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For a simple, simply connected, complex group G, we prove an explicit formula to compute the Atiyah
class of parabolic determinant of cohomology line bundle on the moduli space of parabolic G-bundles.
This generalizes an earlier result of Beilinson-Schechtman.

1 Introduction
Lie algebroids play an important role in the geometry of sheaves on manifolds. For the case of Atiyah
algebras associated to principal bundles, the Atiyah exact sequence packages the information of
connections and, more generally, twisted differential operators on the bundle. Of particular interest
are Atiyah algebras associated to line bundles on moduli spaces of bundles on curves. These are almost
always constructed via descent from a bigger parameter space. A fundamental question is therefore how
to relate the behavior of Atiyah algebras of these natural line bundles to infinitesimal joint deformations
of the moduli spaces under this correspondence.

This question was addressed in the fundamental work of Beilinson-Schechtman [4]. In the context
of relative moduli stacks of vector bundles over families of smooth projective curves, the main result
of [4] describes the Atiyah algebra of the determinant of cohomology in terms of a direct image of a
trace complex constructed from the Atiyah algebra of the universal bundle. This construction is closely
related to the “localization functor” [3, 5].

In [13], Ginzburg gave an alternative construction that is more amenable to the case of principal
bundles. This is based on a general correspondence between quasi-Lie algebras and certain differential
graded Lie algebras. Applied to the moduli problem, this time for principal bundles, it can be seen from
work of Bloch-Esnault [10] that the direct image of the dgla constructed by Ginzburg also computes the
Atiyah algebra of the determinant of cohomology.

The main goal of this paper is to extend these constructions to the case of moduli stacks of principal
bundles with parabolic structures. In order to state the result, let us introduce some notation. Let
C −→ S be a versal family of smooth projective curves with n marked points p1, · · · , pn. Fix a simple,
simply connected complex algebraic group G with Lie algebra g. Choose parabolic subgroups P1, · · · , Pn

of G and associated weights α = (α1, · · · , αn). Let Mα,rs
G = Mα,rs

G (C/S) → S be the relative moduli space
(over S) of regularly stable parabolic G-bundles. On C ×S Mα,rs

G there exists local universal bundles P .
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2 | I. Biswas et al.

Let parS
•
C×SMα,rs

G ,π ,S(P) denote the relative Ginzburg complex associated to P . These local complexes glue

together to give a global complex on C ×S Mα,rs
G (even though the global P does not exist).

On the other hand, we consider the sheaf of strongly parabolic relative Atiyah algebras
spar AtC×SMα,rs

G /Mα,rs
G

(P) defined via the parabolic orbifold correspondence satisfying the short exact
sequence

0 → SPar(P) → spar AtC×SMα,rs
G /Mα,rs

G
(P) → TC×SMα,rs

G /Mα,rs
G

(−D) → 0,

where SPar(P) is the sheaf of strongly parabolic endomorphisms and D is the divisor of marked points.
Now consider the sheaf of quasi Lie algebras sparÃtC×SMα,rs

G /Mα,rs
G

(P) obtained as the pull back of the
following sequence:

0 → �C×SMα,rs
G /Mα,rs

G
→ (sparAtC×SMα,rs

G /Mα,rs
G

(P)(D))∨ → (SPar(P)(D))∨ → 0,

via the isomorphism of sheaf of parabolic endomorphisms Par(P) ∼= (SPar(P)(D))∨. Moreover, by
construction R1π∗sparÃtC×SMα,rs

G /Mα,rs
G

(P) is a sheaf of relative Atiyah algebras on Mα,rs
G , where π : C×S Mα,rs

G →
Mα,rs

G is the projection. We first show that

R1π∗(parS
•
C×SMα,rs

G ,π ,S(P)) � R1π∗(parS
−1
C×SMα,rs

G /Mα,rs
G

(P)) � R1π∗(sparÃtC×SMα,rs
G /Mα,rs

G
(P))

We refer the reader to Sections 3 and 4 for more details. Finally, we related it to relative Atiyah algebras
of parabolic determinant of cohomologies.

Given a nontrivial holomorphic embedding φ : G −→ SLr, there is an associated determinant of
cohomology line bundle Lφ −→ Mα,rs

G . Let AtMα,rs
G /S(Lφ) denote the relative Atiyah algebra of Lφ . Then the

main result of this paper is the following.

Theorem 1.1. On Mα,rs
G there is a natural isomorphism of Atiyah algebras

1
mφ

AtMα,rs
G /S(Lφ) � R1π∗(parS

−1
C×SMα,rs

G /Mα,rs
G

(P)) � R1π∗(sparÃtC×SMα,rs
G /Mα,rs

G
(P)),

where mφ is the Dynkin index of the associated homomorphism φ∗ : g → slr given by the ratio
of the normalized Killing forms.

In a recent paper [16] the result of Beilinson-Schechtman was used in an integral way to give an
algebraic proof of the existence of a flat projective connection (a Hitchin connection) on the bundle of
generalized theta functions for vector bundles on families of curves. One of the main motivations of
the present paper was to apply Theorem 1.1 in the same way to obtain a Hitchin connection for theta
functions associated to parabolic G-bundles. This is carried out in [9].

2 Quasi-Lie Algebras and Extensions of Atiyah Algebras
2.1 Basic definitions
In this section, we recall a correspondence stated in Ginzburg [13] between quasi-Lie algebras and their
associated differential graded Lie algebras. We also recall from Beilinson-Schechtman [4] a natural
classes of Atiyah algebras associated to a family of curves.

2.1.1 Quasi-Lie algebras
First we recall the definition of a quasi-Lie algebra. Let g̃ be a vector space equipped with a skew-
symmetric bilinear map

[ ] : g̃ × g̃ −→ g̃.

Let Z ⊂ g̃ be a linear subspace.
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 3

Definition 2.1. A triple (̃g, Z, [ ]) as above is called a quasi-Lie algebra if the following holds:

1) the subspace Z is central with respect to [ ], and
2) the bracket [ ] descends to give a Lie algebra structure on g̃/Z.

We will see that in the setting of Atiyah algebras, these quasi-Lie algebras arise naturally. Now recall
the notion of a differential graded Lie algebra (dgla).

Definition 2.2. A differential graded Lie algebra (dgla) is a vector space S := ⊕
i S

i together with a
bilinear map {Si,Sj} ⊂ S

i+j and a differential d : S
i −→ S

i+1 satisfying the following:

• {x, y} = (−1)|x||y|+1{y, x}, where |z| = i for z ∈ S
i,

• (−1)|x||z|{x, {y, z}} + (−1)|y||x|{y, {z, x}} + (−1)|y||z|{z, {y, x}} = 0, and
• d{x, y} = {dx, y} + (−1)|x|{x, dy}.

A morphism of dglas is a graded linear map S −→ S
′ that preserves the Lie bracket and commutes

with the differentials.
The following lemma of Ginzburg [13, Lemma 7.7] gives a correspondence between quasi-Lie algebras

and a certain class of dglas.

Lemma 2.3. Let (̃g, Z, [ ]) be a quasi-Lie algebra equipped with a symmetric Z-valued, Z-invariant
bilinear form 〈 〉 : Sym2

g̃ −→ Z such that the following hold:

• 〈[x, y], z〉 + 〈y, [x, z]〉 = 0, and
• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = d(〈[x, y], z〉).

Then there exists a dgla S = S
−2 ⊕ S

−1 ⊕ S
0, where S

0 := g, S−1 := g̃, S−2 := Z, the
differential is given by inclusion and quotient, and with the bracket given by the formula
{x, y} = 〈x, y〉; and {x, dy} = [x, y] + 〈x, y〉 for x, y ∈ g̃. Conversely given a dgla as above
satisfying {S−2, dS−1} ⊂ ker d, there exists a quasi-Lie algebra along with a symmetric Z-
valued, Z-invariant bilinear form.

2.1.2 Dglas associated to families of curves
Let π : X → T be a smooth morphism of relative dimension one parametrized by T; the curves in this
family are not assumed to be proper. The relative holomorphic tangent bundle TX/T fits in the exact
sequence of OX-modules

0 −→ TX/T −→ TX
dπ−→ π∗TT −→ 0.

Let TX,π ⊂ TX denote the subsheaf dπ−1(π−1TT). Clearly the sheaf TX,π has the structure of Lie algebra
with Lie bracket coming from that on TX and there is an exact sequence of Lie algebras

0 −→ TX/T −→ TX,π
dπ−→ π−1TT −→ 0.

Consider the dgla given by T •
π = ⊕

i T i, where T i is zero for i 
= {0, −1}, T −1 := TX/T and T 0 := TX,π .
This dgla T •

π carries a natural action of π−1OT and a map

ε : T •
π −→ H0(T •

π ) = π−1(TT) (1)

given by dπ . The relative de Rham complex �•
X/T = (OX → ωX/T) with V0 := OX and V1 := �X/T

is naturally a dg-module V• := V0 ⊕ V1 for T •
π , which is compatible with the π−1OT action on both

sides.
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4 | I. Biswas et al.

2.1.3 Atiyah algebras as R0π∗ of dglas
Let π : X −→ T be a family of curves as before. We discuss the notion of π-algebras following Beilinson-
Scechtman [4], which are quasi-isomorphic to extensions of a complex of Atiyah algebras by the de
Rham complex �•

X/T.

