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Abstract

Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data
could help shed light on the initiation, progression, and potential treatment of cancer. While such data have tradition-
ally been available via "bulk sequencing, the more recently introduced techniques for single-cell DNA sequencing
(scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce

a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary
trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD's per-
formance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-
of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the
birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets,

NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available at https://

github.com/Androstane/NestedBD.
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Background

Copy number aberrations, or CNAs, are somatic muta-
tions that delete or amplify genomic regions and could
cause cancer by amplifying oncogenes [1] or deleting
tumor suppressor genes [2]. CNAs are distinguished
from copy number variations, or CNVs, which are typi-
cally germline mutations that serve as markers for popu-
lation or evolutionary genetic studies. CNAs can vary in
terms of the size of the genomic region that is amplified
or deleted, the number of such events across the genome,
as well as the rate at which they occur [3]. In particular, a
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CNA could amplify an entire genome or delete/amplify
an entire chromosome [4]. However, CNAs are often
smaller, spanning thousands or fewer base pairs [5].

The accumulation of CNAs during cancer devel-
opment and progression could result in intra-tumor
heterogeneity (ITH), where distinct CNA signatures
characterize different groups of cells [6]. Elucidating ITH
from genomic data is important for the diagnosis, prog-
nosis, and treatment of cancer [2, 6—-13]. For example, the
adaptive therapy strategy proposed in [14] is designed by
taking ITH into account and utilizing it for determining
which cells, or clones of cells, to target. Single-cell DNA
sequencing (scDNAseq) [15-19] is ideal for inferring
CNAs and ITH as it generates DNA sequence data from
individual cells that are readily available for comparative
genomic and evolutionary analyses [16]. Indeed, several
methods have been developed for inferring copy number
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profiles from scDNAseq data [20], though their accuracy
needs improvement [21].

scDNAseq data sets of thousands, and even tens of
thousands, of cells will become commonplace, e.g., [22].
Development of “one-step methods” that could infer,
with high accuracy, evolutionary histories of such large
data sets is likely to prove very challenging. Instead,
multi-step methods, where, for example, the data is first
clustered, evolutionary histories are then inferred on
the individual clusters, and the resulting trees are finally
glued together, could prove the approach of choice. This
is analogous to the supertree approach to large-scale
phylogenetics [23]. Not only is this approach taken for
inferring large-scale species phylogenies at the scale of
the Tree of Life, but also, for example, for large-scale
virus genome data, e.g., [24]. In the case of ITH, one goal
would be to infer the tree of clones, which is relatively
a small tree, as its leaves correspond to the individual
clones, and then infer the trees of individual clones sepa-
rately. In this study, we focus on this approach and the
sub-clonality level, i.e., evolutionary analyses of groups of
cells that is assumed to have little or no clonality. In par-
ticular, we target the problem of inferring the evolution-
ary history, along with ancestral copy number of profiles,
of a set of individual cells using scDNAseq data, where
each cell is defined by its copy number profile. That is,
we assume the copy number profiles have been estimated
already, and treat them as input (while accounting for
error). Furthermore, we focus on focal CNAs that impact
sub-chromosomal genomic regions, rather than whole
genomes or chromosomes.

SCICoNE [25] and CONET [26] are two recent tools
for simultaneous CNA detection and evolutionary his-
tory reconstruction on scDNAseq, leveraging the shared
evolutionary history among single cells to infer CNAs. In
this regard, both SCICoNE and CONET estimate a muta-
tion tree, where a path from the root to a leaf defines the
CNA signature of all cells attached to that leaf. In this
sense, these two methods do not fit within our study,
which, as mentioned above, is focused on sub-clonal
inference. We discuss this point further in “Evaluating
tree inference on simulated data” section.

In this study, we address the problem of inferring a
phylogenetic tree with branch lengths, with the two main
goals of our work being to study the appropriateness of
(1) an independent-bins assumption in these analyses and
(2) a birth-death model of CNAs under this assumption.
In studies of CNAs, it is common to partition the genome
into bins, where each bin is a fixed number of nucleo-
tides, rather than conduct the analysis at the resolution
of individual nucleotides [20]. Given that CNAs naturally
span many bins and CNAs could overlap over time, copy
numbers in adjacent bins are not independent. Trying to
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model CNAs as events while taking into account such
dependencies could result in intractable inference prob-
lems. Indeed, the MEDICC model developed by Schwarz
et al. [27] aims to capture these dependencies, but infer-
ence under this model is very limited in terms of the size
of data given the prohibitive computational requirements
[28]. While violated in practice, an assumption of inde-
pendence among sites and loci is commonplace in phy-
logenetic analyses and method development due to the
computational efficiencies it leads to. While models like
MEDICC?2 [29] address some of the computational limi-
tations, the integration of MEDICC2’s approach, which is
focused on computing pairwise distances between CNA
profiles, into other methods, remains challenging. Adapt-
ing these strategies to other contexts, such as NestedBD,
which aims to infer branch lengths and mutation rates
without directly addressing bin dependencies, would
require significant methodological adjustments. Such
complexity suggests that studying the robustness of evo-
lutionary analyses to the independent-bins assumption is
still critical due to the appeal and practicality of such an
assumption, especially as data sets become larger.

