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Abstract—Planning safe robot motions in the presence of
humans requires reliable forecasts of future human motion.
However, simply predicting the most likely motion from prior
interactions does not guarantee safety. Such forecasts fail to
model the long tail of possible events, which are rarely observed
in limited datasets. On the other hand, planning for worst-
case motions leads to overtly conservative behavior and a
“frozen robot”. Instead, we aim to learn forecasts that predict
counterfactuals that humans guard against. We propose a novel
game-theoretic framework for joint planning and forecasting
with the payoff being the performance of the planner against the
demonstrator, and present practical algorithms to train models
in an end-to-end fashion. We demonstrate that our proposed
algorithm results in safer plans in a crowd navigation simulator
and real-world datasets of pedestrian motion. We release
our code at https://github.com/portal-cornell/
Game—-Theoretic—-Forecasting—-Planning.

I. INTRODUCTION

One of the greatest challenges in robotics and Al is
reasoning about interaction with other agents in the world.
The ability to forecast how other agents behave in response
to a robot’s decisions is key to enabling safe, interpretable,
and responsive behavior. Consider a self-driving car negoti-
ating a left turn at a busy intersection, or a personal robot
collaboratively cooking with a human in a kitchen. The robot
has to both yield to the human at times, and show intent to
go ahead at other times. To do so, it must rely on forecasts
that are conservative enough to predict rare but risky events,
but not so conservative that the robot stays frozen in place.

Current forecasting approaches are primarily based on
Maximum Likelihood Estimate (MLE). For instance, in
self-driving, state-of-the-art forecasters [1], [2] are typically
trained on the L2 loss between the observed future motions of
actors and the predicted motion on data collected off-policy.
A planner then uses the forecast to compute a safe, collision-
free path. However, a forecaster trained purely on observed
data fails to predict rare but risky events. The distribution
of motions exhibits a long tail, necessitating the modeling
of this tail with exorbitant amounts of data to accurately
represent the diverse rare events.

Consider the example in Fig. |l| of a self-driving car
driving alongside a cyclist. We observe humans leave their
lane to give space to a cyclist while actively occupying
the lane of an oncoming car. However, an MLE forecaster
will likely predict the cyclist staying in their lane. This
results in plans that fail to guard against possible rare events
such as the cyclist accidentally coming into the lane. An
alternate approach is to reason about the worst-case outcome
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Fig. 1: MLE forecasts fail to predict rare, hazardous events,
like a bicyclist suddenly veering into a car’s lane. We propose
to learn adversarial forecasts that enable a planner to guard
against such events.

given the reachability of the cyclist [3], [4]. But this can
lead to overtly conservative behavior where the robot stays
perpetually behind the cyclist.

We propose a new objective for training forecasters.
We argue that MLE loss on observed motions from a finite
dataset is fundamentally insufficient due to lack of coverage
in the dataset. Instead, we view the problem through the
lens of imitation learning. Our key insight is that humans
don’t just plan for things that are likely to happen, but
plan contingencies for counterfactuals that could possibly
happen. We aim to learn forecasts that enable a planner to
guard as well as the demonstrator against any possible rare
event. We propose a game-theoretic framework for jointly
training planners and forecasts, and use no-regret learning to
solve for the approximate equilibrium of the game. Our key
contributions are summarized as follows:

1) A novel, game-theoretic framework for joint forecast-
ing and planning that guarantees performance with
respect to demonstrations.

2) Practical algorithms and architectures for joint fore-
casting and planning for multi-agent navigation.

3) Empirical evaluation on a crowd navigation simulator
and real-world pedestrian datasets.

II. RELATED WORK

We focus on the problem of planning for robot decisions
in the presence of humans in the workspace. The intended
motions of the humans are unknown to the robot as it plans
a sequence of actions that maximize the reward function for
a given task. We look at various clusters of related work.