Definition 2.4 ([4, § 1.2.1]). An OS-Lie algebra A• on X is a dgla together with a π−1OS-module
structure and a morphism εA : A• −→ T •

π that satisfies the condition [a, fb] = εA(a)(f )b +
f [a, b], where εA = ε ◦ εA (see (1)). A π-algebra A• is an OS-Lie algebra together with a three
term filtration

0 = A•
−3 ⊂ A•

−2 ⊂ A•
−1 ⊂ A•

0 = A•

such that the following hold:

1) [A•
i ,A•

j ] ⊂ A•
i+j, OS · A•

i ⊂ A•
i ,

2) A•
−2 � �•

X/S[2] as OS-modules,

3) A•
−1/A•

−2 is acyclic,

4) εA : A• −→ A•/A•
−1 � T •

π , and

5) the ad action of A•/A•
−1 on A•

−2 coincides with the T •
π -action on �•

X/T[2].

By the above definition of a π-algebra, we get an exact sequence

0 −→ A•
−2 −→ A• −→ A•/A•

−2 −→ 0. (2)

This will be called an �-extension of A•/A•
−2. Now assume that the map π is proper. Suppose we are

given any π-algebra A• fitting in an exact sequence of complexes

0 −→ �•
X/T[2] −→ A• −→ A•/A•

−2 −→ 0. (3)

Proposition 2.5 ([4, § 1.2.3]). The short exact sequence

0 −→ OT −→ R0π∗A• −→ TT −→ 0

defines an Atiyah algebra on T.

2.1.4 π-algebras associated to Atiyah algebras
Let π : X −→ T be a family of curves that are not necessarily projective, and let A be an R-Atiyah
algebra on X. There is a natural π-algebra associated to A. Consider the OT-Lie algebra A•

π defined by:
A−1

π := ε−1
A TX/T and A0

π := ε−1
A TX,π . There is a canonical surjective map εA : A•

π −→ T •
π whose kernel

is Cone idR .

Definition 2.6. A �-extension #A• of (A, R) is a � extension of A•
π together with an OX-module

structure on #A−1 such that

• the OX-action is compatible with the action on A−1
π , and

• the component [ ]−1,−1 : #A−1 ⊗ #A−1 −→ #A−2 = OX is a differential operator along the fibers.
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 5

There is a commutative diagram:

(4)

Observe that the �X/T-extension is, by definition, a π-algebra, where the filtration #A•
−2 is given by

�•
X/T[2].
Later will also need to vary T with respect to S and consider T •

π ,S where degree −1 term is same as T •
π

and the degree zero term is TX,π ,S := dπ−1(π−1(TT/S)). In the relative set-up one similarly defines A•
X,π ,S

by modifying the zero-th term to be A−0
X,π ,S := ε−1

A TX,π ,S. The resulting pushforward R0π∗A•
X,π ,S is a relative

Atiyah algebra satisfying the fundamental exact sequence

0 → OT → R0π∗(A•
X,π ,S) → TT/S → 0

2.2 Principal bundles
2.2.1 The Ginzburg complex
We continue with the earlier notation. Let G be a complex simple Lie group with Lie algebra g. We will
denote by κg the normalized Cartan-Killing form on g and consider the corresponding isomorphism

(5)

Let 	 : P −→ X be a holomorphic principal G bundle; we use the convention that G acts on the
right of P. Automorphisms Aut(P)|U of P over U ⊂ X are by definition G-equivariant automorphisms of
	−1(U), that is, F : P|U −→ P|U satisfying F(pg) = F(p)g for all g ∈ G; we do not assume that 	 ◦ F = 	.
The group of automorphisms Aut(P)|U is generated by the invariant vector fields

autU(P) := {
Y ∈ 
(	−1(U), TP) | (Rg)∗Y = Y , ∀ g ∈ G

}
.

Then aut(P) defines a coherent sheaf of OX-modules. We refer to the subsheaf AtX/T(P) ⊂ aut(P) that
projects by d	 to TX/T ⊂ TX as the relative Atiyah algebra of P. We have an exact sequence

0 −→ ad(P) −→ AtX/T(P) −→ TX/T −→ 0. (6)

We will explain the inclusion map on the left. Recall that a section of ad(P) is identified with a function
f : P −→ g satisfying f (pg) = Adg−1 f (p). For Y ∈ g, let Y� denote the fundamental vector field on
P generated by Y. Then Y�(pg) = (Rg)∗(Adg Y)�(p). The map ad(P) −→ aut(P) in (6) is f �−→ Y, where
Y(p) = f (p)�. With this definition,

Y(pg) = (Adg−1 f (p))�(pg) = (Rg)∗(f (p))� = Y(p),

so Y is invariant and lies in aut(P) as the kernel of d	. The following will be important when we
investigate universal bundles.
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6 | I. Biswas et al.

Remark 2.7. Let Z(G) denote the (finite) center of G, and let P := P/Z(G) the associated principal
bundle for the adjoint group G := G/Z(G). Then there are canonical isomorphisms ad(P) �
ad(P) and AtX/T(P) � AtX/T(P).

Dualizing (6) gives a quasi-Lie algebra structure on AtX/T(P)∨:

0 −→ �X/T −→ AtX/T(P)∨
j−→ ad(P)∨ −→ 0. (7)

Identify ad(P) with ad(P)∨ using νg in (5), and denote AtX/T(P)∨ by g̃P. We have the following quasi-Lie
algebra:

(8)

As in Lemma 2.3, associated to g̃P is a dgla, Si
X/T(P), which we call the Ginzburg complex for P. Explicitly,

S
i
X/T(P) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 i 
= −2, −1, 0

OX i = −2

g̃P i = −1

gP i = 0.

We will later consider a relative version of it where T varies.

2.2.2 The Bloch-Esnault complex
Let E −→ X be a holomorphic vector bundle. Like the Ginzburg complex, the Bloch-Esnault complex
B•

X/T(E), [10], is nonzero in degrees −2, −1, and 0, with B−2
X/T(E) = OX. To define the other terms, let

X � 
 ⊂ X×T X be the relative diagonal, and let AtX/T(E) denote the relative Atiyah algebra of X −→ T.
Then B0

X/T(E) = End(E). Set E ′ := E ⊗ �X/T, and define

B̃−1
X/T(E) = E � E ′(
)

E � E ′(−
)

on X ×T X. Note that OX×TX(
)
∣∣



= TX/T. Then B−1
X/T(E) is defined by pushing out with the trace:

Here tr denote the trace End(E) −→ OX of endomorphisms.
We will actually need the traceless version B•

0,X/T(E), where B−2
0,X/T(E) = B−2

X/T(E) while B0
0,X/T(E) is

defined by the inclusion map into the traceless relative Atiyah algebra and B−1
0 (E) is defined by pulling

back the extension B−1
X/T(E) over the sheaf End0(E) of traceless endomorphisms.

2.2.3 Associated bundles
For any simple Lie algebra g, recall νg in (5).
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 7

Lemma 2.8. Let φ∗ : g −→ s be a nonzero homomorphism of simple Lie algebras. Consider the
linear map ψ : s −→ g given by the following diagram:

(9)

Then ψ ◦ φ∗ = mφ Idg, where as mentioned in the Introduction, mφ is the Dynkin index of φ∗.
Moreover, replacing ψ by ψ := (mφ)−1ψ ,

ψ ◦ φ∗ = Idg .

Proof. This follows form a direct calculation and the definition of Dynkin index. �

The following lemma is straightforward.

Lemma 2.9. Let ψ = 1
mφ

(ν−1
g ◦ φt∗ ◦ νs) be as in Lemma 2.8, and consider the map ϕ : g −→ s

defined by ν−1
s ◦ ψ t ◦ νg:

(10)

Then ϕ = 1
mφ

φ∗.

Let φ : G −→ SL(V) be a nontrivial holomorphic representation and Eφ = P ×G V the corresponding
vector bundle associated to a principal G-bundle 	 : P −→ X. Sections of Eφ are functions σ : P −→ V
satisfying the condition that σ(pg) = φ(g−1)σ (p) for all g ∈ G. The adjoint bundle ad(P) = P×Gg maps to
the traceless endomorphism bundle End0(Eφ) using φ∗ := dφ : g −→ sl(V), and we shall use the same
notation φ∗ for this map ad(P) −→ End0(Eφ). Notice that in this case, the map ψ defined in Lemma 2.8
is G-equivariant, and hence defines a homomorphism End0(Eφ) −→ ad(P). A G-invariant vector field
Y on P defines a differential operator on sections by Y(σ ) (= dσ(Y)). Invariance of Y guarantees that
Y(σ ) is again equivariant with respect to φ, and so defines a section of Eφ . It is clear that the symbol of
this operator is 	∗Y. Therefore, denoting the relative Atiyah algebra of Eφ −→ X by AtX/T(Eφ), we have
constructed a map (cf. Atiyah [1, p. 188])

φ̃ : AtX/T(P) −→ AtX/T(Eφ). (11)

The following is a consequence of the above.

Proposition 2.10. For a principal G-bundle P −→ X, a representation φ : G −→ SL(V), and the
associated vector bundle Eφ −→ X, there is a natural map ψ̃ : AtX/T(Eφ) −→ AtX/T(P) that
makes the following diagram commutative:

(12)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae085/7659791 by guest on 18 M

ay 2024



8 | I. Biswas et al.

Here ψ : End0(Eφ) −→ ad(P) is induced from the map ψ constructed in Lemma 2.8 and ψ̃ is
the map obtained by pushing out the exact sequence of AtX/T(Eφ) via ψ .