Here, we study the impact of assuming that copy num-
bers across bins are independent of the quality of phy-
logenetic inference. Furthermore, we propose the first
formulation and inference method for copy number pro-
file data from scDNAseq based on a birth-death model
of copy numbers. We developed a new method, Nest-
edBD, for Bayesian inference of phylogenetic trees from
scDNAseq data under a birth-death model of copy num-
ber evolution, assuming the bins are independent. The
cells are also assumed to have been sampled at a single
time point. NestedBD is implemented as a package in
BEAST 2 [30], utilizing existing Markov chain Monte
Carlo (MCMC) implementations and allowing for joint
inference of trees and model parameters. An overview of
NestedBD and its underlying model are shown in Fig. 1.

We assessed the performance of NestedBD on simu-
lated data and compared it to the performance of two
commonly used methods, neighbor-joining (N7J) [31] and
maximum parsimony (MP) as implemented in PAUP*
[32]. These two methods are readily applicable to CNA
data since NJ requires pairwise distances among cells,
which can be computed from the copy number profiles.
MP works directly on the copy number profiles and seeks
a tree that minimizes the total number of copy num-
ber changes along its branches. Furthermore, these two
methods are run in a way that assumes independence
among the bins. Additionally, we have included a com-
parison with Lazac [33], a state-of-the-art method for
inferring copy number phylogenies because it has been
extensively benchmarked against various methods, dem-
onstrating its effectiveness in copy number phylogeny
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Fig. 1 Overview of NestedBD. a NestedBD infers a single-cell phylogenetic tree with branch lengths and branch-specific mutation rates

from binned copy number profile estimates. Furthermore, the method infers ancestral copy number profiles as well as “corrected” copy number
profiles at the leaves. b The graphical model underlying NestedBD. Shaded nodes correspond to the observed values or fixed parameters; white
nodes are latent variables. ¢ Priors and distributions of the variables. The variables are described in detail in “Methods”

inference. We found that NestedBD infers more accu-
rate tree topologies than the other methods on the simu-
lated data. In addition, NestedBD can provide accurate
estimates of branch lengths in terms of relative times of
evolution, which can be scaled by branch-specific muta-
tion rates to obtain an estimated number of copy number
changes along each branch if desired. We also explored
NestedBD’s applicability on two data sets of colorec-
tal cancer [34] and demonstrated its potential to infer
informative evolutionary histories from single-cell data.

Methods

In this work, we assume that the genomes under consid-
eration are partitioned into bins such that all genomes
have the same number and size of bins. The copy number
profile of a cell at each bin is an element of {0, 1,2, .. .}.

A birth-death evolutionary model of CNAs

To compute the likelihood of phylogeny, we first need an
evolutionary model that defines the transition probability
between copy number states. We model the copy number
amplification and deletion by a constant-rate birth-death
process {Z(t),t > 0} with state space S ={0,1,2,...}.
Z(t) gives the copy number state of a bin at time ¢. The
linear birth-death process first introduced by [35] is

also used in [36] to model gene content evolution. We
assume each copy is independently amplified with birth
rate Ay > 0 and deleted with death rate us; > 0. The
transition rate, which measures the frequency at which
the system’s state transitions from one state to another
per unit of time, can be computed based on the current
copy number state and the birth/death rate. Specifically,
at time ¢ when the system has a copy number state m, or
Z(t) = m, the transition rate to state Z(t + At) =m + 1
is mAp1, corresponding to the occurrence of a birth event.
This rate is multiplied by m to account for the fact that
each of the m existing copies has an independent chance
to be amplified. Conversely, the transition rate to state
Z(t+ At) =m —1 is muy;, which corresponds to a
death event. Similarly, the multiplication by m reflects
that each of the m copies also has an independent chance
of being deleted. Note that when Z(¢) = 0, the transition
rate becomes zero, suggesting neither amplification nor
deletion from zero is allowed. Then, given the transition
rate, we can compute the transition probability between
copy number states as follows. Let i be the copy number
state at the child node, j be the copy number state at the
parent node, and ¢ be the time between the parent node
and the child node. Since there is no prior information on
the birth and death rates, we assume Ay = uy = r. The
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transitional probability of the birth-death process has
been addressed in the works of [37—39], and based on the
solutions presented in these sources, we can compute the
conditional probability P(i|j, ) as follows:
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across the tree in their original characterizations [40].
For the purpose of inference, we parametrize the model
using the diversification rate r; = (4 — ji) and extinc-
tion fraction r, = (ft/A). Since there is no prior infor-

0, ifi#j=0
1, ifi=j=0
N =7 =02 1
PUp =y nl ifi>0&j=1 (1)
(1+rt) 17 ] =
i+j in(i) (i j— 1 _ .
%(l ”. Zn;ri(”) (k> <£ 1 ) (rt)~2k, Otherwise

Accounting for error in copy number profile estimates

In practice, copy number profiles are estimated from
scDNAseq data and consequently have errors in them
[21]. To account for errors in the inferred profiles, we
assume that the estimated copy numbers follow a normal
distribution centered at the true copy numbers with a
constant variance. Specifically, for estimated copy num-

ber ¢; and true copy number ¢;, we have ¢; ~ N (¢, 02),
1,%%=Cty2
)

. —3( T
which leads to P(c;|ct, 0) = eZT

Bayesian inference

Given the birth-death evolutionary model of copy num-
ber profiles, we use MCMC to sample from the following
posterior distribution:

P(7,d,0,0|D) o f(DIT,d,0)P(T6,R)f (0)f (d)f (R|Ar, R, BR),

where D is the estimated copy number profile, o is the
variance of error in the estimated copy number profile,
0 is the collection of parameters that define a birth-death
tree prior on 7, (Note that there are two birth-death
processes employed in this work—one on the shape of
the trees and another on the copy number states. They
are distinct and should not be confused.) and 4 is the dis-
tance between the common ancestor of all cells and its
diploid ancestor. R corresponds to the clock model on
mutation rates among branches, parameterized by Ag, the
expected number of rate changes along the tree branches,
and the pair (g, Br), which defines a gamma distribution
on the rate multiplier. We employ standard tree moves
as available in BEAST 2 [30] to explore the tree space.
Details of the tree moves used in NestedBD are available
in Additional file 1.

