and
acts on Lie(K)* as multiplication by —1. The Narasimhan-Seshadri-Ramanathan theorem [15, 17] asserts
the existence of a C* reduction of structure group Py < P: of P; to K, satisfying the condition that
the associated Chern connection on P; is flat. The Chern connection defines harmonic representatives
HO1(C, ad(Py)) of the Dolbeault group ’H%l(C, ad(P;)). The Cartan involution px produces a conjugate
linear involution p' of ad(P)) ® T*C ® C that exchanges ©-°(@d(P,) and QX' (ad(P;)) and preserves
the harmonic forms; this p’ is also called the Hodge x operator. Then a hermitian inner product on
HOL(C, ad(Py)) is given by

(o, B) = M/C(a AP (B)g,

where « and B are harmonic representatives. The almost complex structure on M¥ at ¢(t) is given by p’
on harmonic 1-forms. The tangent space to the space of flat K-connections at the point corresponding
to the Narasimhan-Seshadri-Ramanathan connection on P coincides with HY(C, ad(P})), where ad(P%)
is the local system. We note that H'(C, ad(P%)) is identified with H%l(C, ad(P)) by the map o +— o —
V~=1p(a). The almost complex structure on H*(C, ad(P%)) is given by p’. For a, b e H(C, ad(P})), the
Riemannian metric is given by

(a, by = 7/(a/\>kb)g = 2Re(a, B),
C

where a, 8 € Hg’l(C, ad(P)) correspond to a, b respectively. Finally, the Atiyah-Bott-Narasimhan-Goldman
symplectic form is given by ©(a, b) = 2Im («, B). It is closed and of type (1, 1), and so defines a class in
HM(T).

9

$20z Aey gL uo 1senb Aq |626S59//S808BUIUIWI/SE0 L 0L /I0P/8[01E-80UBAPE/UIWI/WOD dNodlWepeoe//:sdiy Woll papeojumod



A Parabolic Analog of a Theorem of Beilinson and Schechtman | 11

Proof of Theorem 2.14. First, we note the following:

1) At(P)Y is the sheaf of invariant 1-forms on P, that is, ¢ € I'(z='(U), T*P) such that Rip = ¢ for all
g € G.

2) ad(P)" is the sheaf of maps P — g* that are equivariant with respect to the co-adjoint action,
thatis, f(pg) = f(p) o Ady.

3) The map j is defined explicitly by: j(@)(p)(X) = go(Xg), for X € g. We have

JOEHEO = ¢ (pg) (Xy) = 9(Pg) ((Ro). (Ady X))

= Ryp((Ady X)}) = j(p) 0 Ady(X)

consequently j(p) satisfies the correct invariance.

A relative holomorphic connection w on P gives a holomorphic splitting of (7). Explicitly, if ¢ is a local
section of ad(P)”, then define w(p) in At(P)¥, by w(p)(Y) = ¢(w(Y)). Notice that

J@@)P) = 0@} = p@¥})) = oY),

so this map is a splitting of the sequence in (7). Let M¥ denote the moduli space of holomorphic G-
connections on a fixed curve C. Let M‘éR“S denote the open subset where the underlying bundle P is
regularly stable. Hence, there is the forgetful mapp : M%R*’S —> Mg, and this is a submersion. Therefore,
we can find local holomorphic sections. With this understood, let {¢;} be a local holomorphic frame for
the bundle R'x,(ad(P)¥) over an open set U < T, and let {aj*} be the dual frame. From the previous
paragraph, after shrinking U, we may find a holomorphic family of relatively flat connections o for
the restriction of P to C x U. Then a lift of the identity endomorphism of Rz, (ad(P)") to R 'z, (At(P)V) ®
(R'm,(ad(P)"))V is given by

Sy = ng‘ﬂ(aj) ®aj*.
J

For open subsets U, V, the difference oyy = sy — sy is valued in R'm.(Qc) ® (R'z.(ad(P)*))*, and the
1-cocycle {oyy} represents the extension class.

We now shift to the Dolbeault picture. First, the identification Rz, (¢) =~ C is given by integration
along the fiber C. Next, using the Killing form we identify adP ~ (adP)¥. Consider the map 7T —
R'm.(adP); then as discussed above the extension class defines via the Dolbeault isomorphism a 3-closed
(1, 1)-form on T. Let Px C P be the reduction of structure group given by the Narasimhan-Seshadri-
Ramanathan theorem. The Chern connection on Py extends to a connection ws on P that restricts to a
flat connection on each Py, although wa does not vary holomorphically in t € T. We can write o =
wa + By, where By is an invariant g-valued relative 1-form on P that vanishes on vertical vector fields.
Letby = Zj BB"I (@) ®°‘j*' Then since wa is globally defined, we have sy —sy = by —by. Hence, {by} gives a
C* trivialization of the 1-cocycle {oyv}. By definition, the Dolbeault representative of the extension class
is therefore given by the global (0, 1)-form {9by}. Now, since o} is holomorphic, the extension class is
represented by

Q= - doal@) ®af.
j

We calculate this form at a given point t € U. Choose local holomorphic coordinates s, ---, sy
centered at the point [P¢] in M¥ corresponding to t. We may so arrange that the holomorphic sections
j(s1,---,sn) of TME in a neighborhood [P;] satisfy the condition «;(0) = 9/ds;. Thus, we have also
a}.*(O) = dsj. Each oj(s) defines a Dolbeault class in H%(C, ad Ps), for which we use the same notation.
Let ps(;(s)) be the hermitian conjugate with respect to ps. With this notation, the Chern connection is
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12 | I.Biswas etal.
given by
0a(S) = wa(0) + D HS)ej() + D T©S)ps(ej(s)) mod T'ME,

where t;(0) = 0, 3tj/8s;(0) = &; and 3t;/35;(0) = 0. We therefore have

oaler) = oa0) (@) + D Ti(p(e), o)

dea(er)(0) = D (p(ey), ) dS;.
Recalling that H*(C, K¢) ~ Cis gotten by integration over C we have that Q4 is the pullback of the form
Z/;(p(aj),ak)dsk NS = 1) (e, oy)dsy A d5;
and this is precisely the Atiyah-Bott-Narasimhan-Goldman symplectic form. |

3 Determinant of Cohomology and Beilinson-Schechtman Classes

In this section we reinterpret Theorem 2.14 in terms of the quasi-isomorphisms between the Bloch-
Esnault complex, the trace complex of Beilinson-Schechtman, and the Ginzburg complex. Finally, we
related all of these to the Atiyah class of the determinant of coholomology line bundle.