2.2.4 Relating the Ginzburg and Bloch-Esnault complexes
We now compare the Ginzburg complex for a principal bundle P with the Bloch-Esnault complex for the
bundle Eφ associated to P via a nontrivial representation φ : G −→ SL(V). Identifying the endomorphism
bundle End0(Eφ) with its dual using the trace homomorphism, consider the map

φt
∗ : End0(Eφ) ∼= (End0(Eφ))∨ −→ ad(P)∨.

Let Kφ = ker φt∗. The following is important for us.

Proposition 2.11. There is a lift of the inclusion Kφ −→ End0(Eφ):

(13)

Proof. We begin by describing a general situation. Namely, for bundles E , F , we find a local lifting �α of
the map

E � F ′(
)

E � F ′(−
)
−→ E � F ′(
)

E � F ′ � Hom(F , E) −→ 0.

Choose local trivializations of X −→ T and coordinate neighborhoods Uα , zα on a fixed fiber. We set
ϕαβ = zα ◦ z−1

β , so ϕ′
αβ = dzα/dzβ . The lift is defined by choosing a (holomorphic) connection ∇α on F∗.

Given sections u and v of E and F∗ respectively on Uα , define on Uα × Uα

�α(u(q) ⊗ v(q)) = u(p) � v(q)dzα(q)

zα(p) − zα(q)
+ u(p) � ∇αv(q) mod I
. (14)

To show that this is well defined, let f (p, q) ∈ I
. Multiplying on the right-hand side, we have

(
f (p, q)dzα(q)

zα(p) − zα(q)
+ ∂f

∂q
(p, q)

)
u(p) � v(q) mod I
. (15)

Since

f (p, q) = ∂f
∂q

(p, p)(zα(q) − zα(p)) mod I2

,

we see that (15) vanishes, and so (14) gives a well-defined lift. Set Aαβ = ∇α −∇β and �αβ = (ϕ′′
αβ/ϕ′

αβ)dzβ .
Then Aαβ ∈ End(F∗)⊗�X/T is a 1-cocycle representing the Atiyah class of F∗, and �αβ ∈ �X/T is a cocycle
for the affine structure (cf. [14, p. 164]).

Notice that

zα(p) − zα(q) = ϕαβ(zβ(p)) − ϕαβ(zβ(q))

= ϕ′
αβ(zβ(q))(zβ(p) − zβ(q)) + 1

2
ϕ′′

αβ(zβ(q))(zβ (p) − zβ(q))2 + · · ·

from which we have

dzα(q)

zα(p) − zα(q)
= dzβ(q)

zβ(p) − zβ(q)
− 1

2
�αβ mod I
.
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 9

The cocycle �αβ = �α − �β ∈ Hom
(
Hom(F , E), Hom(F , E) ⊗ �X/T

)
is then given by

�αβ(u ⊗ v) = u ⊗ Aαβv − 1
2

u ⊗ v ⊗ �αβ .

In the case of F = E , we may write simply

�αβ : End(E) −→ End(E) ⊗ �X/T : β �−→ β

(
Aαβ − 1

2
�αβ · I

)
.

The extension class for B−1
0 (E) is then given by the trace of endomorphisms

tr �αβ : End0(E) −→ �X/T, β �−→ tr(βAαβ). (16)

since tr β = 0.
Finally, to complete the proof we must show that if E = Eφ , then tr �αβ vanishes on Kφ . When E = Eφ ,

we may choose local holomorphic connections on P, so that Aαβ is in the image of φ∗. But Kφ consists
precisely of endomorphisms that are orthogonal to these under the trace pairing. Thus, the proposition
follows from the expression in (16). �

It is shown in [16, Thm. B.2.6] that the exact sequence for B−1
0,X/T(E) is dual to the (traceless)

Atiyah algebra sequence for E using the trace map. In the case of Eφ , we have the natural map
φ̃t∗ : AtX/T(Eφ)∨ −→ AtX/T(P)∨. Then, by Proposition 2.11 we have the following:

Corollary 2.12. Let P −→ X be a principal G-bundle, φ : G −→ SL(V) a holomorphic
representation, and Eφ −→ X the associated vector bundle. Then the degree −1 part of the
Bloch-Esnault complex B−1

X/T(Eφ) is the pullback of the −1 part of the Ginzburg complex in the
commutative diagram

Consider the map ψ̃ : AtX/T(Eφ) −→ AtX/T(P) obtained in Proposition 2.10 along with its dual ψ̃∗ :
AtX/T(P)∨ −→ AtX/T(Eφ). We summarize the above discussions in the following commutative diagram:

(17)

In (17), φ̂ is just the map obtained by composition in the middle column of (17). Observe that

ν−1
sl(r) ◦ mφψ∗ ◦ νg = mφ(ν−1

sl(r) ◦ ψ∗ ◦ νg) = mφ(
1

mφ

φ) = φ. (18)

Composing the maps that appear in the above diagram we get the following.
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10 | I. Biswas et al.

Proposition 2.13. The map φ : ad(P) −→ End0(Eφ) extends to φ̂ : S
−1
X/T(P) −→ B−1

0,X/T(Eφ) which
restricts to multiplication by the Dynkin index mφ on �X/T. Taking push-forward by R1π yields
the commutative diagram

(19)

2.2.5 The relative extension class
In this section we consider the special case where X −→ T is simply a product X = C × T. Let P −→ X
be a principal G-bundle such that the restriction of it to C × {t} is regularly stable for every t. We wish
to compute the extension class of the top (and hence also the bottom) row of (19). Since we assume
the curve is fixed, for future reference we call this the relative extension class. To state the result, let Mrs

G

denote the moduli space of regularly stable bundles on C. Since this a coarse moduli space, there is a
morphism ϕ : T −→ Mrs

G . By the deformation theory of principal G-bundles there is a homomorphism
T T −→ R1π∗(ad(P)). Via the Dolbeault isomorphism, we have

H1(T, (R1π∗(ad(P))∨) −→ H1(T, (T T)∨) � H1,1
∂

(T)

and so the extension class of (19) defines a class in H1,1
∂

(T). On the other hand, there is another natural

class ϕ∗[�] ∈ H1,1
∂

(T) due to Atiyah-Bott, which we define below. The result is then:

Theorem 2.14. Let X = C×T as above. The image of the extension class of (19) in H1,1
∂

(T) is exactly
the pullback ϕ∗[�] of the Atiyah-Bott-Narasimhan-Goldman form.

We first define �. Under the assumptions, the direct image R1π∗(ad(P)) −→ T is locally free and
its fiber at t ∈ T isomorphic to H1(C, ad(Pt)), where Pt = P|C×{t}. By Dolbeault isomorphism, this is
isomorphic to H0,1

∂
(C, ad(Pt)).

Fix a maximal compact subgroup K ⊂ G. Let ρK be the Cartan involution of g that fixes Lie(K) and
acts on Lie(K)⊥ as multiplication by −1. The Narasimhan-Seshadri-Ramanathan theorem [15, 17] asserts
the existence of a C∞ reduction of structure group Pt

K ⊂ Pt of Pt to K, satisfying the condition that
the associated Chern connection on Pt is flat. The Chern connection defines harmonic representatives
H0,1(C, ad(Pt)) of the Dolbeault group H0,1

∂
(C, ad(Pt)). The Cartan involution ρK produces a conjugate

linear involution ρ ′ of ad(Pt) ⊗ T∗C ⊗ C that exchanges �
1,0
C (ad(Pt)) and �

0,1
C (ad(Pt)) and preserves

the harmonic forms; this ρ ′ is also called the Hodge ∗ operator. Then a hermitian inner product on
H0,1(C, ad(Pt)) is given by

〈α, β〉 = √−1
∫

C
(α ∧ ρ ′(β))g,

where α and β are harmonic representatives. The almost complex structure on Mrs
G at ϕ(t) is given by ρ ′

on harmonic 1-forms. The tangent space to the space of flat K-connections at the point corresponding
to the Narasimhan-Seshadri-Ramanathan connection on Pt

K coincides with H1(C, ad(Pt
K)), where ad(Pt

K)

is the local system. We note that H1(C, ad(Pt
K)) is identified with H0,1

∂
(C, ad(P)) by the map α �−→ α −√−1ρ(α). The almost complex structure on H1(C, ad(Pt

K)) is given by ρ ′. For a, b ∈ H1(C, ad(Pt
K)), the

Riemannian metric is given by

〈a, b〉 = −
∫

C
(a ∧ ∗b)g = 2Re 〈α, β〉,

where α, β ∈ H0,1
∂

(C, ad(P)) correspond to a, b respectively. Finally, the Atiyah-Bott-Narasimhan-Goldman
symplectic form is given by �(a, b) = 2Im 〈α, β〉. It is closed and of type (1, 1), and so defines a class in
H1,1

∂
(T).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae085/7659791 by guest on 18 M

ay 2024



A Parabolic Analog of a Theorem of Beilinson and Schechtman | 11

Proof of Theorem 2.14. First, we note the following:

1) At(P)∨ is the sheaf of invariant 1-forms on P, that is, ϕ ∈ 
(π−1(U), T∗P) such that R∗
gϕ = ϕ for all

g ∈ G.
2) ad(P)∨ is the sheaf of maps P −→ g∗ that are equivariant with respect to the co-adjoint action,

that is, f (pg) = f (p) ◦ Adg.
3) The map j is defined explicitly by: j(ϕ)(p)(X) = ϕ(X�

p), for X ∈ g. We have

j(ϕ)(pg)(X) = ϕ(pg)(X�
pg) = ϕ(pg)

(
(Rg)∗(Adg X)�p

)
= R∗

gϕ((Adg X)�p) = j(ϕ) ◦ Adg(X)

consequently j(ϕ) satisfies the correct invariance.