Prior

We assume the topology 7 follows a two-parameter
birth-death prior. Specifically, the birth-death model on
the tree is a continuous-time process with two param-
eters, 7 and i, the instantaneous per-lineage rates of
speciation and extinction. Both /. and ji are constant

mation on the diversification rate and extinction
fraction, we assume a uniform prior on both r; and 7,
with ry ~ Uniform(0,1000000) and r, ~ Uniform(0, 1).
Mutation rates on branches are assumed to follow the
random local clock (RLC) model, in which each branch
either inherits its parent branch rate or, with a certain
probability, assumes a new rate drawn from a shared rate
distribution [41]. We assume a Poisson prior on the num-
ber of rate changes with an expected value iz = log2.
This sets a 0.5 prior probability on the hypothesis of
no change in mutation rate across the phylogeny. We
also assume that rate multipliers ¢7 are independently
gamma distributed with ag = 0.5 and g = 2 as in [41].
We use the minimum (0) and maximum (9) copy number
states considered in this study to set the lower and upper
bounds on the variance of error o2 in the estimated copy
number state, which is assumed to be uniformly distrib-
uted. Specifically, we set oy = 0 and B, = 9.

Likelihood

Assuming r = 1 with transition probability defined by
birth-death evolutionary model on copy number state in
Eq. (1), we used a modified Felsenstein’s algorithm [42] to
compute the likelihood of tree 7 constructed from input
copy number profile data D. We assume a diploid com-
mon ancestor of all tumor cells.

We define the state space of copy numbers as
S§$ =1{0,1,2,...k}, where k € N defines the maximum copy
number state to be considered during likelihood com-
putation. For flexibility of the method, k is left to be a
user-specified input with default being 9 considering the
maximum value commonly observed in copy number
state of cancerous cells. Note that although the likeli-
hood computed under a larger k could be more accurate,
it may not always be desirable computationally given the
likelihood computation takes O(nk2) time, where # is the
number of leaves in the tree.

To compute the likelihood of a tree, we adopt Felsen-
stein’s algorithm with slight modification when comput-
ing the likelihood at the root to account for the diploid
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origin. Specifically, the original algorithm computes
likelihood across the whole tree using conditional like-
lihoods for all possible states at the root of the tree by
L =73 ,csTx * Lroot(x), where x refers to the copy num-
ber state at the root node of the tree and 7, refers to the
corresponding prior probability of that copy number
state at the root of the tree, and Lot (x) refers to the
conditional likelihoods for the state x for the sub-tree
under the root (which is the entire tree). Our algorithm
computes instead £ =73, ¢P(*]2,d) - Lroot(x), where
P(x|2,d) corresponds to the transition probability as
defined in Eq. (1) and d represents the time between the
diploid and common ancestor of all cancerous cells. By
default, d is inferred jointly with the topology by assum-
ing a uniform prior d ~ Uniform(0.001,5) on it.

Inferring corrected copy number profile

For the inference of corrected copy number profile with
an input tree using the birth-death evolutionary model,
we applied a dynamic programming algorithm adopted
from [43] which maximizes the joint likelihood given
the binned copy number profiles of the single cells and
tree topology. The transition probability was computed
by Eq. (1). To account for the diploid origin of all cells,
we computed the probability of each state at the root by
P(x|2,d) as defined in “Likelihood” section. While the
algorithm was designed for ancestral profile reconstruc-
tion while keeping the profiles at the leaves unmodified,
it could be paired with an error model to enable correc-
tion of the profile estimates at the leaves as follows (for
an arbitrary bin). For each leaf y of the tree and for each
possible copy number j, we compute Ly(j|cy, E), the like-
lihood of copy number state at y being j given the esti-
mated copy number state ¢, and the error model E in
“Accounting for error in copy number profile estimates”
section. Then given the father of y is assigned state i, we
compute the likelihood of the best reconstruction of leaf
y by max; L (jlcy, E)P;(ty), and set the copy number at
leave y by C, = argmaijy(j|cy, E)Pjj(ty), where Pj; is the
transition probability computed by Eq. (1) and ¢, is the
length of the branch between y and its parent.

Evaluating tree inference on simulated data

To assess the performance of NestedBD under various
scenarios, we designed a simulation study that varies the
number of single cells sampled (the leaves in the trees)
and the number of CNAs.

