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Abstract. We prove the existence of nontrivial closed surfaces with constant anisotropic
mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian
manifolds. The constructed min-max surfaces are smooth with at most one singular point.
The constant anisotropic mean curvature can be fixed to be any real number. In particular,
we partially solve a conjecture of Allard [3] in dimension 3.

1. Introduction

The min-max theory has been extremely successful in finding critical points of the area
functional, commonly referred to as minimal surfaces. Almgren [5] started a monumental
program to develop a variational theory for minimal surfaces of arbitrary dimension and
codimension using geometric measure theory. In particular, he proved the existence of a
nontrivial weak solution as a stationary integral varifold [6]. The regularity of the solution in
codimension one was established by Pitts [33] up to dimension 6 of the ambient manifold,
relying on the curvature estimates for stable minimal surfaces proved by Schoen-Simon-
Yau [34]. Then it has been extended to every dimension by Schoen-Simon [35] (always in
codimension one). Thereafter, Colding-De Lellis [10] and De Lellis-Tasnady [12] have proved
a similar construction using smooth sweepouts, building on ideas of Simon-Smith [37]. Very
recently, the zero mean curvature case has been generalized by Zhou-Zhu [39] to the existence
of constant mean curvature surfaces in closed Riemannian manifolds.
In spite of the aforementioned vast literature for the area functional, nothing is known

concerning the existence of anisotropic minimal or constant anisotropic mean curvature
surfaces. Allard [3] proved an analogue of the curvature estimates of Schoen-Simon [35] and
conjectured the existence of anisotropic minimal surfaces in closed Riemannian manifolds [3,
Page 288]. However he observed that: “there remains a considerable amount of work to do
before this becomes feasible for general integrands”[3, Page 288].

In this paper we partially solve this problem in dimension 3, proving the following first
main result:

Theorem 1.1. Let M be a 3-dimensional C4 closed Riemannian manifold and F be a C3

elliptic integrand. Then there is a nontrivial surface Σ ¢ M without boundary which is a
critical point with respect to F . Moreover there exists at most one singular point p ∈M for
Σ, i.e. Σ is C2 embedded away from p. Furthermore one of the following properties hold:

(a) there exists R > 0 such that Σ is smooth stable in BR(x) for every x ∈M ;
(b) Σ is stable in M \ {p}.

Theorem 1.1 is obtained from the following second main result:
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Theorem 1.2. Let M be a 3-dimensional C4 closed Riemannian manifold, F be a C3 elliptic
integrand and c ∈ R \ {0}. Then there is a nontrivial surface Σ ¢M without boundary which
has constant anisotropic mean curvature c with respect to F . Moreover there exists at most
one singular point p ∈ M for Σ, i.e. Σ is C2 almost embedded away from p. Furthermore
one of the following properties hold:

(a) there exists R > 0 such that Σ is smooth stable in BR(x) for every x ∈M ;
(b) Σ is stable in M \ {p}.

The assumptions of a C4 Riemannian manifold and a C3 Lagrangian are used to construct
a surface Σ of class C2. A higher regularity on M and F provides a better regularity also for
Σ. In this paper, if not further specified, smooth will always refer to the above regularities.

Theorem 1.1 is the 3-dimensional anisotropic counterpart of the celebrated existence result
for the area functional proved by Pitts in his groundbreaking monograph [33]. The isotropic
version of Theorem 1.2 has been recently proved by Zhou-Zhu in [39].

As previously remarked, Allard has conjectured in [3] the possibility to run the Pitts
min-max construction scheme [33] in the anisotropic setting. Theorem 1.1 positively answers
to this conjecture for 3-dimensional manifolds.
We conclude observing that Theorem 1.1 implies the following result in the setting of

Finsler manifolds: we refer the reader to [7, “Volumes on Normed and Finsler Spaces” by
Alvarez Paiva and Thompson] for a survey on Finsler manifolds and for the relevant definitions
about Busemann volume, Holmes–Thompson volume, Gromov’s mass, and Gromov’s mass∗:

Theorem 1.3. Let M be a 3-dimensional smooth Finsler sphere, such that the norms on
all tangent spaces TxM are uniformly convex. Then there is a nontrivial minimal surface
Σ ¢ M with respect to the Holmes–Thompson volume, without boundary, which is smooth
away from at most one singular point p ∈M

Strategy of the proof. The proof follows the scheme developed by Almgren-Pitts [33] for
the existence of isotropic minimal surfaces. The scheme consists of two parts: the existence
and the regularity part. The existence of an anisotropic stationary rectifiable varifold can
be proved with a similar strategy to the one used by Almgren-Pitts [33], replacing Allard
rectifiability theorem [1] with its anisotropic counterpart proved by the authors [14]. To
this aim we need to employ a density lower bound, proved by Allard in [3]. On the other
hand the regularity part has several obstructions. The main issue is in showing that two
consecutive replacements glue smoothly. Indeed, due to the lack of monotonicity formula
[2], it is not clear a priori if upper density estimates hold at the points of the interface of
two consecutive replacements. Moreover, the lack of monotonicity formula does not allow
to directly prove that the blowups at these points are planes by simple mass comparison at
different scales. To solve these issues, our strategy is first to focus on the existence of constant
non-zero anisotropic mean curvature (CMC) surfaces. Borrowing ideas from [39], in the CMC
setting we can construct multiplicity one replacements, containing just a 1-dimensional set of
touching points with multiplicity 2. This allows to split the proof of the smooth gluing at
the interface in two cases:

• For multiplicity one points we can refine the construction of the second replacement,
showing that its approximating sequence is regular up to the interface. Using its
stability and the work of the authors [16], we get uniform boundary curvature estimates,
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which allow to pass to the limit the sequence and to obtain a replacement that is
smooth (and stable) across the interface. For the boundary curvature estimate we
deeply rely on the surface being two-dimensional.

• For the isolated points of multiplicity two, we can show upper density estimates
adapting [16]. The blowups are then proved to be planes with multiplicity two,
exploiting the regularity in the points of multiplicity one and the maximum principle.
Then by a graphicality argument we conclude that the two replacements glue smoothly.

This allows to show that the constructed anisotropic CMC surface is smooth and locally
stable away from finitely many points: the centers of the balls of the previous argument.
Again due to the lack of monotonicity formula we cannot remove these singularities just
using the stationarity and stability. However, refining Almgren-Pitts combinatorial lemma,
by compactness we are able to remove all these isolated singularities, except one. This
last singularity is the one accounting for the index of the constructed surface and cannot
be removed by further exploiting Almgren-Pitts combinatorial lemma. However, we would
expect that this singularity is removable, too, by means of the PDE and of the stability
inequality outside of the singularity. The last step is to apply this construction to obtain a
sequence of CMC surfaces Σk with anisotropic mean curvature 1/k, smooth away from at
most one point xk. A simple compactness theorem will guarantee the convergence of Σk to
an anisotropic minimal surface, smooth outside of at most one point.

Acknowledgments. Guido De Philippis has been partially supported by the NSF grant
DMS 2055686 and by the Simons Foundation. Antonio De Rosa has been partially supported
by the NSF DMS Grant No. 1906451, the NSF DMS Grant No. 2112311, and the NSF DMS
CAREER Award No. 2143124.

2. Preliminaries

In this paper, unless otherwise specified, M will denote a 3-dimensional smooth closed
Riemannian manifold.

2.1. Notation. We first recall some classical notation: Inj(M) is the injectivity radius of M ,
diam(S) is the diameter of S ¢M and d(S1, S2) := infx∈S1,y∈S2 d(x, y) for every S1, S2 ¢M .

We denote with Br(x) and Br(x) respectively the open and closed balls centered at x of
radius r with respect to the metric of the Riemannian manifold M . Br(x) denotes instead
the ball of radius r and centered in x in R

3. If the center is 0, we simply write Br. We set

An(x, s, r) := Br(x) \Bs(x), An(x, s, r) := Br(x) \ Bs(x)

to be the open annulus centered at x of radii s and r. Furthermore we will define

AN r(x) := {An(x, s, t) : 0 < s < t < r}, and AN∞(x) := {An(x, s, t) : 0 < s < t}.

Given an annulus An, we denote with ∂+An the largest connected component of ∂An.
We denote the space of smooth vector fields on M as X (M). For every open set U ¢M

we denote with Xc(U) the subset of vector fields with support compactly contained in U .
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2.2. Measures, rectifiable sets and varifolds. Given a locally compact metric space Y ,
we denote by M+(Y ) the set of positive Radon measures in Y . For a Borel set A ¢ Y , µ A
is the restriction of µ to A, i.e. the measure defined by [µ A](E) = µ(A∩E) for every Borel
set E ¢ Y .

For every n ∈ N, we denote by Hn the n-dimensional Hausdorff measure. A set K is said
to be 2-rectifiable if it can be covered, up to an H2-negligible set, by countably many C1

2-dimensional submanifolds. Given a 2-rectifiable set K, we denote TxK the approximate
tangent space of K at x, which exists for H2-almost every point x ∈ K, [36, Chapter 3].
For µ ∈ M+(M) we consider its lower and upper 2-dimensional densities at x:

¹∗(x, µ) := lim inf
r→0

µ(Br(x))

Ãr2
, ¹∗(x, µ) := lim sup

r→0

µ(Br(x))

Ãr2
,

In case these two limits are equal, we denote by ¹(x, µ) their common value. Note that, if
µ = ¹H2 K where K is 2-rectifiable, then ¹(x) = ¹∗(x, µ) = ¹∗(x, µ) for µ-a.e. x, see [36,
Chapter 3], and µ is called a 2-rectifiable measure.

For every open subset Ω ¢M , we denote

G2(Ω) := {(x, S) : x ∈ Ω, S is a 2-dimensional linear subspace of TxM},

and for every open subset U ¢ R
3

G2(U) := {(x, S) : x ∈ U, S is a 2-dimensional linear subspace of R3},

We denote with V(M) := M+(G2(M)) (resp. V(U) := M+(G2(U))) the space of the
2-varifolds on M (resp. on U). Given a diffeomorphism È ∈ C1(M,M), we define the
push-forward of V ∈ V(M) with respect to È as the varifold È#V ∈ V(M) such that

∫

G2(M)

Φ(x, S)d(È#V )(x, S) =

∫

G2(M)

Φ(È(x), dxÈ(S))JÈ(x, S)dV (x, S),

for every Φ ∈ C0
c (G2(M)). Here dxÈ(S) is the image of S under the linear map dxÈ(x)

and JÈ(x, S) denotes the 2-Jacobian determinant (i.e. area element) of the differential dxÈ
restricted to the 2-plane S, see [36, Chapter 8].

To a varifold V ∈ V(M) (resp. V ∈ V(U)), we associate the measure ∥V ∥ ∈ M+(M) (resp.
∥V ∥ ∈ M+(U)) defined by

∥V ∥(A) = V (G2(A)) for every open A ¢M (resp. A ¢ U).

We will also use the notation

¹∗(x, V ) = ¹∗(x, ∥V ∥) and ¹∗(x, V ) = ¹∗(x, ∥V ∥)

for the upper and lower densities of ∥V ∥. In case ¹∗(x, V ) = ¹∗(x, V ), we denote the common
value ¹(x, V ) and it will be referred to as density of V at x.

For every x ∈M and r < Inj(M), we define T rx : z ∈ B1 → expx(rz) ∈ Br(x), where expx
denotes the exponential map at the point x. Then we define the function ¸x,r(y) := (T rx )

−1(y).
We denote

Vx,r := (¸x,r)#(V Br(x)) ∈ V(B1),

and we observe that, if ¹∗(x, V ) <∞, then there exists a sequence rn → 0 and W ∈ V(B1)
such that

Vx,rn áW ∈ V(B1).



THE ANISOTROPIC MIN-MAX THEORY 5

We denote with TV (x, V ) the space of all varifolds W obtained as above.
A varifold V ∈ V(M) is said rectifiable if there exists a 2-rectifiable set K and a function

¹ ∈ L1(M ;R+;H2 K), such that

V = ¹H2 K ¹ ¶TxK . (2.1)

Moreover we say that a rectifiable varifold V is integral if in the representation (2.1), the
density function ¹ is also integer valued.

The weak∗ topology on V(M) is not metrizable. Nevertheless, in any closed ball

{V ∈ V(M) : ∥V ∥(M) f r}

of radius r, the weak∗ topology is metrizable by Banach–Alaoglu theorem: in particular, an
example of metric d which induces the weak∗ topology on V is

d(V1, V2) = sup{V1(f)− V2(f) : f ∈ W 1,∞(G2(M)) ∩ Cc(G2(M))}.

The balls of radius r and center V in this metric will be denoted by Ur(V ).

2.3. Integrands. The anisotropic integrands that we consider are C3 positive functions

F : G2(M) −→ R
+ := (0,+∞),

for which there exist a positive constant ¼ such that

0 <
1

¼
f F (x, T ) f ¼ <∞ for all (x, T ) ∈ G2(M). (2.2)

Given a 2-rectifiable set K ¢M and V ∈ V(M), we define:

F(K) :=

∫

K

F (x, TxK) dH2 K and F(V ) :=

∫

G2(M)

F (x, T ) dV (x, T ).

We will often identify a 2-rectifiable set with the canonically associated density one varifold
supported on K. For a vector field X ∈ X (M), we consider a one-parameter family of
diffeomorphisms of M into itself {φt}t∈R, such that dϕt

dt
= X. The anisotropic first variation

is defined as the following linear operator:

¶FV (X) :=
d

dt
F
(
(φt)#V

)∣∣∣
t=0
.

We say that a varifold V ∈ V(M) has bounded anisotropic first variation if ¶FV is a Radon
measure on M , i.e. if there exists C > 0 such that

|¶FV (X)| f C∥X∥∞, for all X ∈ X (M).

Remark 2.1. We identify the integrand F : G2(M) −→ R
+ with a positively one homogeneous

even function G : TM → R
+ via the equality

G(x, r¿) := |r|F (x, ¿§) for all r ∈ R and (x, ¿) ∈ SM, (2.3)

where SM := {(x, ¿) ∈ TM : |¿| = 1}. Note that G ∈ C3(TM \ {(x, 0) : x ∈M}) and that
by one-homogeneity:

ïDνG(x, ¿), ¿ð = G(x, ¿) for all (x, ¿) ∈ TM , with ¿ ̸= 0. (2.4)



6 G. DE PHILIPPIS AND A. DE ROSA

With these identifications, if M = R
3 it is a simple calculation to check that:

¶FV (X) =

∫

SM

ïDxG(x, ¿), X(x)ð dV (x, ¿)

+

∫

SM

(
G(x, ¿)Id− ¿ ¹DνG(x, ¿)

)
: DX(x) dV (x, ¿), ∀X ∈ X (M),

see for instance [4, Section 3] or [18, Lemma A.4].

We will always assume that F is an elliptic integrand, i.e. the map G associated to F
satisfies (up to select a bigger ¼ in (2.2)):

|DxG|, |DνG|, |D
2
xνG|, |D

2
νG| f ¼, |DνG| g

1

¼
and D2

ν(G|SM)(x, ¿) g
Idν§

¼
. (2.5)

The last condition above (the uniform convexity in all but the radial directions) in particular
implies the strict convexity of G in all (but the radial) directions:

G(x, ¿) > ïDνG(x, ¿̄), ¿ð for all (x, ¿̄), (x, ¿) ∈ SM with ¿ ̸= ±¿̄. (2.6)

Remark 2.2. We remark that condition (2.6) is necessary and sufficient to apply the rectifia-
bility theorem the authors proved in [14, Theorem 1.2], cf. also [22].

