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Abstract—Continual learning (CL) aims to learn a non-
stationary data distribution and not forget previous knowledge.
The effectiveness of existing approaches that rely on memory replay
can decrease over time as the model tends to overfit the stored
examples. As a result, the model’s ability to generalize well is signif-
icantly constrained. Additionally, these methods often overlook the
inherent uncertainty in the memory data distribution, which differs
significantly from the distribution of all previous data examples. To
overcome these issues, we propose a principled memory evolution
framework that dynamically adjusts the memory data distribution.
This evolution is achieved by employing distributionally robust
optimization (DRO) to make the memory buffer increasingly dif-
ficult to memorize. We consider two types of constraints in DRO:
f-divergence and Wasserstein ball constraints. For f-divergence
constraint, we derive a family of methods to evolve the memory
buffer data in the continuous probability measure space with
Wasserstein gradient flow (WGF). For Wasserstein ball constraint,
we directly solve it in the euclidean space. Extensive experiments on
existing benchmarks demonstrate the effectiveness of the proposed
methods for alleviating forgetting. As a by-product of the proposed
framework, our method is more robust to adversarial examples
than compared CL methods.

Index Terms—Continual learning, distributionally robust
optimization, f-divergence, Wasserstein gradient flow.

1. INTRODUCTION

ONTINUAL learning (CL) is to learn on a sequence of
C tasks without forgetting previous ones. According to [19],
the term “task” in CL refers to a distinct training phase that
involves learning with a new collection of data. This data
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typically belongs to a different group of classes, a new data
distribution, or involves a different output space compared to
previous tasks. In other words, each task in CL represents a
separate learning objective that the model needs to adapt to while
retaining knowledge from previous tasks. Most CL methods
assume knowing task identities and boundaries during training,
named task-aware CL. This setting can be further categorized
into task/domain/class-incremental CL [53]. Later, CL has been
extended to a more general and challenging setup, i.e., task-free
CL [2]. This learning scenario does not assume explicit task
definition, and data distribution gradually evolves without clear
task boundaries, making it applicable to a broader range of
real-world problems.

The current widely adopted memory replay approaches, as
discussed in references [1], [3], [14], [15], [46], involve the
storage of a small portion of previous task data in memory. These
stored examples are then replayed alongside new mini-batch data
during training. However, this approach has inherent limitations.
To begin with, the CL model is prone to overfitting the memory
buffer, leading to diminish its effectiveness in mitigating for-
getting. Memory overfitting [19], [26] refers to a situation in
CL where a model becomes too closely fitted to the memory
data, to the extent that it performs poorly on new, unseen data
from previous tasks. In other words, the CL model learns to
“memorize” the memory data examples instead of generalizing
patterns and relationships that can be applied to new unseen data
from previous tasks. This is primarily due to two factors. First,
the capacity of the memory buffer is typically very limited, which
prevents it from accurately representing all previously learned
data examples. Second, the CL model repeatedly encounters
and learns the data from the memory buffer, resulting in mem-
orization rather than generalization of the knowledge contained
within the memory data. This phenomenon is illustrated in Fig.
1(a). Consequently, previously acquired knowledge is at risk
of being quickly lost. Moreover, there exists a significant gap
between the memory data distribution and the distribution of all
previous data examples since the memory data is only a small
subset of the entire data stream. Most existing approaches [1],
[3], [14], [15], [46] tend to overlook the high uncertainty present
in the memory data distribution. This arises from the fact that a
limited memory buffer cannot accurately reflect the stationary
distribution of all examples encountered in the data stream, as
depicted in Fig. 2.

To address the above issues, we propose a distributionally
robust optimization framework (DRO) to evolve the memory
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T-SNE visualization of evolved memory embedded by ResNetl18 on CIFARI1O0 at different CL timestamps. Each dot represents a data point’s feature

extracted by the last layer of ResNet18. Each color denotes one class of memory data. Initially, the classes are very easy to memorize and overfit. Memory evolution

makes the memory more diverse and harder to classify and memorize.

raw memory data distribution
- data distribution of all the previously learned tasks
= == eyvolved memory data distribution by continual DRO

Fig. 2. Motivation of continual DRO. The blue line denotes the stationary
distribution of all the previous data, and the orange line denotes the raw memory
buffer data distribution. There is a big gap between the raw memory data
distribution and the stationary distribution of all the data in the data stream.
Traditional experience replay (ER) replays on the raw memory data. In contrast,
our continual DRO (green line) fills this gap by evolving the memory data
distribution to narrow the gap between the evolved memory data distribution
and the distribution of all the previously learned data.

data distribution dynamically, named Continual DRO. This
learning objective makes the memory data increasingly harder to
memorize and helps the model alleviate memory overfitting [ 19],
[26] and improve generalization, illustrated in Fig. 1(b) and
(c). In addition, the proposed DRO framework considers the
underlying high uncertainty of memory data distribution. It
evolves memory data distribution to fill the gap between the
memory data distribution and the ideal stationary distribution
of all the previous data, illustrated in Fig. 2. We optimize the
model performance under the worst-case evolved memory data
distribution since we cannot know the exact distribution of
all the previous examples. As a by-product of this worst-case
optimization, the model can thus learn substantially more robust
features with performance guarantees than previous work. An
adversarial example refers to a specially crafted input or data
instance that is intentionally designed to deceive or mislead
machine learning models. These examples are created by making

+.007 x
) x +
* Sen(Ve O 0) - csign(v,.7(0,2.1)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Fig. 3. Illustration of adversarial examples. This example is taken from [22],
where the neural network initially correctly predicts the class of the input image
as “panda”. However, after introducing imperceptible noise to the image, the
neural network incorrectly predicts the class of the image as “gibbon”.

slight, imperceptible modifications to the input data with the
intention of causing the model to make incorrect predictions
or classifications [22], illustrated in Fig. 3. Our proposed DRO
memory evolution framework is robust to such adversarial ex-
amples due to the worst-case performance optimization on the
evolved memory data distribution.

We consider two types of distribution constraints that en-
forces the evolved memory data distribution not deviate from
the raw memory data distribution too much in the Continual
DRO, including more general f-divergence and Wasserstein ball
constraints.

To efficiently and conveniently tackle the problem of Contin-
ual DRO with f-divergence constraint, we develop a systematic
equation that converts the Continual DRO into a continuous
dynamical system called Dynamic DRO. This enables a gradual
continuous evolution of the initial distribution of raw memory
data towards the desired worst-case memory data distribution.
Furthermore, the Dynamic DRO provides a flexible framework
for deriving various methods to facilitate the evolution of mem-
ory data distributions. These different methods offer flexibility
and versatility in achieving the desired target memory data dis-
tribution, allowing for efficient and convenient solutions to the
Continual DRO. We then introduce three specific memory evo-
lution methods to solve the Dynamic DRO, including Langevin
Dynamics [62], Stein Variational Gradient Descent [36], and
Hamiltonian flow [34], [38]. The proposed memory evolution
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framework is general, flexible, and easily extendable, with many
potential extensions for future research.

For the proposed Continual DRO with Wasserstein ball
constraint, it can model richer family of distributions in the
neighbour of original raw memory data distribution than f-
divergence, but it is computationally intractable to directly
enforce Wasserstein-ball constraint [30] on the memory data
distribution perturbation. There are two main reasons for the
computational complexity. First, calculating the Wasserstein dis-
tance between two probability distributions is computationally
expensive and has a complexity of O(n?), where n represents
the number of data points. Second, there is no closed-form
solution available to calculate its gradient since the Wasserstein
distance is defined as a constrained optimization problem over
the probability distribution space. To address these challenges,
we convert the Continual DRO with Wasserstein-ball constraint
into a surrogate loss function in the euclidean space. This surro-
gate loss function approximates the Wasserstein-ball constraint,
enabling the continual DRO to be solved in the euclidean space,
which is computationally more tractable.

We evaluate the effectiveness of the proposed framework
by performing comprehensive experiments on several datasets
and comparing them to various strong SOTA baselines. We
summarize our contributions as follows:

® We propose the first principled, general, and flexible mem-

ory evolution framework for both task-aware and task-free
CL from the perspective of distributionally robust opti-
mization, named continual DRO. Our proposed method is
substantially more effective for mitigating forgetting. As a
by-product of the proposed DRO framework, our method
is more robust to adversarial examples than previous CL
methods.