3.1 Definitions

Recall the notation & = € ® Qx,r. The sheaf D=1(£) of first order differential operators on &€ can be
identified with %4 There is an exact sequence of sheaves

0 EXE(A) R EXRE Q2N R EXE (2N 0 (20)
EXE EXE EXE(A)
Similarly, we use another short exact sequence from [4]:
0 EXE EXEQ2AN) E&S(ZA)_)O- (21)

T ERE(—A) | ERE(-A) | ERE

Since we have Atx,r(£) C D§}T(€ ), pulling back (21) we get a quasi-Lie algebra that fits into the following
short exact sequence:

0 — End(&) ® Qxr — " Ayt — Atxr(€) — 0. (22)
Pushing it forward via the trace map tr : End(£) — Ox we get that
0 — QX/T e tr./‘lx/"r(tg)il —> Atx/T(g) — 0. (23)

Recall that B/ (€) = fme ., and define By} 1(€) to be the trace free version. Now consider the

pushforwards of EQ}T(S) and B‘aiﬁ(f)) via tr, and denote them by B)}}T(é‘) and Ba}m(é‘) respectively. The
natural inclusion map

EXE(N) EXEQ2AN)

End®) = —5a TRe
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 13

fits the above objects into the following commutative diagram:

0 — End(€) ® Qv — "Axr(€)t —— Atyr(€) —— 0

H ! I

0 — End(€) ® Qxyr — Byjr(€) ——— End(€) —— 0

0 — End(€) ® Qi1 \— By (&) —\— Endo(€) —\— 0 (24)
Jtr tr lm tr, H
0 —— Qur /—> B(;,}(/T(S) — /— Endo(€) —//— 0

0 Qx/7 By () — End(€) — 0.

3.2 Relative set-up

Now, consider the relative set-up. Therefore, we have a smooth scheme T over S with connected fibers,
andr : X — Tis a family of connected smooth curves of genus g. We have short the exact sequence:

0 — Txyr — Tx)s — n*Tr;s — 0.
Now as Or modules, 7 ~*(Tr/s) € 7*(Trys). Define Tx s := dn~ (7 ~*(T7/s)). Then we have
0 — Tayr — Tiws —> 7 ' Tijs — 0. (25)
Let Aty , s(€) denote the Atiyah algebra satisfying the fundamental exact sequence
0 — End(€) — Atxrs(€) — Txns — 0

Observe that Atx,r(€) C Aty s(E) C Atxs(E).

Definition 3.1. The Beilinson-Schechtman trace complex " Ax » s(€)* is the Qx/r-extension of the dgla
associated the quasi-Lie algebra " Ax,r(£)7?, that is, "Ax . s(E)© = Atxrs(&), TAx,s(E)! =
T Axr(€)7t and Ay, 5(E)? = Ox.

Throughout the rest of this section we will have the assumption that there is a splitting of the short
exact sequence in (25).

This condition holds for example in the case of fiber products. We then use the splitting of (25) to
pull-back the Atiyah algebra Aty , s(€) further via 7 =177,5 to obtain By, s:

0 — End& —— Aty.5(E) Txxs 0

H J ]

0 — End& —— B} () —— 7 Trs —— 0.

Let B89 , s(€) be the pushout of the exact sequence defining BY , ;(€) via the quotient homomorphism
End(£) — Endp(&).

Definition 3.2. The Bloch-Esnault complex By ¢(€) is the three-term complex consisting of the
locally free sheaves B%H'S(S), B;}T(S) and Bgi_S(S) = Oy in degrees 0, —1 and —2 respectively,

and zero otherwise.

We will denote by Bj 1  the traceless Bloch-Esnault complex as considered in [19] and [16].
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14 | I1.Biswas etal.

3.3 Determinant of cohomology

Letn : X — Tbe a family of smooth projective curves and let £ be a vector bundle X. Then the object Rw.&
in the bounded derived category of T is represented by a two term complex & — &;. The determinant
of cohomology £ up to isomorphism is defined by

top top

L=N&o \&

We refer the reader to 9, § 6.3] for more details on determinant of cohomology £. We recall the following
result of Beilinson-Schechtman [4] that connects the Atiyah algebra of Atx,r(£) and the trace complex of
£ and also a result of Bloch-Esnault [10] connecting the trace complex with the Bloch-Esnault complex.

Proposition 3.3. The Atiyah algebra Atr;s(£~1) is isomorphic to the relative Atiyah algebra
RO, (" Ax 2.5(E)*). If By . s(E) is the relative Bloch-Esnault complex associated to a family of
curves X —> T parametrized by T — S such that the exact sequence in Equation (25) splits,
then By . s(&) is quasi-isomorphic to the trace complex " Ay . s(€)°.

3.4 Relative Ginzburg complex

Let P be a principal G-bundle on X — T — S, and consider the Atiyah algebra Aty ,(P) with the
fundamental exact sequence

0 — gp — Atxrs(P) — Txzs — 0.
We then use the splitting of the exact sequence in (25) to pull-back further to define &°(P):

0 —— gp — AtX,n,S(P) 7;(,71,5 0

H I ]

0 — gp — &%, (P) — 715 — 0.

We consider the following three-term complex &%, =, S(P) that will be referred to as the relative Ginzburg
complex:

Oy ifi = =2,
Sy (P ifi = -1,
6%,5(P) ifi = 0,
0, otherwise.

&% .s(P) =

Let¢ : G —> SL(V) be a holomorphic representation of dimension r, and let &, be the associated vector
bundle. Then one recovers the Bloch-Esnault complex B y  s(Ey).

