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Abstract

We study the problem where a one-dimensional elastic
string is immersed in a two-dimensional steady Stokes
fluid. This is known as the Stokes immersed boundary
problem and also as the Peskin problem. We consider the
case with equal viscosities and with a fully non-linear ten-
sion law; this model has been called the fully nonlinear
Peskin problem. In this case we prove local in time well-
posedness for arbitrary initial data in the scaling critical
Besov space B;’/IZ(T; R?). We additionally prove the optimal
higher order smoothing effects for the solution. To prove
this result we derive a new formulation of the boundary
integral equation that describes the parametrization of the
string, and we crucially utilize a new cancelation structure.
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2 | CAMERON and STRAIN

1 | INTRODUCTION AND MAIN RESULTS

The immersed boundary method, as formulated by Peskin in [31, 32], has become a useful and
effective method to computationally solve fluid-structure interaction (FSI) problems [33]. This
method has developed numerous applications in different fields of science [26, 34]. And the
scientific computing of FSI problems has remained an active area of research [5, 23, 33, 35, 40].

The Peskin problem, considered in this paper, describes the time evolution of an elastic sim-
ple closed string immersed in a 2D incompressible Stokes flow. The string exerts a singular force
which generates the flow, and then the configuration of the string evolves over time according
to the local fluid velocity. This model is probably among the simplest FSI problems and it has
been used extensively as a test problem in the development of numerical algorithms in addition
to being used in physical modeling. We assume that the string I'(¢) splits R? into two simply con-
nected domains Q(t) (interior) and R?\Q(t) (exterior). We shall consider the problem when the
viscosities, y;, in both fluids are equal, and we set them equal to one for simplicity u; = u, = 1.
Then there are several formulations of this problem, all of which are equivalent assuming we have
a sufficiently smooth solution.

The first formulation is at the level of the fluid; for each fixed time ¢t > 0, both the fluid velocity
u and pressure p solve the equations

Au+Vp=0, xeRX\I{),
V,-u=0, x € R2\I'(¢) 1.1

u,p -0, asx — oo

We are left to describe the time evolution of T'(¢) as well as the appropriate boundary conditions
for u and p at ['(t). Parametrize I'(¢t) by the Lagrangian coordinate 0 € T = R/(2n2Z) = -7, ],
and let X(t,0) : T — R? denote the coordinate position of I at time t. Here X = (X;,X,)" and

def
1X|? = X? + X3. Then the evolution of X is given by
0,X(t,0) = u(t,X(t,0)). (1.2)
Define [w]] = [w](X(8)) as the jump across the filament I':

X = 1 — li .
[wlX(©)) anlg}l((e)w(x) RZ\QBIELX(Q)w(X)

Then the final boundary conditions for u and p are given by

[ul =0, 13
[((Vu+(Vw)') — pI)n] = Fo0:X| . 13)

Above T is the 2 X 2 identity matrix and n is the outward pointing unit normal vector on I:

0 1w — X ox
- X, X =2 X =3.x=2
" [—1 o] X/ CaET:

Since we will frequently be working with the parameterization X at fixed times, we will often
omit the time variable and denote derivatives in 6 of X as X’. Lastly we denote F,; as the elastic
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CRITICAL LWP FOR THE PESKIN PROBLEM | 3

force exerted by the string I'. In the case that the elastic string obey Hooke’s law, we have a simple
tension given by:

Fo = kod2X, ko >0, (14)

where k, is the elasticity constant of the string I'(¢). The general tension force law is given by

9
Fy =0 <T(|69X|> | 62; ) 1)

This is also called the fully nonlinear force law in [36]. Here 7(s) is a coefficient modeling the
elastic tension in the filament that satisfies the structure condition 7 > 0 and d7 /ds > 0. Note
that (1.5) is reduced to (1.4) if we take 7 (s) = ks, hence ko = 7 (1) = d7T /ds.

The set of equations (1.1)-(1.2)-(1.3) above was first proposed as a simplified model to study
blood flow through heart valves [31, 32]. A second equivalent formulation of (1.1)—-(1.2)—(1.3) is the
following immersed boundary formulation

Au+Vp = /a6 <r(|aQX|)|g:—§|>5(x —X(©)d6, V-u=0, (1.6)
T

which is very useful for numerical analysis. Then (1.6) combined with (1.2) allows us to discretize
the fluid domain in x and the elastic string in 6 independently of each other, with all communica-
tion between the two domains coming from the singular forcing of the fluid in (1.6), and the time
evolution of the string in (1.2). This became the basis for the immersed boundary method, which
has been applied to numerous problems and is of great use in applications [34].

The third formulation which we will primarily be using is the following boundary integral
formulation for the general force law (1.5):

.7

0x©) = | G(5aX(9))aa<T(|X'(9+a)l)w>doc.
:

IX'(6 + a)|
Here, for a generic function f : T — R?, we define the standard partial difference operator by
def
8.f(0) = fO+a)— f(6). (1.8)
For z € R?, then G(z) is the Stokeslet given by

def 1 z®z

60 =G+, 6@ E ~ log(2T, G0 E L 09
Notice that in the simple tension case (1.4) the equation (1.7) takes the form
0, X(6) =k, / G(8,X(0))02X(6 + a)da,
T
which contains the second order derivative 32X inside the equation. We also define
p.xe) Lt @. (1.10)
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4 | CAMERON and STRAIN

Then we introduce the arc-chord number

def
x|, = inf |D,X(6). (L1
6,aeT,a#0

The evolution equation (1.7) is then is well-defined for a sufficiently regular function X (t, 6) that
satisfies |X(t)|,. > 0. If the parametrization X (¢, 6) is sufficiently regular, it has been proven that
all three formulations (1.1)—(1.2)-(1.3), (1.2)-(1.6), and (1.7) are equivalent [22]. Considering the
importance of the Peskin problem in applications, establishing the existence of smooth solu-
tions is vitally important in order to guarantee that various numerical methods based on different
formulations of the problem all approximate the same solution.

The Peskin problem has several known similarities with the Muskat problem. The Muskat
problem is also a free boundary problem that can be written in a boundary integral for-
mulation [16]. Also, both systems satisfy an energy balance law [13, 14, 27]. Further both
equations have the invariant scaling g,(t,0) = 1~ 'g(t,16) (see also Section 1.1). Lastly, both
systems of equations can be written in the form

1
6,8+ (-0)2g =R,

with a “remainder” term R. For the Peskin problem g = X(¢,9) and the remainder is R = R(¢,0)
as in (1.12) below. Recently there has been a large amount of research work studying the local-
and global-in-time well-posedness for the Muskat problem [1-3, 7, 8, 12-15, 18, 19, 28-30] and
break-down [9]. This work was motivated by recent results on scaling critical local-in-time well-
posedness for the Muskat problem in [1-3], as well as recent analytical work on the Peskin problem
in [24, 27].

Analytical study of the Peskin problem began very recently, with all but one paper focussing on
the case of simple tension 7 () = kyr in (1.4). Lin and Tong were able to prove local well-posedness
for the boundary integral formulation (1.7) with initial data X, € H>/(T; R?) using energy meth-
ods and the Schauder fixed point theorem [24]. At the same time Mori et al. proved local
well-posedness for initial data X, € C'7(T;R?) for any 0 < y < 1 using semigroup theory [27].
In particular the result of [27] is barely subcritical, but the semi-group approach used in the proof
makes a scaling critical result difficult. The only equilibrium states are uniformly parametrized
circles [27], and both groups were able to prove global well-posedness and exponential conver-
gence to equilibrium for initial data sufficiently close to a circle [24, 27]. Additionally, [27] was
able to prove that solutions to the Peskin problem immediately become C* for positive time, and
thatif X (¢) blows up in finite time, either a chord arc condition fails or the C' norm must blow up
for any small y > 0. Tong [39] then further established the global well-posedness of the regularized
Peskin problem and proved convergence as the regularization parameter diminishes.

Regarding scaling critical initial data for (1.7), recently Garcia-Jarez et al. were able to prove
global well-posedness if the initial data is sufficiently close to a uniformly parametrized circle
in the Wiener algebra 72! 1= {f : T — R?*| ¥, ., |kl| f(k)| < co}. This result uses the spectral
decomposition of the linearized operator [21], and it holds even in the case that the interior and
exterior fluids have different viscosities - it is the first analytical result in that case. Recently,
Gancedo et al. [20] studied a toy model of the Peskin problem and proved global existence and
uniqueness in the critical Lipschitz space. Then more recently, Chen and Nguyen were able to
prove local well-posedness for (1.7) whenever X(’) is in VMO using estimates on the fundamental
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1
solution of (—A)2 and interpolation results, and they further prove global existence when X, (’) isin

BMO for initial data that is close to equilibrium [11].
The previously mentioned results in a sense rely on rewriting (1.7) with (1.4) as

0. X(t,0) + (—A)%X(t, 8) = R(t,0), (112)

for some remainder R. And then controlling this remainder further requires controlling the
derivative X’. These results then make use of properties that are particular to the fractional heat
equation such as the fundamental solution, the semigroup property, and the spectral decomposi-
tion. Once we consider a general tension 7 as in (1.5) though, we lose access to the full power of
these properties, and major alterations to the approach are needed. The only paper before which
that has dealt with a general tension is Rodenberg’s thesis [36]. By localizing around the initial
data, Rodenberg was able to apply the semigroup method from [27] again and prove local exis-
tence when X,,, 7 € C7. However, the result is weakened because the approach to localizing the
initial data and thereby patching the semigroup method in [36] did not allow to also prove the
smoothing effects, only guaranteeing that the solution X(¢) remains in C'” even if the initial data
and tension are C*.

