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Abstract: Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the
application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of syn-
thetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients.
Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organ-
isms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption
profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs
in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative
strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic
enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD,
and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring en-
zymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but
also for exploring the evolution of this unique family of natural sunscreens.

One-Sentence Summary: This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens
and delves into recent progress in their biosynthesis.
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Introduction sensitizing molecules, which subsequently produce reactive oxy-
gen species (ROS) and oxidize cellular components (Jagger, 1985).
In contrast, short-wave UVB rays directly induce photodamage to
biomolecules such as DNA and proteins independently of the for-
mation of ROS (Gasparro, 2000; Jagger, 1985; Meador et al., 2002).
Given that ozone absorption and atmospheric scattering block
most of the most energetic UVC, UVB is considered the most im-
portant etiological factor for squamous cell carcinoma and basal
cell carcinoma (D’Orazio et al., 2013). However, the recent deple-
tion of the stratospheric ozone layer, increasing the level of UV
reaching Earth, highlights the need for effective human protection
against UV radiation (Héader et al., 2011; McKenzie et al., 2007).

Skin cancers rank among the most common types of cancer in
the United States. Approximately 1.4 million Americans are living
with melanoma, while over 3 million experience nonmelanoma
skin cancer, including basal cell carcinoma and squamous cell
carcinoma (Rogers et al., 2015). Solar radiation, particularly ultra-
violet (UV) radiation, is a risk factor for major skin cancer forms
(Ahmed et al., 2020; Lopes et al., 2021). UV rays are classified into
three subtypes according to their wavelengths, including UVA at
315-400nm, UVB at 280-315nm, and UVC at 100-280 nm. UVA
constitutes over 95% of ground-level UV rays and mainly activates
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A variety of chemical and physical UV-absorbing materi-
als have been developed for sun protection, including synthetic
chemicals like oxybenzone and metal oxide particles like titanium
dioxide and zinc oxide. Synthetic anti-UV compounds, usually uti-
lizing aromatic ring systems, effectively absorb UV rays through
ultrafast excited state intramolecular proton transfer as their en-
ergy dissipation mechanism and prevent further photochemical
reactions (Ignasiak et al., 2015). For example, enol-oxybenzone
undergoes ultrafast tautomerization into a keto tautomer after
UVA irradiation (Baker et al., 2015), with the excited tautomer
returning to the ground state by dissipating energy as heat.
However, concerns surrounding the potential toxicity of synthetic
sunscreens are escalating. Recent reports reveal the rapid skin
penetration of organic sunscreens and emphasize potential
health risks associated with human exposure and systemic accu-
mulation of these chemicals (Matta et al., 2019). Indeed, several
studies have detected sunscreen ingredients in women'’s breast
milk and human urine samples (Schlumpf et al., 2010). Addition-
ally, some commercial sunscreen ingredients such as oxybenzone
can exhibit hormone-disrupting properties and neurotoxic ef-
fects (Collaris & Frank, Krause et al,, 2012; J. Wang et al., 2016).
Synthetic anti-UV chemicals can also affect living organisms. For
example, oxybenzone and octinoxate have been linked to coral
reef bleaching (Danovaro et al., 2008; Schneider & Lim, 2019),
leading to bans in regions like Hawaii and Key West (Levine, 2020;
Ouchene et al., 2019). While physical anti-UV agents are generally
considered less toxic (Nohynek et al., 2008; Smijs & Pavel, 2011),
these metal oxides can generate significant hydrogen peroxide
levels, potentially stressing living organisms (Jeon et al., 2016;
Osmond & Mccall, 2010; Sanchez-Quiles & Tovar-Sanchez, 2014).
These concerns underscore the need for the development of safe,
biodegradable, and environmentally friendly anti-UV compounds.