We have the following commutative diagram in which the horizontal map is the relative Ginzburg
quasi-Lie algebra associated to a relative principal bundle P

Oy =——= Oy
0 —— QX/T —_— GQ}T('P) gp 0 (26)
S5 s(P) == &%5(P).

The above diagram can be written as a short exact sequence of complexes

0 — Q2] — 83, 5(P) — R(P) = (gp — &%, 5(P) — 0. (27)
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The complex S°*(P) is quasi-isomorphic to =~'7r/s. Hence, there is a natural map of complexes
x~Trs = M (P) — gp[1]. Taking pushforward with 7, we get a map Trjs = 7. (7 *T1/s) — Rlmmgp.
We wish to compute Rz, &% . s(P).

To compute RO, &%, s(P), we need to compute the zero-th hypercohomology. Choose fine resolutions
(local on M),

62P) - & 1(P) -2 &P

| | |

LoP) —L MoP) —Ls No(P)

L Ls Lo

LiP) —L MuP) —25 Ni(P)

L L L

and compute the zero-th cohomology of the total complex C-1 2o 2o

Ci=L1®MyCo=LrdM DNy C1 = L3® My @ N3, and the differentials are

D_y: C.1 — Co, (£1, mo) +—> (dé1, dmg — fL1, gmo)

Do : Co —> C1, (£p, my, ng) —> (dly, dmy +f€2, dng — gma).

We note three facts in the next lemma the proofs of which are immediate in view of the assumptions.

Lemma 3.4. Let = : X — T be as above. Then the following hold:

1) R’m.0, = {0} (since the relative dimension is 1).
2) Ro7,4,, = {O} (assuming the stable locus is non-empty).
3) Since the fibers are connected, assume that the natural map

(@ T7y8) = Trss — Rz, (28)

is an isomorphism. Then the map le(G;(/lT(P)) — Rln*(G%NYS(P)) is zero as it factors through
Rln*m,

We prove the next proposition under the assumption of Statement (iii) in Lemma 3.4.

Proposition 3.5. There is an isomorphism Ror, &%, s(P) =~ Rln*G)’(}T(P) that is the identity on Or
and Tr/s.

Proof. Let (¢2,m1,ng) € kerDy. By Lemma 3.4(i) we may take ¢, = 0. Hence, (0, mq,no) — (0,dms, dno —
gmi) = (0,0, 0). So m; defines a class in Rln*(G;(/lT(P)) The second condition says that gm; defines the
zero class in Rz, (w =1 77/5). But by Part (iii) of Lemma 3.4 this is automatic. Now ng is such that dng = gm;.
By (ii) and (iii) of Lemma 3.4, we have Rz, &% , 5(P) = {0}. This means that no is uniquely determined.
Hence, the hypercohomology gives Rln*G;(}T(P). ]

Pick a representation ¢ : g — sl;, and consider the adjoint ad : s, — sl(sl;). This gives a map of
the corresponding simply connected groups, and now the corresponding associated construction first
via ¢ gives a vector bundle &; and then taking the adjoint we have the bundle End(&,). Assuming the
condition stated in (iii) of Lemma 3.4, we have the following proposition, which is a generalization of
results in [16, Prop. 5.0.2] and [19]:
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Proposition 3.6. There is a natural isomorphism between Rom,Bj . s(Endo(£y)) of the Bloch-
Esnault complex and ROr, &%, s(P) of the relative Ginzburg complex, and the isomorphism
fits in the following diagram:

0 — ROm, Q5 1[2] = Or —— RO, &%, 5(P) Trys 0

[ I |- o9

0 — ROm,Q5,,[2] = Or —— Rm.By, s(Endo(&y)) — Trs — 0.

Proof. The composition of mapsadog¢ : g — sl(sl;) gives a map Atxr(P) — Atx/r(Endo(&y)) (see (11)
and [1]). Moreover, the representation also gives the map Gg}T(P) — Ba}(/T(End(Eag)) (see Proposition
2.13). These two together give a map between the complexes

0 ” Q;(/T[2] — 6%, s(P) —— Y Tys —— 0

lmq, 2r l l; id (30)

0 — Q% [2] — By, s(End(&y) — 77 Trs — 0.

Taking pushforward Rz, of the above, we obtain the desired result. |

Now assume that Rlz,.g, is isomorphic to Trs under the natural map in (28). Consequently,
combining Propositions 3.5 and 3.6, we have the following diagram:

0 —— R'Qyr = Or ——— RIn, &5+ (P) Trs 0
0 — Rom.Q3,7[2] = Or ——— Rn. 8%, 5(P) Trys 0
lm,,,er l% J/—id
0 — RO7,Q5,1[2] = Or —— RO%.B} | (Endo(Ey)) — Trys —— O (31)
0 Or RO, (" Ax . s(Endo(Ey)*) — Trs —— O
0 Or Atrss(L£,%7) Trss 0.

The isomorphism between the third and fourth rows is due to Bloch-Esnault [10], and the isomorphism
between the fourth and fifth rows is due to Beilinson-Schechtman [4]. Here, £, is the determinant of
cohomology associated to the family &,.

We have the following theorem under the assumption that Tr/s = Rlx, g, for the map in (28).

Theorem 3.7. The relative Atiyah sequence for m%AtT/s (L) is isomorphic to
0 — Oy — R'mp.(&54(P) — Tis — 0. (32)
This justifies the computation of the relative extension class of the short exact sequence via

Dolbeault methods in Theorem 2.14.

3.5 Associated bundles and pullback

In this section we discuss the relation between the relative Ginzburg complex for the moduli space Mg
and the pull-back of Bloch-Esnault complex of Mg, associated to a representation ¢ : G <> SL,. As
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previously, let M denote the moduli space parametrizing the regularly stable principal G-bundles, and
denote by Mg, the moduli space of stable rank r vector bundles of trivial determinant. Let¢ : G — SL,
be such that G is not contained in any proper parabolic subgroup of SL,. With this condition, we know
from [8] that a stable principal G-bundle P produces a stable SL, bundle.