In order to further develop the fully nonlinear case (1.5), it is vital to understand exactly how
the addition of a nonlinear tension 7" changes the problem. In particular, its important to under-
stand how this affects the evolution of the derivative X', as the regularity of and behavior of the
remainder R in (1.12) has been controlled by that. In this article, we propose a new representation
of the boundary integral equation for the problem. We write the equation (1.7) in the following
equivalent formulation that will cancel out the terms featuring an 92X = X”’. In (1.7) we integrate
by parts against G1(z) while leaving G,(z) alone to obtain

5X(0) = / <T('X") a(Gl(aaX»)aaX(e)da

X7]
, XOG+a)
+/TG2(5QX)60{<T(IX (9+°‘)|)|x'(e+a)l>d
_i/ <XI 15, XI) ~XG+ar LGS ©+aDs «X(6)da
=iz /. 6.X P2 X6 + )l |

The calculation is performed in full detail in Section 2.

This property of the cancelation of the highest order derivatives is also satisfied by the equa-
tion for X’ (t, 6). Let X (¢, 6) be the solution of the Peskin problem with initial data X, and tension
7, Then X'(t, 0) solves the following equation

3,X'(0) = / 4% 1 1x71(6, )5, T(X'(6)), (113)
T
where T : R? — R? is the tension map

T(z) T(|z|)z z € R% (1.14)
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6 | CAMERON and STRAIN

Here the kernel K£(6, a) = K[X](6, a) is given by

def 1 X'(0+a)- P(D,X(6)X'(0)
e = DX@)P

1 X6+ ) R(DX(6)X'(6)
an |D.X(6)]2
1 X'(6+a) - (P(DX(6) — 1)X'(6)
an |DX(0)]?

R(D.X(6))

P(D,X(0)). (1.15)

Again T is the identity matrix on R2. Also the reflection matrices R and P are defined Vz € R?
by

R e +20 02 P iez-sl gl (1.16)

where 2+ € R2 is the unit vector perpendicular to Z. We remark that the three matrices Z, R(z),
P(z) are mutually orthogonal in R* and form a basis for the 2 by 2 symmetric matrices for any
fixed value of z € R? \ {0}. This representation of the equation (1.13) for the evolution of X’ (¢, 6) is
fundamental to the analysis in the remainder of this article. Equation (1.13) is derived in Section 2.

Now, recalling (1.10), to further expand out the additional cancelation in the kernel X[X](6, ct)
we introduce the notation

s:x'©) S x'6 + ) - D.x0), s-x'©) S x'(0)— DX(O). (1.17)

Then it is an important observation that the kernel K£[X (6, r) from (1.15) can be expressed as the
following matrix valued function

KIX]6, ) = %z + AIX]6. ), (118)

where

dgf 5Z{X’(6) . P(DaX(e))égX’(e)
41 A[X](6,a) = D.X©)[2
(82X'(6) + 8,X'(9)) - P(DX(6))DeX(6)
" ID.X@)
52X'(8) - R(D.X(6))8;X'(6)
B IDX(0)|2
(62X'(6) + 6;X'(6)) - R(D,X(6))D,X(6)
B IDX(6)|?
§2X'(0) - (P(DX(6)) — )6, X'(6)
" DX (0)2

R(D.X(9))

R(D,X(6))

P(D,X(6)). (1.19)

This expression follows after taking into account the orthogonality in (1.16).
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CRITICAL LWP FOR THE PESKIN PROBLEM 7

Then (1.13) can be written as
, 1 da , da ,
0X'(0)— — | — 6, TX'(0) = | — AIX](6, )8, TX'(6)), (1.20)
ar [+ a2 T a?

The expression i fT ‘i—f 5, T(X'(8)) motivates our definition of A in (1.40). Then, due to the higher
order cancelation of A[X](6, @) as in (1.19), for small « the integrand for the equation (1.13) using
(1.18) is approximately

5., T(X")

KIX](6,a)
o2

Thus a basic model equation for the general tension equation (1.13) would be a vector version of
the fractional porous medium equation:

3,U = —(—A)IT(U).

To the best of our knowledge, this equation has not been studied before, though both the scalar
fractional version [6, 17, 41] and local vector valued [37, 42, 43] have been studied. Then the pos-
itivity and monotonicity assumptions that we will make on the tension 7 are both physically
motivated, as well as the same assumptions that typically appear on the porous media equation in
order to ensure “ellipticity” for the problem such as in [41].

1.1 | Scaling

For the Peskin problem (1.13) in general for any A > 0 the rescaling X;(¢,0) = 17'X(1t, 10) leaves
the equation invariant for an arbitrary tension 7 in (1.14). If the tension takes the form of a power
law 7 (r) = r'*7 for some y > 0 then the Peskin problem has the additional rescaling X" (¢,0) =
rX(r’t,0).In the case of asimple tension 7 (r) = kyr, there is a two dimensional family of rescaling
X ,(t,0) = 1X(t,10), where T € R and A > 0 are independent of each other. To ensure that the
arc-chord condition (1.11) also remains invariant then we are limited to the rescaling X;(¢t,0) =
A71X(At,26).

Here we give a list of some scaling critical spaces for the Peskin problem (1.13) under the rescal-
ing X;(t,0) = 171X (At,10): the Lipshitz space W*, the Wiener algebra .A!, BMO!, and the

1

3

14— 3
homogeneous Besov spaces B p,,p for all p,r € [1, o). In particular we emphasize the spaces BZZ, .
3

for 1 <r < oo and H2 due to their L? structure. .

In this paper we utilize the scaling critical Banach space BzE , since it has a clearly defined L?
based structure, and then hopefully it might be useful also in the further development and study
of numerical methods.

1.2 | Notation

We use C > 0 to denote some inessential constant whose value may change from line to line.
We will write A < B if A < CB. We also write A ~ B if both A < B and B < A hold. We will use

25UdI sUOIWIOD) aATEAI) a[qratdde a1 Kq PALIOACS ATk SAAIIE YO 1SN Jo Sa[NT 10§ AIRIGIT AUIUQ AS[IAL UO (SUONIPUOD-PUT-SULIa)w0d* Ka[I ATeIqaunuo//:sdit) SUONIPUOD) pur SULaL, U 30§ “[£202/60/81] U0 ATeIqr] QUIUQ AS[IAL “BIURAASUSG JO ANSIOATUN Aq 6€ 122 2d2/Z001°01/10p/w0a Ko ATeIquautuoy/:sdiy woxy papeofumod 0 “T1£0L60T



8 | CAMERON and STRAIN

f : T — R?or C to denote a generic smooth function throughout this paper, where f = (f1, f,)
def
and |f|? = f f +f 5 We also define the translation operator 7z applied to the 6 € T variable by

w21 S fo+ ). @

We define 1, as the standard indicator function of the set A. We use the notation g for the
difference operator (1.8) frequently.
We will use the standard notation for the LP(T) spaces as

def 1/p
£ e = 11F1lp = (/ |f(e)|Pde> 1<p<o.
T

In this function space, and in all the functional spaces below, we use the standard generalization
to p = oo as

def
[ fleocry = esssup|f(O)].
6eT

We will also use the temporal spaces

T 1/p
def
A lzeqorp = Nflle = If©OPdt ), 1<p<co.
0
We define the Lng mixed Lebesgue space norms for 1 < p,q < oo as follows:

def
1 llze = W gy = NG eoeo | agory

Next we introduce the Besov spaces as follows

~ 1/r
_def( rdp ||55f||m>>
1115, = (/1r (e ) . (1.22)

Unless otherwise stated, all indices in the rest of this section are for0 < s < 1and p, q,r € [1, co].
When r = co we use

def b < ||5/3f||Lp(T)>
e

I1fllg = esssu Y

In the rest of this paper for simplicity when we write sup,_; or sup,_, . we mean it to be the
standard essential supremum.
‘We will then also use the standard Sobolev spaces that can be defined as

def
e = 1fllgs » Vs ER.