Many organisms, especially microbes lacking inherent defenses
like skin or shells against UV radiation, have evolved diverse
strategies for UV protection. The most prevalent strategy is re-
mediation, such as DNA repair mechanisms (Rastogi et al., 2010)
and the replacement of damaged protein targets. Other com-
mon strategies involve preventative mechanisms, such as ROS
detoxification systems (He & Héader, 2002) and antioxidant pro-
duction (G. Wang et al., 2007), and behavioral adaptations (Kr-
uschel & Castenholz, 1998; G. Wang et al., 2007). Another com-
mon protective strategy is the synthesis and accumulation of UV-
absorbing secondary metabolites that absorb UV radiation and
dissipate energy through harmless thermal de-excitation. Both
aromatic polyketides and polymeric substances (e.g., melanins)
have demonstrated anti-UV activities (Butler & Day, 1998; Nguyen
et al., 2013). Terpenoids, including carotenoids, also serve as UV
protectants and antioxidants (Demmig-Adams & Adams, 1992).
Other notable examples of anti-UV natural products include scy-
tonemin, a shikimate pathway derivative, and mycosporine-like
amino acids (MAAs), both of which are produced by many aquatic
microorganisms. Scytonemin, a yellow-brown pigment, is highly
lipid soluble (Pathak et al., 2020). In contrast, MAAs are color-
less, water-soluble compounds with considerable structural di-
versity, making them attractive for natural sunscreen product de-
velopment. Here, we will introduce MAAs as natural sunscreen
molecules and discuss recent progress in understanding their
biosynthesis.

MAAs as Natural Sunscreens

MAAs are a family of potent UV protectants recognized for their
thermal and photochemical stability (Carreto & Carignan, 2011).

Since their initial identification from a terrestrial fungal species,
over 70 MAA analogs have been identified in taxonomically di-
verse marine and terrestrial organisms, including cyanobacte-
ria, eukaryotic algae, corals, plants, and vertebrates (Geraldes
& Pinto, 2021; Sinha et al., 2007). MAAs can efficiently convert
absorbed energy into heat, sidestepping the generation of free
oxygen species (Conde et al., 2004). Despite their notable struc-
tural diversity, MAA analogs display absorption maxima between
310 and 362 nm and possess extinction coefficients reaching
50000 M~*-cm™* (Fig. 1A), positioning them among the most pow-
erful known UV-absorbing compounds. Quantum chemical cal-
culations have delineated the ultrafast deexcitation pathway of a
representative MAA, porphyra-334, involving a significant struc-
tural transformation from an extensively = conjugated planar
structure to a nonplanar boat structure (Fig. 1B) (Hatakeyama
et al., 2019). This analysis has further revealed the crucial struc-
tural features of MAAs underpinning their UV absorption pro-
file, including the linear hetero-m conjugation of the C = N
and C = C bonds, coupled with the nonaromatic ring facili-
tating a drastic molecular structure alteration upon electronic
excitation (Hatakeyama & Nakamura, 2022). Beyond their anti-
UV properties, MAAs have demonstrated a spectrum of poten-
tial benefits, including antioxidative, anti-inflammatory, and an-
tiaging activities, offering another photoprotective mechanism
(Suh et al., 2014).

Given their potent UV protective properties, MAAs have gar-
nered considerable interest in the formulation of next-generation
sunscreens. Currently, at least two commercial sunscreen prod-
ucts (Helioguard™ 365 and Helionori®) contain shinorine and
porhyra-334 as active ingredients (Becker et al., 2016; Hartmann
et al., 2017). However, the widespread application of MAAs in the
cosmetic industry encounters a significant problem primarily due
to the challenges associated with isolating these compounds from
their natural sources. MAAs currently used in commercial appli-
cations are predominantly extracted from the red alga Porphyra
umbilicalis (Luning et al., 1997). However, the isolation is generally
laborious and the production can be influenced by environmental
factors (LUning et al., 1997). Addressing and overcoming the sup-
ply challenge can potentially catalyze the broader applications of
MAAs in various industrial sectors.