® We instantiate the proposed Continual DRO with both more

general f-divergence and Wasserstein ball constraints to
ensure the evolved memory data not deviate from the orig-
inal raw memory data too much, providing great flexibility
for specifying the optimization objective for the CL learner.

e We formulate the Continual DRO from a new continuous

dynamics perspective and cast it as a gradient flow system,
named Dynamic DRO. We propose a family of memory
evolution methods with different ways to efficiently solve
the Dynamic DRO, opening up a new research direction
for presenting new strategies to evolve the memory data.

e Extensive experiments on several datasets for both task-

aware and task-free CL demonstrate the effectiveness of the
proposed method for mitigating forgetting and increasing
the robustness to adversarial examples. Our framework is
versatile and can be seamlessly integrated with existing
memory-replay-based methods to improve their perfor-
mance.

In this paper, we extend our previous work [61] from both the-
oretical and empirical aspects. Theoretical aspect: our previous
work [61] only considered task-free DRO under the constraint of
KL-divergence. However, in this paper, we extend the constraint
to encompass more general f-divergence and Wasserstein-ball
constraints. Our previous work [61] with KL-divergence can be
viewed as a special case of f-divergence. By including these
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additional constraints, the theoretical aspects of the paper be-
come more comprehensive. This expansion allows for a broader
understanding of DRO for CL. Empirical aspect: this paper
largely extends the application scenarios of the proposed frame-
work. Our previous work [61] only considered task-free CL,
but in this paper, we additionally explore both task-aware and
task-free CL. This extension makes the empirical applicability
of the paper more general, as it covers a wider range of CL
scenarios.

II. RELATED WORK

In this section, we discuss the related CL works [28], [37],
[41], [42], [45], [49], [55], [57], [58], [59], [60], [66], which
can be categorized into: (1) task-aware CL in Section II-A,
where there are clear task definitions and boundaries among the
sequentially learned tasks; (2) task-free CL [2], [18], [25], [67]
in Section II-B, which focuses on the more general case where
the data distribution could change arbitrarily without explicit
task splits. We then discuss the related work of distributionally
robust optimization (DRO) in Section II-C.

A. Task-Aware CL

Existing works proposed for solving task-aware CL have four
major research branches: 1) keeping a memory buffer that stores
the data examples from previous tasks and replay those examples
during learning new tasks, representative works include [1], [14],
[15], [43], [46], [52]; 2) designing dynamic network architec-
tures during CL [21], [47], [65] to retain the previously learned
knowledge; 3) adding regularization loss term to avoid forgetting
the previous knowledge [28], [55], [66]; and 4) using Bayesian
methods to model the parameter update uncertainty and maintain
the model parameter distribution unchanged, including [20],
[41]. In this paper, we focus on memory-replay-based methods
since they often achieve better performance than the methods
of other categories. Memory-based CL methods include expe-
rience replay [15], which trains the new task with the memory
buffer data together. Meta Experience Replay (MER) [46] uses
meta-learning to encourage information transfer from previous
tasks and minimize interference. Hindsight Anchor Learning
(HAL) [13] proposes to use anchor points to mitigate forgetting
on previous tasks. GEM [37] and A-GEM [14] use the memory
buffer data losses as inequality constraints to constrain their in-
crease but allowing their decrease to mitigate forgetting. DER [9]
further integrates experience replay with knowledge distillation.
LiDER [7] aims to smooth the decision boundary of replayed
samples by restricting the Lipschitz constant of the CL neural
network. LiDER is orthogonal to our work since they focuses
on model space regularization. In contrast, our method focuses
on data space regularization.

Data augmentation is a technique used to generate additional
samples from existing data distributions. However, traditional
data augmentation methods are typically manually designed
and predefined, which limits their adaptability to CL where the
data distribution changes with time. Another approach called
generative replay [52] requires training a generative model
to remember previous data distributions. However, generative
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models are challenging and unstable to train, resulting in poorly
generated examples. Controlling the quality of generated sam-
ples becomes difficult, often deviating from the original raw data
distribution when learning new tasks. Additionally, generative
models are prone to forgetting previously learned distributions,
which hampers their performance compared to memory-based
methods [26].

B. Task-Free CL

Existing approaches for task-free CL can be categorized into
two classes. The first (majority) one is memory-based meth-
ods [1], [3], which store a small number of data from the
previous data stream and replay them with the new mini-batch
data. The second type is the expansion-based method, such
as CN-DPM [31]. However, CN-DPM needs to increase the
memory and computation overhead with the network structure’s
expansion and the increase of the network parameters. Hence,
this work focuses on memory-replay-based methods without
expanding the network structure since it is simple and effec-
tive. Most existing works in this category [14], [15] directly
perform replay on the raw data without any adaptation. MIR [1]
proposes to replay the samples with which are most interfered.
GEN-MIR [1] further uses generative models to synthesize
the memory examples. The heuristic method, GMED [26],
proposes to edit memory examples so that the examples are
more likely forgotten and harder to memorize. Our methods
share similar motivations with GMED, which individually edits
the memory data without considering memory data distribution
uncertainty and population-level statistics. In contrast, our DRO
framework focuses on population-level and distribution-level
evolution. Orthogonal to our work, Gradient-based Sample Se-
lection (GSS) [3] focuses on storing diverse examples. These
methods lack theoretical guarantees. In contrast, our framework
is principled and focuses on evolving memory data distributions.

C. Distributionally Robust Optimization (DRO)

DRO is an effective optimization framework to handle
decision-making under uncertainty [44]. The basic idea of DRO
is first to construct a set of probability distributions as an
ambiguity set and minimize the worst-case performance in this
ambiguity set, thus guaranteeing the model performance. There
are various applications of DRO in machine learning problems,
including tackling the group-shift [48], subpopulation shift [68],
and class imbalances [64].

To our best knowledge, our work is the first principled method
with DRO for memory evolution in CL, i.e., continual DRO. It
dynamically evolves memory data distributions to avoid for-
getting and learn robust features. In addition, we formulate the
proposed continual DRO from a new continuous dynamics per-
spective, making it convenient to handle the evolving memory
data distribution with different evolution dynamics. Besides,
we propose several ways to evolve the memory data, opening
up a new research direction to explore more effective memory
evolution methods.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 12, DECEMBER 2023

III. PROBLEM SETUP

In this section, we provide problem definition for task-aware
CL in Section III-A and task-free CL in Section III-B.

A. Task-Aware CL

Task-aware CL aims to solve the case where there are ex-
plicit task definitions during CL. The three most common CL
scenarios are task/domain/class-incremental learning [53]. We
consider the standard CL problem of learning a sequence of N
tasks denoted as D" = {D{", DL, ..., D }. The training data
of kth task D" consists of a set of triplets {(zF,y¥, Tx)"*, },
where x¥ is the ith task data example, y¥ is the data label
associated with wf, and 7} is the task identifier. The goal is
to learn a network function with parameters 6, i.e., g(x, 0), on
the training task sequence D" so that it performs well on the test
set of all the learned tasks D¢ = {D}¢, DL, ... DL} without

forgetting the knowledge of previous tasks.

B. Task-Free CL

A sequence of mini-batch labeled data (xy, yx, hi) sequen-
tially arrives at each timestamp k& and forms a non-stationary
data stream. Each data point is associated with a latent task
identity hy, where xj, denotes the mini-batch data received at
timestamp k, yy is the data label associated with xj,. During both
the training and testing time, the task identity Ay, is not available
to the learner. According to [2], a more general definition of
task-free CL is that data distribution shift could happen at any
time without explicit task splits. Our method can be directly
applied to those more general cases as well. At the same time,
a small memory buffer M is maintained, and replay the data
in M when learning the new task to avoid forgetting the previ-
ously learned knowledge. The memory buffer M is updated by
reservoir sampling (RS), similar to the procedure in [46].

IV. METHOD

In this section, we present the traditional memory replay
in Section IV-A. We propose our general Continual DRO
framework in Section IV-B. Next, we instantiate the Contin-
ual DRO framework with general f-divergence constraint in
Section IV-C. Finally, we present another variant with
Wasserstein-ball constraint for continual DRO in Section I'V-D.
We summarize the proposed methods in Section IV-E.