Consider the map ¢ : Mg — Mg taking [P] to [£], where &, = P x4 C' is the associated vector
bundle. Let & — Mg, xsCand & — Mg xs C be the universal bundles (since they exist on a covering
by étale open subsets, we can treat as if they exist). Then the associated vector bundle &, = & x4 C' is
the pull-back of & via ¢. We have the following diagram of maps:

&y

l f

Xg =M xsC ————— Xg1, = MSSL, xsC

TTn,SLr
TTw SLy
S
J MSL,
C

Te,SLy

TsG Te.G m}
S S.

Recall that we have the following commutative diagram on Mg, that connects the Atiyah algebra of the
determinant bundle with the Atiyah algebra defined by Bloch-Esnault [10]

— %

n,G

T Mg

0 —— QxS‘r/MSSLy — Ath‘ﬂr/MssLy (60)\/ — Endo(c?)v — 0

’ ET 7U51(vyT% (34)

0 — Qug g, — B;lev/MZL (&) —— Endo(&) —— O.

Taking pushforward and combining the results of Beilinson-Schechtman [4], Bloch-Esnault, [10], and
Baier-Bolognesi-Martens-Pauly, [16], we get the following commutative diagram of maps:

00— Rl”n,SLy*Q.’ESL,/M’SLY — Rlﬂn,SL,*(Atxsu/MgLr (&)Y) — Rlmps,«(Endo(&)Y) —— 0

| 1 el

0 —— R'nsLaQx, my, — R'7nsia(By %y peg, (6)) — R'nsL.(Endo(6)) —— 0

i i \

0 — OM;L, R AtM%LY/S(Efl) mgLr/S 0

where £ = det(Rm,.&) is the determinant of cohomology of the family &,. Pulling back the exact

sequence at the bottom of the diagram by the map ¢ : Mg — Mg, , we get the exact sequence

00— OMg —> AtMg/g(¢*(£)) — 7}/1&5/5 — 0.
We wish to connect the following two exact sequences:

0 — ¢" R4 Qxe, /Me,) — ¢" R TnsL By xey ppe, (6)) — ¢*R'sp,(Endo(£)) — 0, (35)

SLy

0 — O = R'muQuo s — Rl”n*@%ls”/MzL,(L@)) — Tigs — O.
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By Proposition 1.13, it is enough to relate (35) with the following (see (19)):

0 — Oy — R! nnG*(BO o1, /M,

Proposition 3.8. There is an isomorphism

(&) — Rz (Endo(&p)) —> O.

RUtn G (By g paz, (66) = 6" R Tnsis (B %y e, (6))-

Proof. Consider the following diagram:

E () — 5 &

! |

MYGS Xsg C= Xc L} 3ESL, = MZL, Xs C

lﬂn,(; lﬂn,SLr

MS 4 MS
_— .
G SL;

This induces a map of the following exact sequences of Atiyah algebras as in [1]:

0 —— Endo(&y) — Ath/Mg(é}) _ TXG/ME — 0

i; IE =

0 —— f*Endo(&) — f* Ath“/MsSLY (&) —— f*sz,,/MSSLY

Dualizing, we obtain

— 0.

0— f*ng,,/M —_— f*(Atxs,,/M (&)Y) — f*((Endo(£))Y) —— O

! l

0 — Q%g/M'S —\— Ath/MYS(gq)) —_— (Endo(é”¢))v —\— 0

Als 4

0 — QXC/ME —_—— ngc/Mg(£¢) — Endo(é‘)¢)) —_

0 — f"Qzxg py, — f* (BO Xot, M, (&) —— f*Endo(&) —— 0.

Hence, by composing we get the following diagram:

—Vsimn

— 0

0 —— Quopry — By (&) — Endo(&) —— 0

0 f*QxSLv/le f (BO Xsi, /Mg, (éa)) f* EndO("E) > 0.
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Applying Rz, ¢, we conclude that the following extensions are isomorphic:

0 — RUTnce@uromz —— RTcuByy s (69)) —— R'7ng.(Endo(&) — 0

] w ]

0 —— R'mncaf"Qxq g, — Rlﬂn,c*(f*(Biém/Mgh (€))) — Rlmng.f*(Endo(6)) — 0.

Thus, to finish the proof of the proposition we need to show that
RUtn G (F* (Bg 3y, g, (€)= & R, (By e g (6))).

But since the fibers of the morphism 1, are smooth projective curves, we conclude that R?my, g1, . F is
zero for any coherent sheaf F which is flat over Mg, . Moreover, Rl 51, . (By 1(#)) is locally free. Hence
by base change of cohomologies for flat morphisms, we get the required isomorphism. This completes
the proof. |

Consider the following diagram where m, be the Dynkin index of the embedding g — s[(V):

0 One ¢ Aty 5L ——————— ¢" Tz, js ——— 0

;l JKSMEIJ s

0 — ¢* (Rlﬂn,SLv*QXSL,/MSS“) — ¢* (Rlﬂn,SLy* (Balxsy_r/Mi,r (g)) — ¢* (leyer*(Endo(é”)) — 0

H a

0 —— R'ngsQuxcpp — RUnca(Byx e (69) —— Rl'mng«(Endo(&y)) — 0

-+ o
Mgy T —hx
I I
0 —— R'ncsQxpp —— R'ng (63 s (2) Tae /s 0.

In this diagram, by Proposition 3.8 we get the isomorphism of the first two rows. Finally, the map
between the second and the third row follows from Proposition 1.13 and Proposition 19. Thus, we get
that Rl c.(& 5610/M2§ (£)) is isomorphic to the Atiyah algebra m%(b' AtMZL, ;s(L), where ¢° denote the pull-
back in the category of Atiyah algebras.

4 Parabolic Analog of Beilinson-Schechtman Construction

We now extend the previous considerations to the case of parabolic bundles. In order to analyze
parabolic Atiyah algebras for families of parabolic bundles on a curve C, we adopt notion of I'-linearized
bundles on a Galois cover C —> C with Galois group I". See [9,§ 6] for more details.