Chemical Synthesis of MAAs

Currently, only mycosporine-glycine (MG) has been successfully
synthesized by White et al. (White et al., 1989, 1995). The syn-
thesis route started with D-(-)-quinic acid carrying a favored S
configuration at the C5 position along with a contiguous triol
system (Fig. 2A). The triol system on C1-C3 can easily lead to
aromatization, forming a benzene-like structure. The synthetic
route was initiated by integrating a bridging y-lactone between
the carboxylic acid group at C5 and C1-OH, thereby sterically lock-
ing the cyclohexane ring. Subsequently, the cis-diols at C2 and
C3 were protected by O-benzylidene acetals, enabling the selec-
tive generation of 3-bromo benzoate and eventual C3-oxidation
to form the enolone. The Staudinger reaction, followed by reduc-
tive amination, facilitated the synthesis of MG. This pathway in-
cludes 13 steps, resulting in a total yield of less than 5%. Notably,
the enantioselective synthesis of MG remains unattained. On the
other hand, the Sampedro group recently reported a more direct
synthesis route for MAA derivatives lacking a stereocenter at C5
(Losantos et al., 2017). Initially, the basic scaffold of diverse MAA
derivatives underwent in silico evaluation, focusing on photosta-
bility, radiative processes, and excited-state lifetime. A total of
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Fig. 1. MAAs as natural sunscreens. (A) Chemical structures of selected MAAs with corresponding maximal absorbance wavelengths and extinction
coefficients. (B) Representative steps of the ultrafast deexcitation pathway of MAAs involving significant structural changes.
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Fig. 2. Synthetic routes of MG starting from D-(-)-quinic acid in 13 steps (A) and MAA derivatives lacking a stereocenter at C5 within five steps (B).

20 compounds featuring the cyclohexenimine scaffold were then
synthesized from readily available and economical materials
through a maximum of five uncomplicated steps (Fig. 2B). These
synthesized compounds displayed strong thermostability, endur-
ing temperatures up to 270°C. A blend of two synthetic com-
pounds at a 10% concentration showed modest sun protec-
tion but remarkably enhanced the efficacy of synthetic anti-
UV compounds octinoxate (10%) and avobenzone (5%) by two

to threefolds. These findings underscore the promising potential
applications of these synthetic MAA derivatives.

General MAA Biosynthetic Pathway

The first biochemical characterization of the MAA biosynthe-
sis came from the Walsh group (Balskus & Walsh, 2010).
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Fig. 3. A general MAA biosynthetic pathway catalyzed by MysA-E and MysH (A) and the diversity of MAA BGCs in different organisms (B).

Inspired by two co-localized genes encoding a dehydroquinate
synthase homolog (DHQS) and an O-methyltransferase (O-MT)
in the sea anemone genome, they queried them against pub-
licly available genomes and identified the MAA biosynthetic gene
cluster (BGC) in the genome of Anabaena variabilis ATCC 29413
(Fig. 3). The cluster encodes a DHQS homolog (Ava_3858; MysA),
a putative O-MT (Ava_3857; MysB), a predicted ATP-grasp lig-

the pentose phosphate pathway intermediate sedoheptulose 7-
phosphate (SH-7-P). Subsequently, MysC catalyzes the conden-
sation between C3 of 4-DG and glycine to generate MG. Fi-
nally, shinorine is produced in the MysE reaction by modifying
C1 of MG with L-Ser (Fig. 3A). On the other hand, several dis-
ubstituted MAA analogs, such as shinorine, porphyra-334, and
mycosporine-2-glycine, are derived from MG by a D-Ala-D-Ala
ase (Ava_3856; MysC) and a nonribosomal peptide synthetase Ligase homolog (MysD) in other microorganisms (Fig. 3B), indicat-
(NRPS)-like enzyme (Ava_3855; MysE) (Balskus & Walsh, 2010). ing the substrate flexibility of this enzyme (Gao & Garcia-Pichel,
MysA and MysB together synthesize 4-deoxygadusol (4-DG) from 2011).
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Fig. 4. MysA initiates the MAA biosynthesis. (A) Superimposing the active sites of MysA (PDB ID 5TPR, cyan) and EEVS (PDB ID 4P53, grey) revealed the
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according to corresponding structures. (B) Proposed MysA reaction pathway starting from SH-7-P. The figure is modified from the previous work

(Osborn et al., 2017).