Simulation protocol

To simulate data with a known ground truth tree, we
made a few modifications to the CNA evolutionary
simulator described in [21]. First, we randomly sample
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the allele on which the CNA is going to occur from the
paternal and maternal alleles with a binomial distribu-
tion with p = 0.5. Then, we linearize the genome and
sample the genomic coordinate x where the CNA occurs
from a probability distribution whose density function is
given by f(x) exp(Z?gl sin(1000x + ¢;) - 4;). We fixed
¢; ~ Uniform(—m, ) and A; ~ Uniform(0,a), where a
is a user-specified parameter that controls the non-uni-
formity of the distribution. Note that when setting a = 0,
the position of the CNA is sampled from a uniform dis-
tribution as in the original simulator. Using a normalized
sum of sines with a random phase as the distribution to
sample copy number events provides enough random-
ness and allows control of overlap during simulation.
For the purpose of this study, we set a = 0.6 as we found
the CNAs simulated under such setting best resembled
what we observed from the biological data sets. On aver-
age, more than 90% of the CNAs overlapped with at least
one other CNA. Also, the simulator now accepts a user-
defined tree and simulates CNAs along the branches of
the input tree. In order to simulate CNAs that resemble
the patterns of those seen in real data, we took the two
trees reconstructed by NestedBD on the colorectal can-
cer data, which contain 20 and 50 cells, as our model
trees (see “Analysis of colorectal cancer samples” sec-
tion). Specifically, the number of CNAs on a branch with
length ¢ is sampled from a Poisson distribution with the
mean c - £, where c is the event multiplier that controls
the number of CNAs at the leaves of the tree. In order to
evaluate how the complexity of copy number events can
affect the performance of each method, we set ¢ to 90,
125, and 250, corresponding to the cases of low, medium,
and high frequency of copy number events, respectively.
An example of copy number profiles simulated with dif-
ferent values of c is available in Additional file 1: Fig. S2.
The size of each CNA event is determined by sampling
from an exponential distribution with mean=10 Mbp,
plus a minimum CNA size of 2 Mbp. Whether the CNA
resulted in a gain or a loss of copy is determined by sam-
pling from a binomial distribution with p = 0.5. After all
CNA events are added along the branches, the genome
is divided into 15k non-overlapping bins, and the copy
number of each bin in a leaf is calculated from all copy
number events along the path from the root to the leaf.
Finally, to obtain copy number profile estimates, we
aligned the reads generated by the simulator back to the
reference genome using BWA [44] with default settings
and inferred the profiles at the leaves using Ginkgo
[45], as it has been shown to be among the most accu-
rate approaches for estimating copy number profiles
[21]. The estimated copy number profiles had a median
error rate of 0.24 when compared to true copy number
profiles available from the simulator. The distribution of
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copy number profile estimation error is given in Addi-
tional file 1: Fig. S1.

Inference methods

We ran NestedBD, MP, NJ, and Lazac on estimated copy
number profiles estimated by Ginkgo. To satisfy the inde-
pendent-bins assumption, we sampled the bins with a
1/20 sampling rate before making the copy number pro-
file data available to all inference methods.

For each simulated data set, NestedBD was run using
the BEAST 2 implementation with coupled-MCMC [46],
where one chain is “cold,” operating like a standard
MCMC, while the other chains are “heated,” making
larger state space jumps and proposing new states for
other chains, to enhance exploration efficiency. Five
chains with random seeds were run for 80 million itera-
tions to assess the convergence of MCMC. The first 20%
of posterior samples were discarded as burn-in. To sum-
marize the posterior distribution, 2000 samples were
taken from the MCMC chain for computation of inferred
topology and branch lengths. We computed the maxi-
mum clade credibility tree (MCC; the tree with the maxi-
mum product of the posterior clade probabilities) with
branch lengths summarized using the median node
heights across samples as the point estimates. Specifi-
cally, for every possible clade i (a group consisting of a
single ancestor and all its descendants), we first calcu-
lated the posterior probability p;, defined as the propor-
tion of trees in which that clade appears. Then, for every
tree T in the samples, we compute the product of the
posterior probabilities [ [; p;(T), where p;(T) is the pos-
terior probability of clade i in tree T, and select the tree
with maximum product as the MCC tree, Txacc, ie.,
Tmcc = argmax [ [; pi(T). Branch lengths are summa-

T

rized by taking the median of the node heights across all
trees in which the clade appears, which provides a central
estimate of time or evolutionary change for each node.
We obtained 100 bootstrap replicates for each data set
using both MP and NJ with PAUP* [32] and Lazac with
random sampling of bins. Note that MP, NJ and Lazac
return unrooted trees by default while NestedBD infers a
rooted tree by assuming a diploid origin. To root the
trees inferred by MP, NJ and Lazac, we added to each
data set a diploid “genome” as an outgroup. For MP, we
define the character set as all integers, treating a change
of gaining/losing a single copy in any bin as a single
mutation. In the case of NJ, we compute the pairwise dis-
tance using Hamming distance. Further detailed parame-
ters and options used when running MP and NJ are
available in Additional file 1.
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As we mentioned in “Background” section, there
are methods, such as SCICoNE [25] and CONET [26],
that assume clonal evolutionary histories. As such,
they infer trees whose leaves correspond to clones
and internal nodes correspond to events where the
path from the root to a leaf describes the set of events
(CNAs) that define the clone at that specific leaf. All
cells that share the same CNAs of a given clone are
then attached to the clone’s corresponding leaf. There-
fore, when cells are analyzed at the sub-clonal level
(i.e., cells coming from a single clone), these meth-
ods could lump all cells together on a tree with a sin-
gle node. This is not a limitation of these methods;
instead, they are designed for application to data sets
where clonality exists. Indeed, this is what we observed
when we ran SCICoNE [25] and CONET [26]. As dis-
cussed above, we used copy number estimates from
read counts of aligned reads generated by the simu-
lator as input to NestedBD, whereas in the studies
reporting on SCICoNE and CONET, read counts are
directly simulated from true copy number profiles. To
make the results comparable to those of NestedBD, we
first attempted to run both SCICoNE and CONET at
the single-cell level on one of our simulated data sets
with 50 cells using corrected read counts from aligned
reads. SCICoNE resulted in a mutation tree with a
single node, to which all CNA events are assigned, as
shown in Additional file 1: Fig. S3, and CONET failed
to initialize a tree with a properly defined likelihood.
We then ran SCICoNE and CONET on read counts
simulated from true copy number profiles, as available
from our simulator, using the simulation model of each
method. We observed that SCICONE and CONET gen-
erated a tree with 2 and 3 event nodes, respectively.