4.1 Parabolic vector bundles

Let £ be a vector bundle of rank r on a family of ramified I'-cover of curves ¥ : X — T ramified along
D. In other words, there is a natural projection p : X —> X, which is a ramified I'-covering such that
7 =mop. LetD := p(D) C X be the divisor or marked points. Let £ be a family of vector bundles on
X, which is I'-linearized. Let &€ be the vector bundle on X defined by the invariant pushforward of the
r'-bundle £. By the discussion in [9, § 7], the vector bundle £ comes equipped with a parabolic structure
supported on D. Recall the trace-zero relative Atiyah sequence

0 — Endo(€) — Aty (&) — Tz — 0. (36)
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By Seshadri [18], we can identify the sheaf of parabolic endomorphism Par(£) with pI Endo(£). With this
set-up we can consider the parabolic Atiyah algebra with the following fundamental exact sequence:

Pary(£) P Aty r(E)

. 3 D) 0.
T = prEnde@) = plAtg @) TP T

As before, D is the relative ramification divisor in X; consider the log-relative traceless Atiyah sequence
obtained from (36)

0 — Endo(&)(-D) — (Atg;(£))(-D) — Tz/r(-D) — 0.

Since all the objects are naturally I'-linearized, we can apply the invariant push-forward functor p! to
get the strongly parabolic Atiyah algebra " Aty (€) with the fundamental exact sequence

R SPar, (§)
= pl' (Endo(£)(-D))

— bl (At (E)(-D)) — Tir(~=D) — 0
Tensoring with Ox (D) we get,

0 —> SParo(£)(D) — pl. (Aty,+(E)(-D)) (D) — Tx;r — 0.
As in Section 2.1, consider the dual exact sequence:

0 — Q1 — (P! (Atzr(E)(-D)) (D)) —> (SPary(£)(D))” — 0. (37)
The trace pairing «s () : Endo(&) ® Endo(£) — O gives an Oz(—D) valued pairing
kst : Endo (&) ® Endo(€)(-D) — Oz(-D).

Taking I'-invariant push forward p! of the above exact sequence we get a map

ks : Parg(£) ® SParg(€) — Ox(—D).

Now by multiplying by Ox (D) on both sides we get the following:

Proposition 4.1. The trace induces a nondegenerate pairing
Kksir  Parg(€) ® SParg(&)(D) — Ox,

which identifies (SPary(€)(D))Y = Pary(€).

We pull back the sequence in (37) via the map vs (¢ to get the following quasi-Lie algebra which we
denote by U Aty7(E)

0 — Q1 — (pf (Atgr(E)(-D)) (D))" — (SParo(€)(D)Y — 0

;T VslmT (38)

0 — QX/T _— Spm;‘:tx/j"(g) Pary(€) 0.
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4.1.1 Parabolic Bloch-Esnault complex
By the construction of Beilinson-Schechtman [4], we get an exact sequence of sheaves:

0 — End(&) ® Qz;r — "Azr(&)" — Aty () — 0.

Recall that since X — T is a I'-cover of curves, and now assume that & is I'-equivariant. This implies
that all terms in the above exact sequence have a I'-action. Taking I'-invariant pushforward we get the
following:

0 — pl(End(©€) ® Q1) — pL (T Az +(E)™") — pL(Atg+(€)) — 0. (39)

Here Aty/T(g) is the relative Atiyah algebra of the bundle of the vector bundle £. The last term of the
above is the parabolic Atiyah algebra P?"Atx,r(€). Pulling back the exact sequence in (39) via the natural
inclusion Parg(€) < PAt(E), we get an exact sequence:

0 — pL(End(€) ® Q1) — P By} () — Parg(€) — 0. (40)

Taking invariant pushforward with respect to the trace of an endomorphism tr : £nd(€) — Oz, we
get another map tr : pf End(€ ® Qx/1) — DL Q%7

Since Qg = p*QX/T®O(ﬁ), where D is the relative ramification p : X — X. We can identify pL(Qxr) =
Qx/r. This in turn gives a map

tr: pl(End(€) ® Q1) — Q1 (41)

Taking pushforward of the exact sequence in (39) via the parabolic trace in (41), we get the following
exact sequence:

0 — Q1 —> P By r(€) — Parg(€) — 0. (42)
We can summarize the above discussion in the following commutative diagram:

0 = p. (End® ® Qx1) — p.(" Az E)H — p. (Atgr(©) — 0

] I I

0 — pLENdE) ® Qx,1) — pL(T Az () — PTALg 1 (E) — 0

H I I

0 — pL(Endé) ® Q) — P”Ei/lT(S) — » Parg(§) —— 0

- b

0 Q1 By (€) —— Parg(§) —— 0.

Recall from Section 2.1.1.1 in Beilinson-Schechtman [4, Lemma (a)], that there is a residue pairing
Res : Qz,r M Q3/1(34) — Os.

The following theorem connects the parabolic Ginzburg dgla defined above to the quasi Lie algebra
SP“*;\T(X/T(S) defined by (38).

Theorem 4.2. There is an isomorphism induced by invariant push-forward of the residue pairing
between the quasi-Lie algebras ¥ Aty,r(£) and P“'B&/T(S), which induces an isomorphism of
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exact sequences:

0 —— QX/T — SparﬁX/T(E) — Paro(E) — 0

o

0 — Qur — P"Byy () — Parg(E) — 0.

Proof. Let & = £ ® Q5 /7, s in Beilinson-Schechtman, the sheaf of first order differential operators
D=1(€) can be identified with ﬁ%gg,ﬁ. There is a natural exact sequence of sheaves

E'(A) EREQA) EREQ2A)
_— s —
K& ERE EXE(A)

0—

EX

5
Moreover, all the objects of the above exact sequence are I'-linearized. In particular, apply the invariant
pushforward functor we get the following commutative diagram:

"(A) LEREQA) LEREQA)
= — D, = — D, = =
ERE ERE(A)

Similarly we have another short exact sequence from [4] that is used in constructing the trace complex.