2.4. CMC surfaces. We will use the following definitions and tools, borrowed from [39].
We refer to [39, Section 2] for more detailed notation.

We denote with C(M) the space of finite perimeter sets inM , also referred to as Caccioppoli
sets. Given c > 0, we define the following energy functional:

Fc(Ω) = F(∂Ω)− cH3(Ω), ∀Ω ∈ C(M).

In case ∂Ω is a smooth surface, the first variation of Ω with respect to Fc is

¶FcΩ(X) =

∫

∂Ω

(H∂Ω
F − c)ïX, ¿ð dH2, ∀X ∈ X (M), (2.7)

where ¿ and H∂Ω
F denote respectively the outward unit normal on ∂Ω and the anisotropic

mean curvature of ∂Ω with respect to ¿.
We deduce from (2.7) that for any critical point Ω of Fc, ∂Ω has constant anisotropic

mean curvature c with respect to the outward unit normal ¿. This allows us to compute
the second variation ¶2

FcΩ(X,X) of a critical point Ω with respect to Fc applied to a vector
field X ∈ X (M) such that X(x) = φ(x)DνG(x, ¿(x)) on ∂Ω where φ ∈ C∞(∂Ω), combining
[3, Section 1.5, Page 295] or [18, Lamma A.5] with [8, Remark 2.4, Proposition 2.5]. In
particular, ∂Ω is c-stable if

0 f ¶2
FcΩ(X,X) = S∂ΩF (φ, φ) := ¶2

F
(∂Ω)(X,X)−

∫

∂Ω

RicM(¿, ¿)G(x, ¿)2φ2 dH2. (2.8)

Here ¶2
F
(∂Ω)(X,X) is the Euclidean second variation of F and it is calculated in [3, Section

1.5, Page 295] (for general F ) or in [18, Lemma A.5] (without space dependence). The second
term −

∫
M
RicM(¿, ¿)G(x, ¿)2φ2 comes instead from the metric of M , as computed in [8,

Remark 2.4, Proposition 2.5], where G(x, ¿)2φ2 = ïX, ¿ð2 as a simple application of the
one-homogeneity of G. We explicitly observe that (2.8) does not depend on c. For a more
detailed study about anisotropic CMC surfaces in the Euclidean space, we refer the author
to [13, 15, 19, 20, 21, 23, 24, 25, 29].
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Remark 2.3. We remark that we can absorb the metric of M in the elliptic integrand G.
Hence, up to modify G, we can always assume to work with the flat metric. This remark will
be particularly useful in all the local arguments of this paper, where we can consequently
always assume to work in R

3 rather than M . In particular, in this way the stability inequality
(2.8) simply reads

¶2
F
(∂Ω)(X,X) g 0,

where ¶2
F
(∂Ω)(X,X) is the Euclidean second variation of F [3, Section 1.5, Page 295].

Remark 2.4. We remark that in the local arguments, by Remark 2.3, when we work in R
3

condition (2.5) implies that H
∂Br(x)
F g 1

λr
for every x ∈ R

3 and every r > 0.

Definition 2.5. Consider an immersed, smooth, two-sided surface Σ with unit normal vector
¿, and an open set U ¢ M . Σ is called a c-stable surface in U if the anisotropic mean
curvature HΣ

F of Σ ∩ U with respect to ¿ is identically equals to c and SΣ
F (φ, φ) g 0 for all

φ ∈ C∞(Σ) with spt(φ) ¢ Σ ∩ U .
If c = 0 we simply say that Σ is a stable surface.

Remark 2.6. Since |RicM (¿, ¿)|G(x, ¿)2 f C(M,F ), for every c-stable surface we deduce the
validity of [16, Equation (41)], applying [3, Lemma 2.1] or [18, Lemma A.5].

Definition 2.7. Consider an open subset U ¢M , and a smooth 2-dimensional surface Σ. A
smooth immersion È : Σ → U is an almost embedding if for every p ∈ ϕ(Σ) where Σ fails to
be embedded, there exists a neighborhood Q ¢ U of p, such that

• Σ ∩ È−1(Q) = ∪ni=1Σi, where Σi are disjoint connected components;
• È(Σi) is an embedding for every i = 1, . . . , n;
• for every i, every È(Σj), j ̸= i, lies on one side of È(Σi) in Q.

We identify È(Σ) with Σ and ϕ(Σi) with Σi. We define the touching set S(Σ) as the set of
points of Σ where Σ fails to be embedded. We define the regular set as R(Σ) := Σ\S(Σ).

Theorem 2.8. Consider an open subset U ¢M . Let Σ ¢ U be a c-stable surface in U such
that ∂Σ ∩ U = ∅, and H2(Σ) f D, then there exists C > 0 depending only on M, c,D, F ,
such that

|AΣ|2(x) f
C

d(x, ∂U)2
for all x ∈ Σ, (2.9)

where AΣ(x) denotes the second fundamental form of Σ at x.
Moreover if Σk ¢ U is a sequence of c-stable surfaces in U such that ∂Σk ∩ U = ∅ and

supkH
2(Σk) < ∞, then up to a subsequence, Σk converges locally smoothly to a c-stable

surface in U .

Proof. From Remark 2.6 we deduce that c-stable surfaces satisfy all the assumptions in [3]
to get the curvature estimate (2.9), provided they enjoy upper density estimates, cf. also
[38]. The upper density estimates for c-stable surfaces can be obtained again from Remark
2.6, i.e. the validity of [16, Equation (41)], applying [9, Lemma 3.5], compare with the proof
of [16, Lemma 4.3] for the estimate of the L2-norm of the isotropic mean curvature

∫
|H|2.

We deduce that (2.9) holds. The compactness statement can be easily deduced from the
curvature estimates, see [39, Theorem 2.6]. □

Theorem 2.9. Given a sequence of almost embedded, ck-stable surfaces Σk ¢ U , such that
supkH

2(Σk) <∞ and supk ck <∞. Then the following hold:
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(i) if inf ck > 0, then {Σk} converges locally smoothly to an almost embedded c-stable
surface Σ in U (for some c > 0), after possibly passing to a subsequence; moreover if
{Σk} are all boundaries, then the density of Σ is 1 on R(Σ) and 2 on S(Σ), and Σ is
a boundary as well;

(ii) if ck → 0, then {Σk} converges locally smoothly with integer multiplicity to a smooth
embedded stable surface Σ in U , after possibly passing to a subsequence.

Proof. The proof is obtained repeating verbatim the proof of [39, Theorem 2.11], replacing
the use of [39, Theorem 2.6] with Theorem 2.8. □

2.5. Regularity for minimizers of Fc.

Theorem 2.10. Let Ω ∈ C(M), p ∈ spt∥∂Ω∥, and r > 0, such that Ω minimizes the
Fc-functional in Br(p): that is, for every W ∈ C(M) with (W \ Ω) ∪ (Ω \W ) ¢ Br(p), we
have Fc(W ) g Fc(Ω). Then ∂Ω Br(p) is a smooth, embedded surface.

Proof. Since for every U ∈ C(M) with (U \ Ω) ∪ (Ω \ U) ¢ Br(p) we have Fc(U) g Fc(Ω),
then

F(∂U)− F(∂Ω) g −c|H3(U)−H3(Ω)| g −cH3((U \ Ω) ∪ (Ω \ U)).

This is [17, Condition (1.12) in Definition 1.8]. We deduce the claimed regularity applying
[17, Theorem 1.2, Remark 1.3]. □

2.6. Sweepouts. We recall the following notions of generalized smooth families and sweep-
outs, cf. [12, Definition 0.2]:

Definition 2.11. Consider a family {Σt}t∈[0,1]k of closed subsets ofM . We say that {Σt}t∈[0,1]k
is a generalized smooth family if the following properties hold

• H2(Σt) <∞ for every t;
• For every t there exists a finite Pt ¢M such that Σt is a smooth surface in M \ Pt;
• F(Σt) depends continuously on t and if t→ t0, supx∈Σt

d(x,Σt0) → 0;
• Σt −→ Σt0 in C2-norm as t→ t0, in any U ¢¢M \ Pt0.

A family {Ωt}t∈[0,1] of open finite perimeter sets is a sweepout of M if {∂Ωt}t∈[0,1] is a
generalized smooth family and

(so1) Ω0 = ∅ and Ω1 =M ;
(so2) H3(Ωt∆Ωt0) → 0 as t→ t0.

We recall the existence of sweepouts as in Definition 2.11, stated in [12, Proposition 0.4]:

Proposition 2.12 (see [12, Proposition 0.4]). Given any smooth Morse function g :M →
[0, 1], then {{g f t}}t∈[0,1] is a sweepout.

3. Min-max construction

For every c > 0 and every sweepout {Ωt} we define

F c({Ωt}) := max
t∈[0,1]

Fc(Ωt).

One can prove a uniform lower bound for F c on the sweepouts:

Proposition 3.1. There exists C(M,F, c) > 0 such that F c({Ωt}) g C(M,F, c) for every
sweepout {Ωt}.
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Proof. Since {Ωt} satisfies the properties of Definition 2.11, for every V ∈ [0,H3(M)] there is
t0 ∈ [0, 1] such that H3(Ωt0) = V . By [39, Theorem 2.15], choosing V ∈ [0, V0], we compute

F(∂Ωt0) g
H2(∂Ωt0)

¼
g

C0V
2
3

¼
,

where C0 is the isoperimetric constant of M in [39, Theorem 2.15]. We can choose V ∈
[0,H3(M)] such that V = min{( C0

2cλ
)3, V0}, we deduce that

Fc(Ωt0) = F(∂Ωt0)− cV g
C0V

2
3

¼
− cV g cV = cmin

{(
C0

2c¼

)3

, V0

}
=: C(M,F, c),

where C(M,F, c) depends just on M , F and c. □

For every family L of sweepouts, we set

mc(L ) := inf
L

F c = inf
{Ωt}∈L

[
max
t∈[0,1]

Fc(Ωt)

]
.

By Proposition 3.1, mc(L ) g C(M,F, c) > 0. We say that a sequence {{Ωt}
k} ¢ L is

minimizing if

lim
k→∞

F c({Ωt}
k) = mc(L ) .

A sequence {Ωk
tk
} is a min-max sequence if {{Ωt}

k} is minimizing and Fc(Ωk
tk
) → mc(L ).

Remark 3.2. We observe that

mc(L ) f inf
{Ωt}∈L

[
max
t∈[0,1]

F(Ωt)

]
=: m0(L ) <∞, ∀c > 0.

We will focus our study on the following families of sweepouts:

Definition 3.3. Two sweepouts {Ω0
s}, {Ω1

s} are homotopic if there exists a generalized
smooth family {Ωt}t∈[0,1]2 such that Ω(0,s) = Ω0

s and Ω(1,s) = Ω1
s. A family L of sweepouts is

homotopically closed if it contains the homotopy class of each of its elements.

The main result of this paper is the following:

Theorem 3.4. Given c > 0, for any homotopically closed family L of sweepouts there is
a min–max sequence {Ωk

tk
} converging (in the sense of varifolds) to a non trivial surface Σ

with multiplicity one, which is smooth and almost embedded outside of one point p ∈M and
HΣ
F ≡ c. Moreover F(Σ) f 2(mc(L ) + cH3(M)) and one of the following properties hold:

(a) there exists RΣ > 0 such that Σ is smooth stable in BRΣ
(x) for every x ∈M and there

exists y ∈M such that Σ is smooth stable in M \B18RΣ
(y);

(b) denoting RM := 1
2
min

{
¼/c, Inj(M)/18, 1

λ(c+λ+4λ3)

}
, then Σ is smooth stable in

BRM
(x) for every x ∈M (when c→ 0 then RM depends just on F and M).

(c) Σ is stable in M \ {p}.

Since Morse functions exist on every smooth compact Riemannian manifold without
boundary, [31, Corollary 6.7], Proposition 2.12 and Theorem 3.4 provide a proof for Theorem
1.2. We also remark that Theorem 1.1 is a corollary of Theorem 3.4, as we show below.
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Proof of Theorem 1.1. Fix an homotopically closed family L of sweepouts. Consider the
sequence ck =

1
k
. Applying Theorem 3.4, we construct a sequence of non trivial surfaces Σk

with multiplicity one, which are smooth and almost embedded outside of a point pk ∈ M ,
with constant anisotropic mean curvature ck, such that F(Σk) f 2(mck(L ) + ckH

3(M)).
In particular, by (2.2) and Remark 3.2, supkH

2(Σk) < ∞. Moreover one of the following
properties hold:

(i) there exists R > 0 such that up to subsequences RΣk
g R for every k;

(ii) RΣk
→ 0;

(iii) Σ is smooth stable in BRM
(x) for every x ∈M ;

(iv) Σk is stable in M \ {pk}.

In case (i), by Theorem 2.9(ii), we deduce that {Σk} converges locally smoothly (with
multiplicity) to some smooth, embedded and stable surface in every BR(x). By the arbitrarity
of x ∈M , we conclude the proof.
In case (ii), for every k there exists yk ∈ M such that Σk is stable in M \ B18RΣk

(yk). By
compactness of M , up to pass to a non-relabeled subsequence, yk → p ∈M . In particular,
since RΣk

→ 0, for every compact set K ¢M \ {p}, there exists N ∈ N such that for every
k g N then Σk is smooth, ck-stable and almost embedded in K. By Theorem 2.9(ii), we
deduce that {Σk} converges locally smoothly (with multiplicity) to some smooth, embedded
and stable surface in int(K). By the arbitrarity of K, we conclude the proof.
In case (iii), we can argue as in case (i).
In case (iv), by compactness of M , up to pass to a non-relabeled subsequence, pk → p ∈M .
In particular, for every compact set K ¢ M \ {p}, there exists N ∈ N such that for every
k g N then Σk is smooth, ck-stable and almost embedded in K. By Theorem 2.9(ii), we
deduce that {Σk} converges locally smoothly (with multiplicity) to some smooth, embedded
and stable surface in int(K). By the arbitrarity of K, we conclude the proof. □

4. Proof of Theorem 3.4

This section is devoted to the proof of Theorem 3.4.

4.1. Pull-tight. We aim to show the existence of a minimizing sequence {{Ωt}
k} such that

the boundaries of any corresponding min–max sequence converge to a varifold with anisotropic
first variation bounded by c. Nowadays, it is a well known construction for the isotropic case
and it is referred to as pull-tight [10, Section 4], [33, Section 4.3]. We adapt the pull-tight in
[10, 33] to the anisotropic setting for the sake of exposition. In order to state it, we need
further terminology.

We denote

V :=
{
V ∈ V(M) : ∥V ∥(M) f 2¼(mc(L ) + cH3(M))

}
.

We set

Vc∞ := {V ∈ V : |¶FV (X)| f c

∫
|X| d∥V ∥ for all X ∈ X (M))},

to be the set of varifolds with anisotropic mean curvature bounded by c. Vc∞ is clearly closed
by lower semicontinuity of the anisotropic first variation with respect to varifold convergence.
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Proposition 4.1. Let L be a homotopically closed family of sweepouts. There exists
a minimizing sequence {{Ωt}

k} ¢ L such that, if {Ωk
tk
} is a min-max sequence, then

d(∂Ωk
tk
,Vc∞) → 0.

Proof. Step 1: Mapping V to the space of vector fields. For every l ∈ Z we define the annulus

Vl = {V ∈ V : 2−l+1 g d(V,Vc∞) g 2−l−2}.