A relative holomorphic connection ω on P gives a holomorphic splitting of (7). Explicitly, if ϕ is a local
section of ad(P)∨, then define ω(ϕ) in At(P)∨, by ω(ϕ)(Y) = ϕ(ω(Y)). Notice that

j(ω(ϕ))(p)(Y) = ω(ϕ)(Y�
p) = ϕ(ω(Y�

p)) = ϕ(Y),

so this map is a splitting of the sequence in (7). Let MdR
G denote the moduli space of holomorphic G-

connections on a fixed curve C. Let MdR,rs
G denote the open subset where the underlying bundle P is

regularly stable. Hence, there is the forgetful map p : MdR,rs
G −→ Mrs

G , and this is a submersion. Therefore,
we can find local holomorphic sections. With this understood, let {αj} be a local holomorphic frame for
the bundle R1π∗(ad(P)∨) over an open set U ⊂ T, and let {α∗

j } be the dual frame. From the previous

paragraph, after shrinking U, we may find a holomorphic family of relatively flat connections ωhol
U for

the restriction of P to C × U. Then a lift of the identity endomorphism of R1π∗(ad(P)∨) to R1π∗(At(P)∨) ⊗
(R1π∗(ad(P)∨))∨ is given by

sU =
∑

j

ωhol
U (αj) ⊗ α∗

j .

For open subsets U, V, the difference σUV = sU − sV is valued in R1π∗(�C) ⊗ (R1π∗(ad(P)∗))∗, and the
1-cocycle {σUV} represents the extension class.

We now shift to the Dolbeault picture. First, the identification R1π∗(�C) � C is given by integration
along the fiber C. Next, using the Killing form we identify ad P � (ad P)∨. Consider the map T T −→
R1π∗(adP); then as discussed above the extension class defines via the Dolbeault isomorphism a ∂-closed
(1, 1)-form on T. Let PK ⊂ P be the reduction of structure group given by the Narasimhan-Seshadri-
Ramanathan theorem. The Chern connection on PK extends to a connection ωA on P that restricts to a
flat connection on each Pt, although ωA does not vary holomorphically in t ∈ T. We can write ωhol

U =
ωA + BU, where BU is an invariant g-valued relative 1-form on P that vanishes on vertical vector fields.
Let bU = ∑

j Bhol
U (αj)⊗α∗

j . Then since ωA is globally defined, we have sU −sV = bU −bV. Hence, {bU} gives a
C∞ trivialization of the 1-cocycle {σUV}. By definition, the Dolbeault representative of the extension class
is therefore given by the global (0, 1)-form {∂bU}. Now, since ωhol

U is holomorphic, the extension class is
represented by

�A = −
∑

j

∂ωA(αj) ⊗ α∗
j .

We calculate this form at a given point t ∈ U. Choose local holomorphic coordinates s1, · · · , sN

centered at the point [Pt] in Mrs
G corresponding to t. We may so arrange that the holomorphic sections

αj(s1, · · · , sN) of T Mrs
G in a neighborhood [Pt] satisfy the condition αj(0) = ∂/∂sj. Thus, we have also

α∗
j (0) = dsj. Each αj(s) defines a Dolbeault class in H0,1(C, adPs), for which we use the same notation.

Let ρs(αj(s)) be the hermitian conjugate with respect to ρs. With this notation, the Chern connection is
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12 | I. Biswas et al.

given by

ωA(s) = ωA(0) +
∑

tj(s)αj(s) +
∑

tj(s)ρs(αj(s)) mod T ∨Mrs
G ,

where tj(0) = 0, ∂tj/∂si(0) = δij and ∂tj/∂si(0) = 0. We therefore have

ωA(αk) = ωA(0)(αk) +
∑

tj(ρ(αj), αk)

∂ωA(αk)(0) =
∑

(ρ(αj), αk)dsj.

Recalling that H1(C, KC) � C is gotten by integration over C we have that �A is the pullback of the form

∑ ∫
C
(ρ(αj), αk)dsk ∧ dsj = i

∑
〈αk, αj〉dsk ∧ dsj

and this is precisely the Atiyah-Bott-Narasimhan-Goldman symplectic form. �

3 Determinant of Cohomology and Beilinson-Schechtman Classes
In this section we reinterpret Theorem 2.14 in terms of the quasi-isomorphisms between the Bloch-
Esnault complex, the trace complex of Beilinson-Schechtman, and the Ginzburg complex. Finally, we
related all of these to the Atiyah class of the determinant of coholomology line bundle.

3.1 Definitions
Recall the notation E ′ := E ⊗ �X/T. The sheaf D≤1(E) of first order differential operators on E can be
identified with E�E ′(2
)

E�E ′ . There is an exact sequence of sheaves

0 −→ E � E ′(
)

E � E ′ −→ E � E ′(2
)

E � E ′ −→ E � E ′(2
)

E � E ′(
)
−→ 0. (20)

Similarly, we use another short exact sequence from [4]:

0 −→ E � E ′

E � E ′(−
)
−→ E � E ′(2
)

E � E ′(−
)
−→ E � E ′(2
)

E � E ′ −→ 0. (21)

Since we have AtX/T(E) ⊂ D≤1
X/T(E), pulling back (21) we get a quasi-Lie algebra that fits into the following

short exact sequence:

0 −→ End(E) ⊗ �X/T −→ trÃX/T(E)−1 −→ AtX/T(E) −→ 0. (22)

Pushing it forward via the trace map tr : End(E) −→ OX we get that

0 −→ �X/T −→ trAX/T(E)−1 −→ AtX/T(E) −→ 0. (23)

Recall that B̃−1
X/T(E) := E�E ′(
)

E�E ′(−
)
, and define B̃−1

0,X/T(E) to be the trace free version. Now consider the

pushforwards of B̃−1
X/T(E) and B̃−1

0,X/T(E) via tr, and denote them by B−1
X/T(E) and B−1

0,X/T(E) respectively. The
natural inclusion map

End(E) ∼= E � E ′(
)

E � E ′
E � E ′(2
)

E � E ′
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 13

fits the above objects into the following commutative diagram:

(24)

3.2 Relative set-up
Now, consider the relative set-up. Therefore, we have a smooth scheme T over S with connected fibers,
and π : X −→ T is a family of connected smooth curves of genus g. We have short the exact sequence:

0 −→ TX/T −→ TX/S −→ π∗TT/S −→ 0.

Now as OT modules, π−1(TT/S) ⊂ π∗(TT/S). Define TX,π ,S := dπ−1(π−1(TT/S)). Then we have

0 −→ TX/T −→ TX,π ,S
dπ−→ π−1TT/S −→ 0. (25)

Let AtX,π ,S(E) denote the Atiyah algebra satisfying the fundamental exact sequence

0 −→ End(E) → AtX,π ,S(E) −→ TX,π ,S −→ 0

Observe that AtX/T(E) ⊂ AtX,π ,S(E) ⊂ AtX/S(E).

Definition 3.1. The Beilinson-Schechtman trace complex trAX,π ,S(E)• is the �X/T-extension of the dgla
associated the quasi-Lie algebra trAX/T(E)−1, that is, trAX,π ,S(E)(0) = AtX,π ,S(E), trAX,π ,S(E)−1 =
trAX/T(E)−1 and trAX,π ,S(E)(−2) = OX.

Throughout the rest of this section we will have the assumption that there is a splitting of the short
exact sequence in (25).

This condition holds for example in the case of fiber products. We then use the splitting of (25) to
pull-back the Atiyah algebra AtX,π ,S(E) further via π−1TT/S to obtain BX,π ,S:

Let B0
0,X,π ,S(E) be the pushout of the exact sequence defining B0

X,π ,S(E) via the quotient homomorphism
End(E) −→ End0(E).

Definition 3.2. The Bloch-Esnault complex B•
X,π ,S(E) is the three-term complex consisting of the

locally free sheaves B0
X,π ,S(E), B−1

X/T(E) and B−2
X,π ,S(E) ∼= OX in degrees 0, −1 and −2 respectively,

and zero otherwise.

We will denote by B•
0,X/T,S the traceless Bloch-Esnault complex as considered in [19] and [16].
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14 | I. Biswas et al.

3.3 Determinant of cohomology
Let π : X → T be a family of smooth projective curves and let E be a vector bundle X. Then the object Rπ∗E
in the bounded derived category of T is represented by a two term complex E0 → E1. The determinant
of cohomology L up to isomorphism is defined by

L :=
top∧

E1 ⊗
top∧

E∨
0

We refer the reader to [9, § 6.3] for more details on determinant of cohomology L. We recall the following
result of Beilinson-Schechtman [4] that connects the Atiyah algebra of AtX/T(L) and the trace complex of
E and also a result of Bloch-Esnault [10] connecting the trace complex with the Bloch-Esnault complex.