Technically to define B; , in particular Vs € R we use the definition in Remark A.4.
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CRITICAL LWP FOR THE PESKIN PROBLEM | 9

We will also use the Chemin-Lerner [10] mixed regularity spaces as described for example in
[4, Definition 2.67 on page 98] that are defined as

1
186510, )"

qg.rP
Li(L]

def d
||f||zg(3§7,r) = /TFB'T . (1.23)

Next, motivated by [1-3], we introduce periodic Besov spaces with additional regularity on the
logarithmic scale for 0 < s < 1 and p,r € [1, ] as

def ([ d 185 1o\ "\
1l = < /T Fﬁ(mm-b%) ) : (1.24)

Here the log scale derivative u is defined as follows:

Definition 1.1. We consider functions u : [0, 00) — [1, ) which satisfy the following three
assumptions:

* u(r) isincreasing and lim,_, o, u(r) = oo.
* There is a ¢y > 0 such that u(2r) < cou(r) for any r > 0.
* The function r — u(r)/log(4 + r) is decreasing on [0, o).

Then we similarly define

1851000\ )
o def dg W MeBI LR
Wl < | [ Tm("('ﬁ' —g > . (125

We introduce streamlined notation for the main norms used in the paper

def [
1711 = ||f||z;o<3§£#> - | o SN 1) (1.26)
and
= [ iR
111 S IR f||z%<32%i#> | BI85 1) (1.27)

~ def 1
Above the operator A is a constant multiple of A = (—A)2 and is defined precisely in (1.40) in
Section 1.6. Further from (1.40) we have

IRI2, = /T d6 f(6)- Kf(6) = o= /T a8 /T & ss@r
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1
This can be taken as the definition of ||A2 f||;> in (1.27). For the initial data we will use the
6
following norm:

111 & IIfII L, /|5|3/2“<|5| DI (1.28)

Lastly we have || f]| L8 /z,M) <IIfll B and this inequality shows that the norm || || B is stronger

than || f]| 124 We will also use the standard definitions of the Holder spaces CK7.

L (B,

1.3 | Main results

Without loss of generality we can suppose initially that X(’) has mean zero since the equation (1.7)
and the equation (1.13) both annihilate constants. Therefore, this mean zero property will be
preserved by the solution. Next we give definitions of our notions of solution.

1
Definition 1.2 (Weak solution). Let X, € B, (T;R?) with |X,|, > 0. We say that X : [0,T] X

T — R? is a weak solution of the Peskin problem (1.13) with tension 7 and initial data X|, if
1

X', T(X" e L2(L°° nHE) with info<;<7 [X(¢)], > 0, and for any function Y : [0,T] X T — R?

1

withY’ LZ(L°° nH; 2Yand 9,Y’ € L2(L°° NH;)*, we have
T
/de Y'(T,8) - X'(T,0) —/de Yé(@)-X(’)(G)=/ dt/de 3,Y'(t,0) - X'(t,0)
T T 0 T

——/ dt/d@/—é Y'(t) - K[X()](6,2)8,TX'(t)).

Remark 1.3. Our definition of a weak solution can be accurately paraphrased as the weakest notion
of distributional solution such that X’ is a valid test function for itself. This is chosen in order to
justify the calculations of our main a priori estimate in Section 3.

1
Definition 1.4 (Strong solution). Let X, € B, (T; R?) with |X,|. > 0. We say that X : [0,T] X
T — R? is a strong solution if X € C%((0,T] x T — R?) solves the equation (1.13) pointwise with
info, <7 [X(#)], > 0and

1‘ X,t _X, « = 0.
lim 1X(1) ~ X1

1
Theorem 1.5. Let X, : T — R*withX| € B} and |X,|, > 0. Let the scalar tension T : (0, c0) —
(0,00) be such that T € Clléi(o’ oo0) with T'(r) > 0 for all 0 < r < co. Then there is a time T > 0
such that there exists a unique weak solution X : [0,T] X T — R? to the Peskin problem in the sense
of Definition 1.2, which is also a strong solution to the Peskin problem (1.13) as in Definition 1.4.
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CRITICAL LWP FOR THE PESKIN PROBLEM | 11

Furthermore forany0 < <1, X € Cloc ((0,T] x T; R?). Additionally, if T € ck
k>2and0 <y < 1 then we have that X € Cllf:gl 7((0,T] x T; R2).

o 7(0, 00) for some

Note that due to the structure of equation (1.13), X € Ck+ 7 is the optimal regularity for 7 €

CIOZ. We prove Theorem 1.5 by first establishing a quantitative version under more restrictive
assumptions on the tension.

Theorem 1.6 (Quantitative existence). Consider initial data X, : T — R? such that ||X}|| 1 <
.3

2,1

M for some u satisfying Definition 1.1, for any M > 0, and |X,|, > 0. Let the tension map
T : R? > R? from (1.14) be such that DT € W'®(R?; R?¥?) satisfying the ellipticity condition
DT(z) > A1 > 0.

Then there exists a time T > 0 depending only on M, u, |Xyls, 4 and ||DT||y1.« such that there
exists a strong solution, in the sense of Definition 1.4, X : [0,T] X T — R? to the Peskin problem (1.13)
with tension T and initial data X,,. This solution satisfies for some universal constant ¢ > 0 that

/ - (I 1>(||aﬁx’||L;oL;+c\/Z||65<—A>ZX’||L%L;>
1812

54/ dﬁ3 #UBIZDNSEX 11 2. (1.29)
1Bl

Further for any small time 7 >0 and any 0 < f <1, X € C*([1,T] x T; R?), with its norm
depending only on t, 8, and the previously mentioned constants.

If we additionally have that T € C*"(R?;R?) for some k > 2 and 0 < y < 1, then for any small
timet > 0,X € CK+*17([z, T] x T; R?) with the CK+17 norm controlled by M, 1, |Xo |+, 4, 7, || T|| ckr»
and .

Remark 1.7. Since in Theorem 1.5 and Theorem 1.6 we have that X € C28([z, T] x T;R?) for any
7> 0and any 0 < 8 < 1 then the calculation in Section 2 can be reversed, and we have that X (¢, 6)
solves both (1.13) and (1.7) pointwise for any ¢t > 0.

1
. ) LS ,
Theorem 1.8 (Uniqueness). Consider X, and Y, such that X|, Y| € B; | (T;R?) with |X,|, >0
and |Yy|, > 0. Let the tension map T : R?> — R? satisfy the same conditions as in Theorem 1.6

and consider the corresponding solutions X,Y : [0,T] X T — R2. Choose any w(r) satisfying Defi-

2 g decreasing forr > r, and lim “0) _ 0. For any
u(r) r—co pu(r)

€ > 0, there exists §,, > 0 such that for any 0 < 6 <4, then ||X(’) Y(’)| |L§ < 6 implies

nition 1.1 such that there exists r,, > 1 so that —

ap
T8I

@(IBITDNSp(X" = Y')lle0p2 <. (1.30)

In particular if || X — Y| |L§ = 0 then the solution is unique in B5.

Remark 1.9. In (1.30) we can take for example w(r) = u(r)” forany0 <y < 1.
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1

Remark 1.10. Note that if X(’), Y(’) S Bzzl, then there exists some function u satisfying the Defini-

1
. o . . .
tion 1.1 such that X(’), Y(’) S B22,1 . To see this, note that by Lemma 1.15 there exist functions uy, uy
1

1
such X € B; fX and Y, € B; fy. Then taking u(r) = min{uy(r), uy(r)} is sufficient.

Theorem 1.11 (Strong continuity). We consider the two strong solutions X,Y : [0,T]x T — R? to
the Peskin problem (1.13) with initial data X, Y as in Theorem 1.6. Suppose the tension map T as
in (1.14) satisfies DT € W>*®(R?; R?*?) and the ellipticity condition DT(z) > AT > 0.

Then there exists a time Ty; > 0 depending only on M, | Xy, |Yols 4, 4, and ||DT| |2 such that
forany 0 < T < Ty, we have the following strong continuity estimate

1
! ’ 3 ’ ’ / !
X" =Y |py + 242 |I1X" = Y |py < 8[1X = Yl

Above v, which is defined precisely in (5.4) also satisfies Definition 1.1 and defines norms of By. and
Dy, that are equivalent to Bi and Di respectively as seen in (5.5).

Corollary 1.12 (Locally Lipschitz). Suppose the tension map T as in (1.14) satisfies DT €
W22 (R?;R?%2) and the ellipticity condition DT(z) > AL > 0, and let u satisfy the assumptions of
Definition 1.1. Then for any M, p € (0, 00), there exists a time T > 0 such that forall 0 < t < T, the
map

Xo — X(0),

is Lipschitz continuous from the bounded set{Z ||Z/||Bl/2,/,¢ <M,|Z|, > p} toB;’/lz’”, with Lipschitz
2,1

constant depending on M, p, u, A, and ||DT| |y 2.

Corollary 1.12 follows directly from Theorem 1.11.