The sets Vl are compact in the weak∗ topology by Banach-Alaoglu Theorem.
For every V ∈ Vl, there exists by definition a smooth vector field

XV ∈ X (M), s.t. ¶FV (XV ) + c

∫
|X| d∥V ∥ < 0.

If l ∈ N \ {0}, up to multiply XV by a suitable constant, we can also assume

∥XV ∥Cl f
1

l
.

By continuity of the functional Z 7→ ¶FZ(XV ) + c
∫
|XV | d∥Z∥ with respect to the weak∗

topology for varifolds, we get that for every V ∈ Vl, there exists εV > 0 such that

¶FW (XV ) + c

∫
|XV | d∥W∥ f

1

2

(
¶FV (XV ) + c

∫
|XV | d∥V ∥

)
, ∀W ∈ U2εV (V ). (4.1)

By compactness of Vl, we can cover it with a finite number N(l) of balls Uε
V l
i

(V l
i ) satisfying

property (4.1) (with vector fields XV l
i
). Moreover, for each i = 1, . . . , N(l), we choose

φli ∈ Cc(U2ε
V l
i

(V l
i )) which is equal to 1 on Uε

V l
i

(V l
i ) and satisfies 0 f φli f 1.

We now define the following continuous function

H l : V ∈ Vl → H l
V ∈ X (M) where H l

V :=

∑N(l)
i=1 φ

l
i(V )XV l

i∑N(l)
i=1 φ

l
i(V )

,

which by construction satisfies:

¶FV (H l
V ) + c

∫
|H l

V | d∥V ∥ < 0 for every V ∈ Vl.

We also remark that if l ∈ N \ {0}, then ∥H l
V ∥Cl f 1

l
for every V ∈ Vl.

Next, for every l ∈ Z, we choose a function Èl with the properties that 0 f Èl f 1,

Èl = 1 on {V ∈ V : 2−l g d(V,Vc∞) g 2−l−1},

and

Èl = 0 on {V ∈ V : 2−l+1 f d(V,Vc∞) or d(V,Vc∞) f 2−l−2}.

On V \ Vc∞ we define the continuous function

H : V ∈ V \ Vc∞ → HV ∈ X (M) where HV :=

∑
l∈Z È

l(V )H l
V∑

l∈Z È
l(V )

,

which by construction satisfies

¶FV (HV ) + c

∫
|HV | d∥V ∥ < 0 for every V ∈ V \ Vc∞.
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Moreover, if d(V,Vc∞) f 2−l with l ∈ N \ {0, 1}, then ∥HV ∥Cl−1 f 1
l−1

. Hence, we can extend

the map V → HV to V continuously in every C l norm by setting it equal to 0 on Vc∞.
Step 2: Mapping V to the space of isotopies. For each V ∈ V let ΦV be the 1-parameter

family of diffeomorphisms generated by HV , i.e.

ΦV : [0,+∞)×M →M where
∂ΦV

∂t
(t, x) = HV (ΦV (t, x)).

By continuity of the functional Z 7→ ¶FZ(HV ) + c
∫
|HV | d∥Z∥, for each V ∈ V \ Vc∞ there is

a positive time ÃV such that, for every s ∈ [0, ÃV ]

¶F((ΦV (s, ·))#V )(HV ) + c

∫
|HV | d∥(ΦV (s, ·))#V ∥ f

1

2

(
¶FV (HV ) + c

∫
|HV | d∥V ∥

)
< 0.

By the continuity of the map HV , the map

(s, V ) 7→ ¶F((ΦV (s, ·))#V )(HV ) + c

∫
|HV | d∥(ΦV (s, ·))#V ∥

is also continuous. Thus we conclude the existence of a radius ÄV such that, for every
s ∈ [0, ÃV ] and W ∈ U2ρV (V )

¶F((ΦW (s, ·))#W )(HW )+c

∫
|HW | d∥(ΦW (s, ·))#W∥ f

1

4

(
¶FV (HV ) + c

∫
|HV | d∥V ∥

)
< 0.

Similarly to Step 1, we can construct a continuous function Ã : V → [0,∞] such that Ã(V ) = 0
for every V ∈ Vc∞, Ã(V ) > 0 for every V ∈ V \ Vc∞, and

max
s∈[0,σ(V )]

¶F((ΦV (s, ·))#V )(HV ) + c

∫
|HV | d∥(ΦV (s, ·))#V ∥ < 0 for every V ∈ V \ Vc∞. (4.2)

We can redefine a (non relabeled) HV by multiplying the old one by Ã(V ). The new function
HV remains continuous and vanishes identically on Vc∞, but (4.2) now reads

max
s∈[0,1]

¶F((ΦV (s, ·))#V )(HV ) + c

∫
|HV | d∥(ΦV (s, ·))#V ∥ < 0, ∀V ∈ V \ Vc∞. (4.3)

Step 3: Construction of an intermediate minimizing sequence. We choose a minimizing
sequence of families {{Ut}

k} ¢ L and consider the new families {{Ω̃t}
k} defined as

Ω̃k
t = Φ∂Uk

t
(1, Uk

t ), ∀t ∈ [0, 1], k ∈ N.

Notice that this is not our final minimizing sequence, because {{Ω̃t}
k} is not necessarily an

element of L , since the map (t, x) 7→ Φ∂Uk
t
(1, x) is not known to be smooth in the parameter

t. Nevertheless, we prove that the sequence {{Ω̃t}
k} satisfies the property claimed by the

proposition. By (4.3), we know that for every t ∈ [0, 1] and k ∈ N

Fc(Ω̃k
t )− Fc(Uk

t ) f

∫ 1

0

¶Fc(Φ∂Uk
t
(s, Uk

t ))(H∂Uk
t
) ds

f

∫ 1

0

(
¶F(Φ∂Uk

t
(s, ∂Uk

t ))(H∂Uk
t
) + c

∫
|H∂Uk

t
| d∥Φ∂Uk

t
(s, ∂Uk

t )∥

)
ds f 0.

(4.4)
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Since {{Ut}
k} ¢ L is a minimizing sequence, (4.4) implies that also {{Ω̃t}

k} is a minimizing
sequence. Notice that we are making a slight abuse of notation from now until the end of the
step, since {{Ω̃t}

k} is not necessarily a subset of L . We still call it minimizing sequence to
denote that lim supk→∞ F c({Ω̃t}

k) f mc(L ). We will use the same abuse of notation for a
min-max sequence {Ω̃k

tk
}, simply meaning that limk→∞ Fc(Ω̃k

tk
) = mc(L ).

We now want to show that every min-max sequence associated to {{Ω̃t}
k} clusters to Vc∞.

The main idea of the proof is to show that the min-max sequences associated to {{Ω̃t}
k} are

generated through Φ just by those min-max sequences of {{Ut}
k} clustering to Vc∞. Indeed,

fix a general sequence {tk} such that limk→∞Fc(Ω̃k
tk
) = mc(L ). By (4.4), we deduce that

∂Uk
tk
is a min-max sequence associated to {{Ut}

k}. In particular, up to extract a non relabeled
subsequence,

H2(∂Uk
tk
) f ¼F(∂Uk

tk
) f 2¼(mc(L ) + cH3(M)).

This uniform bound implies that, up to possibly passing to a further subsequences, ∂Uk
tk

converges to some varifold V. In particular, by continuity of the maps Φ, we deduce that

Ω̃k
tk
= Φ∂Uk

tk
(1, Uk

tk
)á ΦV (1, ·)#V, in the sense of varifolds.

We claim that V ∈ Vc∞, otherwise if V ∈ V \ Vc∞, then we would compute the following
contradiction:

mc(L ) = lim
k→∞

Fc(Ω̃k
tk
) = lim

k→∞
Fc(Uk

tk
) + lim

k→∞

∫ 1

0

¶Fc(Φ∂Uk
tk
(s, Uk

tk
))(H∂Uk

tk
) ds

f mc(L ) + lim
k→∞

∫ 1

0

(
¶F((Φ∂Uk

tk
(s, ·))#∂U

k
tk
)(H∂Uk

tk
) + c

∫
|H∂Uk

tk
| d∥(Φ∂Uk

tk
(s, ·))#∂U

k
tk
∥

)
ds

= mc(L ) +

∫ 1

0

(
¶F((ΦV (s, ·))#V )(HV ) + c

∫
|HV | d∥(ΦV (s, ·))#V ∥

)
ds

(4.3)
< mc(L ).

Since V ∈ Vc∞, then HV = 0 and consequently the diffeomorphism ΦV is just the identity.
We deduce that Ω̃k

tk
á ΦV (1, ·)#V = V ∈ Vc∞. By the arbitrarity of the min-max sequence

{Ω̃k
tk
} we conclude the proof of this step.

Step 4: Construction of the final minimizing sequence. We now wish to construct the
final minimizing sequence {{Ωt}

k}, which still satisfies the property of the proposition and is
contained in L . To this aim we want to regularize each {{Ut}

k} in the parameter t.
For each k ∈ N, let hkt denote the one parameter family of vector fields H∂Uk

t
. The map

(t, x) 7→ hkt (x) is continuous. Moreover, for every fixed l ∈ N

lim
t→τ

∥hkt (·)− hkτ (·)∥Cl = lim
t→τ

∥H∂Uk
t
−H∂Uk

τ
∥Cl = 0.

Convolving hkt with a standard convolution kernel in the parameter t, we can construct a
smooth map (t, x) 7→ h̄kt (x) with the property that

max
t

∥hkt (·)− h̄kt (·)∥C1 f
1

k + 1
. (4.5)

Consider now for each fixed k and t the one-parameter family of diffeomorphisms Ψk
t (s, ·)

generated by h̄kt and the one-parameter family of diffeomorphisms Φk
t (s, ·) generated by hkt .

Recall that Ω̃k
t = Φk

t (1, U
k
t ). We define the corresponding family Ωk

t = Ψk
t (1, U

k
t ). By the

smoothness of the map (t, x) 7→ h̄kt (x), we know that {{Ωt}
k} ¢ L .
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We first observe that (4.5) and (4.4) imply that

lim sup
k→∞

max
t

Fc(Ωk
t ) = lim sup

k→∞
max
t

Fc(Ω̃k
t ) f lim sup

k→∞
max
t

Fc(Uk
t ) f mc(L ).

Consequently {{Ωt}
k} ¢ L is a minimizing sequence.

Furthermore, given a min-max sequence {Ωktk} associated to {{Ωt}
k}, that is limk→∞ Fc(Ωktk) =

mc(L ), again by (4.5) we have limk→∞ Fc(Ω̃k
tk
) = mc(L ). Therefore, by Step 3, limk→∞ d(∂Ω̃k

tk
,Vc∞) =

0. Since, again by (4.5),

lim
k→∞

max
t
d(∂Ωk

t , ∂Ω̃
k
t ) = 0,

we deduce that limk→∞ d(∂Ωk
tk
,Vc∞) = 0, as desired. □

4.2. Almost minimality. The limiting varifolds of the min-max sequences obtained in
Subsection 4.1 are not necessarily regular. Hence, in order to prove Theorem 3.4 we introduce
the notion of almost minimizing varifolds, cf. [12, Definition 2.3].

Definition 4.2. Fix ε > 0 and an open set U ¢M . An open set Ω ¢M is called ε-almost
minimizing (ε-a.m.) in U if it does not exist any one parameter family of open sets {Ωt}t∈[0,1]
such that:

{∂Ωt}t∈[0,1]is a generalized smooth family and (so2) of Definition 2.11 hold; (4.6)

Ω0 = Ω and Ωt \ U = Ω \ U for all t ∈ [0, 1]; (4.7)

Fc(Ωt) f Fc(Ω) + ε
8
for all t ∈ [0, 1]; (4.8)

Fc(Ω1) f Fc(Ω)− ε. (4.9)

A sequence {Ωk} of open sets is called almost minimizing (a.m.) in U if each Ωk is εk-a.m.
in U , where εk possibly depends on U and εk → 0 as k → ∞.

The analogous notion for the isotropic stationary setting was introduced by Pitts and then
rephrased by Colding-De Lellis (see Section 3.2 of [10]) and by De Lellis-Tasnady (see Section
2.2 of [10]). Using a combinatorial argument inspired by a general one of [6] reported in [33],
we prove the following existence result, following the isotropic counterpart in [12, Proposition
2.4].

Proposition 4.3. Let L be a homotopically closed family of sweepouts. There is a min-max
sequence Ωk = Ωk

tk
and a function r :M → (0,∞] such that for every An ∈ AN r(x)(x) with

x ∈M , there exists a (non relabeled) subsequence {Ωk} that is a.m. in An and such that ∂Ωk

converges to a varifold V ∈ Vc∞, as k → ∞. Moreover the function r(x) satisfies one of the
following properties:

(a) there exists Inj(M)/18 > R > 0 such that r(x) ≡ R for every x ∈M and there exists

y ∈M such that {Ωk} is a.m. in M \B18R(y).
(b) r(x) ≡ Inj(M)/18 for every x ∈M .
(c) there exists p ∈M such that r(x) = d(x, p) for x ̸= p and r(p) = ∞.

The proof of Proposition 4.3 will build on the following result.

Lemma 4.4. Given two open sets U ¢¢ Ũ ¢ M and a sweepout {Qt}t∈[0,1]. Consider an
ε > 0, t0 ∈ [0, 1] and a one parameter family of open sets {Ωs}s∈[0,1] satisfying (4.6), (4.7),
(4.8) and (4.9), with Ω0 = Qt0. Then there exists ¸ > 0 such that for every a, ³, ´, b with
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t0 − ¸ f a < ³ < ´ < b f t0 + ¸, the following holds: There exists a sweepout {Q′
t}t∈[0,1]

homotopic to {Qt}t∈[0,1] and satisfying:

(a) Qt = Q′
t for every t ∈ [0, a] ∪ [b, 1] and Qt \ Ũ = Q′

t \ Ũ for every t ∈ (a, b);
(b) Fc(Q′

t) f Fc(Qt) +
ε
4
for every t ∈ [0, 1];

(c) Fc(Q′
t) f Fc(Qt)−

ε
2
for every t ∈ (³, ´).

Proposition 4.3 can be proved gathering Lemma 4.4 with a combinatorial argument due to
Almgren-Pitts. This statement is slightly stronger than the corresponding propositions for the
isotropic case in [10, Section 5] and [12, Section 3]. We will need this stronger version to prove
the regularity of the surface we construct away from a single point. The difficulty appears in
Section 4.6: in the anisotropic setting we are not able to remove the center singularities in
the punctured balls, and in principle we may have a finite number of singularities. But with
the strengthened Proposition 4.3, we will be able to cover M with balls such that the surface
is regular in all the punctured balls and moreover each center, but p, is contained in another
ball.
In order to prove Proposition 4.3, we need some further notation. Below we recall [12,

Definition 3.2]:

Definition 4.5. Let A,B ¢M be two open sets. We say that Ω ∈ C(M) is ε-a.m. in (A,B)
if it is ε-a.m. in at least one of the two open sets. A sequence {Ωk} of open sets is called
almost minimizing (a.m.) in (A,B) if each Ωk is εk-a.m. in (A,B) for some sequence εk → 0
(possibly depending on (A,B)). We denote by CO the set of pairs (A,B) of open sets with

d(A,B) g 4min{diam(A), diam(B)}.

The following proposition is Almgren–Pitts combinatorial Lemma: Proposition 4.3 follows
as a corollary of it.