NestedBD, on the other hand, does not assume clon-
ality. In fact, we envision NestedBD to be run on clonal
genotype data that are obtained as representative of
clonal copy number profiles or on the sequence data
obtained from a single clone. During the tree search
process, NestedBD searches for a full binary tree, that is
effectively the mutation tree on the ancestors of clones
or the tree of cells within one clone. An example of such
analysis is the study of [47], where evolutionary histo-
ries of renal cancers are estimated, and heterogeneity is
explored within the primary tumor and its metastatic
sub-clones. Another notable example is the study of
[48], in which the authors concentrated on reconstruct-
ing subclonal lineage dynamics by inferring multiple
trees to delineate the phylogenetic relationships at the
single-cell level within the clonal population. As clonal-
ity is no longer dominant under this scenario, methods
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relying on such assumptions would be less applicable.
To summarize, methods such as SCICoNE and CONET
are designed for different purposes and scenarios like
the ones assumed in our study, hence their exclusion
from our analysis and, instead, including methods such
as maximum parsimony, neighbor-joining, and Lazac.

Tree scaling

Branch lengths inferred by NestedBD are not in the same
unit as those in the true tree. Therefore, to assess the
accuracy of branch length reconstruction, we needed to
scale the inferred phylogeny before comparing branch
lengths. Given an inferred tree 7 and a true tree R with
same set of leaves, we found the scale factor by comput-
ing an OLS regression as follows. Let the set of clades in
T be 7¢ and the set of clades in R be R¢.

We compute B that minimizes the residue,
R(B) = ||Y — BX||%, where Y is a vector of true node
heights and X is a vector of inferred node heights of
clades in 7¢ N Rc. To compute the 95% highest posterior
density (HPD) intervals and R?> measures from posterior
samples of NestedBD, we summarized the trees from
the posterior distribution by MCC trees with median
node heights. We then computed the scaling factor of the
MCC tree with respect to the true tree for each simulated
data set. The same scaling factor was used to scale all
selected samples from the posterior distribution.

Evaluating accuracy of copy number estimates on simulated
data

We used the same simulated data to evaluate the perfor-
mance of copy number estimation. Hamming distance
and L1 norm between true and inferred profiles were
used for measuring accuracy.
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Results

Performance on simulated data

Accuracy of inferred topologies

While it is common to calculate the Robinson-Foulds
(RF) distance [49] between the inferred tree and true tree
to quantify their difference, this is not particularly use-
ful in our case as there are several groups of cells where
cells within each group are equidistant from each other,
and their resolution in a binary tree is arbitrary. The RF
distance would heavily penalize resolutions that differ
from the true one. Therefore, we evaluated a method’s
accuracy in inferring branches of the true tree according
to their lengths. Specifically, for each branch length, we
calculated the true positive rate by counting the number
of branches of that length that were correctly inferred
by the method. We then grouped branches into deciles
according to the branch length and summarized the true
positive rate for every decile to study how the accuracy
of each method changes with increasing branch lengths.
The results are shown in Fig. 2.

As expected, the longer a branch in the true tree, the
more likely it is to be recovered. The accuracy of all
methods is lower for larger trees. Among all methods,
NestedBD has the best accuracy under all event settings,
regardless of the number of cells. We also observed that
MP and NJ achieved their best accuracy at the medium
number of event cases, while the accuracy of NestedBD
is less impacted by the extent of CNAs in the data set. A
possible explanation of this observation is that for small
numbers of CNAs (Low), there is weak signal for MP and
NJ to recover the tree, and for a large number of events
(High), the overlap of CNAs resulting in more challeng-
ing patterns for these two methods. While such trend is
less applicable to Lazac, potentially due to the ability of
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Fig. 2 Accuracy of the inferred trees on the simulated data. True positive rates of branches in the true tree vs. lengths of the branches, grouped

into deciles, for trees inferred from data sets with 20 cells (top) and 50 cells (bottom). Each point corresponds to a branch length decile in the true
tree and the proportion of trees (in the posterior or bootstrap samples) that have that branch, inferred by each of the three methods. Low,’Medium,
and‘High'correspond to the extent of CNAs in the simulated data sets (see main text)
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the proposed ZCNT distance to account for bin depend-
encies [33], NestedBD maintains the highest accuracy
under most complex scenarios.