1.4 | Discussion of the assumptions on the tension

In this subsection we will discuss our assumptions on the scalar tension 7 () and on the tension
map T(z) = 7(|z])Z in (1.14). We separate our assumptions on the tension into two groups: the
assumptions needed for the qualitative Theorem 1.5 versus the assumptions used to prove the
quantitative bounds in Theorems 1.6, 1.8, and 1.11.

Our qualitative assumptions in Theorem 1.5 are very weak, only requiring

loc 1.31)
T'(r)>0,0<r< co.

{T € C2((0,00%;(0, ),
By T € CZZ or ClkO’Z(O, oo0) for an integer k > 0 and 0 <y <1, we mean for any 0 < a < b <

that 7 € C*”([a, b]; (0, )). For qualitative higher regularity, we also assume 7 € Clko’Z(O, 00).
Thus, singularities or degeneracy at r = 0 or as r — oo are allowable, and in particular any
positive power law T (r) = CrP for p > 0 and C > 0 satisfies (1.31). Note that there is no
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CRITICAL LWP FOR THE PESKIN PROBLEM | 13

requirement that rlim T (r) = o0, so a bounded function such as 7 (r) = arctan(r) would also

satisfy (1.31).
For our quantitative estimates, we work with tensions that have the following global bounds

7" € WH*([0, 00); [0, 00)),

inf 7'r)>21>0, (1.32)
0<r<oo
7(0)=0,

For quantitative higher regularity and the strong continuity estimate, we also need to assume 7 €
Cf 7[0, o) with T’(k)(O) = Ofor k > 2. Thiswould be implied for example if 7(r) = cron0 <r <e¢
for some ¢ > 0and any small ¢ > 0. Note that the estimates we prove will depend on bounds for the
tension map T(z), rather than the scalar tension itself. The assumption that 7 has higher order
derivatives vanish at 0 guarantees that 7 € C*7([0, o); [0, 00)) implies T € CK7(R?;R?), with
[|T||cxy controlled in terms of ||7 ||k, . Also note that the global lower bound inf 7/(r) > 1 > 0
and 7(0) = 0 give us a lower bound on the derivative of the tension map T as

7(zD)
|z]

DT(2)=T"(|z])2 Q@ 2 + 2@zl >21, 1>0. (1.33)

Of course in the case of simple tension (1.4) where 7 (r) = kyr, it follows that DT(z) = kyI. For
our quantitative estimates, we will typically state our assumptions for the tension map T(z) in
(1.14) by assuming Vz € R? that (1.33) holds and further that

ID*T(z)| < Cyr. (-39

{|DT(z)| < Cir,
Here C;7 and C,y are any fixed positive finite constants that are allowed to be large. For our
strong continuity estimate in Theorem 1.11, for a fixed positive finite constant C37, we additionally
assume Vz € R? that

ID3T(2)| < Csr. (1.35)

Our quantitative estimates on higher regularity additionally depend on ||T|| k.

Lastly, we note the apparent mismatch between our qualitative (1.31) and quantitative (1.32)
assumptions. That is, not every scalar tension 7 satisfying the qualitative assumptions will also
satisfy the quantitative version. In particular, all positive power laws satisfy the former, but only
the linear case satisfies the latter.

We are able to deal with these different assumptions for the following reason. Suppose that
we have a tension 77 satisfying the quantitative assumptions (1.32), and we use our quantita-
tive estimates to construct a solution X : [0,T] X T — R? to the Peskin problem with tension
7,. Then for any time ¢ and any 6 € T we have 0 < |X(¢)|, < |X'(¢,0)] < ||X’(t)||L§o. Taking
a = info<7 |1X(t)|, and b = || X| |L;,°(Lg°)’ we then have that X(¢) is also a solution to the Peskin
problem (1.13) for any tension 7, such that 75|, 5] = T1l[a,p)-

Now suppose that our tension 7 only satisfies the qualitative assumptions (1.31). These are
still enough to guarantee that for any 0 < a < b < oo, there exists a tension 7 such that 7 l[ap] =
T |{a,p]> and T satisfies the quantitative assumptions (1.32). Thus, for any fixed initial data X, with
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1
X, € BZZ’1 C L*® and |X,|. > 0, we take some interval (a, b) which compactly contains {|X;(6)| :
© € T}, and then we construct a solution X : [0,T] X T — R? to the Peskin problem with tension
7 .Taking T > 0small enough that{lX(’)(t, 0)| : (t,6) € [0,T] X T} C (a,b), we then have that X(¢)
is also a solution to the Peskin problem with our original tension 7. We go through this argument
again in more detail in the proof of our main theorem in Section 7.

Remark 1.13. We note that the trick explained above and in the proof of our main theorem in
Section 7 always works for the kinds of solutions we consider with Definitions 1.2 and 1.4. For the
assumptions needed in order to apply this trick (to replace one tension with another) to fail, the
solution would have to satisfy one of two conditions. Either (1) the solution X (¢) violates the arc-
chord condition (1.11) after an infinitesimal amount of time litrE SEf |X(t)]. = 0,0r(2) the L* norm

of the solution X’(¢) blows up after an infinitesimal amount of time: lim sup ||X'(¢)||1~ = co. It
t—0+

is not clear whether a notion of solution which obey either of these two conditions starting from

-1/2

initial data with X(’) €B,; C L and |X,| > 0 would represent a physical solution.

Remark 1.14. At the same time we remark that Theorems 1.6, 1.8 and 1.11 also hold if instead we
replaced (1.34) and (1.35) with

‘D(k)T(z)|Z < Cer (X, IX11),

N
where for k € {1,2, 3} we have C;.; = C,.r(||1X’|| Ly |X|;1) are any increasing functions of both
variables. Then under these conditions the proofs of those theorems in this paper continue to hold
without any essential modifications. And further the solutions constructed under the assumptions
in this remark would prevent the occurrence of (1) or (2) in the previous Remark 1.13.
1.5 | A delaValle-Poisson lemma
Motivated by the work in [1-3], we now prove the following de la Valle-Poisson type lemma.
Lemma 1.15. Fix any p € [1,00], r € [1,0), and s € (0,1). Given any function f satisfying
S B5,(1) < 0, then there exists a function u, depending upon f, satisfying the assumptions of
Definition 1.1 such that || f| |BS'”(T) < 0.

p.r

The proof builds upon the related lemma from [3, Lemma 3.8 on page 35].

Proof. Since || f]] B,(1) < then after a simple change of variables we have that

/e
d
I1F1L, m=/ B (1851115, + 185 11},) < oo.
0

b |ﬁ | 1+sr

We now define

def def
hp (B) = 16afIIT, + 116_p S}, (@) = 7%  h, (ra™).
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CRITICAL LWP FOR THE PESKIN PROBLEM 15

Then we will use the change of variables « = 737! to obtain

o0 w d
/1 daw(a)=/0 lﬁlﬁsr(naﬁfnmna AP

By [3, Lemma 3.8 on page 35] there then exists some function v : [1, 00) — [1, o0) satisfying the
conditions of Definition 1.1 such that

[ daat@ @ = [ BB (8 Il + 18511, < oo
1 0

Taking u(| ,Bl_l) = v(nlﬁl_l)l/ ", we have that y satisfies the conditions of Definition 1.1 as well,
and further || f|| B4y < 00. O
p.r

We point out that using this Lemma 1.15 then Theorem 1.5 follows immediately from
Theorems 1.6 and 1.8.

1.6 | The A operator
For a function f : R — C the AS = (—A)2 operator is widely defined for any s € (0, 2) as

S, +6_ 2Sr( a +s))
CASS () def Copv / 8y +|y|1izf(x) ay. c % def
R

Here we use the principal value integral when it is needed, and I' is the standard Gamma function.
Then for f : T — C, identified as a periodic function on R, this can readily be reduced to

27f2|F(—-)|

—ASf(8) = / (8o +8_)f(6) ), —————da. (1.36)

= la+ 27rk|1+3

The above can be taken as the definition of A® on T. Now for simplicity we define the notation
S(a) as

def
S(oc) 2sin(et/2). (1.37)
Then we have the following known expansion formula

1

= O0<|a|l <m.
S = lal <

Z (o + 27m)2’

n=—oo

Thus for s = 1 the A operator on T has the following succinct formula

f@=f®),. _ 1/ %.f©)

T SO —a)2 T S(a)? (1.38)

—Af(6) =

* Korm Krexqrourjuoy/:sdny woiy papeoumod ‘0 ‘z1€0L60T
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Notice further that we have

< % <1 VaeT. (139)

SRR

In particular in the LP(T) sense then (1.38) is equivalent to the operator containing a? in the
denominator instead of S(«)?. This discussion motivates the following simplified notation that
we will use in the rest of this article

def 5.1 (6
VIO / “0{2( ) der (1.40)
T

By (1.39) the operator A is equivalent to A from (1.38) in the LP(T) norms.
More generally, for s € (0, 2) we write the previous sum as

|1+s

1 1 la
2 a2 |a|1+s< P |Ot+27rk|1+s> 1+ UG

kezZ k#0

Notice that for « € T the series U(a) converges uniformly. Also U(«) is non-negative and is
uniformly bounded for a € T. We conclude that

1 1
2 lo + 27k |1+s © |a|l+s’ VaeT.
kez

instead of

Thus again in the LP(T) sense A’ is equivalent to the operator containing

Z Cs
kE€Z \qy2mk|1+s

|0£|1+s

in (1.36) for any s € (0, 2).