Intriguingly, despite the confirmation of SH-7-P as the synthetic
precursor by biochemical and genetic studies (Balskus & Walsh,
2010), early isotopic labeling studies indicated 3-dehydroquinate
(3-DHQ) from the shikimate pathway as the precursor of fun-
gal mycosporines (Favre-Bonvin et al., 1987). In addition, a sub-
sequent study in A. variabilis ATCC 29413 revealed that even the
mysA deleted strain continues to produce MAAs at a compara-
ble level to the wild type, suggesting an alternative biosynthetic
route (Spence et al., 2012). This hypothesis is further supported by
the observation that chemical inhibition of the shikimate path-
way markedly reduces MAA content across diverse cyanobacte-
rial species, underscoring the potential significance of this path-
way in providing essential building blocks like 3-DHQ for the MAA
biosynthesis (Pope et al., 2015; Portwich & Garcia-Pichel, 2003).
However, the mechanism through which the shikimate pathway
intermediate transforms into 4-DG remains to be discovered.

Since the seminal studies of the Walsh group (Balskus & Walsh,
2010), the functions and mechanisms of the MAA biosynthetic en-
zymes have been further investigated by several research groups,
and tailoring enzymes have been identified to participate in the
MAA biosynthesis. Here, we discuss the recent progress of each
MAA biosynthetic enzyme, except for the O-MT MysB whose
mechanistic or structural characterization remains lacking.

Current Understanding of MAA Core
Biosynthetic Enzymes

MysA

MysA was initially proposed as a DHQS based on sequence
homology and the assumption that the MAA biosynthesis is
rooted in the shikimate pathway (Balskus & Walsh, 2010; Favre-
Bonvin et al., 1987). However, attempts to produce 4-DG from 3-
DHQ by recombinant MysA were unsuccessful in vitro (Balskus &
Walsh, 2010). Careful inspection of the enzyme active site residues
suggests that MysA aligns more closely with the DHQS homolog 2-
epi-5-epi-valiolone synthase (EEVS), potentially accepting the EEVS
substrate SH-7-P (Fig. 3A). This hypothesis was confirmed by the
production of 4-DG from SH-7-P in the MysA and MysB reaction
in the presence of cofactors S-adenosylmethionine (SAM), nicoti-
namide adenine dinucleotide (NAD*), and Co?* (Balskus & Walsh,
2010). EEVS homologs play a pivotal role in the biosynthesis of

many natural products. Interestingly, one EEVS homolog along
with a methyltransferase-oxidoreductase (MT-Ox) enzyme con-
verts SH-7-P into gadusol (Fig. 3B), a molecule exhibiting UV pro-
tection and structural similarity to 4-DG. The gadusol biosyn-
thetic pathway is widely distributed across diverse bacteria and
eukarya including vertebrates (Osborn & Mahmud, 2019; Osborn
et al., 2015). Of note, the discovery of the EEVS gene in vertebrate
genomes, such as those of fish, was unexpected, as these enzymes
are likely evolved from DHQS but the shikimate pathway is miss-
ing in vertebrates, suggesting horizontal gene transfer events (Os-
born et al., 2017). The Mahmud group recently elucidated the X-
ray crystal structure of MysA from A. variabilis ATCC 29413 (PDB
entry 5TPR), revealing consistency with the EEVS structure (PDB
entry 4P53) (Fig. 4A) (Osborn et al., 2017). Although the active site
residues of the two enzymes are highly conserved, subtle differ-
ences might be influential in determining their reaction products.
In particular, three key active site residues His360, Asp281 and
Leu267 in EEVS are respectively replaced by Thr347, Ala268 and
Glu254 in MysA. Site-directed mutagenesis has confirmed the sig-
nificance of both Asp281/Ala268 and Leu267/Glu254 in the reac-
tion. MysA is proposed to catalyze the reaction similar to EEVS, but
additional enolization, dehydration, and tautomerization steps
are required (Fig. 4B).