Multi-agent games Multi-agent games are formulated as
both Stackelberg or Nash Equilibrium finding problems. [5]
models human action as a function of the robot’s action
and the system’s current state. [6] extends this model to
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Fig. 2: Overview of our game-theoretic framework for joint forecasting and planning. The forecaster maximizes the
performance difference between the generated plans and the observed plans. This results in counterfactual forecasts for
the cyclist veering into the vehicle’s lane that encourages the planner to guard by nudging away from the cyclist.

distinguish between different types of human actors (attentive
and distracted). [7] solves for the Global Nash Equilibrium
by using the Hamilton-Jacobi-Bellman equation of optimal
control. Trajectory optimization utilized by [8] includes a
sensitivity term that allows the vehicle to reason how much
the other vehicles will yield to avoid collisions. To capture
the problem’s constraints effectively, [9] enforces collision-
avoidance through augmented Lagrangian constraints instead
of imposing a large penalty on collision while constructing
the objective functions for the problems. However, unlike our
work, in order to solve these games, full information about
the cost for each agent is required.

Autonomous Driving In the autonomous driving domain,
this problem is broken down into game-theoretic interactions
to represent lane-merging, intersection crossing, pedestrian
management, etc. Works in this domain have modeled the
game by a Stackelberg equilibrium [10], [6], [5] where
the behavior of a leader is fixed and best-response strategy
is learned for the follower, or by a Nash equilibrium [9],
[71, [11], [8], where agents follow strategies such that their
objectives cannot be improved upon unilateral deviation. In
this paper, we focus on the unstructured domain of pedestrian
navigation, where there is large variability in human behavior
and the space of possible motions is larger.

Forecasting Human Motion Real-world human move-
ments constitute a broad multimodal distribution containing
inherent uncertainty and noise. Prior works have focused on
effective model architectures and appropriate representations
of interactions between agents. Human-robot and human-
human interactions can be effectively modeled with a self-
attention mechanism [12] for robot planning. Multimodal
deep generative models [13] for trajectory forecasting can
effectively represent diverse human behavior. Trajectron++
[14] produces dynamically-feasible predictions by incorpo-
rating dynamics constraints into learned multi-agent trajec-
tory forecasting. Representation learning [15] of safer motion
representations can be facilitated by contrastive estimation
from simulated negative behavior. The problem of transfer-
learning forecasting models from different datasets has been
tackled by explicitly modeling styles and noise confounders
[16]. However, the focus of forecasting literature has been
largely restricted to task-agnostic accuracy-based metrics
such as average displacement error (ADE) and final displace-

ment error (FDE). For instance, in self-driving, it is important
to use task-specific metrics prioritizing the safety of a planner
that consumes the forecasts [17]. This has motivated the
community to rethink appropriate metrics for planner-centric
evaluation of forecasting [18]. In this work, we are ultimately
interested in generating forecasts that optimize the final
performance of our downstream planner.

III. PROBLEM FORMULATION

We model the forecasting problem as a multi-agent Con-
textual Markov Decision Process (CMDP), where one of
the agents is the robot, and the rest are humans. Let
¢ denote the context — a history of past states-actions
for all the agents and the current scene. We assume
contexts are drawn from a distribution P(¢). Let &g =
(s®,ak 58, af, ... sR af) be the T-horizon trajectory of the
robot. Let £ = (sf Jatl sf ot o sH all) be the trajectory
of all the other human agents. Let c(éR ,EM) denote the cost
of a robot-human trajectory pair. This captures terms like
safety, burden and deviation from the nominal path.

We assume access to demonstrations of human and robot
trajectories drawn from a joint probability P(Eg,Ex|@). We
aim to learn a conditional distribution over robot trajectories
Py (Er|En, ¢), where y are the learnt parameters, that mini-
mize the average performance difference with respect to the
demonstrator.