A. Traditional Memory Replay for CL

The goal is to learn a model g(x, 8) to perform well on all
the tasks seen until timestamp k. Standard memory replay for
CL [15] is to optimize an objective under a known probability
distribution 1. Formally speaking, CL with traditional memory
replay can be expressed as

min [£(0, zk,yx) + E L(0,x,y)], (1)
VOe® T~ o
where 0 are model parameters and « is the raw memory buffer
data with probability measure (density) u, i.e., V& € M, x ~
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to- £(0, x,y) is the loss function associated with the data (x, y).
In the following, we temporally omit the term £(0, xk, yx ) due
to the fact that (x, yy) is the mini-batch data arrived at times-
tamp k and does not depend on the memory data distribution.

B. DRO for General CL

Distributionally Robust Optimization (DRO) [44] is a sys-
tematic and elegant framework to model the decision-making
with ambiguity in the underlying probability distribution. Tra-
ditional memory-replay methods in CL in Section III implicitly
assume that g is known. In contrast, our proposed DRO frame-
work takes that the underlying actual probability distribution
of memory data j is unknown and lies in an ambiguity set of
probability distributions. Modeling the memory data uncertainty
is particularly useful when the memory buffer is small compared
to the whole dataset since the memory has limited coverage to
approximate the stationary distribution of all examples seen so
far, illustrated in Fig. 2. Thus, there is significant uncertainty
in modeling the multi-task learning scenarios (the performance
upper bound) with only a small memory buffer. The proposed
DRO framework optimizes the worst-case performance in the
ambiguity set of probability distributions since we cannot access
the distribution of all the previous data. Therefore, it helps the
model generalize to previous tasks since it can potentially narrow
the gap between the memory data distribution and the distribu-
tion of all the previous data, illustrated in Fig. 2. As a by-product
of this optimization framework, it also helps learn features
robust to data distribution perturbations. On the other hand, the
memory buffer is updated slowly during CL (e.g., by reservoir
sampling), and traditional memory-replay repeatedly trains the
memory buffer. As a result, the CL model can easily overfit the
memory buffer, as illustrated in Fig. 1(a). Thus, the memory
buffer could become less effective for mitigating forgetting. By
optimizing the worst-case evolved memory data distribution at
each iteration, our proposed DRO can also alleviate the memory
overfitting problem by transforming the memory data to make
them more difficult to memorize. This is illustrated in Fig. 1(b)
and (c¢). Mathematically speaking, the proposed DRO for general
CL can be expressed as

Jolg sup E,L(0,z,y) )
s.t. P = {p: D(po, ) < D(po,m) < €}, 3)

E  VoL(0,2,y) VeLl(8,2',y) > A, 4)
T, T O

where the inner sup optimization is to gradually make the mem-
ory data distribution increasingly harder to memorize. P in (3)
denotes the ambiguity set of probability measures (distributions
or densities) for the memory data distribution to characterize its
uncertainty. We define P through f- divergence or Wasserstein
distance. D(pup, ) denotes the f- divergence or Wasserstein
distance between probability measure po and 7, where 7 is
the target worst-case evolved memory data distribution, i.e.,
7 = arg max,,.pE,L(6,x,y). Where ¢ in (3) is a constant
threshold to characterize the closeness between po and 7 to
ensure the worst-case evolved memory data distribution 7 does
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raw memory data distribution
= = perturbed memory data distribution 1
- == perturbed memory data distribution 2

Fig. 4. Tllustration of our proposed continual DRO framework. Traditional
memory replay only optimizes the loss on the raw memory data distribution
(indicated with orange color). Our proposed framework incorporates the uncer-
tainty in the underlying memory data distribution, optimizing the worst-case
performance within the neighborhood of the raw memory data distribution
(indicated with dotted blue and green color). The evolved memory data covers
more data space.

not deviate from the raw memory data distribution pg too
much. In (4) constrains the gradient dot product between the
worst-case evolved memory data distribution and raw memory
data distribution, i.e., Vo L(0,x,y) - VoL(0,x',y), to avoid
the evolved memory data deviate from the raw memory data
too much. Intuitively, if the gradient dot product is positive, it
means the evolved memory data has a similar update direction
compared to the raw data. A is a threshold to determine the
constraint magnitude. An illustration of our proposed method is
shown in Fig. 4.

To solve the optimization, i.e., (2)—(4), the worst-case opti-
mization that involves the sup optimization is generally compu-
tationally intractable since it involves the optimization over in-
finitely many probability distributions. To address this problem,
by Lagrange duality [8], we convert (2)—(4) into the following
unconstrained optimization problem (detailed derivations are
put in Appendix A, available online:

i E,L(6,z,y) — vD(uo,
vrgenészp[, (0,2, y) —vD (ko 1)

+8 E

T ~ g

v9£(07m7y) : v9£(07m/7y)]5 (5)

where v and [ control the magnitude of regularization. The
gradient of the third term (gradient dot product term) can be
efficiently approximated by finite difference in practice. The
optimization (5) is still computationally hard to solve because
the inner sup optimization is over probability measure space,
which is an infinite-dimensional function space. We name (5) as
Continual DRO.
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C. Continual DRO With f-Divergence Constraint

In this section, we propose the solution for Continual DRO
with general f-divergence constraint. Specifically, we first
present the f-divergence Wasserstein Gradient Flow, which
will be used for efficiently solving the Continual DRO in
Section IV-C1. We then present the reformulation of Continual
DRO from a continuous dynamics view as Dynamic DRO in
Section IV-C2. We next present specific memory evolution
methods to solve the Dynamic DRO efficiently in Section IV-C3.

1) f-Divergence Wasserstein Gradient Flow: f-divergence
is defined as

T (ullv) = / f (“ (”">> v(@)da, ©)

v(x)

where [ is a is convex, lower-semicontinuous function with
f(1) = 0. f-divergence encapsulates many common distri-
bution divergences, including KL divergence when f(¢) =
¢ log ¢, x? divergence when f(¢) = (¢ — 1)? and a-divergence
when f(¢) = T4z (1— ¢72).

Below, we define and present the gradient flow of the above
defined f-divergence in Wasserstein space. Let P2 (R?) denote
the space of probability measures on R¢ with finite second-order
moments. Each element ;1 € Py (R?) is a probability measure
represented by its density function 1 : RY — R with respect to
Lebesgue measure dx. The Wasserstein distance between two
probability measures ji1, jip € Po(R?) is defined as

1/2
)/Ww—ww%Maww) ,

where [ (p1, po) = {w|w(A x RY) = 11 (A),w(R? x B) =
u2(B)}. w is the joint probability measure with marginal
measure of z; and jiy respectively. Thus, W2 = (Py(R%), W)
forms a metric space.

Definition 4.1 (Gradient Flow in euclidean Space):

min

Wa(pr, p2) = (w€1'[(# B

dmt

% = —VE(.’Bt),

where xy = z(0). @)

Where the function F(a;) is the function to be optimized. The
gradient flow in euclidean Space is the solution to this differential
equation.

The gradient flow in euclidean space basically describes that
the data x; follows the steepest descent direction of the function
E(x;) at any time ¢, which is the generalization of the discrete
gradient descent in continuous limit. We next present Wasser-
stein gradient flow in probability measure space, which is the
generalization of gradient flow in euclidean Space to Wasserstein
space.

We first provide the definition of first variation by calculus of
variation [40]. The first variation of a functional in function space
is analogous to the first-order gradient of a function in euclidean
distance. For more detailed background knowledge of calculus
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o VWZF(/L)

Ty ™

(a) Gradient flow in Euclidean (b) Gradient flow in Wasserstein
space space

Fig. 5. Illustration of gradient flow in euclidean and Wasserstein space. (a)
gradient flow in euclidean space is a continuous curve (blue) where the optimiza-
tion variable follows the steepest descent direction at each point. (b) gradient
flow in Wasserstein space is also a curve where the probability measure follows
the steepest descent direction (with Wasserstein gradient) to move towards the
target probability measure. The difference is that in euclidean space, each x is
a finite dimensional object. By contrast, in Wasseerstein probability measure
space, each probability measure p is an infinite dimensional function.

of variations, we recommend the reader refer to [40]. It is defined
as below.

Definition 4.2 (First Variation): The first variation of a func-
tional F'(u) is the functional at x
Flu+ew) - Flw

50 () = liny : , @®)

where 1) is an arbitrary function.

Definition 4.3 (Wasserstein Gradient Flow [4]): Suppose we
have a Wasserstein space W? = (Py(RY), W3). A curve (i) 1>0
of probability measures is a Wasserstein gradient flow for func-
tional F' if it satisfies

O = Vw, F(py) =V - <Ntv(;_i(ﬂt)> ) )
where := means defined as, and V - (r) := Z?Zl 0,:irt(2) is
the divergence operator of a vector-valued function r : RY —
R?, where 2% and r¢ are the i th element of z and r; V
is the gradient of a scalar-valued function. Vyy, F(u:) := V -
(utv%(ut)) is the Wasserstein gradient of functional F at i,

where ‘;—Z (111) is the first variation of F" at ju;.