Proposition 4.6. For every homotopically closed family of sweepouts L , there exists a

min-max sequence {Ωn} = {Ωk(n)
tk(n)

} such that ∂Ωn á V ∈ Vc∞ in the sense of varifolds, and

{Ωn} is a.m. in (A,B) for every (A,B) ∈ CO.

Proof of Proposition 4.3. We claim that the sequence {Ωn} given by Proposition 4.6 satisfies
the claim of Proposition 4.3. To this aim we fix R > 0 such that Inj(M) > 9R > 0. Then,

(BR(x),M \ B9R(x)) ∈ CO for all x ∈ M . In particular we deduce that {Ωn} is a.m. in

(BR(x),M \B9R(x)). Hence for every R ∈ (0, Inj(M)/9) one of the following cases holds:

(aR) {Ωn} is a.m. in BR(x) for every x ∈M ;
(bR) there exists pR ∈M and a (not relabeled) subsequence {Ωn} such that {Ωn} is a.m.

in M \B9R(pR).

Denote with R′ := sup{Inj(M)/18 > R g 0 : (aR) holds}. If Inj(M)/18 > R′ > 0, then
denoting R′′ := 2

3
R we clearly have a sequence as in Proposition 4.3 (a) for which r(x) ≡ R′′

for every x ∈ M and there exists y ∈ M such that {Ωn} is a.m. in M \ B18R′′(y). If
Inj(M)/18 = R′, analogously (b) holds.

The last possibility is R′ = 0, that is (bR) holds for every R ∈ (0, Inj(M)/18). Then there
exist a subsequence of {Ωn}, not relabeled, and a sequence of points {pj}j∈N ¢M such that
pj → p ∈M as j → ∞ and

for any fixed j, there exists a subsequence {Ωnj} that is a.m. in M \B1/j(pj).
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If x ∈ M \ {p}, for every r < d(x, p) then Br(x) ¢¢ M \ {p}. Therefore, for every
An ∈ AN d(x,p)(x) there exists a (non relabeled) subsequence {Ωn} that is a.m. in An.
Moreover, for every An ∈ AN (p), we have An ¢¢ M \ {p}, hence there exists a (non
relabeled) subsequence {Ωn} that is a.m. in An. We deduce that {Ωn} satisfies (c) of
Proposition 4.3, which completes the proof. □

Proof of Proposition 4.6. The proof of Proposition 4.6 is obtained repeating verbatim the
proof of [12, Proposition 3.4], with the only difference of replacing all the occurences of Hn

and F in [12, Proposition 3.4] respectively with Fc and F c, and replacing the use of [12,
Lemma 3.1] with Lemma 4.4. □

Proof of Lemma 4.4. Although the proof of Lemma 4.4 follows the same proof of [12, Lemma
3.1], the estimates need to be adapted to the functional Fc. Hence we sketch the argument
for the sake of readability, we refer to the proof of [12, Lemma 3.1] for more details.
We fix two open sets A, B such that U ¢¢ A ¢¢ B ¢¢ Ũ and ∂Qt0 ∩ C is a smooth

surface, where C = B \A. Moreover, we choose two functions φA ∈ C∞
c (B), φB ∈ C∞

c (M \A)
such that φA + φB = 1. Next, we consider normal coordinates (z, Ã) ∈ ∂Qt0 ∩ C × (−¶, ¶)
in a regular ¶–neighborhood of C ∩ ∂Qt0 . As Qt converges to Qt0 , there exist ¸ > 0 and an
open C ′ ¢ C, such that the following holds for every t ∈ (t0 − ¸, t0 + ¸):

• ∂Qt ∩ C is the graph of a function µt over ∂Qt0 ∩ C;
• Qt ∩ C \ C ′ = Qt0 ∩ C \ C ′;
• Qt ∩ C

′ = {(z, Ã) : Ã < µt(z)} ∩ C
′.

We also define

µt,s,τ := φBµt + φA((1− s)µt + sµτ ) t, Ä ∈ (t0 − ¸, t0 + ¸), s ∈ [0, 1].

Denoting with Γt,s,τ the graph of µt,s,τ , there exists ¸ small enough such that

max
s,τ

F(Γt,s,τ ) f F(∂Qt ∩ C) +
ε

32
, (4.10)

and

max
s,τ

cH3({(z, Ã) : Ã < µt,s,τ (z)} ∩ C) f cH3(Qt ∩ C) +
ε

32
. (4.11)

Now, given t0 − ¸ < a < ³ < ´ < b < t0 + ¸, we choose ³′ ∈ (a, ³) and ´′ ∈ (´, b) and
consider a smooth function È : [a, b] → [0, 1] that is equal to 0 in a neighborhood of a and b
and has value 1 on [³′, ´′]. Moreover we choose a smooth function µ : [a, b] → [t0 − ¸, t0 + ¸]
which is the identity in a neighborhood of a and b and equal to t0 in [³′, ´′]. Finally, we
define the family of open sets {Ot} satisfying Ot = Qt for t ̸∈ [a, b], while for every t ∈ [a, b]
we impose:

Ot \B = Qt \B, Ot ∩ A = Qγ(t) ∩ A

Ot ∩ C \ C ′ = Qt0 ∩ C \ C ′, Ot ∩ C
′ = {(z, Ã) : Ã < µt,ψ(t),γ(t)(z)} ∩ C

′.

In particular {∂Ot} is a sweepout homotopic to ∂Qt. By (4.10) and (4.11), we estimate

Fc(Ot ∩ C) f max
s,τ

F(Γt,s,τ ) + max
s,τ

cH3({(z, Ã) : Ã < µt,s,τ (z)} ∩ C)

f Fc(Qt ∩ C) +
ε

16
for t ∈ [a, b].

(4.12)
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We choose a smooth function Ç : [³′, ´′] → [0, 1] which is equal to 0 in a neighborhood of ³′

and ´′ and which is identically 1 on [³, ´]. For t ̸∈ [³′, ´′] we set Q′
t = Ot, while for t ∈ [³′, ´′]

we set:
Q′
t \ A = Ot \ A, Q′

t ∩ A = Ωχ(t) ∩ A.

{Q′
t} is a sweepout homotopic to {Ot} and hence to {Qt}. To verify properties (a), (b) and

(c) of the lemma, we need to estimate Fc(Q′
t).

If t ̸∈ [a, b], then Q′
t ≡ Qt and hence Fc(Q′

t) = Fc(Qt), which in turn implies the validity
of properties (a), (b).
We focus now on the more involved t ∈ [a, b]. In this case, we have Q′

t \B = Qt \B and
Q′
t ∩ C = Ot ∩ C. This shows the property (a) of the lemma. Moreover, we have

Fc(Q′
t)− Fc(Qt) f [Fc(Ot ∩ C)− Fc(Qt ∩ C)] + [Fc(Q′

t ∩ A)− Fc(Qt ∩ A)]
(4.12)

f
ε

16
+ [Fc(Q′

t ∩ A)− Fc(Qt ∩ A)]. (4.13)

Now, we have to consider three subcases:

(Subcase 1) If t ∈ [a, ³′]∪ [´′, b], then Q′
t ∩A = Ot ∩A = Qγ(t) ∩A. Since µ(t), t ∈ (t0 − ¸, t0 + ¸),

choosing ¸ small enough, we can assume

|Fc(Qs ∩ A)− Fc(Qσ ∩ A)| f
ε

16
for every Ã, s ∈ (t0 − ¸, t0 + ¸). (4.14)

Hence (4.13) implies that Fc(Q′
t) f Fc(Qt) +

ε
8
.

(Subcase 2) If t ∈ [³′, ³] ∪ [´′, ´], then Q′
t ∩ A = Ωχ(t) ∩ A. Hence, by (4.13), we compute

Fc(Q′
t)− Fc(Qt) f

ε

16
+ [Fc(Qt0 ∩ A)− Fc(Qt ∩ A)]

+ [Fc(Ωχ(t) ∩ A)− Fc(Qt0 ∩ A)]
(4.14),(4.8)

f
ε

4
.

(Subcase 3) If t ∈ [³, ´], then Q′
t ∩ A = Ω1 ∩ A. Hence, by (4.13), we compute

Fc(Q′
t)− Fc(Qt) f

ε

16
+ [Fc(Ω1 ∩ A)− Fc(Qt0 ∩ A)]

+ [Fc(Qt0 ∩ A)− Fc(Qt ∩ A)]
(4.9),(4.14)

< −
ε

2
.

The previous estimates imply properties (b) and (c) of the lemma. This concludes the
proof. □

4.3. Replacements. We use the notion of replacements introduced by Pitts, but we also
require a density one condition, as in [39].

Definition 4.7. Let V ∈ V∞
c and U ¢M be an open set. We say that a varifold V ′ ∈ Vc∞ is

a replacement for V in U if V ′ (M \ Ū) = V (M \ Ū), ¹(x, V ′) = 1 for ∥V ′∥-a.e. x ∈ U ,
and V ′ U is a smooth c-stable surface.

We aim to show that almost minimizing varifolds posses replacements.

Proposition 4.8. Consider {Ωj}, V and r :M → (0,∞] be as in Proposition 4.3. For every
x ∈M and An ∈ AN r(x)(x) there exist a varifold Ṽ , a min-max sequence {Ω̃j} and a map
r′ :M → (0,∞] satisfying the following properties:

• Ṽ is a replacement for V in An and ∂Ω̃j á Ṽ in the varifolds topology;
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• {Ω̃j} is a.m. in every An′ ∈ AN r′(y)(y) for every y ∈M ;
• r′(x) = r(x);
• limj→∞(Fc(Ω̃j)− Fc(Ωj)) = 0.

Remark 4.9. Once we have applied Proposition 4.8 obtaining the replacement Ṽ , thanks
to the properties above we can apply Proposition 4.8 again to {Ω̃j}, Ṽ , and r′ in any
An′ ∈ AN r(x)(x) ∪

⋃
y ̸=xAN r′(y)(y).

4.4. Proof of Proposition 4.8. The proof of Proposition 4.8 follows the proof of [12,
Proposition 2.6], however it requires non-trivial adaptations. We fix An ∈ AN r(x)(x), and
for every j, consider the class E(Ωj, An) of sets Q such that there is a family {Ωt} satisfying
Ω0 = Ωj, Ω1 = Q, (4.6), (4.7) and (4.8) for ε = 1

j
, Ω = Ωj and U = An. We choose a

minimizing sequence {Ωj,k}k for Fc in the class E(Ωj, An) such that Ωj,k converges to a
Caccioppoli set Ω̃j, ∂Ωj,k converges to a varifold V j ∈ Vc∞, and both V j and a diagonal
sequence ∂Ωj,k(j) converge to the same varifold Ṽ .
To prove Proposition 4.8 we need four intermediate lemmas:

Lemma 4.10. For every j ∈ N and every y ∈ An there exist a ball Bρ(y) ¢ An and k0 ∈ N

for which the following statement holds:
For every k g k0 and any open set Q satisfying:

- ∂Q is smooth in the complement of a finite set,
- Q \Bρ(y) = Ωj,k \Bρ(y),
- and Fc(Q) f Fc(Ωj,k),

then Q ∈ E(Ωj, An).

Lemma 4.11. ∂Ω̃j ∩ An is a smooth c-stable surface in An and ∂Ω̃j An = V j An.

Lemma 4.12. Assume that there exists y ∈ ∂+An and a ball Bρy(y) such that ∂Ωj ∩Bρy(y)∩
An = µ where µ is a smooth simple curve. There exist a ball Bρ(y) ¢ Bρy(y) and k0 ∈ N for
which the following statement holds:

For every k g k0 and any open set Q satisfying:

- ∂Q is smooth in the complement of a finite set,
- Q \ (Bρ(y) \ An) = Ωj,k \ (Bρ(y) \ An),
- and Fc(Q) f Fc(Ωj,k),

then Q ∈ E(Ωj, An).

Lemma 4.13. Fix y ∈ ∂+An and assume ∂Ωj is a smooth embedded c-stable surface in a
ball Bρy(y). Then there exists a ball Bρ(y) such that ∂Ω̃j ∩Bρ(y) ∩ An is smooth up to the
boundary ∂Ωj ∩ ∂+An ∩Bρ(y).

Assuming the validity of the intermediate lemmas 4.10, 4.11, 4.12, 4.13, we can conclude
the proof of Proposition 4.8 as follows:

By definition Ω̃j coincides with Ωj outside An. Fix an annulus An′ = An(x, ε, r(x)−ε) ££
An. By the assumptions on {Ωj}, then {Ω̃j} is also a.m. in An′. As Ω̃j is a.m. in every
open subset U ¢ An′, by the arbitrarity of ε we deduce that Ω̃j is a.m. in any annulus in
AN r(x)(x). Moreover we have that M = An′ ∪ (M \ An).
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For every y ∈M \An, y ≠ x, we define r′(y) := min{r(y), d(y, An)}. If An′′ ∈ AN r′(y)(y),

then Ωj ∩ An′′ = Ω̃j ∩ An′′, which in turn implies that {Ω̃j} is a.m. in An′′. If y ∈ An, then
we define r′(y) := min{r(y), d(y, ∂An′)}. If An′′ ∈ AN r′(y)(y), then An

′′ ¢ An′ and, since

{Ω̃j} is a.m. in An′, then {Ω̃j} is a.m. in An′′.
Now we prove that Ṽ is a replacement for V in An. Theorem 2.9 implies that Ṽ is a

c-stable surface in An. We need to show that Ṽ ∈ Vc∞. To this aim, we consider a partition
of unity {È1, È2} for the covering {An′,M \An} of M . Since Ṽ coincides with V in M \An,
for every X ∈ X (M) we compute

|[¶FṼ ](X)| f |[¶FṼ ](È1X)|+ |[¶FṼ ](È2X)| = [¶FṼ ](È1X) + c

∫
È2|X| d∥Ṽ ∥.

Hence, it is enough to prove that

|¶FṼ (X)| f c

∫
|X| d∥Ṽ ∥ for all X ∈ Xc(An

′).

If the inequality above does not holds, then there exists X ∈ Xc(An
′) such that

¶FṼ (X) + c

∫
|X| d∥Ṽ ∥ f −4C < 0.

We consider the isotopy Φ generated by X through the ODE ∂Φ(x,t)
∂t

= X(Φ(x, t)). Denoting

Ṽ (t) := Φ(t)#Ṽ Σj(t) = Φ(t, ∂Ω̃j) Ω̃j(t) = Φ(t, Ω̃j),

there exists ε > 0 such that ¶FṼ (t)(X) + c
∫
|X| d∥Ṽ (t)∥ f −2C for every t f ε. Since

Σj(t)á Ṽ (t) in the sense of varifolds, there exists N ∈ N such that

¶FΣ
j(t)(X) + c

∫
|X| d∥Σj(t)∥ f −C for every j > N and t f ε. (4.15)

Integrating (4.15) in t, we conclude that Fc(Ω̃j(t)) f Fc(Ω̃j) − Ct for every t ∈ [0, ε] and
j g N , which contradicts the a.m. property of Ω̃j in An′. This conclude the proof that Ṽ is
a replacement for V in An.

Finally, observe that Fc(Ω̃j) f Fc(Ωj) by construction and lim infn(F
c(Ω̃j)− Fc(Ωj)) g 0,

because otherwise we would contradict the a.m. property of {Ωj} in An. We thus conclude
that:

lim
n→∞

(Fc(Ω̃j)− Fc(Ωj)) = 0.