1.7 | Overview of the proof

One very important point in the proof is the derivation of the equation (1.13) with the kernel (1.18).
It is crucial that the equation (1.13) cancels the second order derivatives that are present in (1.7).
Let Vys denote the directional derivative in the direction X’ as in (2.2), then with (1.9) the main
idea can be seen as in

[Vx(0:+0G1 16 X)8.X + Go(8,X)X'(8 + ) = 0.

Fortunately this type of cancelation is preserved when we take higher order derivatives of the
equation (1.7). This more general cancelation structure is observed via a sequence of integrations
by parts performed in Section 2.

Then the heart of our argument is the initial a priori estimate (1.29). In order to prove this, we
make use of our new formulation of the equation for 6,X’ in (1.13). Because K(6, ) is symmetric
in 6,6 + a, our equation (1.13) has divergence form symmetry making L? based energy estimates
a useful choice. By making use of Besov spaces, we’re interested then in keeping careful track of
the time evolution of differences ||65X dl 12 (t) where 8 € T is arbitrary. Taking into account (1.18)
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CRITICAL LWP FOR THE PESKIN PROBLEM 17

and (1.20) with (1.40), we have that 55X " solves the equation

0,65X" + ASsT(X') = / i—faﬁ(A[X](e,a)aaT(X’)).
T

When we calculate %l 165X "||*,, we then get one good diffusive term —A1| 165X ! from the

2 2
| | Lé | | /2
KéﬁT(X ") (along with additional error terms if our tension is not simple). We treat the remaining
terms as error, and then we are left to bound integrals (for g = 1, 2) of the form

/d@/d_o; |5ﬁ5aX/(6)|2 [6,.X"(0)]9,

T TAX

and
[ @ [ L issx@18x@) 18X @1
T T

If we were to bound the first term naively, we would get

CII5ﬁX’II;I,2IIX'Iquo,

which would make it impossible to close the estimate, as this is of the same order as our good

diffusive term but with a possibly large coefficient in front for large data. However, the norm for
1 1

LU . .=
B22 , both controls the size of the norm B22 , and the rate of decay for

18211z Ty

do hS . 141
|| <r |0(|3/2 u(r=1) ( )

r—

Thus splitting the integral in our error term between || < 7 and || > 7 for some 7 sufficiently
small depending on u, ||X(’)| | B2 and other relevant constants, we are able to bound this error
2,1

term for any small € > 0 as

llSsX' 112, + Cell8pX 112,
Gl
which we can handle. For the second type of error term, the story is similar except that we are
forced to bound the |§zX"| in L*, as it has no decay as « — 0. Thus we end up with an error term
of the form
e||55X’||12ql/2 + C||55X’||ié + e||5,3X’||2§o.
This L* error term at first seems very bad, as notably the Sobolev embedding fails in L* and

[165X "11? is not controlled by our good diffusive piece —A| 165X d |i.[ 1o However, once we inte-
0

grate in 8 against u(|8]71)|8 |~3/2 the Sobolev embedding is again true, and we can control this
error term at the end of the estimate.
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Itis also vitally important to get a positive bound from below on the arc-chord condition | X (¢)|..
In order to do this, we make use of the estimate

XL = X0l < 11X'(®) = X{l] -

Thus in Section 4 we prove continuity of the map ¢t — X'(¢) in L for small times. Our main a
priori estimate (1.29) grants us uniform bounds on the B;f and Déf norms. Using our Déf bound,
we then control 3,X’ in L2 and use this to prove continuity of X'(¢) in L;. Continuity in time in

L 2 and our bound in B“ then gives us continuity in time in Bz/1 , which controls L.

The strong contlnulty estimate given in Theorem 1.11 is for the most part similar to our main
a priori estimate (1.29). However to obtain this estimate requires subtracting two solutions to the
equation (1.13) which in turn requires using the higher order bound (1.35). Additionally when
taking the difference of two solutions X’ and Y to (1.13) we encounter a new term of the form

Cor / do / 42156, — YOIt KIXIE, )lIX — YOS,V @) (142)

The structure of this term does not have the ability to obtain extra smallness using the rate of
decay in (1.41) in the energy estimate. This major difficulty prevents closing the strong continuity
estimate in the norm of Bl; in (1.26). Instead we simply bound this term by

y 1 B 1
a7 10s A2 X" =Y, + CATICT X = Y |7 [18p A2 Y|,
0 6

6

1
The term ||5ﬁA5 &X' =Y |i2 can be controlled by the dissipation. But we also require a small
6
constant in front of || X’ — Y’||?,, to close the continuity estimate. For this reason instead of using
0

the norm Béf with u satisfying Definition 1.1, we need to introduce an equivalent norm as in (5.4)
for a small constant e = &(4, Cor, |IX)1] 1, 11Y)Il 1,)>0as
R B PR

2,1 2,1

v(r) d:ef 1+ eu(r).

And then v also satisfies Definition 1.1. Then the norm of 5. is equivalent to the norm of B? and
we are able to close the continuity estimate in /3}.

We also prove continuity for X’(t) — Y’ (¢) in Lg. This estimate is much simpler than the strong
continuity estimate, and only requires DT € W1 rather than DT € W%, In particular, by mak-
ing use of our a priori estimate in the higher order Bg and Dl; norms, we are able to bound a term
like (1.42) directly without changing to some equivalent norm. Continuity in Lé and a bound in
B then implies that we have control over X’ — Y” in the B2 norm, for any function w satisfying

that E ; is eventually decreasing with lim — 20 _

r—oo u(r)
Our higher regularity proofs are contained in Section 6. We begin by proving an L°H' estimate
for X’ and then establish regularity of the remainder from (1.20):

def
v©) = [ L AxIe. 0. TE )
—[r a
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CRITICAL LWP FOR THE PESKIN PROBLEM | 19

in terms of the regularity of X’. Following the proof in [41] for the scalar fractional porous
medium equation, we then establish higher regularity for the fully nonlinear Peskin problem with
a bootstrapping argument.

1.8 | Outline

In the next Section 2 we will derive the equation (1.13) that we will study in the rest of this
work. Then in Section 3 we will prove our main a priori estimate. After that in Section 4 we
will explain a priori how we control the arc-chord condition (1.11) along the time evolution of
(1.13). And then in Section 5 we prove the a priori continuity estimates for solutions to (1.13)
that enable us to establish the strong continuity and uniqueness. Next in Section 6 we prove
the higher order smoothing effects. Finally in Section 7 we collect the previous results to explain
the proof of our main theorems. Afterwards in Section A we explain some of the inequalities
that we use in the previous sections of this text using the Littlewood-Paley decomposition on the
torus. Lastly in Section B we give the difference estimates for the kernel (1.18) and (1.19) of the
equation (1.13).

2 | DERIVATION OF THE GENERAL TENSION EQUATION

In this section we will derive our alternative formulation of the equation for X’ (6) as in (1.13) with
(1.14) and (1.15). It is important for our main theorems in this paper that the equation (1.13) does not
contain any terms with X”/(6) or higher derivatives. This is not obvious because the equation (1.7)
does in fact contain terms with X”/(6). Then in this section we explain the cancelation necessary
to show that the higher derivative terms do not occur. We will first derive an alternative form of
the equation for 4,X(6) in (2.4). Then afterwards we will derive in (2.6) the equation for 3,X’(6)
that we have written previously in (1.13).

To this end, with a general tension 7 as in (1.14), the Peskin problem (1.7) takes the form of an
equation for the parametrization

5,X(6) = / G(X () — X(6))3, (T )ap)) .

where G(z) = G,(2) + G,(z) is the matrix valued function from (1.9) and T(z) is the tension map
from (1.14). In this section we will write the integral, /, without a domain such as T to emphasize
that our calculations in this section are independent of the parametrization.

Next making the change of variables 77 = 6 + a and using (1.8), we write

3,X(6) = / G1(6.,X)3, (T(|X’|(6 +a))X(6 + oc))doc
+ / Gz(aaX)aa(qu(e + X6 + a))da.

First we will focus on the term involving G;(2).
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20 | CAMERON and STRAIN

We use integration by parts and X' (6 + ) = 3,(6,X’(0)) to obtain
/ Gy (8,X)0, (T(|X'|(e +a)X'(0 + oc))doc

- - / 5.[G1(E.X)IT(X'|(6 + @K@ + a)da

T(X'|(6 +a))
IX7|(6 + )

_ T(X"|(6 + )
= / aa< X0+ aa[Gl(éaX)]>5aX(6)doc.