Recent genome mining efforts have identified multiple MAA
BGCs lacking the mysA gene such as the one identified in Halothece
sp. PCC 7418 (Fig. 3B). This observation suggests an alternative
pathway for 4-DG synthesis (Spence et al., 2012). One untested
hypothesis is that the DHQS enzyme in microorganisms carry-
ing the mysA-less MAA BGC could convert the shikimate pathway
metabolite to 4-DG (Mogany et al., 2022).

MysC

MysC and MysD both belong to the ATP-grasp ligase superfamily,
which carries diverse functions and is widely involved in cen-
tral biological pathways (Fawaz et al., 2011). The characteristic
mechanism of ATP-grasp ligases starts with the phosphorylation
of a carboxylate to yield an acylphosphate intermediate, which
is then attacked by a nucleophile such as an amine, hydroxyl, or
thiol group (Fawaz et al., 2011). Uniquely within this enzyme su-
perfamily, MysC and MysD in the MAA biosynthesis catalyze the

20 dunp Bz Uo Josn epuo|4 Jo Aisioaun AQ GL0SBEL/8E0PEMY/L/0G/9IIME/quiIl/Wwoo"dno-olwapeoe//:sdy oy papeojumoq



6 | Journal of Industrial Microbiology and Biotechnology, 2023, Vol. 50, No. 1

\:'é[ WG opo3

HG HO

®
.

HO'
4-DG CO,H

MysC3 1 L-Lysine MysC2 l4-DG

\_@: CoH  HO
HO H,

Mycosporine-2-(4-
deoxygadusolyl-ornithine)

O,

H

(C)

HO
HO,C HO2C

2
9 ATP  ADP OPOg \
OMe OMe
HO E f HO
—_— =
T g + - N
0 )NH SNH

) HO

\_:é[opo =

HOA, :Q‘\ oH

PO Ho
OPO r—

0]
OMe OMe OMe
e} MysC3 HO HO CO,H
: L-Ornithine g WNH, 3 i _~_-NHz
OH HO N~ N

H N COQH CO H HOZC
2
0]
HO: H
N
MysD 002 |
Tricore B ;
COzH j\OQH
DF'03 R™ “NH opo,* RT "N

SNH HO

e oMe: g Il__ome
HO [ I PO~ Ho
—_— —
. 5 NH B )NH

HOZC) HOZC) HO,C

Fig. 5. ATP-grasp enzymes MysC and MysD respectively decorate C3 and C1 of the MAA scaffold. (A) MysC reaction pathway involving
C3-phosphorylation. (B) MysC and MysD homologs synthesize multicore MAAs. (C) Proposed MysD reaction pathway.

formation of enamine or imine products. Specifically, MysC from
A. variabilis ATCC 29413 has been biochemically characterized to
convert 4-DG and glycine into MG (Balskus & Walsh, 2010). This
reaction can proceed through the phosphorylation of the 4-DG
C3-0OH or the glycine carboxylic group. To distinguish the two po-
tential routes, the Walsh group used ¥O-labeled glycine in the
MysC reaction and observed that both labeled oxygen atoms are
retained in the MG glycyl moiety, indicating that the 4-DG C3-OH
is phosphorylated in the reaction (Fig. 5A) (Balskus & Walsh, 2010).