4.5. Proof of the intermediate lemmas 4.10, 4.11, 4.12, 4.13.

Proof of Lemma 4.10. The proof of Lemma 4.10 is analogous to the proof of [12, Lemma 4.1].
Hence we refer the reader to [12] for more detailed justifications of the proof.
Let us fix j ∈ N and y ∈ An. Let Ä > 0 be such that B2ρ(y) ¢ An and consider an open

set Q satisfying the properties in the statement of the Lemma. Given the local nature of
Lemma 4.10, by Remark 2.3 we will assume without loss of generality that the ambient space
is R3.
As in the Step 1 of the proof of [12, Lemma 4.1], we can choose r ∈ (Ä, 2Ä) such that,

for every k, ∂Ωj,k is regular in a neighborhood of ∂Br(y) and intersects it transversally.
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For each z ∈ Br(y) we denote with [y, z] the closed segment with end points y and z, and
(y, z) := [y, z] \ {y, z}. We define T as the following open cone

T =
⋃

z∈∂Br(y)∩Ωj,k

(y, z) .

We consider ε > 0 and a smooth function È : [0, 2Ä] → [0, 2Ä], such that: |È(s) − s| f ε
and 0 f È′(s) f 2 for every s; È(s) = s if |s− r| > ε; and È ≡ r in a neighborhood of r.
We set Ψ(t, s) := (1 − t)s + tÈ(s) and, for every ¼ ∈ [0, 1] and every z ∈ Br(y), we

define Äλ(z) ∈ [y, z] such that d(y, Äλ(z)) = ¼ d(y, z). For 1 < ¼, we define Äλ(z) to be the
corresponding point on the segment that is the extension of [y, z]. We can finally define an
homotopy Ω̃t between Ωj,k and Ω̃1 as follows:

• Ω̃t \ An(y, r − ε, r + ε) = Ωj,k \ An(y, r − ε, r + ε);
• Ω̃t ∩ ∂Bs(y) = Äs/Ψ(t,s)(Ω

j,k ∩ ∂BΨ(t,s)) for every s ∈ (r − ε, r + ε).

Since ∂Ωj,k is regular in a neighborhood of ∂Br(y) and intersects it transversally, we can
choose ε to have maxt F

c(∂Ω̃t)−Fc(∂Ωj,k) as small as desired. Moreover Ω̃1 coincides with T
in a neighborhood of ∂Br(y). Since Q coincides with Ωj,k on M \Bρ(y), the same argument
can be applied to Q. We deduce that one can assume T = Q = Ωj,k in a neighborhood of
∂Br(y).

We now consider the following family of open sets {Ωt}t∈[0,1]:

• Ωt \Br(y) = Ωj,k \Br(y) for every t;
• Ωt ∩ An(y, |1− 2t|r, r) = T ∩ An(y, |1− 2t|r, r) for every t;
• Ωt ∩B(1−2t)r(y) = Ä1−2t(Ω

j,k ∩Br(y)) for t ∈ [0, 1
2
];

• Ωt ∩B(2t−1)r(y) = Ä2t−1(Q ∩ Br(y)) for t ∈ [1
2
, 1].

This is a generalized smooth family and it satisfies (so2) of Definition 2.11. It remains to
check that

max
t

Fc(Ωt) f Fc(Ωj,k) +
1

8j
∀k g k0. (4.16)

We observe that for every r < 2Ä and µ ∈ [0, 1]:

F(∂T ∩ Br(y)) f ¼H2(∂T ∩ Br(y)) f ¼rH1(∂Ωj,k ∩ ∂Br(y)) (4.17)

F([∂(Äγ(Ω
j,k ∩Br(y)))] ∩ Bγr(y)) f ¼H2([∂(Äγ(Ω

j,k ∩ Br(y)))] ∩ Bγr(y))

f ¼H2(∂Ωj,k ∩ Br(y)) f ¼2F(∂Ωj,k ∩ Br(y))
(4.18)

F([∂(Äγ(Q ∩ Br(y)))] ∩ Bγr(y)) f ¼H2([∂(Äγ(Q ∩ Br(y)))] ∩ Bγr(y))

f ¼H2(∂Q ∩ Br(y)) f ¼2F(∂Q ∩ Br(y))
(4.19)

∫ 2ρ

0

H1(∂Ωj,k ∩ ∂Bτ (y)) dÄ f H2(∂Ωj,k ∩ B2ρ(y)) f ¼F(∂Ωj,k ∩ B2ρ(y)). (4.20)

Since Fc(Q) f Fc(Ωj,k), we deduce from (4.19) that

F([∂(Äγ(Q ∩Br(y)))] ∩ Bγr(y)) f ¼2F(∂Q ∩ Br(y))

f ¼2[F(∂Ωj,k ∩B2ρ(y)) + cH3(Q ∩ B2ρ(y))− cH3(Ωj,k ∩ B2ρ(y))]

f ¼2[F(∂Ωj,k ∩B2ρ(y)) + cH3(B2ρ(y))] f ¼2[F(∂Ωj,k ∩ B2ρ(y)) + CÄ3],

(4.21)
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where C is a (possibly changing) constant depending just on F and c. Hence (4.17), (4.18)
and (4.21) imply that

max
t

F(∂Ωt)− F(∂Ωj,k) f ¼2F(∂Ωj,k ∩ B2ρ(y)) + ¼rH1(∂Ωj,k ∩ ∂Br(y)) + CÄ3 .

Moreover, by (4.20) we can choose r ∈ (Ä, 2Ä) which satisfies:

H1(∂Ωj,k ∩ ∂Br(y)) f
2¼

Ä
F(∂Ωj,k ∩ B2ρ(y)) .

Hence, we conclude

max
t

F(∂Ωt) f F(∂Ωj,k) + 2¼2F(∂Ωj,k ∩ B2ρ(y)) + CÄ3 . (4.22)

Furthermore, there exists k0 such that

F(∂Ωj,k ∩ B2ρ(y)) f 2F(V j B4ρ(y)) f 2¼∥V j∥(B4ρ(y)) for every k g k0. (4.23)

By the non concentration Lemma 5.7,

∥V j∥(B4ρ(y)) f C∥V j∥(M)³log2(ρ0/ρ) . (4.24)

We recall that ³ ∈ (0, 1) is the constant of Lemma 5.7 and it depends just on F . To conclude,
we observe that

cH3(∂Ωj,k)−min
t
cH3(∂Ωt) f cH3(B2ρ(y)) f CÄ3 . (4.25)

Combining (4.22), (4.23), (4.24) and (4.25), we deduce that

max
t

Fc(∂Ωt) f Fc(∂Ωj,k) + C∥V j∥(M)³log2(ρ0/ρ) + CÄ3 . (4.26)

As ³ ∈ (0, 1), choosing Ä < Ä0 small enough, by (4.26) we conclude (4.16), as desired. □

Proof of Lemma 4.11. Fix j ∈ N and y ∈ An and let Bρ(y) ¢ An be the ball given by Lemma
4.10. Repeating verbatim the proof of [12, Lemma 4.2], and replacing the use of [12, Lemma
4.1] with Lemma 4.10, one can prove that that Ω̃j minimizes Fc in the class P(Ω̃j, Bρ/2(y))

of the finite perimeter sets equal to Ω̃j outside of Bρ/2(y).

Now, we want to show that ∂Ω̃j An = V j An. First we prove that

lim
k→∞

F(∂Ωj,k) = F(∂Ω̃j). (4.27)

Indeed, if this is not the case, then we would have

Fc(Ω̃j ∩ Bρ/2(y)) < lim sup
k→∞

Fc(Ωj,k ∩ Bρ/2(y))

for some y ∈ An and some Ä to which we can apply the conclusion Lemma 4.10. We can
then use Ω̃j in place of Q in the argument of the previous step to contradict, once again,
the minimality of the sequence {Ωj,k}k. We apply [27, Theorem 1, Section 3.4] to (4.27) to
deduce that

lim
k→∞

H2(∂Ωj,k) = H2(∂Ω̃j). (4.28)

Applying [12, Proposition A.1] to (4.28), we deduce that ∂Ω̃j An = V j An.
To conclude, we prove the c-stability of the surface ∂Ω̃j. Assume by contradiction that

there exists a smooth volume preserving vector field X compactly supported in An such
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that ¶2
FcΩ̃j(X,X) = −C < 0. There exists a map φ : t ∈ R 7→ φt ∈ C∞(An,An) solving the

following ODE: {
∂ϕt(x)
∂t

= X(φt(x)) ∀x ∈M,

φ0(x) = x ∀x ∈M.

We set
Ω̃j
t := (φt)(Ω̃

j), and Ωj,k
t := (φt)(Ω

j,k).

Using the information on the first and second variation, we get that

Fc(Ω̃j
ε) f Fc(Ω̃j)− Cε2. (4.29)

We can easily define an homotopy È(t, x) = φεt(x) for every (t, x) ∈ [0, 1]×An and È(t, x) = x
for every (t, x) ∈ [0, 1]× (M \ An), so that Ω̃j

ε := È(1, Ω̃j). This contradicts the minimality
of the sequence Ωj,k in E(Ωj, An). □

Proof of Lemma 4.12. The proof is very similar to the one of Lemma 4.10. It is achieved
by exhibiting a suitable homotopy between Ωj,k and Q. For simplicity, we will assume the
ambient space is R3, without loss of generality (as this is a local result). Up to translation
and rotation, we can assume y = 0, that the tangent space to ∂+An in 0 is (e1, e2), that
µ̇/|µ̇| = e1, and An ¢ {ïx, e3ð > 0}. Up to consider Ä small enough, for every a ∈ [−Ä, Ä]
there exists a unique ya ∈ µ ∩ {x1 = a}. The key idea is:

- First deform Ωj,k to the set Ω̃ which is the union of Ωj,k \ (Bρ(y) \ An) and the
family of 1-dimensional cones {Ca}a∈[−ρ,ρ] lying in {x1 = a}, with vertices ya and base
Ωj,k ∩ ∂Bρ(y) ∩ An;

- Then deform Ω̃ to Q in a similar way.

Using this scheme, the proof becomes an immediate modification of the proof of Lemma 4.10
and we will omit it. □

Proof of Lemma 4.13. We observe that ∂Ωj satisfies the assumptions of Lemma 4.12 in Bρy(y).

Let Bρ(y) be the ball given by Lemma 4.12. We claim that Ω̃j minimizes Fc in the class

P(Ω̃j, Bρ/2(y) ∩ An) of the finite perimeter sets equal to Ω̃j outside of Bρ/2(y) ∩ An. If this

was true, by Theorem 6.1 in Appendix 6, we would deduce that ∂Ω̃j ∩Bρ/2(y)∩An is smooth

up to the boundary ∂Ω̃j ∩ ∂+An ∩ Bρ/2(y).
Let us prove the claim. Assume, by contradiction, that Q is a Caccioppoli set with

Q \ (Bρ/2(y) ∩ An) = Ω̃j \ (Bρ/2(y) ∩ An) and

Fc(Q) < Fc(Ω̃j)− 2¸ . (4.30)

Then there exists ¶̄ > 0 such that, denoting with Ant := (1− t)An,

Fc(Q ∩ Bρ/2(y) ∩ Ant) < Fc(Ω̃j ∩ Bρ/2(y) ∩ Ant)− ¸, ∀t ∈ (0, ¶̄) . (4.31)

Since the convergence 1Ωj,k → 1Ω̃j is strong in L1, there exist Ä ∈ (Ä/2, Ä) and ¶ ∈ (0, ¶̄) such
that (up to subsequences)

lim
k→∞

∥1Ω̃j − 1Ωj,k∥L1(∂Bτ (y)∪∂+Anδ) = 0 , (4.32)

Fc(Ω̃j ∩ Bτ (y) ∩ Anδ) f lim inf
k→∞

Fc(Ωj,k ∩ Bτ (y) ∩ Anδ), and Fc(Ω̃j) f lim inf
k→∞

Fc(Ωj,k) .

(4.33)
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We define
Qj,k = (Q ∩ Bτ (y) ∩ Anδ) ∪ (Ωj,k \ (Bτ (y) ∩ Anδ)) .

Hence, we deduce from (4.31), (4.32) and (4.33) that

lim sup
k→∞

[Fc(Qj,k)− Fc(Ωj,k)] f −¸ .

We fix now k and a compactly supported kernel φ, then we define gε := 1Qj,k ∗ φε and the
level set Ξε := {gε > t} for some t ∈ (1

4
, 3
4
). Then Fc(Ξε) → Fc(Qj,k) as ε→ 0, see [11, 32].

As Ξε does not coincide with Ωj,k outside Bρ(y) \ An, we need to modify Ξε. Hence we

choose (a, b) ¢ (Ä, Ä) and (³, ´) ¢ (0, ¶) so that Σj,k := ∂Ωj,k∩ ((Bb(y)\Ba(y))∪ (Anα \Anβ))
is smooth. We also consider a smooth tubular neighborhood T of Σj,k and the associated
normal coordinates (À, Ã). As Qj,k \ (Bτ (y) ∩ Anδ) = Ωj,k \ (Bτ (y) ∩ Anδ), then there exists

ε > 0 and a smooth function fε : À → fε(À) such that ∂Ξε∩((Bb(y)\Ba(y))∪(Anα\Anβ)) ¢ T
and T ∩ Ξε := {Ã < fε(À)}, and fε → 0 smoothly as ε→ 0,
Arguing as in the proof of Lemma 4.4 one can modify Qj,k to a set Ξj,k satisfying:

• ∂Ξj,k is smooth in the complement of a finite set;
• Ξj,k \ (Bρ(y) \ An) = Ωj,k \ (Bρ(y) \ An);
• lim supk(F

c(Ξj,k)− Fc(Ωj,k)) f −¸ < 0.

Lemma 4.12 implies that Qj,k ∈ E(Ωj, An) for k sufficiently large, contradicting the minimality
of the sequence Ωj,k. □

4.6. Regularity. In this section we use Proposition 4.8 to get the desired regularity:

Proposition 4.14. Let V be as in Proposition 4.3 (and consequently as in Proposition 4.8).
Then V is induced by a non trivial surface Σ with multiplicity one, which is smooth, c-stable
and almost embedded outside of one point p ∈M .

We remark that Proposition 4.14 implies the validity of Theorem 3.4. In order to prove
Proposition 4.14, we will use some intermediate results that are of independent interest. Since
they are also valid in general dimension, we state and prove them in Section 5.
As a first step towards the proof of Proposition 4.14 we have the following:

Lemma 4.15. Let V ∈ V∞
c . If there exists a positive function r on M such that V has

a replacement in any annulus An ∈ AN r(x)(x), then V is integral. Moreover, there exists
C > 0, depending only on F and c, such that ¹∗(x, V ) g C for any x ∈ supp (∥V ∥).

Proof. Fix x ∈ supp (∥V ∥). Given the local nature around x of this lemma, by Remark 2.3
we will assume without loss of generality that the ambient space is R3. Fix r < 1√

∆
, where ∆

is the constant defined in [3, page 294, Section 1.4] and depends just on F , and 2r < ¼/c.
Replace V with V ′ in An(x, r, 2r). We claim that ∥V ′∥ cannot be identically 0 on An(x, r, 2r).
Assume it was; since x ∈ supp (∥V ′∥), there would be a Ä f r such that V ′ “touches” ∂Bρ

from the interior. More precisely, there would exist Ä and ε such that supp ∥V ′∥∩∂Bρ(x) ̸= ∅
and supp ∥V ′∥ ∩An(x, Ä, Ä+ ε) = ∅. Moreover supp ∥V ′ An(x, Ä, Ä+ ε)∥ is a (2, c) subset of
An(x, Ä, Ä+ ε), as proved in [23, Lemma 4.5]. In particular, we deduce from [16, Proposition

2 (iii)] that H
∂Bρ(x)
F (p) f c for every p ∈ supp ∥V ′∥ ∩ ∂Bρ(x) ̸= ∅. On the other hand, since

Ä < 2r < ¼/c, we deduce that H
∂Bρ(x)
F > λ

ρ
> c, which is the desired contradiction.