ERE EREQA) 5&5(2A)

0— =——= —_— —_— — 0.
EXRE(—A) EXRE(—A) ERE
Pulling back the exact sequence above by the inclusion End(£) = é%ﬂ ‘i%%g,ﬁ. we get a short
exact sequence
ERE ERE(A) ERE(A)
0— =—= — === — ———=—- — 0.
ERE(-A) ERE(-AN) EXE

Taking invariant pushforward functor we get the following commutative diagram:

r ERE r( ERE@n) r (EXNE @A)
0 P (s&sf(—A)) P (s&g/(—m) p*( EXE ) 0

r EXE r( EXE®) r(EXE ()
OHP*(m>4>P*(?m)4>P*(W)4>O-

Now there is a natural nondegenerate bilinear form:

() ERE (M) ®§&5(2A)
ERE (=) EXE

— O3. (43)

ENE o EMEA) g hence it descends to a form

The above form (, ) vanishes identically restricted to NECH FRE

,):~g§g ®~$|Zi/€ _)Oxand<y>:€?£(~/A)®€?€(~,A)_)OX- (44)
EXE(—-A)  EXE(N) EX ENX
Under the canonical identifications of %@%}Q =~ End(€) we get
ERE = ERE ~
———=—— = End(& Tx d =——=—— = End(& Q3 /7. 45
FRE@) @ eTyrand gos 0 =nd@) ey (45)
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Lemma B.2.8 in [16] shows that the bilinear form (, ) in (43) and (44) can be identified as
—kg1n : End(®) ® End(€) — Oz and kg1 : End(€) ® Tz,r ® End(€) ® Qg1 — O, (46)

where k4 1s the trace of the product of the two endomorphisms. Now the invariant pushforward of
(,)induces a nondegenerate Ox(—D) valued form

 EREA) r(éx E@Qn)

THE (ﬁ)) — pLOx(~D) = Ox(-D),

which gives the following nondegenerate form

ERE(A EREQA) =«
<,>:p£g~®g,((_g)®(p£( e )(—D)))(D)—>OX

that restricts to

f Eré f ERE
: —_— ~————— (=D D Ox. 13
() p*(sgg,(m =1 B2 sﬁs’m)( ) ) )DO) — Ox (13)

The identification of parabolic and strongly parabolic endomorphism as invariant pushforward and
invariants pushforward of the identification in (46) tell us that the form (, ) in (47) can be identified
with

— kgun : Par(€) ® SPar(£)(D) — Ox.
Similarly, the form in (48) can be identified with
(,) P! (End(€) ® Q1) ® (P} (End(€) @ Tzr(~D))) (D) — Ox.
Now the identification of (p! (End(€) ® Tx,+(~D))) (D) = Txr gives the following commutative:

(,): (P! (End(®) ® 3,7)) ® (pL (End(€) ® Tz+(~D))) D) —— Ox

IE

Qxr ® Txr Ox.

This induces an isomorphism of P“'B(;}(/T(é’) with SP”REX/T(S) that restricts to id on Qx/r and —id on
Pary(&). [ ]

The following proposition connects Rlm, of the parabolic Ginzburg dgla with Rz, of the dgla
constructed by Bloch-Esnault.

Proposition 4.3. There are inclusion maps Qx;r — p.Qg,r and Paro(€) = pf Endo(€) —
p» Endo(€) that extend to a map of the following exact sequences:

0 — pQgr — puB3 () — p.Endo(§) — 0

J ] J

0 —— Qur — WB&}(/T(S) — % Parg() —— 0.
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Proof. First we prove that p! Bl (&)= P‘”BO x,7(E). Consider the short exact sequence

0.X/T

0 — p.(End(€) ® Qx/p) — ps(B; % () —> p.(Endo(£)) — 0.

0,%/T

Taking invariants with respect to I', we get

0 — p*(End(£)®QX/T) — D« OX/T(E) — p*(Endo(S)) — 0

I I ]

0 — pLEndE) ® Q) — pLB},(E) — pLENdE) — 0

H [ l

0 — pg(End(SN)@Qy(/T) — p,f(”ﬂym(g)’l) — p,‘:(Aty(/T(g)) — 0.

The inclusion of the second row into the third follows from the invariant pushforward of the first
two rows of the diagram (24). Since both PWBO}UT(E) and pt (BO %(/T(E)) are extensions of pi(Endo(f))
by pL(End(€) ® Qg,r) obtained as a sub extension of p* (AtX/T(S)) by pL(End(€) ® Qz,r) via the inclusion
pL(Endo(€)) — p! (Atg,r(E)), it follows that p!’ BL (&)= P“*ng/T(E) Now the above gives the following

0,X/T
commutative diagram:

0 —— p.(End@) ® 1) — puByL (&) — p.(Endo@) — 0

J J J

0 — pf (End(&) ® Q1) — " BL (€) — Pare(€) — 0.

Pushing forward with respect to the trace of endomorphism tr, the above commutative diagram implies
the existence of the following commutative diagram all of whose rows are short exact sequences:

p.(End(®) ® Qz,7) pBo% (&) ———» p*(Endo(g))
\ . \ H
putr Pl (End(@) ® Q) ——— PB} (&) ———— Paro(£)
tr J/ tr, H
PQ%7 P51 (&) —— | —— pu(Endo(£))
Q7 P By (€) —————— Paro(£).
The bottom level of the above diagram gives the required result. |

Recall that we have a diagram relating the families of curves parametrized by T:

F,x

X —

—

Taking R, of all the terms of the commutative diagram in Proposition 4.3, and using the fact that
R'7 = Rz o p,, we get the following proposition:
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Proposition 4.4. The following diagram is commutative:

0 — R'ZQyr > Or —— R ( OX/T(‘E)) — 5 R¥%, Endo() —— 0

H ] ]

0 — R'm.Qxr ~ Or — R'm.(" By 1(£)) — Rlm, Parg(€) —— 0.

4.2 Parabolic Atiyah algebras and moduli of parabolic bundles

Let C — S be a family of curves, and let € — S be a family of I'-covers. Consider the relative family MSL
parametrizing the moduli space of stable SL, bundles on € — S. Let Mg’ and Mg be the relative
moduli spaces of stable (I',SL,) and stable parabohc bundles on ¢ — S and C — S, respectively.
Without loss of generality assume that the interior of M SSL is non-empty, otherwise our main theorem
is trivially true.