The majority of known MAAs carry a C3-glycine but different
C3 moieties also appear, such as L-Ala, L-Ser, L-Glu, L-glutamicol,
L-Lys, and ornithine, suggesting the substrate flexibility of MysC
homologs (Katoch et al., 2016; Orfanoudaki et al., 2019; Sun et al,,
2020). Recent cyanobacterial genome mining disclosed MAA BGCs
with duplicated mysC genes, named mysC2 and mysC3 (Fig. 3B)
(Zhang et al.,, 2021). In the phylogenic analysis, the homologs of
MysC2 and MysC3 form two distinct clades, both divergent from
the previously characterized MysC homologs named MysC1. In-
terestingly, the BGCs with duplicated mysC genes are exclusive
to drought-tolerant cyanobacteria such as the desert cyanobac-
terium Nostoc flagelliforme (Fig. 3B). Heterologous expression in E.
coli showed that MysC3 incorporates ornithine or L-Lys onto C3 of
4-DG through their §- or e-amino group, while MysC2 connects the
a-amino group of mycosporine-ornithine to another 4-DG, form-
ing the dual-core MAA analog mycosporine-2-(4-deoxygadusolyl-
ornithine) (Fig. 5B) (Zhangetal., 2021). Furthermore, another study
reported a discontiguous MAA BGC carrying all three types of
MysCs in a lichen-symbiont Nostoc sp. UHCC 0926 (Arsin et al,,
2023). These MysC homologs lead to the synthesis of multicore
MAA analogs such as Tricore B carrying three 4-DG cores linked
by two ornithine moieties (Fig. 5B) (Arsin et al., 2023; Zhang et al.,
2021). The diverse function of MysC homologs enriches the chem-

ical complexity of MAA analogs. The synthesis of such multicore
MAAs may represent an adaptive strategy employed by microor-
ganisms to thrive in harsh environments (Zhang et al., 2021).

MysD

The significant structural diversity of MAA analogs at C1 indi-
cates the diverse substrate selectivity of MysD. Heterologous ex-
pression of the MysD-type MAA BGC from Nostoc punctiforme ATCC
29133 has affirmed that MysD accepts L-Gly, L-Ser, and L-Thr as
the amino acid substrate (Gao & Garcia-Pichel, 2011). Our group
recently characterized the function of MysD from N. linckia NIES-
25 in vitro, and found that recombinant MysD utilizes at least six
out of twenty natural amino acids (Chen et al., 2021). The enzyme
showed the highest activity toward L-Thr, followed by L-Ser, L-Cys,
L-Ala, L-Arg and L-Gly. Remarkably, the isolation of di- or tri-core
MAA analogs 2-mycosporine-ornithine and Tricore B from Nostoc
sp. UHCC 0926 suggests that some MysD homologs can accept a
large amino nucleophile such as mycosporine-ornithine and 2-
mycosporine-2-ornithine (Fig. 5B) (Arsin et al., 2023).

Given the chemical transformations catalyzed by MysC and
MysD are similar, it is reasonable to hypothesize a parallel reac-
tion mechanism between these two enzymes. In the MysD reac-
tion, it is speculated that the MG C1 oxo group may undergo phos-
phorylation and subsequently, the amino group of the amino acid
substrate could attack the phosphorylated intermediate, forming
the imine bond (Fig. 5C). The structural characterization of MysC
and MysD can provide useful insights into their reaction mecha-
nisms and illuminate key residues crucial for catalysis and sub-
strate binding. This information could be invaluable for under-
standing the versatility and specificity of these enzymes in the
MAA biosynthesis and in synthesizing diverse MAA analogs.
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WP_015956918.1 [Gloeothece citriformis PCC 7424]

WP_011320550.1 [Anabaena variabilis ATCC 29413]

WP_070393404.1 [Moorena producens PAL-8-15-08-1]
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WP_273770437.1 [Nostoc sp. UHCC 0926]

Fig. 6. MysE modifies the C1 of MG, producing disubstituted MAA analogs. (A) Proposed reaction mechanism of MysE involving ATP-dependent amino
acid loading. (B) Domain organization of representative MysE homologs identified from cyanobacterial genomes.