Accuracy of estimated branch lengths
To the best of our knowledge, NestedBD is the first
method that utilizes a probabilistic birth-death model of
CNAs to infer the branch lengths that represent the rela-
tive evolutionary time between nodes. In the context of
cancer, the branch length translates to the time between
evolutionary events or the accumulation of mutations,
reflecting the timing of division between the cancer lin-
eages when reconstructing the evolutionary history
of cancer cells using copy number profiles. For data
with tumor cells sampled with temporal information,
the branch length can be mapped to real time, with the
potential to guide cancer treatment decisions by show-
ing the timing of key mutations and changes. NestedBD
also infers branch-specific mutation rates jointly with
the tree topology to provide information on the number
of mutations that occurred along each branch. Details
of the models we used for branch lengths and mutation
rates are available in “A birth-death evolutionary model
of CNAs” section. The number of mutations estimated
by MP could be used to obtain an estimate of branch
lengths. Similarly, the pairwise distances utilized by NJ
to infer the evolutionary tree could be used as proxies
for branch lengths. We assessed the accuracy of branch
lengths by focusing on (1) the accuracy of the estimated
branch lengths in terms of the relative time of evolution,
which is only available from NestedBD, and (2) the accu-
racy of the estimated branch lengths in terms of the num-
ber of mutations, which is available for all three methods.
For NestedBD, we summarized the accuracy of each
inferred branch length—which represents the division
time of a lineage—by calculating the coverage of the pos-
terior distribution of the node heights. Details of how the
posterior distribution is defined are available in “Bayes-
ian inference” section. Since the inferred and true tree
topologies could differ, we only compared the heights of
the nodes in the true tree that had corresponding nodes
in the inferred tree (two nodes are corresponding if and
only if the sets of leaves under them are identical). Fur-
thermore, as described above, the node heights were
scaled to ensure comparability between the true and
inferred node heights. Figure 3 summarizes the node
heights inferred by NestedBD for all the simulated data
sets after scaling (described in “Tree scaling” section).
For a large number of nodes, the median of inferred
node heights in the posterior samples appears to be a
reasonable point estimate of the true node height, and
the true node height is within the predicted 95% highest
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posterior density (HPD) interval (see “Tree scaling” sec-
tion for description of HPD).

We summarized the accuracy of the branch lengths in
terms of the number of mutations using the pairwise dis-
tances between the leaves in the inferred topology. The
pairwise distance between two leaves was calculated by
counting the number of mutations on the branches on
the unique simple path between the two leaves on the
phylogenetic tree. As discussed above, MP and NJ infer
the branch lengths corresponding to the number of copy
number changes over the genome length, and therefore,
no preprocessing of their results was required for our
evaluation. For NestedBD, the inferred branch lengths
were scaled by the branch-specific mutation rate to pro-
vide information on number of mutations on the target
branch.

Similar to the evaluation of node heights, the pairwise
distances between the leaves in both ground truth trees
and inferred trees were normalized before comparison.
Specifically, given an inferred tree T and a true tree R
with the same set of leaves, L, we first calculated the pair-
wise distance d; for all pairs of leaves i,j € L (i # j). For
each method, we then performed the min-max normali-
zation on the pairwise distance matrix D using the for-

. ;j—min(D)
mula #n; = Tax (D) —min D)’ We then computed the
Euclidean distance between Nt and N by % for
each replicate where Np and N7 are the normalized pair-
wise distance matrices of the true tree and inferred tree,
respectively. The results are summarized in Fig. 4. As the
figure shows, NestedBD obtains more accurate estimates
of branch lengths in terms of the number of mutations
compared to MP and NJ while providing the timing of
lineage division and mutation rate on the specific branch.

Accuracy of copy number estimation
We proposed in “Inferring corrected copy number pro-
file” section an algorithm that simultaneously corrects
copy number profiles at the leaves of a given tree, as well
as infers ancestral copy number profiles at the inter-
nal nodes of the tree. To assess the performance of the
algorithm, for each simulated data set, we inferred the
copy number with both the true tree and the maximum
clade credibility (MCC) tree inferred by NestedBD (see
“Inference methods” section for details of the MCC tree).
The former allows us to assess the accuracy of methods
assuming the tree is correct, whereas the latter allows us
to factor in the tree estimation error when computing
the accuracy of the estimated copy number. The results
of correcting the copy number profiles at the leaves are
shown in Fig. 5.

As the results show, our proposed birth-death-based
method with error modeling improves the copy num-
ber profile estimated by Ginkgo [45]. Naturally, the
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results are better when the true (correct) tree is used,
but even when the estimated tree is used, the method
improves upon Ginkgo. Furthermore, while the extent
of CNAs has an impact on the accuracy of copy number
estimation for all methods, Ginkgo is more affected by
the increasing number of copy number events. At low
event settings, the accuracy of Ginkgo is still compara-
ble to that of our proposed method using inferred/true
tree. The advantage of our proposed method becomes
more significant under medium and high event set-
tings, possibly due to the ability of our birth-death pro-
cess to handle recurrent mutations at the same locus.

We also assessed the accuracy of ancestral profiles
reconstructed by our birth-death-based method and
compared it to that obtained from MP given the true
tree, as only in such a case there is a one-to-one cor-
respondence between the internal nodes. We observed
that our proposed method achieves higher accuracy
under all scenarios evaluated, as shown in Fig. 6.