Thus V ′ An(x, r, 2r) is a non–empty smooth c-stable surface Σ. (4.34)
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We fix y ∈ ∂B3r/2(x) ∩ Σ, which exists because otherwise we could apply the same argument
as before to the c-stable surface Σ in B3r/2(x), contradicting the maximum principle. We
apply [3, page 305, Theorem, Equation (9)] with Z = An(x, r, 2r) and M = Σ: the whole set
of assumption needed is in [3, page 294, Section 1.4] and are trivially satisfied. Since r < 1√

∆
,

we deduce that there exists C > 0 depending just on F and c, such that

H2(Σ ∩ Br/2(y)) g C(r/2)2.

In particular

∥V ∥(B2r(x))

(2r)2
g

H2(Σ ∩Br/2(y))

(2r)2
g
C(r/2)2

(2r)2
g
C

16
.

Passing to the liminf in r, by the arbitrarity of x, we deduce that there exists C > 0,
depending only on F and c such that ¹∗(x, V ) g C for any x ∈ supp (∥V ∥), as claimed. The
density lower bound, together with V having bounded anisotropic first variation, implies that
V is a rectifiable varifold, see [14, Theorem 1.2] and Remark 2.2.
We next prove that V is integral. Fix x ∈ supp (∥V ∥) such that the tangent cone C is

unique and is a plane ¹Ã with constant multiplicity ¹. We recall that this is true for ∥V ∥-a.e.
x, given that V is rectifiable, cf. [36]. We need to prove that ¹ is an integer value.
We observe that ¶F(C) = 0. Consider a sequence Än ³ 0 such that (¸x,ρn)#V á C.

Replace V by V ′
n in An(x, Än/4, 3Än/4) and set W ′

n = (¸x,ρn)#V
′
n. After possibly passing to a

subsequence, we can assume that W ′
n á C′, where C′ satisfies again ¶F(C

′) = 0. A trivial
consequences of the definition of replacements is that

C′ = C = ¹Ã in B1/4 ∪ An(0, 3/4, 1). (4.35)

Moreover, by definition of replacement and rescaling properties, W ′
n are smooth, almost

embedded, (cÄn)-stable surfaces in An(0, 1/4, 3/4). Hence, by Theorem 2.9(ii) we conclude
that W ′

n converge locally smoothly (with integer multiplicity) to some smooth embedded
stable surface Σ′ in An(0, 1/4, 3/4). Since ¶F(C

′) = 0, with the same argument used on V ′

to get (4.34), we can show that

cl(Σ′) ∩ ∂B3/4 ¢ Ã. (4.36)

We claim that Σ′ ¢ Ã. Indeed, assume by contradiction the claim is false. Up to rotation, we
can assume Ã = (e1, e2). Moreover, without loss of generality we can assume Σ′ ∩ {ïx, e3ð >
0} ≠ ∅ (the case where Σ′ lies below Ã is analogous). There exists min{a > 0 : Σ′ ∩{ïx, e3ð =
a} ≠ ∅}. By the classical maximum principle (cf. for instance [35, Corollary 5.1]):

{ïx, e3ð = a} ∩ An(0, 1/4, 3/4) ¢ Σ′ ∩ An(0, 1/4, 3/4),

which contradicts (4.36). Recalling (4.35), this implies that supp (∥C′∥) ¢ Ã. Since ¶F(C
′) =

0, the Constancy Theorem [16, Proposition 5], together with (4.35), implies that C′ = ¹Ã.
Since Σ′ has integer multiplicity in An(0, 1/4, 3/4), we conclude that ¹ is integer. □

Proof of Proposition 4.14. Fix x ∈M , and consider

2Ä :=
1

2
min

{
Inj(M), ¼/c, r(x),

1

¼(c+ ¼+ 4¼3)

}
, (4.37)

where r(x) is as in Proposition 4.3. Consider a replacement V ′ for V in An(x, Ä, 2Ä), and let
Σ′ be the c-stable surface given by V ′ in An(x, Ä, 2Ä). Thanks to Lemma 5.1, we can choose
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t ∈]Ä, 2Ä[ such that

H0(S(Σ′) ∩ ∂Bt(x)) <∞, and Σ′ intersects ∂Bt(x) transversally. (4.38)

Fixing s < Ä, we consider the replacement V ′′ of V ′ in An(x, s, t), which in this annulus
coincides with a smooth c-stable surface Σ′′. We remark that V ′ and V ′′ are integral varifolds
by Lemma 4.15 and the properties of replacements.
Fix a point y ∈ Σ′ ∩ ∂Bt(x).

Step 1: We claim that there exists a sufficiently small radius r, so that

Σ′′ ∩ Bt(x) ∩Br(y) = Σ′ ∩ Bt(x) ∩ Br(y).

Given the local nature of Step 1, by Remark 2.3 we will assume without loss of generality
that the ambient space is R3. There are just two cases: either y ∈ R(Σ′) or y ∈ S(Σ′).
Case 1: Fix y ∈ R(Σ′). Since y ∈ R(Σ′), there exists a sufficiently small radius r, so

that Σ′ ∩ Br(y) is a smooth deformation of a disk and µ = Σ′ ∩ ∂Bt(x) ∩ Br(y) is a C
2,α

embedded curve. We recall that, by construction of the replacement, Σ′ is the smooth limit
of a locally Fc-minimizing sequence {∂Ω′

j}j∈N in An(x, Ä, 2Ä). This implies that, denoting

µj = ∂Ω′
j ∩ ∂Bt(x) ∩ Br(y), then µj are uniformly bounded in C2,α and uniformly embedded,

namely

inf
j

inf
x ̸=y
x,y∈γj

dγj(x, y)

|x− y|
> 0.

Moreover Σ′′ is obtained as a smooth limit in An(x, s, t) of a sequence {∂Ω′′
j}j∈N. Furthermore,

since V ′′ is c-stationary, with the same argument used to prove (4.34) or (4.36), we get (up
to take a smaller radius r)

∂Ω′′
j ∩ ∂Bt(x) ∩ Br(y) = µj,

as t < 2Ä < ¼/c, then H∂Bt
F > 2c. We apply Lemma 4.13 to {∂Ω′′

j}j∈N and deduce that ∂Ω′′
j

is smooth up to the boundary µj in Bt(x)∩Br(y). Recalling that ∂Ω′′
j is a c-stable surface in

An(x, s, t), we deduce from Theorem 5.5 the following uniform boundary curvature estimates:

sup
p∈B r

4
(y)∩Σ′′

d(p,γj)<r1

r1|A
Σ′′

j (p)| f C.

This implies that {∂Ω′′
j}j∈N converge to Σ′′ smoothly up to the boundary µ. Standard

regularity theory for Elliptic PDEs implies that

Σ′′ ∩ Bt(x) ∩B r
4
(y) £ Σ′ ∩ Bt(x) ∩ B r

4
(y). (4.39)

In particular V ′′ ∩ B r
4
(y) is c-stable.

Case 2: Fix y ∈ S(Σ′). We observe that, by (4.38), there exists a sufficiently small
radius r, so that S(Σ′) ∩ Br(y) ∩ ∂Bt(x) = {y}. Up to take a smaller r, we can assume
Σ′ ∩ ∂Bt(x) ∩ Br(y) = µ = µ+ ∪ µ−, where µ+, µ− are C2,α embedded curves, which are
tangent each other in y and such that ∂µ± ∩ Br(y) = ∅. Moreover, since V ′′ ∈ Vc∞,
then ¶FΣ

′′(X) =
∫
Σ′′ cïX, ¿

Σ′′

ð dH2 + ¸(X), for every X ∈ Xc(Br(y)), where ¸ is a finite

Radon measure supported on µ satisfying ¶FΣ
′(X) =

∫
Σ′ cïX, ¿

Σ′

ð dH2 − ¸(X), for every
X ∈ Xc(Br(y)). Furthermore Σ′′ ∩ ∂Bt(x)∩Br(y) = µ, otherwise we would have Σ′′ touching
∂Bt(x) from the inside. This violates the maximum principle, since t < 2Ä < ¼/c, which in
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turn reads H∂Bt
F > 2c. Since H∂Bt

F > 2c, we deduce by Proposition 5.4 that, up to take a
smaller r,

sup
r′<r

H2(Σ′′ ∩ Br′(y))

Ã(r′)2
<∞. (4.40)

Moreover, since y ∈ S(Σ′), up to take a smaller r, we get that

sup
r′<r

H2(Σ′ ∩ Br′(y))

Ã(r′)2
f 3. (4.41)

Combining (4.40) and (4.41), we deduce that

sup
r′<r

∥V ′′∥(Br′(y))

Ã(r′)2
<∞, which implies ¹∗(V ′′, y) <∞.

We deduce that the family {(¸y,r′)#V
′′}r′<r has uniformly bounded mass and consequently

TV (y, V ′′) ̸= ∅. Up to rotation, denoting p = (p1, p2, p3) ∈ B1, we can assume that
Ty(∂Bt(x)) = e§1 , that ¸y,r′(Bt(x)) ¢ {p1 g 0} and that µ̇/|µ̇| = e2. Since y ∈ S(Σ′),
by (4.38) we deduce that for every C ∈ TV (y, V ′′),

C {p1 f 0} = 2TyΣ
′ {p1 f 0}, where TyΣ

′ ̸= e§1 . (4.42)

Fix C ∈ TV (y, V ′′) and denote with {rn}n the sequence of radii such that Wn := (¸y,rn)#V
′′

converges to C. Moreover, for every ³ ∈ (0, 1), by (4.39), we know that there exists N(³) ∈ N

such that for every n g N it holds Wn An(0, ³, 1/³) £ ¸y,rn(Σ
′) ∩ An(0, ³, 1/³) and Wn is

a sequence of (crn)-stable almost embedded smooth surfaces in An(0, ³, 1/³). Since rn ³ 0,
by Theorem 2.9(ii) Wn An(0, ³, 1/³) converge smoothly (with integer multiplicity) to Σα,
where Σα is a stable smooth embedded surface. Since C An(0, ³, 1/³) = Σα, by (4.42) we
deduce the following inequality in the sense of varifolds

C An(0, ³, 1/³) g 2TyΣ
′ An(0, ³, 1/³), ∀³ ∈ (0, 1).

and consequently
C {0}c g 2TyΣ

′ {0}c.

Since from (4.41) it holds ¹∗(C, y) <∞, we deduce that

C g 2TyΣ
′. (4.43)

Since both C and 2TyΣ
′ are stationary, we deduce that C′ := C − 2TyΣ

′ ¢ {p1 g 0} is
stationary, where again the difference is to be intended in the space of varifolds. With the
same argument used in the proof of Proposition 5.3 to obtain (5.5) and (5.6), we can prove
that C′ is contained in a wedge L := {|p3| f ap1, p1 g 0} for some a > 0. We claim that
C′ = 0, and consequently that C = 2TyΣ

′. Indeed if by contradiction C′ ≠ 0, there exists
h̄ := min{h g 0 : {p1 = h} ∩ spt(C′) ̸= 0}. By the maximum principle, we deduce that
{p1 = h̄} ¢ spt(C′). But this cannot be true as {p1 = h̄} is not entirely contained in the
wedge L. This is the desired contradiction.

In conclusion we have proved that

TV (y, V ′′) = {2TyΣ
′}. (4.44)

To conclude the proof of this case, we borrow some ideas from the Step 2 of the proof of
[10, Proposition 6.3]. Let g : Br(y) → B1 be a diffeomorphism such that

g(y) = 0, g(∂Bt(x)) ¢ {p1 = 0} and g(Σ′′) ¢ {p1 > 0} ,
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where we denoted p = (p1, p2, p3) ∈ B1. We will also assume that g(µ) = {(0, p2, v
+(0, p2))} ∪

{(0, p2, v
−(0, p2))} and g(Σ′ ∩ Br(y)) = {(p1, p2, v

+(p1, p2))} ∪ {(p1, p2, v
−(p1, p2))} where v±

are smooth, tangent in 0 and Lv+ = −Lv− = c. Moreover, by (4.39), for every ³ > 0 it holds

g(Σ′ ∩ An(y, ³, r)) ∩ {p1 > 0} = g(Σ′′ ∩ An(y, ³, r)). (4.45)

In the following, with an abuse of notation, we identify Σ,Σ′,Σ′′, V, V ′, V ′′ respectively with
g(Σ), g(Σ′), g(Σ′′), g#V, g#V

′, g#V
′′.

The equality (4.44) implies that

lim
p→0,p∈Σ′′

|ïp, Äð|

|p|
= 0, where Ä denotes the unit normal to the graph of v+. (4.46)

Indeed assume that (4.46) fails; then there is a sequence {pn} ¢ Σ′′ such that pn → 0 and
|ïpn, Äð| g ³|pn| for some ³ > 0. Set rn = |pn|. There exists a constant ´ ∈ (0, 1) such that
B2βrn(pn) ∩ TyΣ

′ = ∅. Thus d(TyΣ
′,Bβrn(pn)) g ´rn. By (4.45), pn ∈ Σ′ ∩ An(0, ´rn, 1) =

V ′′ An(0, ´rn, 1). Since Σ′ is c-stable in B1, also V
′′ is c-stable in An(0, ´rn, 1). Hence

we apply [3, page 305, Theorem, Equation (9)] with Z = B1 and M = Σ′: the whole set
of assumptions needed is in [3, page 294, Section 1.4] and are trivially satisfied. Since
Bβrn(pn) ¢ An(0, ´rn, 1), we have the lower density estimate

∥V ′′∥(Bβrn(pn)) = H2(Σ′ ∩ Bβrn(pn)) g C´2r2n.

This contradicts the fact that 2TyΣ
′ is the only element of TV (y, V ′′).

We now consider the unit normal vector field ¿ to Σ′′ such that ï¿, (0, 0, 1)ð g 0. We claim
that

lim
p→0,p∈Σ′′

¿(z) = Ä . (4.47)

Indeed let Ã be the plane {(0, p2, p3), p2, p3 ∈ R}, assume that pn → 0 and set rn := d(pn, Ã),
and Σn := ¸pn,rn(Σ

′′
n ∩ Brn(pn)). Each Σn is a (crn)-stable surface in B1 with crn ³ 0, and

hence by Theorem 2.9(ii), after possibly passing to a subsequence, Σn converges smoothly
(with integer multiplicity) in B1/2 to a stable surface Σ∞. Since by (4.46) Σ∞ = TyΣ

′ ∩ B1/2,
then ¿(pn) converges to Ä as desired.
We deduce that there exists r > 0 and functions w+, w− ∈ C1({p1 g 0}) satisfying

Σ′′ ∩ Br(y) = {(p1, p2, w
+(p1, p2)), p1 > 0} ∪ {(p1, p2, w

−(p1, p2)), p1 > 0} ,

and the boundary conditions v+(0, p2) = w+(0, p2), v
−(0, p2) = w−(0, p2), ∇v

+(0, p2) =
∇w+(0, p2), and ∇v−(0, p2) = ∇w−(0, p2). In the variables p1, p2, p3, the functions v± and
w± satisfy the same second order uniformly elliptic equation. Hence, by standard elliptic
PDEs theory we deduce that v± and w± are restrictions of two unique smooth functions u±.