Proposition 3.3. The Atiyah algebra AtT/S(L−1) is isomorphic to the relative Atiyah algebra
R0π∗(trAX,π ,S(E)•). If B•

X,π ,S(E) is the relative Bloch-Esnault complex associated to a family of
curves X −→ T parametrized by T → S such that the exact sequence in Equation (25) splits,
then B•

X,π ,S(E) is quasi-isomorphic to the trace complex trAX,π ,S(E)•.

3.4 Relative Ginzburg complex
Let P be a principal G-bundle on X −→ T −→ S, and consider the Atiyah algebra AtX,π (P) with the
fundamental exact sequence

0 −→ gP −→ AtX,π ,S(P) −→ TX,π ,S −→ 0.

We then use the splitting of the exact sequence in (25) to pull-back further to define S
0(P):

We consider the following three-term complex S
•
X, π , S(P) that will be referred to as the relative Ginzburg

complex:

S
•
X,π ,S(P) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
OX if i = −2,

S
−1
X/T(P) if i = −1,

S
0
X,π ,S(P) ifi = 0,

0, otherwise.

Let φ : G −→ SL(V) be a holomorphic representation of dimension r, and let Eφ be the associated vector
bundle. Then one recovers the Bloch-Esnault complex B•

0,X,π ,S(Eφ).
We have the following commutative diagram in which the horizontal map is the relative Ginzburg

quasi-Lie algebra associated to a relative principal bundle P

(26)

The above diagram can be written as a short exact sequence of complexes

0 −→ �•
X/T[2] −→ S

•
X,π ,S(P) −→ R

•(P) := (gP −→ S
0
X,π ,S(P)) −→ 0. (27)
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 15

The complex R
•(P) is quasi-isomorphic to π−1TT/S. Hence, there is a natural map of complexes

π−1TT/S ∼= R
•(P) −→ gP [1]. Taking pushforward with π , we get a map TT/S ∼= π∗(π−1TT/S) −→ R1πn∗gP .

We wish to compute R0π∗S•
X,π ,S(P).

To compute R0π∗S•
X,π ,S(P), we need to compute the zero-th hypercohomology. Choose fine resolutions

(local on M),

and compute the zero-th cohomology of the total complex

C−1 = L1 ⊕ M0 C0 = L2 ⊕ M1 ⊕ N0 C1 = L3 ⊕ M2 ⊕ N1, and the differentials are

D−1 : C−1 −→ C0, (�1, m0) �−→ (d�1, dm0 − f�1, gm0)

D0 : C0 −→ C1, (�2, m1, n0) �−→ (d�2, dm1 + f�2, dn0 − gm1).

We note three facts in the next lemma the proofs of which are immediate in view of the assumptions.

Lemma 3.4. Let π : X −→ T be as above. Then the following hold:

1) R2π∗OX = {0} (since the relative dimension is 1).
2) R0π∗gP = {0} (assuming the stable locus is non-empty).
3) Since the fibers are connected, assume that the natural map

π∗(π−1TT/S) ∼= TT/S → R1π∗gP
(28)

is an isomorphism. Then the map R1π∗(S−1
X/T(P)) −→ R1π∗(S0

X,π ,S(P)) is zero as it factors through
R1π∗gP .

We prove the next proposition under the assumption of Statement (iii) in Lemma 3.4.

Proposition 3.5. There is an isomorphism R0π∗S•
X,π ,S(P) � R1π∗S−1

X/T(P) that is the identity on OT

and TT/S.

Proof. Let (�2, m1, n0) ∈ ker D0. By Lemma 3.4(i) we may take �2 = 0. Hence, (0, m1, n0) �→ (0, dm1, dn0 −
gm1) = (0, 0, 0). So m1 defines a class in R1π∗(S−1

X/T(P)). The second condition says that gm1 defines the
zero class in R1π∗(π−1TT/S). But by Part (iii) of Lemma 3.4 this is automatic. Now n0 is such that dn0 = gm1.
By (ii) and (iii) of Lemma 3.4, we have R0π∗S0

X,π ,S(P) = {0}. This means that n0 is uniquely determined.
Hence, the hypercohomology gives R1π∗S−1

X/T(P). �

Pick a representation φ : g → slr, and consider the adjoint ad : slr → sl(slr). This gives a map of
the corresponding simply connected groups, and now the corresponding associated construction first
via φ gives a vector bundle Eφ and then taking the adjoint we have the bundle End(Eφ). Assuming the
condition stated in (iii) of Lemma 3.4, we have the following proposition, which is a generalization of
results in [16, Prop. 5.0.2] and [19]:
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16 | I. Biswas et al.

Proposition 3.6. There is a natural isomorphism between R0π∗B•
X,π ,S(End0(Eφ)) of the Bloch-

Esnault complex and R0π∗S•
X,π ,S(P) of the relative Ginzburg complex, and the isomorphism

fits in the following diagram:

(29)

Proof. The composition of maps ad ◦φ : g −→ sl(slr) gives a map AtX/T(P) −→ AtX/T(End0(Eφ)) (see (11)
and [1]). Moreover, the representation also gives the map S

−1
X/T(P) −→ B−1

0,X/T(End(Eφ)) (see Proposition
2.13). These two together give a map between the complexes

(30)

Taking pushforward R1π∗ of the above, we obtain the desired result. �

Now assume that R1π∗gP is isomorphic to TT/S under the natural map in (28). Consequently,
combining Propositions 3.5 and 3.6, we have the following diagram:

(31)

The isomorphism between the third and fourth rows is due to Bloch-Esnault [10], and the isomorphism
between the fourth and fifth rows is due to Beilinson-Schechtman [4]. Here, Lφ is the determinant of
cohomology associated to the family Eφ .

We have the following theorem under the assumption that TT/S ∼= R1π∗gP for the map in (28).

Theorem 3.7. The relative Atiyah sequence for 1
mφ

AtT/S(Lφ) is isomorphic to

0 −→ OMrs
G

−→ R1πn,∗(S−1
X/T(P)) −→ TT/S −→ 0. (32)

This justifies the computation of the relative extension class of the short exact sequence via
Dolbeault methods in Theorem 2.14.

3.5 Associated bundles and pullback
In this section we discuss the relation between the relative Ginzburg complex for the moduli space MG

and the pull-back of Bloch-Esnault complex of MSLr associated to a representation φ : G ↪→ SLr. As

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae085/7659791 by guest on 18 M

ay 2024



A Parabolic Analog of a Theorem of Beilinson and Schechtman | 17

previously, let Mrs
G denote the moduli space parametrizing the regularly stable principal G-bundles, and

denote by Ms
SLr

the moduli space of stable rank r vector bundles of trivial determinant. Let φ : G ↪→ SLr

be such that G is not contained in any proper parabolic subgroup of SLr. With this condition, we know
from [8] that a stable principal G-bundle P produces a stable SLr bundle.

Consider the map φ : Mrs
G −→ Ms

SLr
taking [P] to [Eφ ], where Eφ = P ×φ C

r is the associated vector
bundle. Let E → Ms

SLr
×S C and P → Mrs

G ×S C be the universal bundles (since they exist on a covering
by étale open subsets, we can treat as if they exist). Then the associated vector bundle Eφ = P ×φ C

r is
the pull-back of E via φ. We have the following diagram of maps:

(33)

Recall that we have the following commutative diagram on Ms
SLr

that connects the Atiyah algebra of the
determinant bundle with the Atiyah algebra defined by Bloch-Esnault [10]

(34)

Taking pushforward and combining the results of Beilinson-Schechtman [4], Bloch-Esnault, [10], and
Baier-Bolognesi-Martens-Pauly, [16], we get the following commutative diagram of maps:

where L = det(Rπn∗E ) is the determinant of cohomology of the family Eφ . Pulling back the exact
sequence at the bottom of the diagram by the map φ : Mrs

G −→ Ms
SLr

, we get the exact sequence

0 −→ OMrs
G

−→ AtMrs
G /S(φ

∗(L)) −→ TMrs
G /S −→ 0.

We wish to connect the following two exact sequences:

0 −→ φ∗(R1πn,SLr∗�XSLr /MSLr
) −→ φ∗(R1πn,SLr∗(B−1

0,XSLr /Ms
SLr

(E ))) −→ φ∗R1πn,SLr∗(End0(E )) −→ 0, (35)

0 −→ OMrs
G

∼= R1πn∗�XG/Mrs
G

−→ R1πn∗(S−1
XSLr /Ms

SLr
(P)) −→ TMrs

G /S −→ 0.
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18 | I. Biswas et al.

By Proposition 1.13, it is enough to relate (35) with the following (see (19)):

0 −→ OMrs
G

−→ R1πn,G ∗(B−1
0,XSLr /Ms

SLr
(Eφ)) −→ R1πn∗(End0(Eφ)) −→ 0.

Proposition 3.8. There is an isomorphism

R1πn,G ∗(B−1
0,XSLr /Ms

SLr
(Eφ)) � φ∗(R1πn,SLr∗(B−1

0,XSLr /Ms
SLr

(E ))).

Proof. Consider the following diagram:

This induces a map of the following exact sequences of Atiyah algebras as in [1]:

Dualizing, we obtain

Hence, by composing we get the following diagram:
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A Parabolic Analog of a Theorem of Beilinson and Schechtman | 19

Applying R1πn,G ∗, we conclude that the following extensions are isomorphic:

Thus, to finish the proof of the proposition we need to show that

R1πn,G∗(f ∗(B−1
0,XSLr /Ms

SLr
(E ))) ∼= φ∗(R1πn,SLr∗(B−1

0,XG/Mrs
G
(E ))).