Now by the discussion in [9, §7.2], the invariant pushforward functor induces an isomorphism
between M’ (respectively, the semi-stable moduli space Mg**) and Mg"* (respectively, Mg**). The data
7 and the covering family € depend on the data of the parabolic weights that defines the parabohc
semistability. By [7], we get a map ¢ : Mg — Mg , which extends to a map € xs M5* — C xs Mg .
The map ¢ may not preserve stability, however ¢ being finite, the complement of the inverse image
Y =¢~ 1M§L of the stable locus has codimension at least two in Mg’ provided genus of the orbifold
curve ¢ = [C/T]is at least 2 if  # 2 and at least 3 if r = 2. We refer the reader to [9, Lemma 8.3] for
more details.

We have the following diagrams that connect all the objects described above:

S . ~
C X3 MSL, 3 MSLY
‘\\ idx¢ o
S A s s ,/”,

;X SoM Mg ;
Uy o ul
A S S
CxsYg, Yii,
px= =
. xS s
. s
ul —— Ul
CxaYPTs ypars
XS TsLy ~ SLy
Te
e T
¢ = _— s
\ L . /
C : S e

The rational maps are regular over Yg*, which will be also denoted by the same notation. The image
of Y& under the invariant pushforward isomorphism of M§* = M will be denoted by Y&'*. By
definition Y& < Mg,

Let £ be the umversal bundle (which exist in the étale topology) on C xs MSS and & be its pull-back
to € xs Mg’ . We denote by € the universal parabolic bundle, which we can assurne to exist without loss
of generahty (see Remark 1). As in the d1agram let 7, : C xs Yg§ — Yg denote the projection and
similarly consider the projection 7, : C xs MSL — MSL

Let £ be the determinant of cohomology line bundle on Mg, . Now, as before, combining the results
of Baier-Bolognesi-Martens-Pauly [16], Beilinson-Schechtman [4 [ ] Bloch-Esnault [10], and Sun-Tsai [19],

we get an isomorphism of the Atiyah algebras AtMs /S(ﬁ 1y with Rlﬁn*(BochMs e (5‘)), which makes
SLy
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the diagram of fundamental sequences of Atiyah algebras commute:

0 Oz, Atgg, s(£7H ——— Thg, s — 0

H Js |

s Ox 1= -1 2 s TH ,
0 OM;Lr R n"*(BO,CAst\A/IZLY/I\'ZZLY () 7;/121.,/5 0.

Pulling back by ¢ we get an isomorphism of ¢*Atgs /s(£) and qb*Rlﬁn*(ngXSMs P (€)). Moreover the
T 4 SLr SLr
base change theorems implies that the later is isomorphic to Rlﬁn*(BEEXSYm s (€)). (Observe that ¢* of
’ SLy SLr

an Atiyah algebra may not be an Atiyah algebra.) We have the following result.

Theorem 4.5. There is an isomorphism of the relative Atiyah algebras Aty ss(@*L71) with

-1 . . .
Rlnn*(p“'BO' Cx M LS (&)) that restricts to the identity map on Qprs s

7,8

Proof. Applying Proposition 4.4 with X = C xs Y, X =Cxs Yg, and T = Yg®, we get an isomorphism

between Atyrs 5(¢*£) and R'm.'* By éXSYm e (€) over YE"®. Now both these sheaves Atyre s(¢* L7
T ’ SLr/ YsLy " r

and Rl ("B, éxs\{"s e (€)) are locally free (hence reflexive) and extend over ME™*. Since they are
' SLy/ " SLy T
isomorphic on an open subset whose complement has codimension at least two, the isomorphism

actually extends to all of Mg, |

Remark 4.6. The proof of Theorem 2.14 applies in this parabolic setting as well. The fact that the
Atiyah-Bott-Narasimhan-Goldman symplectic form is in the class of ¢*# is one of the results
of [11] (see also [6]).

4.3 Parabolic G-bundles

4.3.1 Parabolic bundles

Let p : C — C be a ramified covering with Galois group T, so C = C/T. Let D ¢ C and D c C denote the
branching loci in C and C respectively. Let # : P — C be a T'-principal G-bundle, that is, P is a principal
G-bundle, and there is a representation I' — Aut®) : y — F, such that the actions of I" and G on P
commute. For an open set U C C, define

autr P)(U) = {X e aut®)(p 2 (U)) | X(F, (p) = (F)).(X(p) Yy eT}.

This presheaf defines an O¢-coherent sheaf. Notice that for X € aut, (P), the vector field ¥ on CisT-
invariant, and so descends to a vector field on C that vanishes along the ramification divisor D c C.
Hence, we have a map autr (?) — TC(-D).

Let P be a parabolic G-bundle on C and let P be a (T, G)-bundle on C such that P and P are related by
invariant pushforward.

Definition 4.7. We define the parabolic Atiyah algebra P"At(P) of P to be autr ®).

Suppose P is the frame bundle of a vector bundle £ — C, and let £ — C denote the sheaf of invariant
sections of £&. The parabolic Atiyah algebra P At(€) is autr (P). We wish to describe the kernel adr(P) as
a subsheaf of autr (P) — TC(~D). Let Uc Cbe a neighborhood of wy € D, and let Iy ¢ T be the isotropy
group of Wo. We assume that I'y stabilizes U and only wo € U has nontrivial isotropy. Choose a section s
of P over U. For each y e I there is Py U — G defined by: F, (s(w)) = s(yw)p, (W).

Definition 4.8. Define adr(P)(U) = {fe ad®)(0) | f(s(yw)) = Ad,,y(wf(s(w))} .

The following is straightforward.

Proposition 4.9. The above definition is independent of the choice of section s.
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Extending the definition for nelghborhoods at each of the branch points defines adr(P) globaﬂy We
also note that the inclusion map ad(P) — aut(P) restricts to an inclusion map adr (P) — autr (P) Indeed,
for f € adr (P), it suffices to check the condition on the vector field X = f* along the section s, and this
follows from the equivariance of F,:

FEy (sw)) = f(s(yw)p, (W) = Ad,, w)- f(S(yw)) = f(s(w)).
Hence we have the following short exact sequence of sheaves of Lie algebras on C:

0 — adr(®) — autr(®) — TC(-D) —> 0.