Intuitively, the WGF describes that the probability measure i,
follows the steepest curve of the functional /() in Wasserstein
space of probability measures (function space) to gradually
move (starting at the initial probability measure 1, i.e., the raw
memory data) towards the target probability measure 7, i.e., the
target evolved memory data distribution. To illustrate the WGF,
we compare it with gradient flow in euclidean space in Fig. 5.

Theorem 4.4: Given a target memory data distribution 7, the
gradient flow of f-divergence 7 (u||v) evolves as the following
partial differential equation (PDE) in Wasserstein space accord-
ing to the Definition 4.3

Oui(,t) =V - (@) vf (£) @n). o

In particular, if f(¢) = f(1)¢ * (p is a constant), the above
(10) is equivalent to the following one

D, t) = V - <7r(:n)pV (““”’”)) .

m(x)

(1)
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In sample space, the memory data particles satisfy the follow-
ing stochastic differential equation (SDE):

dX; = pr(X)P 2V ( Xy )dt + /27 (X, )P~ LdW,,
where W = (W})4>0 is the standard Brownian motion in R"
[5].

The proof follows from [32].

In the following, we instantiate our framework by specializing
the f-divergence to be KL divergence when f(¢) = ¢log o,
x? divergence when f(¢) = (¢ — 1)? and a-divergence when

lta
F(@) = T (1= 973",

KL-Divergence WGF: When dealing with KL-divergence, we
need to instantiate the f(¢) = ¢ log ¢. The first and second order
derivative are f'(¢) =log¢ + 1 and f"(¢) = %, respectively.
p = 1. According to (11) and (12), the WGF and corresponding
diffusion process can be formulated as

(12)

O, t) =V - <7r(a:)V (“;Tw;f))) (13)
dX, = m(X) ' Vn(Xy)dt + V2dW,.  (14)

In (14) can be further reformulated as
dX, = Viog m(X,)dt + V2dW,. (15)

x2-Divergence WGF: When dealing with x2-divergence, we
need to instantiate the f(¢) = (¢ — 1)2. The first and second
order derivative are f'(¢) = 2(¢ — 1) and f"(¢) = 2, respec-
tively. p = 0. According to (11) and (12), the WGF and corre-
sponding diffusion process can be formulated as

dupi(,t) = V- (v (%)) (16)
dX, = \/27(X,)"LdW,. (17)

a-Divergence WGF: In this case, we set the f function to be
F(8) = 725(1 — ¢=7). According to (11) and (12), the WGF
and corresponding diffusion process can be formulated as

Oz, t) =V - <7r(m)32°‘v (%)) (18)
ix, = > ; (X)) T Vr(Xy)dt + \/2m(X,) 5 W,
(19)

Remark: Among the above various divergence instantiation
of the f-divergence, KL-divergence is the most widely used and
studied divergence metric. x? divergence enjoys faster conver-
gence than the KL-divergence [17]. On the other hand, the nice
property of a-divergence is its mass-covering [56] property, i.e.,
the evolved memory data distribution tends to cover more modes
of the target memory data distribution.

2) Continual DRO. A Continuous Dynamics View: In this
section, we instantiate the distance D(pug, 1) in (5) to be f-
divergence J (p|| o). The optimization goal then becomes the
following:

Inin szp[EuE(O, z,y) — 1T (1l|po)

+5 E

T pL,x ~ o

VoL(0,2,y) - VeLl(0,z' y). (20)
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To make it tractable to solve the continual DRO in (20), we
formulate it from a new continuous dynamics perspective. This
new perspective brings significant advantages over directly solv-
ing (20): 1) the optimization of (20) over probability measure
space can be converted into a continuous probability distribu-
tion evolution, equivalent as a WGF, enabling gradient-based
solutions in probability measure space (function space); 2) we
can efficiently solve the WGF by various methods, which pro-
vide potential derivations of many different memory evolution
methods. We then propose a novel solution by decomposing the
continual DRO (20) into a gradient flow system. Specifically, we
solve the inner sup optimization problem for memory evolution
with WGF in Wasserstein space of probability measures and
solve the outer optimization problem for the model parameters
with gradient flow in euclidean space. We convert the continual
DRO into a gradient flow system that alternately updates the
memory evolution and model parameters.

Given a memory buffer at timestamp k, the raw memory
data is M = {(z},y'), (22,9%),..., (2} ,y™)}, where N is
the memory buffer size. We perform a similar memory evolution
procedure at each CL timestamp and omit the CL timestamp
k for notation clarity. We denote x! as the ith datapoint in
the evolved memory buffer after ¢ evolution steps. The raw
memory data is assumed to be i.i.d. sampled from the ran-
dom variable Xy, i.e., {z§, x2,..., 2} } ~ Xo. X, follows the
probability distribution p, i.e., Xo ~ po. At evolution time ¢,
the memory data M is evolved as random variable X, i.e.,
{z},x? ..., 2N} ~ X, and probability distribution of random
variable X follows the probability measure 1, i.e., Xy ~ pu.
The empirical measure on the evolved memory buffer at time ¢
is defined as fi; = + SY=N§(a!) and 6 is the Dirac measure.
We model the memory evolution process as continuous WGF
in probability measure space, i.e., use ({);>0 to model the
probability distribution evolution of memory data. The evolving
(11¢)¢>0 will in turn determine the memory evolution process
(X¢)¢>0 in euclidean space.

The f-divergence term J(p||7) is implicitly handled by
WGEF, we thus set v = 1 throughout this paper. Since the goal
is to approach the target distribution 7 as close as possible, we
then define the energy functional () for memory evolution as
the following:

F(p) =V (p) + T (pllm)
V(:u) = 7E‘u,£(0’ mvy)
- 5Euv0£(0v €T, y) : VQL(B, (B/, y) (21)

By defining such energy functional F'(u), the (20) can be equiv-
alently solved by the following gradient flow system (22), (23),
we name it as Dynamic DRO.

{Gtut = div (Mtv%(“t)) ’
% =—VoE, L(6,z,y),

(22)
(23)

where (22) solves the inner sup problem in (20) with WGF
in Wasserstein space and (23) solves the outer minimization
problem in (20) for parameter update with gradient flow in
euclidean space. In the following, we focus on solving (22) and
(23).
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Fig. 6.

[ustration of WGF-LD for memory evolution at different time ¢ < ¢1 < t2. Initially (£ = o), the raw memory data is easy to overfit. From ¢ = {; to

t = to, the memory data becomes harder to classify and overfit. The black arrow (corresponds to the first term (VU (¢}, 0))), drives the memory data to become
harder to classify. The white circle (corresponds to the second term (Brownian motion)) serves as a random force such that the memory data becomes more diverse.

3) Training Algorithm for Dynamic DRO With KL-
Divergence: In this section, we instantiate the f-divergence
as KL-divergence, and other special f-divergence derivations
are similar. We propose three different methods for efficiently
solving the Dynamic DRO in (22)—(23). The first solution
is Langevin dynamics with a diffusion process to evolve the
memory data distribution; we name this method WGF-LD.
Next, different from WGF-LD, which relies on randomness to
transform the memory data, we kernelize the WGF in (22) by
solving the WGF in reproducing kernel Hilbert space (RKHS).
It deterministically transforms the memory data; we name this
method WGF-SVGD. Furthermore, we generalize the above
WGF and improve their flexibility to incorporate prior knowl-
edge or geometry information. One instantiation of this general
WGF uses Hamiltonian dynamics; we name it WGF-HMC.
More novel memory evolution methods are worth exploring in
future work.

Following [63], we define the target distribution 7 as the
energy function 7 oc~Y, where the function U is defined as the
following:

U(x,0) = —L(0,z,y) — BVeL(0,x,y) VoLl(0,x' y).