- / 8,1G1(8.%)] 8,(8,.X(6))dax

We plug this calculation back into the equation to obtain

TAX'D
1X’|

L (TUXDE+ )
-/ aa<—|X,|(e+a) aa[Gl(aaxn)aaxwma

3,X(0) = / G(SaX)6a< X’)(G + a)da

TUX'DE +a) .,

Next let V,, denote the directional derivative in the direction u € R2, that is,

m f(Z+€u)—f(Z)'
—0 €

v, f) &t lim 22)

For the matrix valued functions G;(z) and G,(z) from (1.9) direct calculation gives

-
A

u-2
V,Gy(z) = -2 271,
u 1( |Z|
51
u-2
V.6o(2) = LR (@),
474 P
V.V,Gi(2) = u.—(Z)vI,
|z]?
u-R(z)v u-(P(z)—I)
VaV.6) =~ PR + LD )

where R(z) and P(z) are the reflection matrices from (1.16). Thus
34[G1(8.X)] = [Vxr(o+0)G1](6:X),
and

BG1(EX)] = [V 0,051 | EaX) + [Virie 11 Gr| (6.
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CRITICAL LWP FOR THE PESKIN PROBLEM 21

We now claim that

T(X'|(6 + o))

XTCT 8, X(0)da. 2.3)

0X©) = [ |Viger&1 |60
Then (2.3) directly implies that

_ i X’(9+oc)-7)(5aX)X'(9+0£) T(X'1(6 + «))
0XO) =17 5.XP X710 + )

8, X(0)da. (2.4)

Then (2.4) will be our main expression for the Peskin equation for X (6).
Now (2.1) and the previous calculations imply that

T(X'|(6 + o))

X' @+ 0, X(0)da

0X©) = [ [Vige161 |00
R
X6 + )

/ T(X'1(6 +a))
X6 + a)

[V (6+a)G11(6X)5, X (0)da

G,(6,.X)X" (0 + a)da

T(X'|(6 + a))
+ /aoc<|)(,|(6—+o()>[VX’(6+cc)G1](5ocX)5ch(e)da

T{X"16 + ) ,
+ /aa <W>G2(5QX)X (9 + C()dOl.

Now to prove the claim (2.3), with (1.9) we use

1u-z u-z .
[V.Gi(2)]z = _HWZ =4 2= —G,(2)u. (2.5)

This exact calculation (2.5) is crucial to cancel the second two terms above, and in particular
to cancel the second order derivatives. Using this cancelation, since the last two terms in the
equation above are zero, then we obtain the claim in (2.3). And the equation (2.4) is our alternative
representation of the Peskin equation for X (¢, 6).

To obtain an equation for 3,X’(6), we could of course just differentiate (2.4) in 6. However, that
equation contains X”'(8) and ends up being more difficult to work with. Luckily though, there is
another form for 3, X’ which can be written in terms of only X’. To begin our derivation for 4,X’,
we note that integrating by parts and using (1.7) with (1.14) we have

3,X(6) = / G(6,X)3, T(X")(6 + a)da

__ / 8,G(8,.X)5, T(X')(0)da.

Differentiating this equation with respect to 8, we see that

3,X'(6) = — / 050,G(5,X)8, T(X")(©) — / 0,G(8,X)358, T(X")(O)dar.
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22 | CAMERON and STRAIN

As 0,G(6,X) is a derivative, it follows that

/ 8,G(8,.X)3, T(X")(O)dat = g T(X')(6) / 8,G(8,X)dat = 0.

Notice that the zero integral above removes a highest order derivative.
We also have that d,T(X')(6 + a) = 3, T(X")(6 + a). So we can make this exchange and
integrate by parts to obtain

/ 3,G(8,X)068, T(X")(O)det = / 3,G(8,X)3,8,T(X")(6)da
=- / 32G(8,X)8,T(X")(O)dr.
Hence, we have that
3,X'(6) = / (82 — 0,35)G(8.X)3, T(X')(O)da.

Its a straight forward calculation to see that
(0q — 99)[G(6X)] = [(Vxr(6+a) — Ve,x7))G1(6X) = [Vx1(6)G1(6X),
and
9a[Vx16)G(6.X)] = [Vxr(6+a) Vx7(6)G1(84X)-

Thus using our previous calculations of the derivatives of G(z), we have that the Peskin problem
for a general tension can be written as an evolution equation for X’(8) as

3,X'(6) = / Ko[X1(6, )8, T(X")(6)da. (2.6)

Here the kernel Ky[X](6, ) is given by

def 1 X' +a) PE,X)X'(6)

= 1
4r 16X

KolX1(6, )

_iX’(e +a)- R(E,X)X'(6)
an 16X 12

R(6,X)

L1 X@+a) (PEX) - DX'(®)
4 18X 12

P(5,.X). 2.7)

Note that nothing we have done so far has implied periodicity of the solution X (9), and that these
forms of the equations work for any parametrization.

Then further we can write |6,X|?> = a?|D,X(6)|? using (1.8) and (1.10). Thus we can write that
Ko[X1(6,a) = a2K[X](6, a) where K[X](0, @) is given by (1.15). This establishes equation (1.13)
from (2.6) and (2.7).
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3 | MAIN ESTIMATE

In this section we will prove our main a priori estimate for the Peskin problem (1.13) with a gen-
eral tension (1.14) in Proposition 3.1. To this end we let X'(¢,6) be the solution of the Peskin
problem (1.13) with the general tension map 7 given in (1.14) satisfying the assumptions from
Section 1.4 and the kernel given by (1.18) with (1.19). We consider initial data for (1.13), X,
satisfying

X 15 = X1 1, <M., 1%l = inf IDXo(@)] > 0. 3.1

By

Here 0 < M < oo is allowed to be large. We then suppose in this section that over a short time
interval T > 0 for some fixed p > 0 we have

X)), >p, 0<t<T. (3.2)
For some C,, > 0 we further suppose for T > 0 that we have
X" ]| g < C.M. (3.3)

We recall the notation (1.26), (1.27), and (1.28). Then the main result in this section is the following
proposition.

Proposition 3.1. LetX : [0,T] x T — R? be a weak solution to the Peskin problem with tension T
in the sense of Definition 1.2. Assume that X, and T satisfy the assumptions of Theorem 1.6 including
(3.1). Additionally, assume that (3.2) and (3.3) hold. Then there are uniform constants ¢, C > 0 such
that the solution X' (t, 0) satisfies the following inequality
X/ 1/2 X/ <2 X/ T1/2 1/2 X/ .
1711+ 221X e < 201K e + CTY2U 21X

Above U =U[M,p,A,Cir,Cor] is defined in (3.48). In particular there exists Ty =
TuM, p, 4, A, Ci7,Cor) > 0such that if T < Ty, then we have

X[+ 262 211X s < 411Xl e < 4M.

In the rest of this section, we will prove Proposition 3.1. To that end, we first fix some arbitrary
|B] > 0. Then direct calculation using (1.13) gives

d
ZlI8X 0117, =2 / d6 55X'(6) - 559,X'(6)
T

_ 86X'(8) - 85 (K(6, )8, T(X'(6)))
—Z/T/Tdeda "

The above follows by taking &g of the equation (1.13) then taking the dot product of that with
83X’(6) and then integrating the result over L?. Next we take one copy of the integrals on the
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right side and we change variables 6 — 6 — a in the 6 integration to obtain

85X'(0) - 85 (K0, )3, T(X'(6
//dedfx 5X'(6) - 85(K(6,0)8, T(X'(6)))
TIJT

az

B / / o EX/©€ — ) 05(K(6 — o, )3 TX'(6 — )
TIJT o2

Above 6, T(X'(6 —a)) = —=6_,T(X'(6)). Then from (1.15) and (1.10) we have K0 —a,a) =
K(6, —at). Then we change variables « — —a in the « integration to obtain

55X(0) - 85(K(6, )5, T(X'(6
//d@dcx 5X'(6) - 85(K(6,0)8,T(X'(6)))
TIT

az

85X'(6 -8 6,a)5, T(X'(6
— [ [ asie K@+ ) 65(KOBTHE))
TJT a

We add this calculation back into the original expression keeping the other integral unchanged to
obtain that

d
Slex o, =~ [

85:6,X'(0) - 85(K(B, )5, T(X’
/deda 58,X"(6) - 85(K(6, )8, T(X"))
o2
T
We thus conclude that

8558,X'(0) - 15K(0, )85, T(X")
Lisx' w12, =- | [ doda 222 ’ £l
dt L )7 a2

836,X'(0) - 63K(6, )5, T(X'
—//d@docﬁ ()5()().
TIT

(3.4)

o2

We will deal with these two integrals on the right side in order.