But since the fibers of the morphism πn,SLr are smooth projective curves, we conclude that R2πn,SLr∗F is
zero for any coherent sheaf F which is flat over MSLr . Moreover, R1πn,SLr∗(B−1

0 (E )) is locally free. Hence
by base change of cohomologies for flat morphisms, we get the required isomorphism. This completes
the proof. �

Consider the following diagram where mφ be the Dynkin index of the embedding g −→ sl(V):

In this diagram, by Proposition 3.8 we get the isomorphism of the first two rows. Finally, the map
between the second and the third row follows from Proposition 1.13 and Proposition 19. Thus, we get
that R1πn,G∗(S−1

XG/Mrs
G
(P)) is isomorphic to the Atiyah algebra 1

mφ
φ• AtMs

SLr
/S(L), where φ• denote the pull-

back in the category of Atiyah algebras.

4 Parabolic Analog of Beilinson-Schechtman Construction
We now extend the previous considerations to the case of parabolic bundles. In order to analyze
parabolic Atiyah algebras for families of parabolic bundles on a curve C, we adopt notion of 
-linearized
bundles on a Galois cover Ĉ −→ C with Galois group 
. See [9,§ 6] for more details.

4.1 Parabolic vector bundles
Let Ẽ be a vector bundle of rank r on a family of ramified 
-cover of curves π̃ : X̃ −→ T ramified along
D̂. In other words, there is a natural projection p : X̃ −→ X, which is a ramified 
-covering such that
π̃ = π ◦ p. Let D := p(D̂) ⊂ X be the divisor or marked points. Let Ẽ be a family of vector bundles on
X̃, which is 
-linearized. Let E be the vector bundle on X defined by the invariant pushforward of the

-bundle Ẽ . By the discussion in [9, § 7], the vector bundle E comes equipped with a parabolic structure
supported on D. Recall the trace-zero relative Atiyah sequence

0 −→ End0(Ẽ) −→ AtX̃/T(Ẽ) −→ TX̃/T −→ 0. (36)
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20 | I. Biswas et al.

By Seshadri [18], we can identify the sheaf of parabolic endomorphism Par(Ẽ) with p
∗ End0(Ẽ). With this
set-up we can consider the parabolic Atiyah algebra with the following fundamental exact sequence:

0 −→ Par0(Ẽ)

∼= p
∗ (End0(Ẽ)
−→

parAtX/T(E)

:= p
∗ AtX̃/T(Ẽ)
−→ TX/T(−D) −→ 0.

As before, D̂ is the relative ramification divisor in X̃; consider the log-relative traceless Atiyah sequence
obtained from (36)

0 −→ End0(Ẽ)(−D̂) −→ (AtX̃/T(Ẽ))(−D̂) −→ TX̃/T(−D̂) −→ 0.

Since all the objects are naturally 
-linearized, we can apply the invariant push-forward functor p
∗ to
get the strongly parabolic Atiyah algebra sparAtX/T(E) with the fundamental exact sequence

0 −→ SPar0(E)

∼= p
∗
(
End0(Ẽ)(−D̂)

) −→ p

∗

(
AtX̃/T(Ẽ)(−D̂)

) −→ TX/T(−D) −→ 0

Tensoring with OX(D) we get,

0 −→ SPar0(E)(D) −→ p

∗

(
AtX̃/T(Ẽ)(−D̂)

)
(D) −→ TX/T −→ 0.

As in Section 2.1, consider the dual exact sequence:

0 −→ �X/T −→ (
p


∗
(
AtX̃/T(Ẽ)(−D̂)

)
(D)

)∨ −→ (SPar0(E)(D))
∨ −→ 0. (37)

The trace pairing κsl(r) : End0(Ẽ) ⊗ End0(Ẽ) → OX̃ gives an OX̃(−D̂) valued pairing

κsl(r) : End0(Ẽ) ⊗ End0(Ẽ)(−D̂) −→ OX̃(−D̂).

Taking 
-invariant push forward p
∗ of the above exact sequence we get a map

κsl(r) : Par0(E) ⊗ SPar0(E) −→ OX(−D).

Now by multiplying by OX(D) on both sides we get the following:

Proposition 4.1. The trace induces a nondegenerate pairing

κsl(r) : Par0(E) ⊗ SPar0(E)(D) −→ OX,

which identifies (SPar0(E)(D))∨ ∼= Par0(E).

We pull back the sequence in (37) via the map νsl(r) to get the following quasi-Lie algebra which we
denote by sparÃtX/T(E)

(38)
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4.1.1 Parabolic Bloch-Esnault complex
By the construction of Beilinson-Schechtman [4], we get an exact sequence of sheaves:

0 −→ End(Ẽ) ⊗ �X̃/T −→ trÃX̃/T(Ẽ)−1 −→ AtX̃/T(Ẽ) −→ 0.

Recall that since X̃ → T is a 
-cover of curves, and now assume that Ẽ is 
-equivariant. This implies
that all terms in the above exact sequence have a 
-action. Taking 
-invariant pushforward we get the
following:

0 −→ p

∗ (End(Ẽ) ⊗ �X̃/T) −→ p


∗ (trÃX̃/T(Ẽ)−1) −→ p

∗ (AtX̃/T(Ẽ)) −→ 0. (39)

Here AtX̃/T(Ẽ) is the relative Atiyah algebra of the bundle of the vector bundle Ẽ . The last term of the
above is the parabolic Atiyah algebra parAtX/T(E). Pulling back the exact sequence in (39) via the natural
inclusion Par0(E) parAt(E), we get an exact sequence:

0 −→ p

∗ (End(Ẽ) ⊗ �X̃/T) −→ parB̃−1

0,X/T(E) −→ Par0(E) −→ 0. (40)

Taking invariant pushforward with respect to the trace of an endomorphism tr : End(Ẽ) → OX̃, we
get another map tr : p
∗ End(Ẽ ⊗ �X̃/T) −→ p
∗ �X̃/T.

Since �X̃/T
∼= p∗�X/T ⊗O(D̂), where D̂ is the relative ramification p : X̃ → X. We can identify p
∗ (�X̃/T) ∼=

�X/T. This in turn gives a map

tr : p

∗ (End(Ẽ) ⊗ �X̃/T) −→ �X/T. (41)

Taking pushforward of the exact sequence in (39) via the parabolic trace in (41), we get the following
exact sequence:

0 −→ �X/T −→ parB−1
0,X/T(E) −→ Par0(E) −→ 0. (42)

We can summarize the above discussion in the following commutative diagram:

Recall from Section 2.1.1.1 in Beilinson-Schechtman [4, Lemma (a)], that there is a residue pairing

R̃es : �X̃/T � �X̃/T(3
) −→ OX̃.

The following theorem connects the parabolic Ginzburg dgla defined above to the quasi Lie algebra
sparÃtX/T(E) defined by (38).

Theorem 4.2. There is an isomorphism induced by invariant push-forward of the residue pairing
between the quasi-Lie algebras sparÃtX/T(E) and parB−1

0,X/T(E), which induces an isomorphism of
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exact sequences:

Proof. Let Ẽ ′ := Ẽ ⊗ �X̃/T, as in Beilinson-Schechtman, the sheaf of first order differential operators

D≤1(Ẽ) can be identified with Ẽ�Ẽ ′(2
)

Ẽ�Ẽ ′ . There is a natural exact sequence of sheaves

0 −→ Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ −→ Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ −→ Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′(
)
−→ 0.

Moreover, all the objects of the above exact sequence are 
-linearized. In particular, apply the invariant
pushforward functor we get the following commutative diagram:

0 −→ p

∗
Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ −→ p

∗
Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ −→ p

∗
Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′(
)
−→ 0.

Similarly we have another short exact sequence from [4] that is used in constructing the trace complex.

0 −→ Ẽ � Ẽ ′

Ẽ � Ẽ ′(−
)
−→ Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′(−
)
−→ Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ −→ 0.

Pulling back the exact sequence above by the inclusion End(Ẽ) ∼= Ẽ�Ẽ ′(
)

Ẽ�Ẽ ′ ↪→ Ẽ�Ẽ ′(2
)

Ẽ�Ẽ ′ . we get a short
exact sequence

0 −→ Ẽ � Ẽ ′

Ẽ � Ẽ ′(−
)
−→ Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′(−
)
−→ Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ −→ 0.