Suppose that P is the frame bundle of a vector bundle & — C, and let £ — C denote the sheaf of
invariant sections of &. The parabolic endomorphism bundle of &€, namely Par(£), is adr (P). We refer
to the above sequence as the fundamental sequence for parabolic Atiyah algebras. From the discussion
above, we have an exact sequence

0 — Par(€) — PYAt(€) — TC(-D) — 0.

We note that this is nothing but the I'-invariant push-forward of the Atiyah algebra exact sequence
onC.

4.3.2 Strongly parabolic Atiyah algebras
Next, we define a “strongly parabolic” version of this construction. Set

aut®P)(-D) := (X € aut(®) | X(p) = 0 for 7(p) € D}.

ad(P)(-D) := {f € ad®) | f(p) = O for #(p) € D}.
Then we have the restricted short exact sequence

R 0 — ad(P)(-D) — aut(P)(-D) — TC(-D) — 0.
Now if P is the frame bundle of E, then by Seshadri’s correspondence (see Appendix B), the I'-invariant
part adr (P(~D)) is identified with the strongly parabolic endomorphisms SPar(P). Motivated by this
observation, we have:

Definition 4.10. The strongly parabolic Atiyah algebra P At(P) of a I'-linearized principal bundle
P on C is defined to be the I'-invariant part of aut(P)(—D).

If P is the frame bundle of a vector bundle &, then we denote it by ¥ At(€) := autr (P). Noting that
p,f("lf(—’D\))F = TC(-D), we have the following short exact sequence on C

0 — SPar(€) — PYAL(E) — TC(-D) — 0.

4.3.3 Determinant line bundle for parabolic G-bundles

Let P be a family of (I, G)-bundles parametrized by T as in the previous section, and let P be the family
of parabolic G-bundles obtained by applying the invariant pushforward functor.

Consider the relative parabolic Atiyah algebra P Aty T(P) = pL(Aty /7(73) and the strongly parabolic
Atiyah algebra %" Aty r(P) = pl (AtX/T(P)( D)). Asin the case of parabolic vector bundles, they fitin the
following fundamental exact sequences:

0 — Par(P) — P Atxr(P) — Tx;r(-D) — 0, (49)
49
0 — SPar(P) — SpmAtX/T(P) — Tx1(=D) — 0,
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where Par(P) (respectively, SPar(P)) denote the parabolic (respectively, strongly parabolic) endomor-
phism bundle of P. As in the case of parabolic vector bundles we get the following quasi-Lie algebra:

0 — Q1 — ("Aty(P)(D))” — (SPar(P)(D))” — 0. (50)
The Cartan-Killing form «4 gives an identification
vg! 1 (SPar(P)(D))” —> Par(P). (51)

Pulling back the exact sequence in (50) by the above isomorphism, we get a quasi-Lie algebra P Aty (P)
fitting into the following exact sequence:

0 — Qur — PL(Atg,r(P)(=D)(D)¥ — (SPar(P)(D)¥ = (pL (ad(P)(~D)(D))” — 0

| i ]

0 — Qxp ——— PV Atx(P) Par(P) 0

which should be considered as a parabolic G-bundle analog of Ginzburg’s dgla considered in [13]. Recall
that we have the quasi-Lie algebra &~!(P) associated to a family P of principal G-bundles satisfying:

0 — Qgr — Atg/T(’ﬁ)V — s ad®P)¥ — 0

N

0 — Qr —— G)i(/lT(’ﬁ) — ad(P) —— O.

Now since P is T'-linearized, we conclude that all objects in the above exact sequence are TI'-linearized.
We define " &}y (P) := pl &5 .(P).
Taking I'-invariant pushforward of the bottom row, we get the following extension:

0 — Qx/1 — P&y (P) — Par(P) — 0.

We now have the following proposition:

Proposition 4.11. There is an isomorphism W’Gg}T(P) > sparAty,r(P), which induces identity
maps on Qx,r and Par(P).

Proof. Recall that there is a natural nondegenerate pairing (, ) : 6§}T(73) X At;m(’/s) — Oz. Tensoring it
with Oz(-D), we get a Oz (—D)-valued pairing

(,): 352

2(P) x Aty 7 (P)(~D) — Oz(-D).

Taking invariant pushforward, we get the following nondegenerate pairing:
PE( ) PLS3 1 (P) x pl(Atyr(P)(~D)) — pLOx(-D).

This produces a duality between P“’GQ}T(P) and pi(Aty/T(f)(—ﬁ))(D). This completes the proof of the
proposition. |

4.4 The general set of parabolic G-bundles

Let M{* (respectively, M{") be the moduli space of semistable (respectively, regularly stable) (T', G)
bundles on a curve C, and let ¢ : G — SL, be a representation. We assume without loss of generality
that I\7I§ is non-empty. Note that for a semistable (I', G), the underlying G-bundle is semistable (2, 7].
We also use the same notation for a relative family of I' covers ¢ — S. Consider the induced maps
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ME® — M % NI . Let Mg be the locus of regularly stable bundles on C. Then by [12], we get that
the complement of the regularly stable locus is at least two provided g > 2 and G is any simple group
different from SL, and g > 3 if the Lie algebra of G has a sl(2) factor. Now as in the SL, case, let YZ."®
be the inverse image of 1\71&5 in MZ*. Moreover, the complement of Y¢™ has codimension at least two
provided the genus g(%) of the orbifold curve ¢ = [C/T] (cf. [9, Lemma 8.3]) determined by 7 is at least
three, or if the Lie algebra of G has no sl(2) or sp(4) factor, g(%) > 2.

As before let £, be the pull-back of the determinant of cohomology £ to MZ*. Then by applying
Proposition 4.11, and Theorem 3.7, we get the following.

Corollary 4.12. There is a natural isomorphism of Atiyah algebras over the regularly stable
locus Y£':

1 ~ 1
= s par -1
oA s(Ce) = R T (S Ly p (P))

Since by assumption, the complement of Y™ in MZ™ is at least two, the above isomorphism
extends over the entire space Mg".
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