Eo c(€r,&n) —

HNP( |¢)
Er~Py(|E1.0)

A. Pitfalls of Planning with MLE forecast

A template for solving Eq[l] is to first train a forecaster
to approximate the human trajectory distribution Py (E|¢) ~
P(Eg|@), where O are learnt parameters. A common way is
to train a Maximum Likelihood Estimator (MLE).

Definition 1 (MLE-FORECASTER): Given a dataset ¥ =
{(¢,&x)} of context and human trajectories, the goal of the
MLE forecaster is to maximize the likelihood of observed
trajectories:

c(&r.En) (D)

Su, 5R~P (19)

meax Eg &, log Po(Ex|9) (2

A nominal approach to planning is to minimize cost with
respect to this learnt forecast.



Definition 2 (NOM-PLANNER): Given access to a MLE-
FORECASTER Py(Ep|¢), a nominal planner minimizes ex-
pected costs w.r.t. the forecasts

mnEy, E C(ER, EH) 3)
v SH~P(.[0)
Er~Py (|SH,9)

While MLE-FORECASTER+NOM-PLANNER is industry
standard, the framework has two fundamental problems:
wide, labelwidth=!, labelindent=0Opt

1) Failure to predict rare but risky events: The MLE loss
is dominated by events that occur frequently in the
data. It fails to predict events &y that occur rarely
in the data. However, these events can be quite risky,
i.e., even if P(€y|¢) is small, the cost c(Eg,Ey) of the
planner can be very large.

2) Small forecasting errors lead to large planning er-
rors: The MLE loss optimizes the KL-Divergence
KL(P(Ew|9)||Po(Er|@)), which is mismatched from
the performance difference in @) Formally, a bounded
KL divergence, implies a Total Variation (TV) distance
bound of & (Psinker’s inequality). However, a small
error in forecasting could result in an approximation er-
ror of C,,.€ in the downstream planner’s performance,
where Cp,,y is the maximum cost of a trajectory.

IV. APPROACH

We present a novel game-theoretic framework for joint
forecasting and planning. We also present a concrete appli-
cation of the framework in a multi-agent navigation setting.

A. Game-Theoretic Framework for Forecasting / Planning

In Section [[II-A] we discussed two fundamental problems
with the MLE approach: (1) failure to predict rare-events
(2) loss mismatched with performance difference (Eq. We
now propose an approach that addresses both problems. Our
key insight is that humans don’t just plan for things that are
likely to happen, but plan contingencies for counterfactuals
that could possibly happen. For example, in Fig. the
human plans a path &g that guards for the counterfactual
that the bicyclist may accidentally veer onto their lane. We
aim to learn forecasts that don’t just predict likely motions,
but predict counterfactuals that humans guard against.

We view the problem from the lens of inverse optimal
control (IOC) [19]. IOC aims to learn a cost function that
explains demonstrated behavior. Here, we aim to learn a
forecast (that in turn defines the cost function) that explains
demonstrated behavior. IOC in this setting can be best
understood as a two-player zero-sum game [20] between a
forecaster and a planner. The forecaster generates forecasts
EH that increase the performance difference between the
planner and the demonstrator. The planner generates plans &g
that decrease the performance difference. Finally, to ensure
that the forecasts are not completely unrealistic, we constrain
them to be within an &-ball of the observed distribution.

Algorithm 1: ADV-FORECASTER / SAFE-PLANNER

Input : Dataset 7 = {(¢,6r,én)}
Output: ADV-FORECASTER Py(.|9),
SAFE-PLANNER Py (.|¢)
1 Initialize 6; with MLE-FORECASTER
2 Initialize y; with NOM-PLANNER
3fori=1...N do
4 Invoke current forecaster Py, and planner Py, on
2 to create a dataset {(¢,§H,§R,§A[’;1,El’é)}
5 Update planner Wiy < W; — Vyl'(Py)
6 Update forecaster 6,11 < 0; — Vo' (Py)

7 return Py, (.|¢), Pyy(.|9)

maxmin By | E (g éy)— E  c(&rén)
o Vv Eu~Po(.|9) E~Po(0)
Er~Py(1€.0) Sk-P(10)

s.t. By [KL(Py(Ex|9) || P(Ex|0))] (5

We aim to compute a (near-optimal) €— equilibria of
the game above, which would result in a planner Py, that
bounds the original objective by € as well. Following the
arguments in [20], since the game is bilinear in both Py and
Py, playing a no-regret strategy for both forecaster and the
planner guarantees finding the €— equilibria.