Taking invariant pushforward functor we get the following commutative diagram:

Now there is a natural nondegenerate bilinear form:

〈 , 〉 :
Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′(−
)
⊗ Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ −→ OX̃. (43)

The above form 〈 , 〉 vanishes identically restricted to Ẽ�Ẽ ′
Ẽ�Ẽ ′(−
)

⊗ Ẽ�Ẽ ′(
)

Ẽ�Ẽ ′ and hence it descends to a form

〈 , 〉 :
Ẽ � Ẽ ′

Ẽ � Ẽ ′(−
)
⊗ Ẽ � Ẽ ′

Ẽ � Ẽ ′(
)
−→ OX̃ and 〈 , 〉 :

Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ ⊗ Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ −→ OX̃. (44)

Under the canonical identifications of Ẽ�Ẽ ′(
)

Ẽ�Ẽ ′ ∼= End(Ẽ) we get

Ẽ � Ẽ ′

Ẽ � Ẽ ′(
)
∼= End(Ẽ) ⊗ TX̃/T and

Ẽ � Ẽ ′

Ẽ � Ẽ ′(−
)
∼= End(Ẽ) ⊗ �X̃/T. (45)
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Lemma B.2.8 in [16] shows that the bilinear form 〈 , 〉 in (43) and (44) can be identified as

−κgl(r) : End(Ẽ) ⊗ End(Ẽ) −→ OX̃ and κgl(r) : End(Ẽ) ⊗ TX̃/T ⊗ End(Ẽ) ⊗ �X̃/T −→ OX̃, (46)

where κgl(r) is the trace of the product of the two endomorphisms. Now the invariant pushforward of
〈 , 〉 induces a nondegenerate OX(−D) valued form

〈 , 〉 : p

∗

Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′(−
)
⊗ p


∗

(
Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ (−D̂)

)
−→ p


∗OX̃(−D̂) ∼= OX(−D),

which gives the following nondegenerate form

〈 , 〉 : p

∗

Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′(−
)
⊗

(
p


∗

(
Ẽ � Ẽ ′(2
)

Ẽ � Ẽ ′ (−D̂)

))
(D) −→ OX

that restricts to

〈 , 〉 : p

∗

(
Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′

)
⊗

(
p


∗

(
Ẽ � Ẽ ′(
)

Ẽ � Ẽ ′ (−D̂)

))
(D) −→ OX. (12)

〈 , 〉 : p

∗

(
Ẽ � Ẽ ′

Ẽ � Ẽ ′(−
)

)
⊗

(
p


∗

(
Ẽ � Ẽ ′

Ẽ � Ẽ ′(
)
(−D̂)

))
(D) −→ OX. (13)

The identification of parabolic and strongly parabolic endomorphism as invariant pushforward and
invariants pushforward of the identification in (46) tell us that the form 〈 , 〉 in (47) can be identified
with

− κgl(r) : Par(Ẽ) ⊗ SPar(Ẽ)(D) −→ OX.

Similarly, the form in (48) can be identified with

〈 , 〉 : p

∗

(
End(Ẽ) ⊗ �X̃/T

) ⊗ (
p


∗
(
End(Ẽ) ⊗ TX̃/T(−D̂)

))
(D) −→ OX.

Now the identification of
(
p
∗

(
End(Ẽ) ⊗ TX̃/T(−D̂)

))
(D) ∼= TX/T gives the following commutative:

This induces an isomorphism of parB−1
0,X/T(E) with sparÃtX/T(E) that restricts to id on �X/T and − id on

Par0(E). �

The following proposition connects R1π∗ of the parabolic Ginzburg dgla with R1π̃∗ of the dgla
constructed by Bloch-Esnault.

Proposition 4.3. There are inclusion maps �X/T → p∗�X̃/T and Par0(E) ∼= p
∗ End0(E) ↪→
p∗ End0(Ẽ) that extend to a map of the following exact sequences:
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Proof. First we prove that p
∗ (B̃−1
0,X̃/T

(Ẽ)) ∼= parB̃−1
0,X/T(E). Consider the short exact sequence

0 −→ p∗(End(Ẽ) ⊗ �X̃/T) −→ p∗(B̃−1
0,X̃/T

(Ẽ)) −→ p∗(End0(Ẽ)) −→ 0.

Taking invariants with respect to 
, we get

The inclusion of the second row into the third follows from the invariant pushforward of the first
two rows of the diagram (24). Since both parB̃−1

0,X/T(E) and p
∗ (B̃−1
0,X̃/T

(Ẽ)) are extensions of p
∗ (End0(Ẽ))

by p
∗ (End(Ẽ) ⊗ �X̃/T) obtained as a sub extension of p
∗ (AtX̃/T(Ẽ)) by p
∗ (End(Ẽ) ⊗ �X̃/T) via the inclusion
p
∗ (End0(Ẽ)) p
∗ (AtX̃/T(Ẽ)), it follows that p
∗ (B̃−1

0,X̃/T
(Ẽ)) ∼= parB̃−1

0,X/T(E). Now the above gives the following
commutative diagram:

Pushing forward with respect to the trace of endomorphism tr, the above commutative diagram implies
the existence of the following commutative diagram all of whose rows are short exact sequences:

The bottom level of the above diagram gives the required result. �

Recall that we have a diagram relating the families of curves parametrized by T:

Taking R1π∗ of all the terms of the commutative diagram in Proposition 4.3, and using the fact that
R1π̃ = R1π ◦ p∗, we get the following proposition:
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Proposition 4.4. The following diagram is commutative:

4.2 Parabolic Atiyah algebras and moduli of parabolic bundles
Let C → S be a family of curves, and let Ĉ → S be a family of 
-covers. Consider the relative family M̂s

SLr

parametrizing the moduli space of stable SLr bundles on Ĉ → S. Let Mτ ,s
SLr ,s

and Mpar,s
SLr

be the relative
moduli spaces of stable (
, SLr) and stable parabolic bundles on Ĉ → S and C → S, respectively.
Without loss of generality assume that the interior of M̂ss

SLr
is non-empty, otherwise our main theorem

is trivially true.
Now by the discussion in [9, §7.2], the invariant pushforward functor induces an isomorphism

between Mτ ,s
SLr

(respectively, the semi-stable moduli space Mτ ,ss
SLr

) and Mpar,s
SLr

(respectively, Mpar,ss
SLr

). The data
τ and the covering family Ĉ depend on the data of the parabolic weights that defines the parabolic
semistability. By [7], we get a map φ : Mτ ,ss

SLr
→ M̂ss

SLr
, which extends to a map Ĉ ×S Mτ ,ss

SLr
→ Ĉ ×S M̂ss

SLr
.

The map φ may not preserve stability, however φ being finite, the complement of the inverse image
Yτ ,s

SLr
:= φ−1M̂s

SLr
of the stable locus has codimension at least two in Mτ ,s

SLr
provided genus of the orbifold

curve C = [̂C/
] is at least 2 if r 
= 2 and at least 3 if r = 2. We refer the reader to [9, Lemma 8.3] for
more details.

We have the following diagrams that connect all the objects described above:

The rational maps are regular over Yτ ,s
SLr

, which will be also denoted by the same notation. The image
of Yτ ,s

SLr
under the invariant pushforward isomorphism of Mτ ,ss

SLr
∼= Mpar,ss

SLr
will be denoted by Ypar,s

SLr
. By

definition Ypar,s
SLr

↪→ Mpar,s
SLr

.
Let Ê be the universal bundle (which exist in the étale topology) on Ĉ ×S M̂ss

SLr
and Ẽ be its pull-back

to Ĉ ×S Mτ ,s
SLr

. We denote by E the universal parabolic bundle, which we can assume to exist without loss
of generality (see Remark 1). As in the diagram let π̃n : Ĉ ×S Yτ ,s

SLr
−→ Yτ ,s

SLr
denote the projection and

similarly consider the projection π̂n : Ĉ ×S M̂s
SLr

−→ M̂s
SLr

Let L be the determinant of cohomology line bundle on M̂s
SLr

. Now, as before, combining the results
of Baier-Bolognesi-Martens-Pauly [16], Beilinson-Schechtman [4], Bloch-Esnault [10], and Sun-Tsai [19],
we get an isomorphism of the Atiyah algebras AtM̂s

SLr
/S(L−1) with R1π̂n∗(B−1

0,Ĉ×SM̂s
SLr

/M̂s
SLr

(Ê)), which makes
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the diagram of fundamental sequences of Atiyah algebras commute:

Pulling back by φ we get an isomorphism of φ∗AtM̂s
SLr

/S(L) and φ∗R1π̂n∗(B−1
0,Ĉ×SM̂s

SLr
/M̂s

SLr

(Ê)). Moreover the

base change theorems implies that the later is isomorphic to R1π̃n∗(B−1
0,Ĉ×SYτ ,s

SLr
/Yτ ,s

SLr
(Ê)). (Observe that φ∗ of

an Atiyah algebra may not be an Atiyah algebra.) We have the following result.

Theorem 4.5. There is an isomorphism of the relative Atiyah algebras AtMτ ,s
SLr

/S(φ
∗L−1) with

R1πn∗(parB−1
0,C×SMpar,s

SLr
/Mpar,s

SLr

(E)) that restricts to the identity map on �Mpar,s
SLr

/S.

Proof. Applying Proposition 4.4 with X̃ = Ĉ ×S Yτ ,s
SLr

, X = C ×S Yτ ,s
SLr

, and T = Yτ ,s
SLr

, we get an isomorphism
between AtYτ ,s

SLr
/S(φ

∗L) and R1πn∗parB−1
0,C×SYτ ,s

SLr
/Yτ ,s

SLr
(E) over Ypar,s

SLr
. Now both these sheaves AtYτ ,s

SLr
/S(φ

∗L−1)

and R1πn∗(parB−1
0,C×SYτ ,s

SLr
/Yτ ,s

SLr
(E)) are locally free (hence reflexive) and extend over Mpar,s

SLr
. Since they are

isomorphic on an open subset whose complement has codimension at least two, the isomorphism
actually extends to all of Mpar,s

SLr
. �

Remark 4.6. The proof of Theorem 2.14 applies in this parabolic setting as well. The fact that the
Atiyah-Bott-Narasimhan-Goldman symplectic form is in the class of φ∗L is one of the results
of [11] (see also [6]).