Langevin Dynamics for Dynamic DRO: If we directly use
the energy functional F'(u) (21) in (22), solving the SDE
(15) corresponds to the Langevin dynamics with the following
stochastic differential equation [62] by replacing the 7 with e~V
in (15):

dX = —VxU(X,0)dt + 2dW;, (24)

where X = (X});>0 is the memory evolution process as previ-
ously defined. W = (W})>0 is the standard Brownian motion
in R™ [5]. If X; ~ pu; evolves according to the Langevin dy-
namics (24) in euclidean space, then () evolves according
to gradient flow (22) in the space of probability measures [27].
If we discretize the above equation and view each datapoint
in memory as one particle, the memory buffer data evolves
with Langevin dynamics to obtain diverse memory data by the
following updates:

x = —h(VaU(xi,0) +V2heé.  (25)

As illustrated in Fig. 6, the first term in (25) drives the particles
(memory data) towards the worst-case memory data distribution

i
LTyy1 —

7 to make the memory data gradually harder to memorize by
dynamically increasing the energy functional. For the second
term, it adds noise to encourage diversity in the transformed
memory data, where &, is standard Gaussian noise, and h is step
size, i.e., a proper amount of added Gaussian noise tailored to
the used step size. We name this memory evolution method as
WGF-LD.

Kernelized Method for Dynamic DRO: We replace the Wasser-
stein gradient Vyy, F'(u;) by the integration transformation
K. Vw, F(ue) = [ K(x, ')V, F(ue)(2')dp(z'); where the
RKHS space induced by the kernel K is denoted by . The
probability measure in the kernelized Wasserstein space actually
follows the kernelized WGF [35]:

. oF
at,ut = div (Mtlcmvm(ﬂto . (26)

In (26) can be viewed as the WGF (22) in RKHS. It indicates that
the random variable X; which describes the evolved memory
data at time ¢ evolves as the following differential equation [35]:

dX oF

— =—|K,V— X). 27

=[] o @
This kernelized version is the deterministic approximation of

the WGF in (22) [36]. If we discretize the above equation and

view each datapoint in memory as one particle, we can obtain

the following memory evolution update equation:

j=N
i h j
Ti — @y = N Z wtth Ve U(wi,@)
=t smoothed gradient
+ Vik(a), @), (28)

repulsive term

As illustrated in Fig. 7, the first term drives the memory data
towards the worst-case memory data distribution by increas-
ing the energy functional. The update is driven by the kernel
weighted sum of the gradients from the memory data points,
thus smoothing the memory data gradients. The second term
serves as a repulsive force that prevents the memory data
points from collapsing into a single mode, thus diversifying the
memory data population. In this paper, we use Gaussian kernel
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Fig. 7. Illustration of WGF-SVGD for memory evolution at different time tg < t1 < t2. Initially (¢ = (), the raw memory data is easy to overfit. From ¢t = ¢;
to ¢t = to, the memory data becomes harder to classify and overfit. The black arrow (the first term (k(mﬁ, wi )ij U (mi, 0)) in (28)) drives the memory data to
t

become harder to classify. The orange arrow (the second term (Vac § k(m%, mi )) in (28)) serves as repulsive force such that the memory data becomes more diverse.
t

k(zi, ;) = emp(—%). We name this memory evolution

method as WGF-SVGD. We put detailed derivations in Appendix
C, available online.

General Memory Evolution for Dynamic DRO: [38] found
that any continuous Markov process that provides samples from
the target distribution can be written in a very general sampler
form. The corresponding general WGF for memory evolution
can be written as

. oF
8tut = dZU <[Lt(D -+ Q)Va(ut)) 5 (29)
where D is a positive semidefinite diffusion matrix, @ is a skew-
symmetric curl matrix representing the deterministic traversing
effect [38]. One particular case is

0 0 0 -1
D = =
OC’QIO’

where C is the friction term, and I is the identity matrix. This
WGF corresponds to Hamiltonian dynamics [16] and can be
solved by the following evolution:

L4l — Lt = Uy, (30)
Vi1 — VU = —hVU(.CB, 0) — TV + V 27h ty

where v is the momentum variable, and 7 is the momentum
weight. We name this method as WGF-HMC.

The most attractive property of this WGF for memory dis-
tribution evolution is that we can freely specify the matrix
Q@ and D tailored to practical requirements. We can consider
prior knowledge or geometry information by designing tailored
Q@ and D, or develop the kernelized version of this general
WGF. These research directions specialized for CL are left
as future work to explore. Our framework is quite flexible
and general due to the energy functional design and WGF
specification.

D. Continual DRO With Wasserstein Ball Constraint

In this section, we present another variant of Continual-DRO
by instantiating the distance D(pg, i) in (5) to be Wasserstein
distance, W (g, ). Specifically, we formulate the continual

DRO as the following optimization:

Inin Sgp[Euﬁ(G, x,y) — YW (ko, 1)

+p E

TfL, T ~ o

VBL(Oawyy) : Vg/l(@,a:',y)], (31)

where (31) is to optimize the memory loss on the worst-case
memory data distribution. Different from Section IV-C, which
uses f-divergence constraint, we use the Wasserstein ball con-
straint as an ambiguity set in (31) to ensure the evolved memory
distribution p not deviate from the raw memory distribution
1o f-divergence and Wasserstein-ball constraints have different
modeling and computation properties for Continual DRO. We
can efficiently solve the Continual DRO with f-divergence in
function space by calculus of variation. However, using Wasser-
stein ball constraint can incorporate richer family of distributions
in the neighbourhood of raw memory data distribution. On the
other hand, it is computationally hard to solve the Wasserstein
ball constraint [30] since (1) computing the Wasserstein distance
itself is already computationally expensive; (2) we cannot cal-
culate the functional gradient of Wasserstein-ball constraint in
a closed form. We thus convert the above optimization problem
into the following approximate optimization problem by using
the surrogate loss function from [6]:

min sup(—E,U(zx, 0) — ve(xo, x)), (32)
0 pcx

where x is the raw memory data, x is the evolved memory data
and c(xg, ) = ||zo — x||3. We thus can solve this optimization
in euclidean space. The memory data evolves by gradient ascent
of the inner sup optimization as the following equation:

332-1-1 - wl = th(—U(wi, 0) — yc(xo, )). (33)

We name this method as WD-continual.

E. Algorithm Summary

The proposed memory evolution algorithm is shown in Al-
gorithm 1, with the flexibility to use various evolution methods.
Line 3-4 describes that a mini-batch data arrives at time k£ and
samples a mini-batch data from the memory buffer. Line 5-7 is
to evolve the mini-batch memory data with 7" steps depending
on using which evolution methods. Line 8 updates the model
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Algorithm 1: Distributionally Robust Memory Evolution.

1: REQUIRE: model parameters 6, learning rate 7,
evolution rate (step size) h, number of evolution steps T’
at each iteration, memory buffer M; K is the number of
mini-batch data in the data stream.

2:for k = 1to K do

3: anew mini-batch data (xy, yy) arrives.

4: sample mini-batch from memory buffer, i.e.,

(z, y) ~ M
5: fort=1toT do
6: (z,y) = Evolve((x,y)) by any of the above
mentioned f-divergence memory evolution methods,
e.g., through WGF-LD (25) or WGF-SVGD (28) or
WGF-HMC (30) or WD-continual (33).

7: end for

Ori1=0r —1Vo[L(Ok, x,y) + L(Ok, Ty, yr)]

9: update memory buffer by reservoir sampling (RS),

M= RS(Ma (wkayk))

10: end for

*®

parameters with the evolved memory data and mini-batch data
received at time k. Line 9 updates the memory buffer with the
mini-batch data received at time k using reservoir sampling.
We do not replace the raw memory data with the evolved
memory data in the current version. Replacing the raw memory
data with the evolved one could decrease the performance in
our experiment. Our method needs to store a mini-batch of
evolved memory data. This memory cost is negligible compared
to the entire data stream memory buffer. We can view memory
evolution from two perspectives. First, local evolution evolves
the current raw memory data distribution with several adaptation
steps. Second, global evolution evolves the memory data at
different CL timestamps due to different model parameters.

V. EXPERIMENTS

To evaluate the effectiveness of our memory evolution meth-
ods, we compare to various state-of-the-art (SOTA) baseline
approaches in the task-aware CL setting on several datasets in
Section V-A and compare various methods in the task-free CL
setting in Section V-B. We then evaluate the methods in terms of
robustness to adversarial examples in Section V-C. We perform
ablation study in Section V-D.

Datasets: We compare different methods on the following
most commonly used datasets, including:

® (CIFARIO, which has 10 image classes;

® Minilmagenet [54], which has 100 image classes;

® CIFAR-100 [29], which also contains 100 image classes.

In the following experiments, we mainly focus on f-
divergence specification with KL-divergence constraint, while
we leave other f-divergence specifications in ablation study in
Section V-D.