MysE
The NRPS-like enzyme MysE from A. variabilis ATCC 29413 is com-
posed of an adenylation (A), a thiolation (T), and a thioesterase
(TE) domain. The function of this enzyme in converting MG and
L-Ser into shinorine has been confirmed in biochemical studies
and heterologous expression (Balskus & Walsh, 2010). Our group
further confirmed the function of its homolog in the filamen-
tous cyanobacterium Fischerella sp. PCC 9339 by the heterologous
expression of its MAA BGC in Synechocystis sp. PCC 6803 (Yang
et al., 2018). To elucidate the reaction mechanism of MysE, the
Walsh group used [carboxy-20,]-L-Ser as the substrate and ob-
served that the product mass was two Daltons heavier compared
to the unlabeled product (Balskus & Walsh, 2010). This result in-
dicated that MysE loads L-Ser onto its T domain through the ATP-
dependent activation by its A domain (Fig. 6A). One 20 atom of
[carboxy-'80,]-1-Ser is discarded as part of AMP during the pro-
cess. It is hypothesized that the TE domain of MysE may catalyze
the formation of an enol ester intermediate, which leads to subse-
quent O- to -N rearrangement via 1,4-addition of the r-Ser nitro-
gen to the activated cyclohexenimine core (Fig. 6A). However, this
proposed mechanism depends on further structural and mecha-
nistic investigations for validation.

In contrast to the wide distribution of MysD homologs across
diverse microorganisms (Fig. 3B), MysE homologs seem to be ex-
clusively located in cyanobacterial genomes. Our bioinformatic

prediction suggested that the majority of the MysE A domain is
specific for L-Ser as the substrate. Indeed, a recent study has iden-
tified 20 MysE homologs from complete cyanobacterial genomes,
with 12 predicted to be specific for L-Ser, seven for glycine, and
one for L-Pro (Arsin et al., 2023). We also observed that some MysE
homologs carry an additional condensation (C) domain (Fig. 6B).

New Tailoring Biosynthetic Enzymes of MAAs

The four-step biosynthetic route offers insights into the syn-
thesis of disubstituted MAA analogs (Fig. 3A), but it does not
encompass the full range of structural diversity at C1 and C3 po-
sitions of these molecules, such as amino alcohol (e.g., asterina-
330) and enaminone (e.g., palythene). These modifications change
the UV absorption profiles of MAA analogs, potentially provid-
ing broad-spectrum UV protection. To identify additional MAA
biosynthetic enzymes, we applied genome neighborhood anal-
ysis to classify the genes that are frequently co-localized with
the known MAA biosynthetic genes (Chen et al., 2021). This
approach led to the identification of a high cooccurrence of
nonheme iron(ll)- and 2-oxoglutarate-dependent dioxygenases
(Fe(I)/20G-dependent dioxygenases) with MysC homologs. We
mined one MAA BGC from the genome of N. linckia NIES-25, which
contains the gene of Fe(ll)/20G-dependent dioxygenase named
MysH (Fig. 3B). Heterologous expression of mysH with mysABCD
in E. coli revealed that MysH converts disubstituted MAAs into
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corresponding palythines by oxidatively decarboxylating the MAA
C3 glycyl moiety (Fig. 3A). Fe(1)/20G-dependent dioxygenases cat-
alyze diverse oxidative reactions including but not limited to hy-
droxylation, desaturation, epoxidation, and halogenation (Islam
et al., 2018). We propose that MysH catalyzes an «-hydroxylation
on the C3-1-Gly moiety, followed by automatic hydrolysis to re-
lease palythines and glyoxylic acid. A similar enzyme, MysI, from
Nostoc sp. UHCC 0926, has also been suggested to catalyze the
same reaction on mycosporine-2-glycine (Arsin et al., 2023). De-
spite the high function similarity, MysH and MysI homologs were
grouped into two clades in a phylogenic analysis. Additionally, an
N-methyltransferase MysF is predicted to methylate the palythine
C3 amino group (Arsin et al., 2023), producing aplysiapalythine C.