4.3 Parabolic G-bundles
4.3.1 Parabolic bundles
Let p : Ĉ → C be a ramified covering with Galois group 
, so C = Ĉ/
. Let D ⊂ C and D̂ ⊂ Ĉ denote the
branching loci in C and Ĉ respectively. Let π̂ : P̂ → Ĉ be a 
-principal G-bundle, that is, P̂ is a principal
G-bundle, and there is a representation 
 → Aut(̂P) : γ �→ Fγ such that the actions of 
 and G on P̂
commute. For an open set U ⊂ C, define

aut
(̂P)(U) = {
X ∈ aut(̂P)(p−1(U)) | X(Fγ (p)) = (Fγ )∗(X(p)) ∀ γ ∈ 


}
.

This presheaf defines an OC-coherent sheaf. Notice that for X ∈ autπ (̂P), the vector field v̂ on Ĉ is 
-
invariant, and so descends to a vector field on C that vanishes along the ramification divisor D ⊂ C.
Hence, we have a map aut
(̂P) → TC(−D).

Let P be a parabolic G-bundle on C and let P̂ be a (
, G)-bundle on Ĉ such that P and P̂ are related by
invariant pushforward.

Definition 4.7. We define the parabolic Atiyah algebra parAt(P) of P to be aut
(̂P).

Suppose P̂ is the frame bundle of a vector bundle Ê → Ĉ, and let E → C denote the sheaf of invariant
sections of Ê . The parabolic Atiyah algebra parAt(E) is aut
(̂P). We wish to describe the kernel ad
(̂P) as
a subsheaf of aut
(̂P) → TC(−D). Let Û ⊂ Ĉ be a neighborhood of w0 ∈ D̂, and let 
0 ⊂ 
 be the isotropy
group of w0. We assume that 
0 stabilizes Û and only w0 ∈ Û has nontrivial isotropy. Choose a section s
of P̂ over Û. For each γ ∈ 
0 there is ργ : Û → G defined by: Fγ (s(w)) = s(γ w)ργ (w).

Definition 4.8. Define ad
(̂P)(U) = {
f ∈ ad(̂P)(Û) | f (s(γ w)) = Adργ (w) f (s(w))

}
.

The following is straightforward.

Proposition 4.9. The above definition is independent of the choice of section s.
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Extending the definition for neighborhoods at each of the branch points defines ad
(̂P) globally. We
also note that the inclusion map ad(̂P) → aut(̂P) restricts to an inclusion map ad
(̂P) → aut
(̂P). Indeed,
for f ∈ ad
(̂P), it suffices to check the condition on the vector field X = f � along the section s, and this
follows from the equivariance of Fγ :

f (Fγ (s(w)) = f (s(γ w)ργ (w)) = Adργ (w)−1 f (s(γ w)) = f (s(w)).

Hence we have the following short exact sequence of sheaves of Lie algebras on C:

0 −→ ad
(̂P) −→ aut
(̂P) −→ TC(−D) −→ 0.

Suppose that P̂ is the frame bundle of a vector bundle Ê → Ĉ, and let E → C denote the sheaf of
invariant sections of Ê . The parabolic endomorphism bundle of E , namely Par(E), is ad
(̂P). We refer
to the above sequence as the fundamental sequence for parabolic Atiyah algebras. From the discussion
above, we have an exact sequence

0 −→ Par(E) −→ parAt(E) −→ TC(−D) −→ 0.

We note that this is nothing but the 
-invariant push-forward of the Atiyah algebra exact sequence
on Ĉ.

4.3.2 Strongly parabolic Atiyah algebras
Next, we define a “strongly parabolic” version of this construction. Set

aut(̂P)(−D̂) := {X ∈ aut(̂P) | X(p) = 0 for π̂(p) ∈ D̂}.
ad(̂P)(−D̂) := {f ∈ ad(̂P) | f (p) = 0 for π̂(p) ∈ D̂}.

Then we have the restricted short exact sequence

0 −→ ad(̂P)(−D̂) −→ aut(̂P)(−D̂) −→ TĈ(−D̂) −→ 0.
Now if P̂ is the frame bundle of Ẽ, then by Seshadri’s correspondence (see Appendix B), the 
-invariant
part ad
(̂P(−D̂)) is identified with the strongly parabolic endomorphisms SPar(P). Motivated by this
observation, we have:

Definition 4.10. The strongly parabolic Atiyah algebra sparAt(P) of a 
-linearized principal bundle
P̂ on Ĉ is defined to be the 
-invariant part of aut(̂P)(−D̂).

If P̂ is the frame bundle of a vector bundle Ê , then we denote it by sparAt(E) := aut
(̂P). Noting that
p∗(TĈ(−D̂))
 = TC(−D), we have the following short exact sequence on C

0 −→ SPar(E) −→ sparAt(E) −→ TC(−D) −→ 0.

4.3.3 Determinant line bundle for parabolic G-bundles
Let P̂ be a family of (
, G)-bundles parametrized by T as in the previous section, and let P be the family
of parabolic G-bundles obtained by applying the invariant pushforward functor.

Consider the relative parabolic Atiyah algebra parAtX/T(P) := p
∗ (AtX̃/T(P̂) and the strongly parabolic
Atiyah algebra sparAtX/T(P) = p
∗ (AtX̃/T(P̂)(−D̂)). As in the case of parabolic vector bundles, they fit in the
following fundamental exact sequences:

0 −→ Par(P) −→ parAtX/T(P) −→ TX/T(−D) −→ 0,

0 −→ SPar(P) −→ sparAtX/T(P) −→ TX/T(−D) −→ 0,
(49)
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where Par(P) (respectively, SPar(P)) denote the parabolic (respectively, strongly parabolic) endomor-
phism bundle of P . As in the case of parabolic vector bundles we get the following quasi-Lie algebra:

0 −→ �X/T −→ (parAtX̃/T(P)(D))∨ −→ (SPar(P)(D))∨ −→ 0. (50)

The Cartan-Killing form κg gives an identification

ν−1
g : (SPar(P)(D))∨ ∼−→ Par(P). (51)

Pulling back the exact sequence in (50) by the above isomorphism, we get a quasi-Lie algebra sparÃtX/T(P)

fitting into the following exact sequence:

which should be considered as a parabolic G-bundle analog of Ginzburg’s dgla considered in [13]. Recall
that we have the quasi-Lie algebra S

−1(P̂) associated to a family P̂ of principal G-bundles satisfying:

Now since P̂ is 
-linearized, we conclude that all objects in the above exact sequence are 
-linearized.
We define parS

−1
X/T(P) := p
∗S

−1
X̃/T

(P̂).
Taking 
-invariant pushforward of the bottom row, we get the following extension:

0 −→ �X/T −→ parS
−1
X/T(P) −→ Par(P) −→ 0.

We now have the following proposition:

Proposition 4.11. There is an isomorphism parS
−1
X/T(P)

∼−→ sparÃtX/T(P), which induces identity
maps on �X/T and Par(P).

Proof. Recall that there is a natural nondegenerate pairing 〈 , 〉 : S−1
X̃/T

(P̂) × AtX̃/T(P̂) → OX̃. Tensoring it

with OX̃(−D̂), we get a OX̃(−D̂)-valued pairing

〈 , 〉 : S−1
X̃/T

(P̂) × AtX̃/T(P̂)(−D̂) −→ OX̃(−D̂).

Taking invariant pushforward, we get the following nondegenerate pairing:

p

∗ 〈 , 〉 : p


∗S
−1
X̃/T

(P̂) × p

∗ (AtX̃/T(P̂)(−D̂)) −→ p


∗OX̃(−D̂).

This produces a duality between parS
−1
X/T(P) and p
∗ (AtX̃/T(P̂)(−D̂))(D). This completes the proof of the

proposition. �

4.4 The general set of parabolic G-bundles
Let Mτ ,ss

G (respectively, Mτ ,rs
G ) be the moduli space of semistable (respectively, regularly stable) (
, G)

bundles on a curve Ĉ, and let φ : G → SLr be a representation. We assume without loss of generality
that M̂rs

G is non-empty. Note that for a semistable (
, G), the underlying G-bundle is semistable [2, 7].
We also use the same notation for a relative family of 
 covers Ĉ → S. Consider the induced maps
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Mτ ,ss
G → M̂ss

G
φ−→ M̂ss

SLr
. Let M̂rs

G be the locus of regularly stable bundles on Ĉ. Then by [12], we get that
the complement of the regularly stable locus is at least two provided g ≥ 2 and G is any simple group
different from SL2 and g ≥ 3 if the Lie algebra of G has a sl(2) factor. Now as in the SLr case, let Yτ ,rs

G

be the inverse image of M̂rs
G in Mτ ,ss

G . Moreover, the complement of Yτ ,rs
G has codimension at least two

provided the genus g(C ) of the orbifold curve C = [̂C/
] (cf. [9, Lemma 8.3]) determined by τ is at least
three, or if the Lie algebra of G has no sl(2) or sp(4) factor, g(C ) ≥ 2.

As before let Lφ be the pull-back of the determinant of cohomology L to Mτ ,ss
G . Then by applying

Proposition 4.11, and Theorem 3.7, we get the following.

Corollary 4.12. There is a natural isomorphism of Atiyah algebras over the regularly stable
locus Yτ ,rs

G :

1
mφ

AtMτ ,rs
G /S(Lφ)

∼−→ R1πn∗
(

parS
−1
C×SMτ ,rs

G /Mτ ,rs
G

(P)
)

.

Since by assumption, the complement of Yτ ,rs
G in Mτ ,rs

G is at least two, the above isomorphism
extends over the entire space Mτ ,rs

G .
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