A. Task-Aware CL

We compare various methods on: (1) task-incremental learn-
ing (Task-IL), which provides task identities to the CL learner;
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and (2) class-incremental learning (Class-IL) [53], which does
not provide task identities to the CL learner.

Baseline: We compare to various SOTA CL methods, de-
scribed in the following:

® Regularization-based methods, including Classifier-

Projection Regularization (CPR) [12], Gradient Projection
Memory (GPM) [49], oEWC [50], synaptic intelligence
(ST) [66], Learning without Forgetting (LwF) [33] and deep
Streaming Linear Discriminant Analysis (SLDA) [23].

® Bayesian-based methods, including UCB [20].

® Architecture-based methods, including HAT [51].

e Memory-based CL methods, including ER [15], A-

GEM [14], GSS [3], HAL [13], DER++ [9], GMED [26]
and ER-ACE [10].

Most baseline implementations are based on [9]. We ap-
ply the proposed method on top of the implementation [9].
In addition, our proposed methods are orthogonal to existing
memory-replay-based CL methods. Thus, they are versatile, and
we can seamlessly combine the proposed methods with them.
We name these methods as ER+WGF-LD, DER++WGEF-LD,
DER++WGF-SVGD, etc.

Evaluation Metrics: We use overall average accuracy and
backward transfer at the end of CL training to evaluate the
performance of the proposed methods and the baseline methods.
We denote ay j as the test accuracy on task £ after learning
on task IN. Thus, the overall accuracy for all the tasks are
ACC = 4 Zl,:iiv an k. To measure catastrophic forgetting,
we also evaluate backward transfer (BWT). BWT is formally
defined as: BWT = = S5=1 '(ank — arx). BWT <0
indicates that there is knowledge forgetting on previous tasks
after learning new ones, and BW'T' > 0 indicates that learning
new tasks is beneficial to improve the performance of previous
tasks.

Implementation Details: Following [9], we use ResNet18 [24]
as the CL learner (classifier) for all datasets. Following [9], we
split the CIFAR-10 dataset into 5 disjoint tasks, where each task
consists of 2 classes. We split Minilmagenet into 10 disjoint
tasks, where each task has 10 classes. We also split CIFAR-100
into 10 disjoint tasks, where each task consists of 10 classes. We
also follow [9] for other hyperparameter settings. To improve
running efficiency, we randomly sample the number of evolution
steps from the interval [1, 5] at each CL step. The memory buffer
can store 500 data points by default. We provide the performance
of baselines and proposed methods with a larger memory size
of 2000 in Appendix B.1, available online. We use the average
accuracy and standard deviation across ten runs as the evaluation
results. The compared methods and our proposed methods are
based on the public implementation.'

Result: We compare the proposed methods to various CL
baselines and combination with our proposed methods in
Table I. Due to space limitations, we put the results on backward
transfer in Appendix B.2, available online. We can observe
that our method outperforms those baselines. In particular, for
class-IL, our methods improves over ER by 2.3%, 2.5%, and
3.7%, on MinilmageNet, CIFAR-100 and CIFARI10, respec-
tively. For task-IL, our methods improve over ER by 2.3%,

![Online]. Available: https://github.com/aimagelab/mammoth
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TABLE I

TASK-IL AND CLASS-IL RESULTS ON CIFAR10, CIFAR-100 AND MINIIMAGENET, RESPECTIVELY WITH MEMORY SIZE 500. ’—’ INDICATES NOT APPLICABLE
Algorithm CIFAR-10 CIFAR-100 Minilmagenet
Method Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL
fine-tuning 19.62 £0.05 61.02+3.33 9.29 +0.33 33.78 £ 0.42 8.59 +0.29 27.48 +0.38
Joint train 92.20 +£0.15 98.31+0.12 71.32+0.21 91.314+0.17 65.56+0.18 87.74 +0.15
oEWC 19.49£0.12 68.29+3.92 8.244+0.21 21.2+2.08 7.32+0.16 22.54 +1.78
SI 19.48 £0.17 68.05+5.91 9.41 +0.24 31.08 +1.65 8.07+0.26 30.16 = 1.72
LwF 19.61 £0.05 63.29+2.35 9.70 +0.23 28.07+1.96 7.65+1.31 21.49 4+ 2.06
CPR 21.384+0.19 72.37+3.51 10.314+0.24 31.93+2.31 9.85+0.23 31.87+1.91
SLDA 25.70 £0.37 73.28£3.78 12.194+0.58 32.38+£2.72 10.97+0.53 33.29 £+ 1.77
GPM — 90.68 +3.29 — 7248 +0.40 — 60.41 +0.61
UCB —_— 79.28 +1.87 — 57.15+1.67 — 49.36 + 1.09
HAT — 92.56 £ 0.78 — 72.06 £ 0.50 — 59.78 + 0.57
A-GEM 22.67+0.57 89.48+1.45 9.30+0.32 48.06 +£ 0.57 7.76 £ 0.12 39.28 +0.43
GSS 49.73 +£4.78 91.024+1.57 13.60+£298 57.50+1.93 11.22+3.17 50.194+1.78
HAL 41.79 +4.46 84.54+2.36 9.05+ 2.76 4294+ 1.80 4.46 +1.72 31.97 + 1.57
ER 57.744+0.27 93.61+0.27 20.98+0.35 73.37+0.43 11.76+0.75 61.58 £0.31
ER+GMED 57.894+0.38 93.45+0.39 21.074+0.43 73.42+0.49 11.854+0.81 61.76 £0.37
ER+WGEF-LD 61.28+0.43 94.724+0.51 23.28+0.56 75.563+0.61 14.09 +£0.76  63.67 +0.49
ER+WGF-SVGD 61.42 + 051 94.61 +£0.56 23.51 £0.65 75.654+0.60 13.87+0.76 63.83+0.58
ER+WGF-HMC 61.32+0.56 94.51 £0.64 23.32+0.70 75724+ 0.66 13.93+0.79 63.91 + 0.65
ER+WD-continual 61.06 +£0.61 94.67 +0.68 23.21+0.75 75.374+0.72 13.76£0.81 63.02 4 0.68
DER++ 72.710 £ 1.36 93.88+0.50 36.37+0.85 75.64£0.60 22.09+0.63 61.26 £0.57
DER++GMED 72.82+1.79 93.94+0.70 36.254+0.69 7549+0.64 22.21+0.81 61.42+0.64
DER++WGE-LD 74.03+1.62 94.62+0.66 37.514+0.62 7793 +£0.73 23.82+0.87 63.51£0.77
DER++WGF-SVGD 74174+1.73 9495+ 0.71 37.894+0.78 T77.81+0.76 24.28 +0.91 63.67 + 0.83
DER++WGF-HMC 7428 +1.79 94.69+0.78 37.96 +0.82 77.86+£0.83 23.93+0.95 63.49+0.87
DER++WD-continual 74.42 +1.65 94.86 +0.81 37.83+0.87 77.104+0.86 23.64+0.98 63.21 +0.91
ER-ACE + LiDER (w/o pre-train) 72.91+1.25 — 37.56 £ 0.86 — 23.56 £0.72 —
+ WGF-LD 74.64 + 122 — 38.42+0.79 — 24.314+0.75 —
+ WGF-SVGD 74.38+1.09 — 38.68 + 0.82 — 2471 +0.79 —
+ WGF-HMC 74.33+1.16 — 38.16 £ 0.80 — 24.174+0.86 —
+ WD-continual 74.05+1.25 — 37.79+083 — 23.90 +£0.67 —

2.4% and 1.1% on MinilmageNet, CIFAR-100, and CIFAR10,
respectively. Furthermore, for class-IL, our methods enhance
the performance of DER++ by 2.2%, 1.6% and 1.7% on Mini-
ImageNet, CIFAR-100 and CIFAR10 respectively. For task-IL,
our methods increase the performance of DER++ by 2.4%,
2.3%, and 1.0% on MinilmageNet, CIFAR-100 and CIFAR10
respectively. GMED brings little or even worse performance,
consistent with the observations of [26]. We believe this is
because, in task-aware CL, memory buffer data could be re-
played many epochs, and GMED may edit the memory data too
much so that they may significantly deviate from the original
raw data. Our method outperforms baselines because the trans-
formed memory buffer is more difficult for the CL model to
overfit.