We define the forecaster trained in this adversarial fashion
as ADV-FORECASTER, and the planner trained to be robust
against such an adversarial forecaster as SAFE-PLANNER.
We describe the overall approach in Algorithm [I] We setup
an online learning game that lasts N rounds. In every round,
both the forecaster and the planner receive a loss function
and play a no-regret update (we use online gradient descent).
We define the loss functions for both players below:

Definition 3 (ADV-FORECASTER): At round i, the fore-
caster receives a dataset {(¢, &y, &g, &)} of context, human
demonstration, robot demonstration, and the planned trajec-
tory, respectively. We define the loss for this round ¢/(Pp) as

l(Pg)= E

B el — )]
0,61 .6r:Ch

En~po(|0)

(&)
—MOgPe(éHIM]

where the first term is the difference between the costs
of the demonstrated and the planned robot trajectory, and
the second term is the log-likelihood of observed human
trajectories multiplied by a Lagrange multiplier.

Definition 4 (SAFE-PLANNER): At round i, the planner
receives a dataset {(¢,&Eg,&L;)} of context, robot demonstra-
tion and the adversarial forecast respectively. We define the
loss for this round ¢/(Py) as :

((Py)= E_
v 0.Er.E

E [c<$R,é;,>—c<éR,$,s>]] ©)

Er~Py(.1&;.9)
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Fig. 3: Model architecture for joint forecasting and planning. Agents in the scene are represented by nodes in the graph.
Each agent has two outputs: a forecast and a plan. We apply first self-attention over the encoded contexts for each node
which are decoded into adversarial forecasts, which are then used by the planner to generate safe plans for each agent.

where the inner most term is the difference between costs
of the planned and the demonstrated robot trajectory against
the current forecast.

B. Application for Multi-Agent Navigation

We define a multi-agent navigation scene to contain N
agents interacting with each other. We can consider each
agent, in turn, to act as the “robot” interacting with the
other “humans” in the scene. For every agent, we have to
plan a T-horizon trajectory, considering the future motions
of the other agents in the scene. We need to encode goal-
reaching and collision avoidance to define a cost function for
the navigation problem. However, while forecasting motions
for agents, we do not always have access to their intended
goal locations. From a dataset of prior interactions between
agents, given the context of the scene, we can infer the future
motions using maximum-likelihood estimation. Additionally,
we enforce collision avoidance using the following obstacle
cost function [21] between plans and forecasts:

T
c(&. &) = Y, COL(s{ s{")
dist(s® sH) <0

—dist(sR,s) + e, r S
(dist(sR,sT) —€)? 0 <dist(sR,s") < ¢

1 1%

COL(vaSlH) =

1
2¢e
0, otherwise

(N

We sum the cost over all robot and human states in
the predicted 7T-horizon planner and forecaster trajectories.
When a robot interacts with multiple humans, the human
trajectory with the largest cost is considered.

In our model architecture (Fig. [3), each agent in the scene
is represented by a node in a graph. Neighboring agents are
connected by edges. Each node in the graph takes in its
individual context, including state history and other relevant
information, such as a local map representation of the scene.
To encode interactions with other agents, self-attention is
applied across neighboring nodes. Each node has two output
heads: a forecaster and a planner. The predicted forecasts can

be fed as input to the planning module. While the inputs to
the forecaster are restricted to the shared context of the scene,
the planner can additionally take in information private to an
agent, such as its goal location.