We next study the differences of the tension map. First we give the following useful lemma
which tells us in particular that the operators 8% from (1.17) and the kernel (1.19) are bounded
above by the same Besov space with the operator &,.

Lemma 3.2. Let T = R/2nZ = [—r, rr]. Recall the operators D, from (1.10) and &7 from (1.17).
Then for any p € [1, o] we have

18a £z < 201112, |I5§f’I|Lg <A MNeps NDafHe < 11 (3.5)

Furthermore, fix0 < s < 1 and p,q € [1, co]. Then we have the uniform estimate

d 1/q
( [ o ||6§f/||jp> S, (36)
T 6

We use the standard modification of the lower bound when q = .
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Proof. From (1.10) we have

1
D.f(8) = / dz f'(@ + ta).
0

Then also using (1.17) we have

1 1
521/ @) = f1©) = [ defl@+ra)=— [ dro.f®)
16 = f /0 r f10+1a /0 r 6.0 f
and then

65 f'(8) = 8.f"(8) + 65 ' (6). (3.7)

Then from Minkowski’s integral inequality we have for example

1
1627711, s/ dr 116,112
0 0 0

Thus the inequalities in (3.5) follow from Minkowski’s inequality, translation invariance, and the
triangle inequality.
It remains to prove (3.6). We use Minkowski’s integral inequality twice as

1/q 1 1/q
_d,B — o4 dg -
< . |5|1+sqlléﬁf IIL5> S/o dr (/T —lﬁllﬂqnafﬁf ”Lg )

Now applying the change of variable a = 78 we obtain (3.6) for 5[;. The inequality (3.6) for 5;3“
then follows from the formula (3.7) and the triangle inequality. O

Remark 3.3. In the rest of this article, when we use the estimates of (1.19) in Lemma 3.6, Lemma 5.2
and Lemma 5.3 that are proven in Section B, we will only write the upper bounds with J,, in place
of 7 and & from (1.17). We use this simplification to ease the notation, but more importantly
because these operators have no effect on our final estimates due to Lemma 3.2 and the inequality
in (3.6). We will also ignore the translation operator 7z from (1.21) when we use the estimates of
(1.19) as in (3.18), which is justified because all of the functional spaces that we are using in this
article are translation invariant.

Now to begin studying the differences of the tension map in (3.4) we write
1 d L
5., T(X'(6)) = / ds; KT(sléaX’(e) +X'(6)) = DT[X']6,X'(6), (3.8)
0 1
where letting DT(z) denote the derivative in (1.33) of the tension map T(z) in (1.14) we have
— def [* ,
DT[X"](6) = ds; DT(g1[X"](s1, @, 6)), (3.9)
0

where

f
X (51, 8) S 512.X7(0) + (1 — s)X'(©).
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We therefore obtain from (1.34) that
18, TX"(0))] < C1718,X'(O)]. (3.10)

We will use this estimate on the second term in (3.4).
To study the first term in (3.4), we apply &g to 5, T(X '(6)) to obtain

836, T(X'(€)) = 75 DT[X1(€)5;8,X'(8) + 85 DT[X1(€)5,X" (), G.11)
where
— 1 [E—
§,DTIX'](0) = / ds, DT[X')(0)(g1[65X"1(s1, o, 6)), (3.12)
0
and
— def [!
DoTix')6) & / ds, D*T(g3[X"1(s5, 51. . 6, B),
0

with gZ[X/](SZ’ 81, A, 9’ ;8) given by

8[X'1( a, 6, B)sz, 51 =f 5:81[7pX"1(s1, 0, 0) + (1 = 52)81[X"](51, @, 6). (3.13)
We conclude using Remark 3.3 and (1.34) that
185 DT[X'1(6)8. X' ()] < Cor 185X (6)118.X"(O)], (3.14)
and
1656 TX)| < C171656,X"(O)] + Cor 65X (0)]16.X" (O)]- (3.15)
We will use this estimate on the first term in (3.4). Also notice that we have the matrix inequality
in (1.33) for DT, since the pointwise lowerbound for DT(z) automatically applies to DT from (3.9).

Plugging all of this into (3.4), and using (1.18) with (1.19), (1.40) and the bounds from (1.33) we
obtain

d 1
Enaﬁx’uiz +AGEAX |7, S Ly + Lo+ L. (3.16)
6 6

Then with (1.19) we have

def da
£ S e [ [ 5 sax @ IpAKIEwL
T T

def da
e, e, / do / 9 1656.X'@116.X @135 AIX1(0, 0l
T T

def d
e, % e, / do / 9% 1856.X/ @118, ©)116,X @)l KIX1(6, ).
T T
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We will estimate each of the terms above.

Remark 3.4. Note that in the simple tension case, DT =0, and hence as in (3.12) in this case
L3 =0.

For £, we split the kernel (1.19) as
A6, a) = A58, a) + AL(6, ),
where for a fixed small 7 > 0 to be chosen
AS(6,a) = AB, )V |gj<yy  AH(6, @) = A6, D)1 |45 (317)

Thus we have

def da
[:'f = CIT/dG/E |555aX’(9)|2|T5.A[X](9,oc)|1]|a|<,7
T T

And we define E% =L - Ef . Next, from (1.19) and Remark 3.3 we have the general estimate
A, )| S IX17%18.X" ()7 + IX17H 6. X" (O)]. (318)

Then we apply Holder’s inequality using (3.2) to obtain

da 4\’ da 4\ 1
P ClT(/ E”%aaX/”L“) </ EII%X’HL;;) -
letl<n g le|<n P
1 1
1 da 4 \! da 4 \'1
+Cirll8gA2X" || / — 1186, X"|| / — 18, X"]| -.
1T1=e Lé lal<n a? pPa Lg lal<n a? “ Lg P

In order to deal with this error term, we need to absorb it by the elliptic term. A priori though,
C,7 and p~! could both be very large, and this might seem like we need to restrict our choice of
tensions in Section 1.4.

However, the function u from Definition 1.1 allows us to control the decay rate of the integral
on the right hand side. Specifically, for any p > 1 we have

p
X",
_EJ‘

da p 1 da p -1 Bpp
da 5. x|, < /—na x| el ™y = ——P2 - (3.19)
/|“|<77 a2 Lg u(n=1)p T a2 Lg u(n=1)p

Note that u(n~1)~! can be made arbitrarily small for 7 > 0 small. We next use the following
embeddings from Proposition A.5 as

WA o SHAIE 2 s HA e, SUAIT 2, P22 (3.20)
BY B} B2 5
P.p 2,p p.p 2.p

We remark that we will also use the following inequality frequently in the rest of this paper,
||f||B;', 5||f||32) which holds for any r; > r, > 1 and any s € R.
1 2

25UdI sUOIWIOD) aATEAI) a[qratdde a1 Kq PALIOACS ATk SAAIIE YO 1SN Jo Sa[NT 10§ AIRIGIT AUIUQ AS[IAL UO (SUONIPUOD-PUT-SULIa)w0d* Ka[I ATeIqaunuo//:sdit) SUONIPUOD) pur SULaL, U 30§ “[£202/60/81] U0 ATeIqr] QUIUQ AS[IAL “BIURAASUSG JO ANSIOATUN Aq 6€ 122 2d2/Z001°01/10p/w0a Ko ATeIquautuoy/:sdiy woxy papeofumod 0 “T1£0L60T



28 | CAMERON and STRAIN

‘We will now use these inequalities in the form

1
16X11 1+ SH8eX'Il 1 S1GX'I| 1 ~ [18pA2X]] 2,
B} B} B} ¢
4.4 2,4 2,2

and also using (3.3) we have,

IX'|| 1 <CIX'Il 1+ <CC,M.
Tk 5 M
BA: B2,
4.4 24

We therefore conclude that

LY <CriCir 18X |12, (3.21)

BZZ,Z
where we define x; = x;(n) by

def 1 M2 1 M
X = = +2 . (3.22)
VT o2 T pu(ph)

This will be our main estimate for Ef . We will later choose 7 > 0 small enough so that Cx;C;7 <
A.

Next we will estimate Ef containing A*(6, «) from (3.17) and (1.19) on the region |a| > 7. Noting
that |[8of|lrp < 2||f||zp for all p € [1, 0], we can neglect the &,’s and apply Holder’s inequality
in 6 to obtain

1112 1112
; do \[ 1O E L XL 118X 1112 1186 111 11X 1114
LTS Gr / — + )
' lal=n

a? p? P

We will use the Sobolev embedding || f]| I SHfIl 1 = |If]l 1 in the next inequalities. Then
1

i B
2,2
from Lemma A.7 and (3.3) we use the following inequalities

XM STXN 1 STXN L S M.