B. Task-Free CL

Baselines: We performed comprehensive experiments by
comparing to the following strong baselines:

e Experience Replay (ER) [15], which stores a subset of
examples from previous tasks with reservoir sampling [15].
We randomly replay a subset of examples from the memory
buffer at each iteration.

® Maximally Interfering Retrieval (MIR) [1], the goal of MIR
is to replay the examples in memory buffer that are easily
forgettable for replay.

o AGEM [14], AGEM tries to ensure that at every training
step the average episodic memory loss over the previous
tasks does not increase.

® Gradient-Based Sample Selection (GSS-Greedy) [3] is to
store diverse examples in the memory buffer. We use the
efficient GSS-Greedy method.

® GMED [26]: GMED is the recent memory-replay method,
which edits the memory data so that they are more easily
forgettable.

e [LiDER [7]: LiDER is a Lipschitz regularization method to
mitigate forgetting by reducing the progressive deteriora-
tion of decision boundaries between different classes.

® Data augmentation, following [26], we also compare data
augmentation, such as random rotations, scaling, and hor-
izontal flipping applied to memory buffer data in ER and
name this baseline as ER 4.

e Fine-tuning, which trains on each latent task sequentially
when new batches of each task arrive without any forgetting
mitigation mechanism.

® jid online, which trains the model with a single-pass
through the iid sampled data on the same set of samples.

® iid offline, (upper-bound) which trains the model with
multiple passes through the iid sampled data. We train the
model with 5 epochs for this baseline.

We combine our proposed methods with ER, MIR, and

GMED to show the effectiveness. We name the combination
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TABLE I
COMPARISON TO TASK-FREE CL BASELINES ON CIFAR10, CIFAR-100
AND MINIIMAGENET BY COMBING OUR PROPOSED METHOD WITH
EXISTING CL METHODS

Algorithm CIFAR10 CIFAR-100 Minilmagenet
fine-tuning 18.9+£0.1 3.1+£0.2 29£0.5
A-GEM 19.0+£0.3 2.4+0.2 3.0£04
GSS-Greedy 299415 195+ 1.3 174+ 09
ER 33.3+2.8 20.1+1.2 24.8+1.0
ER + WGF-LD 37.6+1.5 215 + 1.3 28.0 + 1.0
ER + WGF-SVGD 379 £ 14 21.3+1.5 278 +£13
ER + WGF-HMC 378 +13 21.2+14 276+ 1.1
ER + WD-continual 36.1+1.2 20.8 £ 1.1 27.1+1.2
MIR 344425 20.0 £ 1.7 25.3 £ 1.7
MIR + WGF-LD 38.2 + 1.2 21.6 + 1.2 27.6 £1.0
MIR + WGF-SVGD 37.0+1.4 21.2+1.5 279 + 1.2
MIR + WGE-HMC 379415 21.3+1.4 27.5+1.3
MIR + WD-continual 36.3+ 1.3 20.9+1.5 27.0£15
GMED (ER) 34.8+2.2 20.9+1.6 27.3+£1.8
GMED + WGEF-LD 384 + 1.6 21.7+ 1.7 2834+1.9
GMED + WGF-SVGD 376 £1.7 21.8 + 1.5 28.7 £ 1.5
GMED + WGE-HMC 37.8+1.2 21.5+1.9 28.44+1.3
GMED + WD-continual  36.5+ 1.4 21.1+1.7 276+ 1.2
ERgug + ER 46.3 £ 2.7 18.3+1.9 30.8 £2.2
ERgug + WGF-LD 482+ 2.1 19.8 +2.2 31.9+1.8
ERgug + WGF-SVGD 483 +23 19.9+2.3 322+15
ERqug + WGF-HMC 48.5 + 2.2 203 £2.1 31.7+2.0
ERgug + WD-continual 47.6 £2.0 20.6 + 1.9 31.3+2.3
iid online 60.3+1.4 187+ 1.2 177+ 1.5
iid offline 78.7+1.1 4494+ 1.5 39.8+1.4

methods ER+WGF-LD, ER+WGF-SVGD, ER+WGF-HMC,
MIR+WGF-LD, GMED+WGF-LD, etc. Combining with other
memory-replay-based methods is straightforward.

Implementation Details: For dataset split in task-free CL
setting, we follow the splits in [1]. We split the CIFAR-10
dataset into 5 disjoint tasks with the same training, validation,
and test sets. We split Minilmagenet [54] dataset into 20 disjoint
tasks. Each task has 5 classes. We split CIFAR-100 dataset into
20 disjoint tasks, each with 5 classes. We use the Resnet-18
as [1]. The evolution rate A is set to be 0.01 for CIFARI10,
0.05 for CIFAR100 and 0.001 for Minilmagenet, 5 = 0.003
and momentum 7 = 0.1. We set the memory buffer size to be
500 for CIFAR-10 dataset, 5 K for CIFAR-100 and 10 K for
Minilmagenet. All other hyperparameters are the same as [1].
All reported results in our experiments are the average accuracy
across 10 runs with standard deviation.

Result: We compare the proposed methods to various task-free
CL baselines. Table II shows the effectiveness of combining
the proposed method with existing memory-replay methods,
e.g., ER, MIR and GMED. We can observe that our method
outperforms these strong baselines. In particular, for ER and ER
+ DRO methods, our method outperforms baselines by 4.6%,
3.2% and 1.4% on CIFAR10, MinilmageNet and CIFAR-100,
respectively. For MIR and MIR + DRO methods, our method
outperforms baselines by 3.8%, 2.6% and 1.6% on CIFARI0,
MinilmageNet and CIFAR-100, respectively. For GMED and
GMED + DRO methods, our method outperforms baselines
by 3.6%, 1.4% and 0.9% on CIFAR10, MinilmageNet and
CIFAR-100, respectively. Our methods outperform baselines
because they dynamically evolve the memory data distribution

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 12, DECEMBER 2023

and sufficiently explore the input space in a principled way.
The proposed methods generate more diverse memory data, and
the evolved memory becomes more difficult for the CL. model
to memorize than baseline methods. In addition, WGF-SVGD
generally performs better than WGF-SGLD and WGF-HMC.
We believe this is because, in RKHS, the evolved memory data
is encouraged to be far apart by the kernel repulsive forces; the
evolved memory data may better represent the distribution of all
the previous data.

Analysis: Our finding is that in task-aware CL, WGF-SVGD
overally (in majority) performs the best, while in task-free CL,
WGF-LD and WGF-SVGD perform similarly (they achieve the
best results in equal number of cases). Therefore, overally, WGF-
SVGD performs the best. We believe this is because the repulsive
term in (28) diversifies the evolved memory data to cover more
modes in the data space.

The performance of our approaches exhibits variations across
different datasets, primarily due to the varying resolutions and
levels of learning difficulties present in each dataset. Specif-
ically, when comparing CIFAR10, CIFAR100, and Minilma-
genet, it becomes evident that CIFARI1O0 is the dataset with
the least complexity. This is attributed to its smaller number
of classes in comparison to the other two datasets. On the
other hand, CIFAR100 and Minilmagenet pose more significant
challenges as they consist of 100 classes with different image
resolutions.

Furthermore, the memory evolution equations (WGF-LD
with (25) and WGF-SVGD with (28)) are dataset dependent. For
example, the terms VU (x, 0), k(x}, ] ) and V _, k(x}, x]) are
all influenced by the dataset being used. Each dataset has its own
unique characteristics, such as the distinct feature space, image
classes and resolutions present within it. Consequently, these
terms exhibit differences when applied to different datasets.
The dataset-dependent nature of these terms further emphasizes
the impact that dataset choice can have on the properties and
performance associated with them.

C. Robustness to Adversarial Perturbations

In this section, we evaluate the robustness of the CLL model
to adversarial perturbed examples in task-free CL setting. Given
a classifier f(x, 0), for an image x, the goal is to find another
example x’ that is close enough to & measured by some distance
function D(z.2’) < e such that the classifier classifies it into
another different class, i.e., f(x,0) # f(2,0). In this paper,
we focus on the most commonly used /., and ¢ norm as the
distance function.

Our memory evolution methods optimize on the worst-
case evolved memory data distribution during CL; the model
would be thus naturally robust to adversarial perturbations.
For /., norm attack, we evaluate the robustness under the
strong PGD /., attack [39], which constructs adversarial ex-
amples with projected gradient descent and /., norm con-
straints. The adversarial perturbation magnitude ranges from
[1/255,2/255,...,10/255] with 20 steps attack and stepsize of
=2_ on CIFAR-100 and Mini-ImageNet. For /5 norm attack, we

255
adopt the strong Carlini & Wagner attack [11]. For illustration,
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Fig. 8. PGD / attack results on CIFAR-100.
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Fig. 9. PGD {4 attack results on Mini-ImageNet.