We first train the forecasting and planning model to
only maximize the likelihood of the future motion for the
agents in the scene (Eq. [2] and Eq. 3). This is equivalent
to simply maximizing the likelihood of the future motions
in the dataset, and we call it a MLE-FORECASTER and
NOM-PLANNER. Apart from matching the ground truth, we
wish to encode collision avoidance for measuring our plan’s
performance with respect to the forecasts. To incorporate this
cost function, we solve the min-max game defined by Eq.
[ For every minibatch of data, we update the forecasting
model (ADV-FORECASTER) to adversarially maximize the
difference of the cost functions between the planner and the
ground truth. In response, the planner (SAFE-PLANNER) is
updated to minimize the costs with the ADV-FORECASTER.
We ensure that the predictions do not deviate too much from
the ground truth data by continuing to optimize the likelihood
of the observed future motion.

V. EVALUATION

A. Setup

We evaluate our algorithm on a crowd navigation simulator
and real-world pedestrian datasets.

1) CROWDNAV [22]: This is an open-source simulator
where a robot has to move forward in the presence of
other humans. The humans in the scene move toward their
respective goal locations and are simulated using the ORCA
[23] algorithm. We are interested in the non-compliant
setting of the simulator, in which the five humans in the
scene are unresponsive, i.e., they ignore robot motion. To
navigate the scene, the robot should be able to plan around
the future movements of the humans. To generate expert
trajectories, we utilize the reinforcement learning (RL) agent
provided by [22], which uses a self-attention (SA) module
to encode human-human and human-robot interactions. The
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Fig. 4: Evaluation of CHOMP costs (Eq EI) and collision rates for different planner and forecaster combinations.

SARL agent is trained using a reward function that manually
encodes collision avoidance and goal-reaching behavior.

We collect a dataset of 5000 episodes of human-robot
navigation using this SARL policy. Our models are trained on
50% of the dataset and evaluated on the rest. While the SARL
model architecture considers just the current state of the robot
and humans to predict the robot’s immediate action, we also
use an LSTM-module to encode a history of 8 timesteps (2
seconds) for each agent. The predictions produced by the
forecaster are given as input to the planning module along
with the context and goal location of the robot. We output
actions for each agent over a horizon of 8 timesteps.

2) The ETH-UCY Benchmark: There are five different
datasets of real-world pedestrian movements in the ETH
[24] and UCY [25] benchmark. The scenarios in the dataset
showcase a wide range of human-human interactions and
are a standard benchmark in the field. The data is captured
at a 2.5Hz frequency (0.4s timestep). For the forecasting
task, 8 timesteps of the history (3.2s) are considered, and
12 timesteps of the future are to be predicted for each agent.
For evaluation, our model is trained on 4 out of the 5 datasets
and evaluated on the held-out dataset.

We implement the Trajectron++ [14] model for the base
configuration of our planner and forecaster. It is a state-
of-the-art multimodal conditional variational autoencoder
(CVAE) generative model that can produce dynamically
feasible trajectories. While the original model produces a
distribution of trajectories, we use deterministic forecasts for
each agent for simplicity. To do this, we restrict the outputs of
the model to a unimodal distribution for each agent’s future
motion. To calculate the collision avoidance cost function,
we use the mean of this distribution.