Analysis of colorectal cancer samples

We applied all three methods to single-cell copy num-
ber profile data sets from two colorectal cancer patients,
CRCO01 and CRCO04, obtained from [34]. We took a subset
of each data set by randomly sampling cells taken from

- Birth-death based ancestral profile inference
Maximum parsimony based ancestral profile inference
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Fig. 6 Accuracy of ancestral profile inference. The accuracy of inferred ancestral profiles as a function of the heights of their corresponding
internal nodes, grouped into deciles, for data sets with 20 cells (top) and 50 cells (bottom). Ancestral inference was performed using our proposed
birth-death-based method with error modeling as well as maximum parsimony. In both cases, the true tree was assumed. Low,"Medium, and ‘High'

correspond to the extent of CNAs in the simulated data sets (see main text)
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the primary tumor and a metastasis site after exclud-
ing the cells taken from the normal adjacent tissue. For
patient CRCO1, we sampled 20 cells from the primary
tumor site (PT) and Liver metastasis (ML), and for
patient CRC04, we sampled 50 cells from the primary
tumor site (PT) and Lymph node metastasis (LN). For
each data set, NestedBD was run for 80 million itera-
tions with the first 20% samples discarded as burn-in. We
summarized the posterior distribution by MCC tree with
median node heights and inferred the ancestral profiles
and copy number profiles using the algorithm described
in “Inferring corrected copy number profile” section.
Support values of the inferred MCC trees are available
in Additional file 1: Figs. S8 and S9. Finally, we anno-
tated the branches that define major cell clades with the
colorectal-cancer-related genes, according to [50], that
were impacted by CNAs. The NestedBD inference results
are shown in Fig. 7. It is worth noticing that both of the
inferred trees have a relatively long branch that separates
the normal cell and the most recent common ancestor of
all tumor cells. This observation supports a punctuated
mode of tumor evolution [51].

CRCO1

We detected four colorectal-cancer-related mutations
on the root branch, including SRC, which has been
shown to play an important role in the development or
progression of human colon cancer and was recently
postulated to be associated with liver metastasis [52]. A
group of cells then metastasized to the liver after acquir-
ing mutation of MAP2K4, and later a sub-lineage further
acquired mutation of MAP2KI and SMAD3, resulting
in a higher mutation rate. Both MAP2K4 and MAP2KI
are members of the MAPK gene family, and the MAPK
pathway is known to be a crucial modulator of the can-
cer metastasis process [53]. The cells remaining at the
primary tumor site evolved with a higher mutation rate
after acquiring the mutations of /BR5 and RAD21. We
can also observe a further mutation rate increase after a
group of cells acquired mutation of RSPO2. Although the
direct relationship between these proteins and changes
in mutation rate is not studied in the literature, Li et al.
[54] show that there is a correlation between elevated
expression of RSPO2 in RNA samples of Patient Derived
Xenograft models with colorectal cancer. Moreover, Sriv-
astava et al. [55], in their comprehensive review discuss
that RSPO mutations, including copy number altera-
tions are identified in colorectal cancer samples. Similar
observations have been reported for UUBRS [56, 57] and
RAD21 [58]. We applied MP and NJ to the same data
set and found neither MP nor NJ achieved such a clear
separation between the PT and ML lineages (results are
shown in Additional file 1: Figs. S4 and S5).
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CRC04

Nine colorectal-cancer-related mutations are detected
on the root branch of the tree, including in APC, a well-
recognized initiator gene in colorectal cancer [59]. After
that, a group of primary tumor cells acquired six addi-
tional mutations (in genes AKT1, BCLIL, B2M, FBXW?7,
MUTYH, RSPO2). An increase in the mutation rate is
also observed on this branch. FBXW7 mutations have
been associated with higher tumor mutation burden in
colorectal cancer [60], and MUTYH mutations are asso-
ciated with increased lifetime risk of colorectal cancer
[61]. Part of the cells then metastasized to the lymph
nodes and evolved with a relatively high mutation rate;
the rest remained at the primary tumor site (PT4). The
rest of the cells at the primary tumor site acquired several
unique mutations (in genes SRC, SALL4, BAX, SMAD3),
but with a slower mutation rate (PT2 PT3, PT5). The
association of these mutations with colorectal cancer has
been identified at the level of RNA expression changes
[62—65]. However, the direct relationship between these
mutations and increase/decrease in mutation rate has yet
to be studied. We applied MP and NJ to the same data set
(results are shown in Additional file 1: Figs. S6 and S7).
We observe that while MP places the same set of primary
tumor cells (PT4) under the LN lineage, the topology
seems to suggest those primary tumor cells are derived
from the LN lineage, which is an unlikely evolutionary
scenario. NJ infers a more reasonable topology similar
to that inferred by NestedBD, while the branch lengths
inferred by NJ do not reflect relative evolutionary time
(considering that the inferred tree should be very close to
ultrametric given that the cells were sampled at a single
time point), as we observed that the LN lineage is closer
to the diploid cell at the root in the NJ tree. This observa-
tion is consistent with the higher relative mutation rate of
the LN lineage in the tree inferred by NestedBD.