TABLE III
CARLINI AND WAGNER ATTACK MODEL PERFORMANCE FOR THE CIFAR-100
AND MINI-IMAGENET DATASET

Algorithm CIFAR-10  CIFAR-100  Mini-Imagenet
ER 2.0+0.1 0.0 0.0
GMED 2.1+0.1 0.0 0.0
ER + WGF-LD 8.0+£0.2 3.0+ 0.2 31+01
ER + WGF-SVGD ~ 4.2+0.1 0.0 22402
ER + WGF-HMC 82+03 2.5+0.2 3.0+0.1

we evaluate the model robustness to adversarial examples after
training with ER, GMED, ER + WGF-LD, ER + WGF-SVGD,
and ER + WGF-HMC, respectively. Figs. 8 and 9 shows the
PGD [/, attack results on CIFAR-100 and Mini-ImageNet.
Our WGF-HMC and WGF-LD memory evolution significantly
outperforms naive ER baseline by 4%—12% depending on the
perturbation magnitude. In addition, WGF-HMC and WGF-LD
perform more robust than WGF-SVGD. We believe this is
because the randomness introduced in WGF-HMC and WGF-
LD can better explore the input space and thus can generate
harder evolved memory data. WGF-SVGD smooths the function
gradient by the kernel function, thus may generate less hard
examples. Table III shows the Carlini & Wagner attack results.
We can see that under the strong Carlini & Wagner attack, ER
baseline accuracy becomes zero, and our methods still outper-
form baselines ranging from 6.1%, 3.0%, 3.1% on CIFAR-10,
CIFAR-100, Mini-ImageNet, respectively. Both results demon-
strate the robustness of our proposed methods to adversarial
examples.
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TABLE IV
ABLATION STUDY ON THE EFFECT OF DIFFERENT f-DIVERGENCE ON
CIFAR10, CIFAR-100, AND MINIIMAGENET IN TASK-FREE CL SCENARIO

Algorithm CIFAR10 CIFAR-100 Minilmagenet

ER 33.3+2.8 20.1+1.2 24.8+1.0

ER + WGF-KL 37.6+1.5 21.5+1.3 28.0+1.0

ER + WGF-x? 352+1.9 209+1.1 25.9+£1.2

ER + WGF-a =5 38.8+1.6 218 £ 1.5 285+ 1.1
TABLE V

EFFECT OF DIFFERENT MEMORY SIZE ON THE MODEL PERFORMANCE FOR THE
CIFAR-100 AND MINI-IMAGENET DATASETS

CIFAR-100
Memory Size 2000 3000 5000
ER 11.2+1.0 150409 20.1+£1.2
ER + WGF-LD 129+12 17.0£1.1 215+13
ER + WGF-SVGD 123+11 178+12 21.3£15
ER + WGF-HMC 127£1.0 172+£1.0 21.2+14
ER + WD-continual 122+12 169+11 209+1.2
MIR 11.6+08 15.6+1.0 20.0£1.7
MIR + WGF-LD 13.1£09 173+1.2 216+12
MIR + WGF-SVGD 127+£1.0 172413 21.2+1.5
MIR + WGF-HMC 132+£12 175+11 21.3+14
MIR + WD-continual 130+12 171+12 21.0%+15
Mini-Imagenet
Memory Size 3000 5000 10000
ER 134+14 1794+16 24.8+09
ER + WGF-LD 162+12 208+1.2 28.0+1.0
ER + WGF-SVGD 15.7+12 213+1.0 278+13
ER + WGF-HMC 159+15 206+1.4 27.6=£1.1
ER + WD-continual 15.6+1.3 2014+12 27.1+£1.2
MIR 126 £1.5 1744+1.2 253+1.7
MIR + WGF-LD 15.5+1.4 205+1.1 27.6+£1.0
MIR + WGF-SVGD 15.3+£1.2 207+1.6 279+12
MIR + WGF-HMC 158 +1.7 203+£1.5 275+13
MIR + WD-continual 151 £15 200£1.7 271£15

D. Ablation Study

Effect of Different f-Divergence: We evaluate the effect
of different f-divergence instances, including KL-divergence,
x2-divergence and a-divergence in Table IV. We observe that
x2-divergence generally underperforms due to the absence of
gradient information in the memory evolution equation regard-
ing the target probability distribution. On the other hand, the
more general a-divergence achieves better performance than
KL and y2-divergence due to its strong mass-covering property.
However, a-divergence does come with additional computation
costs due to the involvement of more terms in the calculation
process.

Effects of Different Memory Size: To investigate the effect of
different smaller memory sizes on the model performance in
task-free CL, we evaluate the effects on Mini-ImageNet with
memory sizes of 3,000, 5,000, and 10,000. We evaluate the
effects on CIFAR-100 with the memory sizes of 2,000, 3,000,
and 5,000. We show the results in Table V. In most cases, our
WGF memory evolution substantially outperforms the baselines
with different memory buffer sizes.

Effect of Number of Evolution Steps: To investigate the effect
of different evolution steps, we compare 3, 5, and 7 evolution
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TABLE VI
EFFECT OF NUMBER OF EVOLUTION STEPS ON MINI-IMAGENET

Evolution Steps 3 5 7

ER + WGF-LD 27.0+£09 273+1.0 275+1.4

ER + WGF-SVGD 272+12 276+13 272412

ER + WGF-HMC 271+£13 272+£11 276+1.0

ER + WD-continual 27.1+1.2 26.7+1.6 26.1+0.8
TABLE VII

SENSITIVITY ANALYSIS OF EVOLUTION RATE A

CIFAR10 h 0.005 0.01 0.03
Accuracy 37.84+1.2 382415 381416
CIFAR100 h 0.01 0.05 0.1
Accuracy 21.6+1.2 21.5+1.3 21.3+1.2
Mini-ImageNet h 0.0001 0.001 0.005
Accuracy 28.0+1.1 27.84+1.0 27.7+15

TABLE VIII

COMPUTATION EFFICIENCY (RELATIVE TRAINING TIME) OF THE PROPOSED
METHOD COMPARED TO BASELINE

Algorithm running time
ER 1.0
ER + GMED 1.5
ER + WGF-LD 1.9
ER + WGF-SVGD 2.6
ER + WGF-HMC 2.0
ER + WD-continual 1.9

steps, respectively. Table VI shows the performance variation
of different number of evolution steps. We can find that the
performance improves slightly with an increasing number of
evolution steps; the performance becomes worse if increasing
the number of evolution steps further. We believe this is because
the memory buffer becomes too hard for the CL learner to learn
well. For running efficiency and sufficiently exploring the input
space to evolve harder memory examples, we choose a moderate
number of evolution steps.

Effect of Evolution Rate: To evaluate the effect of evolution
rate on the performance, we compare the effects of different
evolution rate h on the CL model performance in Table VII. We
can observe that with larger evolution rate of h, the performance
becomes worse. We believe this is because the evolved memory
becomes too hard for the CL learner so that it cannot learn
effectively.

Hyperparameter Sensitivity: Due to space limitation, we put
hyperparameter sensitivity analysis, including the regularizer
weight 5 in Appendix B, available online.

Computation Cost: We compare the proposed ER + DRO
to ER to evaluate its running efficiency. Table VIII shows the
efficiency comparison results. We set the simple baseline ER
with a running time unit of 1. Our method increases 0.9-1.6
times the computational cost compared to a simple ER baseline.
The efficiency improvement is due to random sample the number
of evolution steps at each CL step.
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VI. CONCLUSION

This paper proposes a novel concept of DRO memory evo-
lution for continual learning to dynamically evolve the mem-
ory data distribution to mitigate the memory overfitting issue
and fill the gap between the memory data distribution and the
distribution of all the previous data. We solve two types of
constraints in the DRO memory evolution. We propose a family
of memory evolution methods for Continual DRO with general
f-divergence constraint and Wasserstein ball constraint. The
proposed principled framework is general, flexible, and easily
expandable. Future work includes designing more informative
functional and novel gradient flow dynamics to incorporate
physical intuitions and geometry constraints. Extensive exper-
iments compared to various state-of-the-art methods demon-
strate the effectiveness of the proposed method. Moreover, our
methods are more robust to adversarial examples than compared
baselines.
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