Aside from the Fe(ll)/20G-dependent dioxygenases and
methyltransferases, we also observed the frequent occurrence
of glycosyltransferase (GlyT) genes in the MAA BGCs (Chen
et al., 2021). Many glycosylated MAA analogs have been reported
(D'Agostino et al., 2016; Nazifi et al., 2013), but corresponding
GlyTs have not been identified. Glycosylation could occur on
the MAA C7-OH or the L-Ser/Thr side chain. The presence of
short-chain dehydrogenases/reductases in many MAA BGCs
is also noted (Chen et al., 2021), but their specific roles in the
MAA biosynthesis remain unconfirmed. The diversity of tailor-
ing enzymes underscores the complexity and adaptability of
the biosynthetic pathways leading to the formation of diverse
MAA analogs, potentially reflecting the adaptive strategies of
microorganisms in various environments.

Concluding Remarks and Perspectives

With distinguishing anti-UV properties, MAAs can protect produc-
ing organisms in nature and have the potential to be developed
as novel sunscreen active ingredients. The characterization of the
MAA biosynthesis opens opportunities to address the difficulty in
isolating or chemically synthesizing these molecules for commer-
cial applications. For example, our group has demonstrated con-
trollable production of shinorine in the model cyanobacterium
Synechocystis sp. PCC 6803 with a yield comparable to the com-
mercially used producer red algae (2.37 mg/g DCW) (Yang et al,,
2018). Another research described the production of 31.0 mg/L
(9.62 mg/g DCW) of shinorine in Saccharomyces cerevisiae after in-
creasing the SH-7-P pool (Park et al., 2019). The synthetic biology
studies further led to the production of up to 1.1 g/L of gadu-
sol in Streptomyces coelicolor, a significant achievement for com-
mercialization (Osborn & Mahmud, 2019). Recent advances in
genome mining and bioinformatics analysis have facilitated the
advanced understanding of the MAA biosynthesis, uncovering dif-
ferent clades of core biosynthetic enzymes and new tailoring en-
zymes. This knowledge paves the way for innovative synthetic bi-
ology and biocatalysis strategies to sustainably produce a diverse
array of MAA analogs with tailored properties.

One key question regarding the MAA biosynthesis centers on
the diversion of the shikimate pathway intermediate to form 4-
DG. Identifying the enzyme(s) mediating this conversion is cru-
cial for boosting MAA production through metabolic engineer-
ing. MAA BGCs are surprisingly diverse on both the pathway level
(shikimate pathway vs. pentose phosphate pathway to supply the
precursor) and the enzyme level (MysD vs. MysE). Notably, it is
unclear why distinct types of core enzymes are utilized in na-
ture to produce structurally similar compounds. Nonetheless, the
widespread distribution and diversity of MAA BGCs illuminate
the significant biological importance of these molecules, likely
extending beyond UV protection.

Multiple MAA biosynthetic enzymes, such as the ATP-grasp
ligases and the NRPS-like enzymes, show unique reaction mecha-
nisms compared to other members of the same enzyme families.
The mechanistic studies would not only facilitate enzyme engi-
neering to produce MAA analogs but also advance our knowledge
of the principles governing the formation of novel enzyme chem-
istry from the same protein scaffolds. As genome sequencing
and mining become commonplace, the discovery and charac-
terization of more MAA BGCs and novel biosynthetic enzymes
are anticipated. This progress will facilitate further exploration
of their biosynthesis, ecological roles, and potential applications,
ultimately contributing to the development of new compounds
with protective properties against UV radiation and potentially
other beneficial uses.
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