B. Results and Analysis

Ol. ADV-FORECASTER predicts more severe hazards
than MLE-FORECASTER. In Fig. 5] we show examples of
forecasts produced by the ADV-FORECASTER that leads to
collisions with the plans generated by the NOM-PLANNER.
This is expected as the ADV-FORECASTER is trained to
increase the cost difference between generated plans and the
observed trajectories in the dataset. On the other hand, MLE-
FORECASTER maximizes likelihood of observed motions
and is unable to generate potential hazards that render the
generated plans unsafe. Fig [] shows that the cost (Eq [7)
of plans is significantly higher when evaluated with the
adversarial forecasts compared with the MLE-Forecasts or
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Fig. 5: The MLE-FORECASTER predicts the most likely futures
for each human. NOM-PLANNER avoids collisions with the MLE-
FORECASTER but not with the ADV-FORECASTER. Collisions are
marked in red.
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Fig. 6: The SAFE-PLANNER plans around the ADV-FORECASTS
leading to safe motions, whereas the NOM-PLANNER collides with
the adversarial forecasts. Collisions are marked in red.

the observed futures in the CROWDNAV environment and
the ETH-UCY benchmark.

02. SAFE-PLANNER guards against rare events better
than NOM-PLANNER. Fig [6] shows scenarios where the
NOM-PLANNER is in collision with the forecasts produced
by the ADV-FORECASTER as it does not consider the possi-
bility of adverse events. Since the SAFE-PLANNER is trained
to minimize the cost difference with the adversarial forecasts,
its plans are safe with respect to the ADV-FORECASTER. It
naturally encodes behavior that guards against rare events in
the dataset. Fig [d] shows that the SAFE-PLANNER has lower
costs than the NOM-PLANNER when evaluated against the
observed futures of humans. We also observe lower costs
and collision rates for the SAFE-PLANNER compared to the
NOM-PLANNER when tested against MLE-FORECASTS and
the ADV-FORECASTER on the CROWDNAV simulator.

0O3. SAFE-PLANNER and ADV-FORECASTER produce
plausible trajectories even with higher tracking er-
rors. Both the SAFE-PLANNER and ADV-FORECASTER
are trained with the primary objective of optimizing cost
difference. But to do so, they have to deviate from ground-
truth observations. Table [[ shows that their average displace-
ment error (ADE) and final displacement error (FDE) is



TABLE I: We compare the Average Displacement Error (ADE)
and Final Displacement Error (FDE) of the predictions motions by
our different planners/forecasters on the testing splits of the ETH-
UCY benchmark and the CROWDNAV simulator.

MLE-FORECASTER ADV-FORECASTER NOM-PLANNER SAFE-PLANNER

ADE FDE ADE FDE ADE  FDE ADE  FDE
ETH-UCY 0387 0.947 0.405 0.950 0387 0947 0391 0.956
CROWDNAV  0.268 0.371 0.274 0.383 0.184 0.268 0.193 0.283
CrOWDNAV CrOWDNAV
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Fig. 7: (CROWDNAV) When ADV-FORECASTER and SAFE-
PLANNER deviate from the ground truth predictions, they pro-
duce alternate plausible trajectories. The forecasts produced by
the ADV-FORECAST represent risky futures. The SAFE-PLANNER
conservatively guards against possible rare events.

slightly higher. However, we observe that the trajectories
generated by the models are generally plausible. Fig. [7]
shows scenarios in the CROWDNAV simulator where they
both deviate from ground truth trajectories but are still quite
plausible counterfactuals that the robot should guard against.

VI. DISCUSSION AND LIMITATIONS

This paper introduces a novel game-theoretic framework
that addresses joint forecasting and planning. We discuss the
pitfalls of MLE forecasting that only focus on maximiz-
ing the likelihood of observed human motion. Instead, we
produce adversarial counterfactuals by optimizing the per-
formance difference between generated plans and observed
demonstrations, considering the predictions made by our
learned forecaster. In response, our framework can guard
against rare but risky events by generating plans that are
safe with respect to the adversary.

There are some limitations to our approach. We observed
larger error ranges on the ETH-UCY dataset. This is likely
because real-world pedestrian datasets contain significant
noise in estimation and a wide variety of behaviors, making
it difficult to model human behavior accurately. In future
work, we will extend our framework to consider multi-modal
distributions of plans and forecasts. On-policy evaluation of
our framework in scenarios where humans suddenly change
their goals is another promising direction.
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