Step 2: We claim that V is almost embedded c-stable surface in B2ρ(x) \ {x}. The strategy
to prove the claim is similar to the one used in Step 3 of the proof of [10, Proposition 6.3].
However several arguments need to be changed. Given the local nature of this claim, by
Remark 2.3 we will assume without loss of generality that the ambient space is R3. We first
observe that:

Σ′ ∩ S ∩ ∂Bt(x) ̸= ∅, for every connected component S of Σ′′. (4.48)
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Indeed assume there exists S which does not satisfy (4.48). Since t < 2Ä < ¼/c and
consequently H∂Bt

F > 2c, the maximum principle implies that S ∩ ∂Bt(x) ̸= ∅. Fix y in
S ∩ ∂Bt(x). As S does not satisfy (4.48), there exists s > 0 such that

y ∈ supp (∥V ′′∥) ∩ ∂Bt(x) and (supp (∥V ′′∥) ∩Bs(y)) ¢ Bt(x) .

Since V ′′ Bs(y) has bounded anisotropic first variation in Bs(y) and ∥¶F(V
′′ Bs(y))∥sing = 0

as a varifold in the domain Bs(y), we can apply [23, Lemma 4.5] with Ω = Bs(y) to conclude
that supp (∥V ′′ Bs(y)∥) is a (2, c) subset of Bs(y). In particular, applying [16, Proposition

2 (iii)] with Ω = Bs(y) and N = Bt(x) ∩ Bs(y), we deduce that H
∂Bt(x)
F (y) f c (one can

verify that the proof of [16, Proposition 2 (iii)] works with the weaker assumption that N
has smooth boundary just around the point y). This contradicts the fact that H∂Bt

F > 2c.
We observe that (4.48) implies that for every r < Ä, then Σ′ can be extended to a surface

Γr in An(x, r, 2Ä) and for every r1 < r2 < Ä, then Γr1 = Γr2 in An(x, r2, 2Ä). We can now
define our candidate Σ :=

⋃
r Γr, which is a c-stable surface with Σ \ Σ ¢ (∂B2ρ(x) ∪ {x}).

To conclude Step 2, we need to prove that V coincides with Σ in Bρ(x) \ {x}. Recall
that V = V ′ in Bρ(x). Given y ∈ (supp (∥V ∥)) ∩ Bρ(x) \ {x} we define r = d(y, x). We
claim that if TV (y, V ) = {¹Ã}, with ¹ > 0, and Ã is a plane transversal to ∂Br(x), then
y ∈ Σ. Denoting the second replacement V ′′ of V ′ in An(x, r, t), it is enough to show that

y ∈ cl((supp (∥V ′′∥)) \ Br(x)), which in turn implies y ∈ Σt ¢ Σ. Assume by contradiction

y ̸∈ cl((supp (∥V ′′∥)) \Br(x)). In particular there exists a > 0 such that

((supp (∥V ′′∥)) \Br(x)) ∩ Ba(y) = ∅. (4.49)

Up to rotation we can assume that ¸y,1/n(Br(x))
n→∞
−→ {p1 > 0}. Fix an element C ∈

TV (y, V ′′). Combining (4.49) with the fact that V ′′ Br(x) = V Br(x), we deduce that
C = ¹Ã {p1 > 0}. Since ¶F(C) = 0 and ¹ > 0, we get a contradiction with the Constancy
Theorem [16, Proposition 5].

It is now enough to observe that by Lemma 5.6, the set of points y ∈ Bρ(x) considered
above is dense in supp (∥V ∥). We deduce that

(supp (∥V ∥)) ∩Bρ(x) \ {x} ¢ Σ . (4.50)

By the last property in Proposition 4.8, we deduce that F(Σ∩Bρ(x)) = F(V Bρ(x)), which
by (4.50) and the integrality of V implies that V = Σ on Bρ(x) \ {x}.

Step 3: We deduce the global regularity of V.
The function r(x) is characterized in Proposition 4.3. In particular we split the proof of

this step in three cases:
Case (a): there exists Inj(M)/18 > R > 0 such that r(x) ≡ R for every x ∈M and there

exists y ∈M such that {Ωk} is a.m. in M \B18R(y).
By the definition of Ä in (4.37), if we denote

s :=
1

2
min

{
¼/c, R,

1

¼(c+ ¼+ 4¼3)

}
,

we deduce that V is smooth, almost embedded c-stable surface in Bs(x)\{x}, for every x ∈M .
By compactness of M , we can extract from {Bs(x)}x∈M a finite cover {Bs(x1), . . . , Bs(xk)}
such that for every i = 1, . . . , k there exists j ̸= i such that xi ∈ Bs(xj) \ {xj}. This implies
that V is smooth, almost embedded surface in the whole ambient space M . Using the
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logaritmic cutoff, one can easily verify that {x} has zero 2-capacity in a 2-dimensional smooth
surface. Then, by a simple capacity argument, V is a c-stable surface in Bs(x), for every
x ∈M . Moreover there exists y ∈M such that {Ωk} is a.m. in M \B18s(y) and since ∂Ωk

converges to V ∈ Vc∞ and V is smooth everywhere, then V is a c-stable surface in M \B18s(y).
This can be shown using the same argument as at the end of Proof of Lemma 4.11. We
repeat the argument for the sake of exposition:
Assume by contradiction that there exists a smooth volume preserving vector field X

compactly supported in M \ B18s(y) such that ¶2
F
V (X) = −C < 0. There exists a map

φ : t ∈ R 7→ φt ∈ C∞(M \B18s(y),M \B18s(y)) solving the following ODE:
{
∂ϕt(x)
∂t

= X(φt(x)) ∀x ∈M,

φ0(x) = x ∀x ∈M.

We set
Ωk
t := (φt)(Ω

k).

Since X is a volume preserving vector field, φt has C
3-norm bounded uniformly in t ∈ [0, 1],

¶FV (X) = 0, ¶2
F
V (X) = −C < 0 and ∂Ωk á V as varifolds, we get that there exists ε > 0

and k0 ∈ N such that

Fc(Ωk
t ) f Fc(Ωk)−

C

2
t2 ∀t < ε, ∀k g k0.

We can easily define an homotopy È(t, x) = φεt(x) for every (t, x) ∈ [0, 1] × (M \ B18s(y))
and È(t, x) = x for every (t, x) ∈ [0, 1]×B18s(y). Then, denoting Ω̃k

t := È(1,Ωk), it is easy
to see that {Ω̃k

t }t∈[0,1] satisfies all properties (4.6),(4.7),(4.8),(4.9) for k large enough. This

contradicts the almost minimality of the sequence {Ωk} in M \B18s(y).
We observe that the radius 18s should be multiplied by a factor, by the definition of s.

However the factor is a geometric constant depending just on F and M , hence we can omit
it without loss of generality.
Case (b): r(x) ≡ Inj(M)/18 for every x ∈M . We denote

s :=
1

2
min

{
¼/c, Inj(M)/18,

1

¼(c+ ¼+ 4¼3)

}
.

With the same argument of Case (a), we can show that V is a smooth, almost embedded
surface in the whole ambient space M and that V is a c-stable surface in Bs(x), for every
x ∈M .
Case (c): there exists p ∈M such that r(x) = d(x, p) for x ̸= p and r(p) = ∞.
Again, by the definition of Ä in (4.37), if we denote

s(x) :=

{
1
2
min{Inj(M), ¼/c, d(x, p), 1

λ(c+λ+4λ3)
} if x ̸= p

1
2
min{Inj(M), ¼/c, 1

λ(c+λ+4λ3)
} if x = p

,

we deduce that V is smooth, almost embedded c-stable surface in Bs(x)(x) \ {x}, for every
x ∈M . By compactness of M , we can extract from {Bs(x)}x∈M\Bs(p)/2(p) ∪ {Bs(p)(p)} a finite

cover {Bs1(x1), . . . , Bsk(xk), Bs(p)(p)} such that for every i = 1, . . . , k it holds xi ̸= p and
there exists j ≠ i such that xi ∈ Bsj(xj) \ {xj}. This implies that V is smooth, almost
embedded c-stable surface in M \ {p}. Notice that the stability is not a consequence of the
local stability (the second variation is not linear), but of the fact that r(p) = ∞. □
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5. Technical Propositions

In this section, we prove some technical propositions of independent interest. Since they
are valid in every dimension, i.e. for hypersurfaces in (n+ 1)-dimensional manifolds, just in
this section we will denote with n the dimension of the hypersurface and n+ 1 will be the
dimension of the ambient manifold. We remark that the notation introduced in Section 2
easily extends to every dimension.

Lemma 5.1. Let M be an (n + 1) dimensional C2 manifold. Let Σ ¢ M be a C2 almost
embedded hypersurface in M with HΣ

F ≡ c. Then the touching set S(Σ) is Hn−1-locally finite,
i.e., for every compact set K ¢M there exists C > 0 such that

Hn−1(S(Σ) ∩K) f C.

Proof. Let x ∈ S(Σ). There exists r(x) > 0 such that Σ∩Br(x)(x) decomposes as two distinct
graphs u1 f u2 over the common tangent plane TxΣ (compare with the proof of Theorem 2.9).
We define u := u1 − u2 and, since Lu1 = −Lu2 = c, then Lu = 2c. Moreover, by standard
regularity for elliptic PDEs, up to shrink r(x), we have that u, u1, u2 ∈ C2. We further observe
that S(Σ) ∩Br(x)(x) ¢ {u = 0, Du = 0}. Since at every p ∈ {u = 0, Du = 0} ∩Br(x)(x) the
equation Lu(p) = 2c > 0 has just the second order terms, we deduce that D2u(x) ̸= 0. In
particular, there exists v ∈ TxΣ such that ∂v(Du)(x) ̸= 0. By the implicit function theorem,
we deduce that there exists r′(x) < r(x), an (n− 1)-plane V and f ∈ C1(V, V § ∩ TxΣ) such
that, denoting with Gf the graph of f over V , it holds:

{Du = 0} ∩ Br′(x)(x) = Gf ∩ Br′(x)(x).

Since f ∈ C1, there exists Cx > 0 such that

Hn−1(S(Σ) ∩ Br′(x)(x)) f Hn−1({u = 0, Du = 0} ∩ Br′(x)(x))

f Hn−1({Du = 0} ∩ Br′(x)(x))

= Hn−1(Gf ∩Br′(x)(x)) f Cx(r
′(x))n−1.

Since S(Σ) is a closed set in Σ, then for every compact setK ¢M the setK∩S(Σ) is compact.
We can extract a finite covering of K ∩ S(Σ) from the family {Br′(x)(x)}x∈K∩S(Σ) of balls
B1, . . . Bk of radii r1, . . . , rk centered in points x1, . . . xk. Setting C := max{Cx1 , . . . , Cxk},
we deduce that

Hn−1(K ∩ S(Σ)) f
k∑

i=1

Hn−1(S(Σ) ∩Bi) f
k∑

i=1

Crn−1
i =: C.

This concludes the proof. □

Remark 5.2. Given the local nature of Proposition 5.3, Proposition 5.4, Theorem 5.5, Lemma
5.6, Lemma 5.7 and Lemma 6.2, by Remark 2.3 we can replace R

n+1 with a C3 (n + 1)-
dimensional manifold M .

Proposition 5.3. Let Ω ¢ R
n+1 such that ∂Ω ∩ B2R is C3 and satisfies H∂Ω

F > 2c in B2R.
Let Γ be a C2,α embedded (n− 1)-submanifolds in ∂Ω ∩B2R with ∂Γ ∩B2R = ∅. Let Σ be a
C2 almost embedded manifold in Ω such that

¶FΣ(X) =

∫

Σ

cïX, ¿Σð dH2 + ¸(X), ∀X ∈ Xc(BR), (5.1)
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where ¸ is a finite Radon measure supported on Γ. Then there exists a constant C and a
radius r0 > 0 depending only on F,Ω,Γ such that

sup
x∈Γ∩BR
r<r0

Hn(Σ ∩ Br(x))

wnrn
f C <∞.

Proof. The proof is identical to the proof of [16, Proposition 6]. Indeed the statement of
Proposition 5.3 differs from the one of [16, Proposition 6] just in the assumption (5.1), which
is different from the corresponding one in [16], i.e. ¶FΣ = 0 and ∂Σ ∩ BR = Γ. However one
can easily verify by the maximum principle that (5.1) is enough for the proof. □

Proposition 5.4. Let Ω ¢ R
n+1 such that ∂Ω ∩ B2R is C3 and satisfies H∂Ω

F > 2c in B2R.
Let Γ = Γ+ ∪ Γ−, where Γ+,Γ− are C2,α embedded (n− 1)-submanifolds in ∂Ω ∩B2R, which
are tangent each other in x ∈ Γ+ ∩ Γ− and such that ∂Γ± ∩B2R = ∅. Furthermore, let Σ be a
C2 almost embedded manifold in Ω such that

¶FΣ(X) =

∫

Σ

cïX, ¿Σð dH2 + ¸(X), ∀X ∈ Xc(BR), (5.2)

where ¸ is a finite Radon measure supported on Γ. Then there exists a constant C and a
radius r0 > 0 depending only on F,Ω, x,Γ such that

sup
r<r0

Hn(Σ ∩ Br(x))

wnrn
f C <∞. (5.3)

Proof. The proof is analogous to the proof of [16, Proposition 6]. Indeed the statement of
Proposition 5.4 differs from the one of [16, Proposition 6] in two assumptions. The first
difference is (5.2), which is weaker than the corresponding assumption in [16] ∂Σ ∩BR = Γ.
However one can verify that (5.2) is enough for the proof. The second difference is that here
Γ is the union of two touching curves Γ+,Γ−, while in [16] Γ is a single curve. However, one
can slightly modify the proof of [16, Proposition 6] as follows.
Assume the conclusion (5.3) does not hold, then there exists a sequence Σk, rk satisfying

0 < rk <
1

k
and

Hn(Σk ∩ Brk(0))

rnk
> k.

Let us denote µ+, µ− the projection of respectively Γ+,Γ− onto {xn+1 = 0}. Up to subse-
quences, and performing if necessary a rotation of B2R, the normals ¿̂+(0) and ¿̂−(0) of
respectively µ+ and µ− in the plane {xn+1 = 0} at 0 satisfy

¿̂+(0) = en, and ¿̂−(0) = −en (5.4)

We can choose r0 > 0 such that for all k ∈ N we have

r0 < min

{
1

∥Aγ+∥∞
,

1

∥Aγ−∥∞
,
1

2

}
,

where Aγ
±

is the second fundamental form of µ±. Defining

B± := Bn
r0
(r0¿̂

±(0)) ¢ {xn+1 = 0},
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our choice of r0 implies that B±∩(µ+∪µ−) = {0}. For each 0 f s f ¶, using [16, Assumption
1] and the notation therein (in particular the definition of Φ), we can consider the unique
solutions u±s ∈ C2,α(B±) of the following problems

{
Lu±s = s in B±

u±s = Φ on ∂B± .