Conclusion

In this paper, we presented NestedBD, a Bayesian method
for joint inference of evolutionary trees and branch
lengths from scDNAseq copy number profiles. Specifi-
cally, we proposed a novel evolutionary model that uses
a continuous-time birth-death process to model copy
number amplification and deletion, accounting for the
fact that there could be multiple CNAs at a single bin. We
assume the phylogeny also follows a birth-death branch-
ing process parameterized by a diversification rate, an
extinction fraction, and branch-specific mutation rates
so that it is possible to distinguish between rapid expan-
sion and slower mutations. NestedBD also infers the dis-
tribution of birth and death rates on the tree topology,
the relative time between (normal) diploid cells and the
most recent common ancestor of tumor cells. A major
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distinguishing feature of NestedBD is that it infers a tree  BEAST 2 package to utilize efficient implementation of
with branch lengths representing the relative times of the =~ MCMC. We assessed the accuracy of NestedBD on sim-
tumor phylogeny nodes. NestedBD is implemented as a  ulated data, demonstrated its application to biological
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data sets, and compared that to the results obtained by
two existing methods, namely maximum parsimony and
neighbor-joining. NestedBD provides more accurate
results overall.

To the best of our knowledge, NestedBD is the first
method to infer a tree with branch lengths that measure
relative times of evolution given single-cell copy number
profiles (assuming independence among bins). While
the simulated data do not assume independence among
bins and biological data are very unlikely to satisfy such
an assumption, the results we obtained demonstrate
that utilizing the independence assumption for compu-
tational efficiency does not impact the inference quality
much. Recently developed methods focus on clonal tree
inference, such as CONET [26] and SCICoNE [25], infer
an evolutionary tree with nodes defined by CNA events
jointly with breakpoints. Methods that aim to build a full
binary tree, such as those reported in [29, 33, 66], infer
a phylogenetic tree and reconstruct the ancestral copy
number events to provide an estimate on the number of
CNA events. These methods, however, do not provide
information on the times of nodes and relative muta-
tion rates per unit time per branch as NestedBD does.
The ability to infer mutation rates allows NestedBD to
provide insights into potential factors affecting mutagen-
esis, such as the hypothesis that a specific gene mutation
could increase the overall mutation rate during cancer
evolution. Inferred relative mutation rates could provide
valuable information in evolutionary analysis of cancer
cells.

A direction for future research is developing an infer-
ence method that works on the raw genomic read data
directly so that it simultaneously infers the copy number
profiles and evolutionary history. While such method is
expected to produce the most accurate results, its scal-
ability to large data sets could prove very challenging,
which would require algorithmic innovations to achieve
scalability.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/513015-024-00264-4.

Additional file 1: Method S1. Settings used for maximum parsimony and
neighbor joining. Method S2. Tree Moves. Fig. S1. Error in estimated copy
number profiles. The Hamming distances between the true copy number
profile and copy number profile estimated by Ginkgo [45] of each cell are
computed and summarized across all simulated data sets. Fig. S2. Copy
number profile simulated under different parameters. Fig. $3. The muta-
tion tree inferred by SCICONE [25] from one of the simulated data set We
ran SCICoNE without performing clustering on the cells as a preprocess-
ing step in order to acquire the mutation tree at a single-cell level and
make it comparable to the results of NestedBD. However, the result shows
that SCICoNE assigns all the CNA events to only one node which suggests
all cells in this data set share the same copy number profile. Fig. S4.
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Inference results using MP on data from colorectal cancer patient CRCO1
from [34]. The heat map shows the copy number profiles of the sampled
cells and the tree is inferred by MP. At the leaves of the trees, solid rec-
tangles correspond to primary tumor cells, and grey-gradient rectangles
correspond to liver metastasis cells. Fig. S5. Inference results using NJ on
data from colorectal cancer patient CRCO1 from [34]. The heat map shows
the copy number profiles of the sampled cells and the tree is inferred

by NJ. At the leaves of the trees, solid rectangles correspond to primary
tumor cells, and grey-gradient rectangles correspond to liver metastasis
cells. Fig.S6. Inference results using MP on data from colorectal cancer
patient CRCO4 from [34]. The heat map shows the copy number profiles of
the sampled cells and the tree is inferred by MP. At the leaves of the trees,
solid rectangles correspond to primary tumor cells, and open rectangles
correspond to lymph node metastasis cells. Fig. S7. Inference results
using NJ on data from colorectal cancer patient CRC04 from [34]. The heat
map shows the copy number profiles of the sampled cells and the tree is
by NJ. At the leaves of the trees, solid rectangles correspond to primary
tumor cells, and open rectangles correspond to lymph node metastasis
cells. Fig. S8. Inferred tree using NestedBD from colorectal cancer patient
CRCO1 from [34], annotated with support value on each clade. (Left) phy-
logenetic tree inferred by the NestedBD method for the colorectal cancer
patient CRCO1. Each clade in the tree is annotated with its respective sup-
port value, representing the confidence level for the inferred branching
patterns. (Right) histogram summarizing the distribution of these support
values for all clades within the inferred tree. This figure helps assess the
robustness of each branch’s inference and provides an overall confidence
distribution for the tree’s topology. Fig. S9. Inferred tree using NestedBD
from colorectal cancer patient CRC04 from [34], annotated with support
value on each clade. (Left) phylogenetic tree inferred by the NestedBD
method for the colorectal cancer patient CRC04. Each clade in the tree is
annotated with its respective support value, representing the confidence
level for the inferred branching patterns. (Right) histogram summarizing
the distribution of these support values for all clades within the inferred
tree. This figure helps assess the robustness of each branch'’s inference and
provides an overall confidence distribution for the tree’s topology.
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