From the Hopf-maximum principle, it follows that if s > hmax then u±s < Φ and if s < hmin
then u±s > Φ. We observe that the graphs of u±s never touch Σk in the interior of B±×R when
s g 1

2
hmin. Indeed, if s > hmax this easily follows by Σk ¢ Ω. Hence we can assume without

loss of generality that there exists a first (the biggest) 1
2
hmin < s f hmax where the graph

u+s touches Σk at a point q = (y, u+s (y)). Then Σk is the graph of a map fk over the plane
{xn+1 = 0} in a neighborhood of y. Since Σk is c-stationary, we have L(fk) = c < 1

2
hmin < s,

which contradicts the maximum principle, as u+s f fk. One can argue analogously for u−s .
We now set u± := u±1

2
hmin

. Hopf boundary point lemma allows us to compare Φ with u± at

0. We deduce that there exists cH > 0 depending only on F and ∂Ω such that

min

{
∂u+(0)

∂¿̂+(0)
−

∂Φ(0)

∂¿̂+(0)
,
∂u−(0)

∂¿̂−(0)
−

∂Φ(0)

∂¿̂−(0)

}
> cH . (5.5)

Now we consider the blow-up sequences

Σ′
k :=

1

rk
Σk, Ωk :=

1

rk
Ω, Γ±

k =
1

rk
Γ±, Γk = Γ+

k ∪ Γ−
k , µ±k =

1

rk
µ±,

d±k : x ∈
1

rk
B± →

u±(rkx)− Φ(rkx)

rk
.

Using (5.4), (5.5), since 1
rk
B± → R

n ∩ {±xn g 0}, and d±k = 0 on ∂( 1
rk
B±), we conclude that

Ωk → {xn+1 g 0}; µ±k → {xn = 0};

d±k (x) → a±xn for every x ∈ R
n ∩ {±xn g 0} for some a+,−a− > cH . (5.6)

One can now conclude the proof analogously as in [16, Proposition 6].
□

Theorem 5.5. Let Ω ¢ R
3 s.t. ∂Ω ∩B2R is C3 and satisfies H∂Ω

F > 2c in B2R. Let Γ be a
C2,α embedded curve in ∂Ω ∩ B2R with ∂Γ ∩ B2R = ∅. Furthermore let Σ be a c-stable, C2

regular surface in Ω such that ∂Σ∩BR = Γ. Then there exists a constant C > 0 and a radius
r1 > 0 depending only on F,Ω,Γ such that

sup
p∈BR

2
∩Ω

d(p,Γ)<r1

r1|A(p)| f C.

Moreover the constants C and r1 are uniform as long as Ω, Γ and F vary in compact classes.

Proof. The proof can be repeated verbatim as the proof of [16, Theorem 4.1]. We highlight
here only the differences. By Remark 2.6, the c-stable surface Σ satisfies [16, Equation
(41)]. We conclude observing that the proof [16, Lemma 4.3] applies also to c-stable surfaces,
provided [16, Equation (41)] holds and replacing [16, Proposition 6] with Proposition 5.3. □
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Lemma 5.6. Consider a point x ∈ R
n+1, an integral n-varifold V ∈ Vc∞ in R

n+1, and the set

Q = {y ∈ supp (∥V ∥) : TV (y, V ) = {¹Ã},

with ¹ > 0, and Ã is a plane transversal to ∂Bd(x,y)(x)} .

If Ä < 1
λ(c+λ+λ3(n+2))

, then Q is dense in (supp (∥V ∥)) ∩Bρ(x).

Proof. Being V integral, we have V = ¹Hn K ¹ ¶TxK for some n-rectifiable set K and some
Borel function ¹ : K → N. Assume by contradiction that the lemma is false. In particular,
there exists y ∈ Bρ(x) ∩ supp (∥V ∥) and t > 0 such that TzK is tangent to ∂Bd(z,x)(x), for
any z ∈ Bt(y). We choose t so that Bt(y) ¢ Bρ(x). Let f be a smooth nonnegative function
in C∞

c (Bt(y)) with f = 1 on Bt/2(y). We define the vector field

X(z) := f(z)DνG(z, ¿̃(z)), where ¿̃(z) := ¿∂Bd(x,z)(x)(z).

We observe that, by (2.5),

|X(z)| g
f(z)

¼
. (5.7)

We compute the following contradiction

¶FV (X) =

∫
ïDzG(z, ¿), X(z)ð+ (G(z, ¿)Id−DνG(z, ¿)¹ ¿) : DX(z)dV (z, ¿)

g −¼

∫
|X|d∥V ∥+

∫

K∩Bt(y)

¹(z)(G(z, ¿̃(z))Id−DνG(z, ¿̃(z))¹ ¿̃(z)) :

: (Df(z)¹DνG(z, ¿̃(z)) + f(z)D2
νG(z, ¿̃(z))D¿̃(z) + f(z)D2

zνG(z, ¿̃(z)))dH
n(z)

g −¼

∫
|X|d∥V ∥+

∫

K∩Bt(y)

¹(z)(G(z, ¿̃(z))ïDf(z), DνG(z, ¿̃(z))ð+

−G(z, ¿̃(z))ïDf(z), DνG(z, ¿̃(z))ð+ f(z)G(z, ¿̃(z))H
∂Bd(x,z)(x)

F (z)− f(z)¼2(n+ 2))dHn(z)

g −(¼+ ¼3(n+ 2))

∫
|X|d∥V ∥+

∫

K∩Bt(y)

¹(z)f(z)G(z, ¿̃(z))
1

¼d(x, z)
dHn(z)

g (
1

¼Ä
− (¼+ ¼3(n+ 2)))

∫
|X|d∥V ∥ > c

∫
|X|d∥V ∥.

where in the first inequality we used (2.5), in the second inequality we used (2.4) and
D¿̃(z)[¿̃(z)] = 0, (2.2) and (2.5), in the third inequality we used (5.7), Remark 2.4 and the
assumption Ä < 1

λ(c+λ+λ3(n+2))
. □

Lemma 5.7. There exists ³ ∈ (0, 1) and r0 > 0 (depending just on F ) such that, for every
n-varifold V ∈ Vc∞ and for every x0 ∈ R

n+1

∥V ∥(Br(x0)) f ³∥V ∥(B2r(x0)), ∀r < r0.

Proof. By Remark 2.1, we recall that

¶FV (X) =

∫
ïDxG(x, ¿), X(x)ð+ (G(x, ¿)Id−DνG(x, ¿)¹ ¿) : DX(x)dV (x, ¿).



34 G. DE PHILIPPIS AND A. DE ROSA

Up to translation, we can assume x0 = 0. Since V ∈ Vc∞, we have
∣∣∣∣
∫
ïDxG(x, ¿), X(x)ð+ (G(x, ¿)Id−DνG(x, ¿)¹ ¿) : DX(x)dV (x, ¿)

∣∣∣∣ f c

∫
|X| d∥V ∥.

(5.8)
We consider X(x) := ϕ(|x|)x, where ϕ : R → [0,∞) satisfies ϕ(s) = 1 if s f r, ϕ(s) = 0 if
s g 2r and ϕ′(s) f 2/r if s ∈ (r, 2r). It follows that DX(x) = ϕ(|x|)Id+ ϕ′(|x|)x¹x|x| . Then

(5.8) reads
∣∣∣∣
∫
nGϕ(|x|)− ïDνG, ¿ðϕ(|x|)− ï¿, x/|x|ðïDνG, xðϕ

′(|x|) +G|x|ϕ′(|x|)dV (x, ¿)

∣∣∣∣

f (c+ ¼)

∫
ϕ(|x|)|x| d∥V ∥,

which, using the one-homogeneity of G reads

n− 1

¼

∫
ϕ(|x|)dV (x, ¿)

f

∫ ∣∣∣∣ï¿,
x

|x|
ðïDνG(x, ¿),

x

|x|
ð+G(x, ¿)

∣∣∣∣ϕ
′(|x|)|x|dV (x, ¿) + 2r(c+ ¼)∥V ∥(B2r).

By (2.6), we deduce that

n− 1

¼
∥V ∥(Br) f

∫
(G(x, ¿) +G(x,

x

|x|
))ϕ′(|x|)|x|dV (x, ¿) + 2r(c+ ¼)∥V ∥(B2r),

or equivalently

∥V ∥(Br) f
2¼2

n− 1
∥V ∥(An(r, 2r)) + 2r(c+ ¼)∥V ∥(B2r).

Denoting K := 2λ2

n−1
and adding on both side K∥V ∥(Br), we deduce that

∥V ∥(Br) f
K + 2r(c+ ¼)

K + 1
∥V ∥(B2r).

Choosing r < r0 :=
1

4(c+λ)
and ³ :=

K+ 1
2

K+1
, we conclude the claim. □

6. Appendix: A boundary regularity theorem

Theorem 6.1. Fix y ∈ ∂+An and assume that the finite perimeter set Ω minimizes Fc in
the class P(Ω, Bρ(y) ∩ An) of the finite perimeter sets equal to Ω outside of Bρ(y) ∩ An.
Moreover assume that ∂Ω∩Bρ(y)\An is smooth embedded and ∂Ω∩Bρ(y)∩∂+An is a smooth
embedded curve µ. Then there exists a smaller ball Bσ(y) ¢ Bρ(y) such that ∂Ω∩Bσ(y)∩An
is smooth up to the boundary ∂Ω ∩ ∂+An ∩ Bσ(y).

Proof. Thanks to [26, Theorem 0.1], it is enough to prove that the lower density ¹∗(∂Ω ∩
An, y) f 1

2
. To this aim, it is enough to show the existence of a blowup C ∈ TV (y, ∂Ω ∩An)

which is half a plane. This is the content of Lemma 6.2. □
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In the following, given Ω ∈ C(R3) and x ∈ R
3, we denote with TV (x,Ω) the set of all the

subsequential limits, as r → 0, of ¸x,r(Ω) ∈ C(R3).
To prove the following Lemma 6.2, we closely follow the strategy of [17, Lemma 5.4], which

is the analogous of [28, Lemma 4.5].

Lemma 6.2. Under the assumptions of Theorem 6.1, denoting H := {x1 > 0}, there exists
¿ ∈ S

2 := {|w| = 1} such that up to rotations

H ∩ {ï¿, xð f 0} ∈ TV (y,Ω ∩ An) . (6.1)

Proof. We denote G+ = G ∩H for every G ¢ R
3. Up to a translation and a rotation, we

assume y = 0 and e2 = µ̇/|µ̇|, hence arguing as in the proof of Proposition 5.3, compare also
with [17, Lemma 5.3], we deduce the existence of L = L(F, c) such that

sup
(∂E)+

|ïx, e3ð|

ïx, e1ð
f L , ∀E ∈ TV (y,Ω) . (6.2)

Moreover
∂E ∩ ∂H = {0} × R× {0} , ∀E ∈ TV (y,Ω) . (6.3)

We define À : TV (y,Ω) → [−L,L] as

À(E) = inf
(∂E)+

ïx, e3ð

ïx, e1ð
, ∀E ∈ TV (y,Ω) .

One can easily check that À is upper semicontinuous on TV (y,Ω) with respect to the L1
loc(R

3)
convergence. Indeed, if Eh, E ∈ TV (y,Ω) and Eh → E in L1

loc(H), then, for every x ∈ H∩∂E
there exist xh ∈ H ∩ ∂Eh, h ∈ N, such that xh → x as h→ ∞. Hence,

ïx, e3ð

ïx, e1ð
= lim

h→∞

ïxh, e3ð

ïxh, e1ð
g lim sup

h→∞
À(Eh) ,

as claimed. Since TV (y,Ω) is compact in L1
loc(R

3), we deduce the existence of E1 ∈ TV (y,Ω)
such that

À(E1) g À(E) , ∀E ∈ TV (y,Ω) . (6.4)

Let us fix ³ ∈ (−Ã/2, Ã/2) so that tan³ = À(E1) and set

¿1 = cos³ e3 − sin³ e1 ∈ S
2 , H1 =

{
x ∈ H : ïx, ¿1ð g 0

}
.

We now prove that

(∂H1)
+ ¢ (∂E1)

+ . (6.5)

Indeed, by definition of À, it holds
(∂E1)

+ ¢ H1 . (6.6)

Moreover, denoting with w : {z ∈ R
2 : z1 > 0} → [−∞,+∞) the function satisfying

w(z) = inf
{
t ∈ R : (z, t) ∈ ∂E1

}
, ∀z ∈ {z ∈ R

2 : z1 > 0} ,

we deduce from (6.3), (6.6), and the lower semicontinuity of w that
{
x ∈ H : x3 f w(x1, x2)

}
¢ E1 , (6.7)

w(x1, x2) g À(E1) x1 , ∀(x1, x2) ∈ {z ∈ R
2 : z1 > 0} . (6.8)
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If (6.5) fails, then there exists x̄ ∈ (∂E1)
+ such that

w(x̄1, x̄2) > À(E1) x̄1 . (6.9)

By (6.8) and (6.9), if we set r̄ = |(x̄1, x̄2)|, z̄ = (x̄1, x̄2) and Dr̄ = Br̄ ∩R
2 × {0}, then we can

find φ ∈ C1,1(∂(D+
r̄ )) such that

w(z) g φ(z) g À(E1) ïz, e1ð , ∀z ∈ ∂(Dr̄ ∩H) (6.10)

φ(z̄) > À(E1) ïz̄, e1ð . (6.11)

In particular, φ = 0 on Dr̄ ∩ ∂H. By part two of [17, Lemma 2.11], there exists u ∈
C1,1(D+

r̄ ) ∩ Lip (cl(D+
r̄ )) such that, if we set G#

0 (p) = G0(p,−1) for p ∈ R
2, then

{
div(∇pG

#
0 (∇u)) = 0 , in D+

r̄ ,

u = φ , on ∂(D+
r̄ ) ,

with

|∇u(0)| = |ï∇u(0), e1ð| > À(E1) . (6.12)

Since Ω minimizes Fc in the class P(Ω, Bρ(y) ∩ An), then the blowup E1 satisfies

F(E1, cl(H)) f F(F, cl(H)), whenever E1∆F ¢ H, (6.13)

and in particular:

F(E1, cl(D
+
r̄ × R)) f F(F, cl(D+

r̄ × R)), whenever E1∆F ¢ D+
r̄ × R.

This, combined with (6.7) and (6.10), allows us to apply [17, Lemma 2.12] to infer that
{
(z, t) ∈ D+

r̄ × R : t f u(z)
}
¢ E1 ∩ (D+

r̄ × R) up to zero H3-measure sets. (6.14)

If we now pick a sequence {sh}h∈N such that sh → 0 as h → ∞ and ¸0,sh(E1) → Ẽ1 in
L1
loc(R

3), then, by (6.14) and u(0) = 0, we find that
{
(z, t) : t f ï∇u0(0), e1ðïz, e1ð

}
¢ Ẽ1 ,

so that, thanks to (6.12), À(Ẽ1) > À(E1). Since Ẽ1 ∈ TV (0, E1) ¢ TV (y,Ω), this contradicts
(6.4), and completes the proof of (6.5). Since ∂Ω∩Bρ(y) \An is smooth, by (6.3), (6.5), and
(6.6), we conclude that there exists ¿ ∈ S

2 ∩ ïe1, e3ð \ {±e1} which is an orthogonal vector to
Ty(∂Ω ∩ Bρ(y) \ An) such that

∂W ¢ ∂E1 and W ¢ E1 , where W := {ïx, ¿ð f 0} ∩H1. (6.15)

The two properties above (6.15) imply that

H2(∂(E1 \W ) ∩ ∂W ) = 0, (6.16)

compare with [30, Section 16.1] or with [17, Equation (2.7)]. We claim that this implies
that W = E1 up to zero H3-measure sets. Indeed if this was not case, by (6.16) we would
deduce that F(∂W ) < F(∂E1), which would contradict (6.13), as E1∆F ¢ H by (6.2). Hence
W ∈ TV (y,Ω), which implies the desired (6.1). □
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