-7 53
B2,2 BZ,oo

For the other term we use also Lemma A.6 to obtain

1/2 1/2

18X 114 S 118pX"1] 1 <|I5/3A2X’II II5/3X’|I :

2,2

We also use that ( f ) = n~!. Then we obtain

lo|>n o

1/2 3/2

II5ﬁX’II :

Cir Cir
s = ||6ﬁAzX/||Lz||6ﬁX'||Lz+ ||65A x|

Using Young’s inequality, we can separate out the higher order terms and get

oo>a

< SHSeX'I1?, +ClISeX|12,17, (323)
B2, 0
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CRITICAL LWP FOR THE PESKIN PROBLEM 29

where

2 g4 4/3 3 r4/3
def €7 M Cr M /

Ul = UI[Ma/L P,CU'J?] = AT)ZP4 11/3774/3{34/3' (324)
This is our main estimate for £
Now we can collect the estimates for Ef in (3.21) and Ef in (3.23) to obtain
A
£, < <§ + C;clclr)naﬁx’uz L+ C||65X’||i21f1. (3.25)
2 6

B3,
This is our main estimate for the term L.
This estimate above motivates the following lemma. First, for some A > 0, we consider a typical

term of the following form

def da
L=L[X,X,,X] = A/de/g 1858aX 1185X116,X5]. (3.26)
T T

Here X l’ are given functions for i = 1, 2, 3. Then we have

Lemma 3.5. For any small constant 0 < ¢ < 1, and for A > 0 from (1.33), for any small n > 0 we
have the following uniform estimate for (3.26) as

~1 CA?
1112 7112 7112
L=< C/1||5ﬁA2X1|IL§ + /1#(77_1)2 IlaﬁlelL;O||X3||B/t
+ellopXilI, + CAM 18X |17 1IX3 s (3.27)
6 6

In particular if X| = X then we also have

2

1
~1 C

L <cA||8sA2X! |2, + ———

<c || B llng 1 (77_1)2

A
18X 12 [1X5112, + C=1185X 0112, 11X5 I
) 7 L 6

Proof of Lemma 3.5. We split this term into £ = £5 + £F where £ is restricted to the integration
domain |«| < 7 and £F to the domain |a| > # similar to (3.17). For £5 we use Hélder’s inequality

to obtain
g % J 1/2
a a
£5 5 118Xl / 1886112, / | ATEA I
laj<n & 0 la|<n & o

We further use the embeddings (3.19) and (3.20) to obtain

!
1 X311 1,
B ~ ’ ’ 2,2
L2 3 118pA2 X [1721166X; |1 R
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30 | CAMERON and STRAIN

Next we estimate £, Again using Holder’s inequality we have

da

£l < 185X! . X/ m/ -

1165 1IIL;II 3 2IIL;II 3l oy @
Sn‘lll5ﬁX{IILglléﬁXglnglngllL;o-

1
. . . LS . .
We combine the estimates above and use the embedding 3 C B, to obtain the following general
estimate

CA

1
ASv/ / !
L< M(y)_l)||5ﬁA2X1||L5||55X2||L§°||X3||B#
+CAU_ll|55X{||L5||5;3X§||L§IIX§||L;°- (3.28)
Then (3.27) follows after applying Young’s inequality. O

Next, we turn our attention towards bounding the term £; in (3.16). Recalling (1.18), (3.2) and
(3.18), we can bound |75 C[X ]| in general as

ITeKIX1(6, 2)| < C<1 +o X I +P'2IIX’II2§o>-

Now we state the following useful embedding as

D YIERT> Gl (3.29)
BZ
2,1

SIX'|l 1, and (3.3)

1
2
1 BZ,l

This embedding follows as in Proposition A.5. Then further using ||X’||
B

Do

we have
1%/ 201y /)12 2752y def ’
C{l1+p7'IX IILgo + 741X S <CA+p*M*) = W, =W [X']. (3.30)

Thus we notice that the remaining part of £ is in the form of (3.26) with X| = X} = X = X'.
Thus applying (3.28) we obtain

~: [1X" |1 5
! !/ 4
L3 < CllogA2X 1 12110X 1 o) WiX']Cor
+ O 18X 12, 11Xl Wi X' 1Car
0
We further apply Young’s inequality to the first term above, and use (3.3), to obtain
s 5w 2 2 2
L3 < §||6'3A2X’||Lé + C1,C5 16X = + C||5ﬁX’||Lg1f2, (3.31)

where recalling (3.30) we have

def
U, =Us[M,p7 1, Cor ] = 7'M+ p2M?)Cyr, (3.32)
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CRITICAL LWP FOR THE PESKIN PROBLEM 31

and x, = x,(n) is

def M?

X, = A1 14 p72M?)2. 3.33
2 #(77_1)2( e ) (3.33)

This will be our main estimate for £3. We will later choose 7 > 0 small enough so that under our
assumptions Cx,C2 < A.
To prove further estimates we will now state the following lemma which gives the pointwise
estimates of 63.4(6, ). The proof of Lemma 3.6 is given in Section B.
Lemma 3.6. Considering A(6, a) from (1.19) we can split 3. A(0, @) as
8gA6, a) = A1(6, a) + Axp(0, a), (3.34)

where A,5(0, o) satisfies the following uniform upper bound

581X (O)IT6, X' (0)| + 165 X(6)]1856, X' (6
’Am(e,a)\s'“ ONIeg0 X O + 15 X (©)11950. X ()]

DeF:
I555§X’(9):;l555éx'(9)l . (3.35)
Further A,5(0, a) satisfies the uniform upper bound
4250 @)| 518X @ (178X @) + |6;X’(e>|)%
+(165x'(0)] + |5;X’(9)|)%. (3.36)

Next we will estimate the term £, from (3.16). For future use we will estimate the following
more general term with a constant A > 0 as

def d
£2[X’,X£,Xg] = A/d@/a—f |5ﬁ5aX{(6)||55A[X2](6,a)||5aX§(6)|. (3.37)
T T

Here X;, X, and X; are given functions. Then in Lemma 3.6 we split the kernel from (1.19) as
S A[X,](6, o) = A15[X,](6, @) + A3[X;](6, a). Taking into account Remark 3.3, from (3.35) and
(3.36) we have

1050 X5(0)116X5(O)  1656,X5(0)]

, (3.38)
1X,|2 X1

[ A151X510. 0|

and

16.X5(0)1*185 D X,(0)] N 16.X5(0)[165DX5(6)]

A5[X5]16,0)| <
[astxa10.0) X, 3 X, 2

(3.39)
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32 | CAMERON and STRAIN

Now we split £, = L + L, according to (3.34). In particular £, is the term £, with §3.4(6, a)
replaced by A,5(6, ). Now notice that £, [X],X),X}] = L, satisfies the upper bound

L% AZp-fnxn /de/ L 1558.X,(0)]185X,(0) 18 X,(O)].

Therefore as in (3.26) we have from (3.27) the estimate

2
2
~1 CA? ; i—1
Ly <cl||Ssh2 X! ||, + ———— Z TINXI S ) 18X 1 |1XE |12
21 ” B llng /1,“(77_1)2 j:1p || 2||L6 ” B 2||L9|| 3”,3#

2

2
— —j j—1
+clIgpX{ 117, + ClIopXS 117, 15117 A% 2(2;: J||X;||1§o> . (3.40)
] 6 j=1

This is our main estimate for the term £,,[X], X}, X}].
Lastly we will estimate £, = £,,[X], X}, X]. For this term we have the upper bound

da
Ll $4Y pIIRIS /de/ 1558, (0)] 185D, X018, X,(O)].
Jj=2

We can estimate this term the same way that we estimated £5 in (3.31) using Lemma 3.5. This
follows because the term 63D X,(0)|] in Ly, is treated exactly as the term |5[3X;(6)| in (3.26) and
(3.27). We can do that as in (3.5) because

186DXs11,2 S 1186X5 11,2, € [1,00], (3.4D)
Thus as in (3.27) we have
2
Ly <C/1||5ﬁA D¢ II (ZP"IIX'II > II55X£||igoIIX§IIZBu
3 2
_ _j j—1
+elldgXi 11, + ClIGEXS 7, I 1 A% 2(2,0 J||X;||§g,> . (342)
j=2

This is our main estimate for the term £,,.
Then for the term £, = £,[X], X}, X}] from (3.40) and (3.42) we have for any small constant
0 <c < 1that

ZU' XI]
Ap(n=1)?
+cllopX]| |iz +C|185X))| |iz | |X§||250A2U_2U4[X§]- (3.43)

¢l 0

1
ﬁzgc/1||5ﬁAzX{||ié+c 185X 117 mllxglléﬂ

25UdI sUOIWIOD) aATEAI) a[qratdde a1 Kq PALIOACS ATk SAAIIE YO 1SN Jo Sa[NT 10§ AIRIGIT AUIUQ AS[IAL UO (SUONIPUOD-PUT-SULIa)w0d* Ka[I ATeIqaunuo//:sdit) SUONIPUOD) pur SULaL, U 30§ “[£202/60/81] U0 ATeIqr] QUIUQ AS[IAL “BIURAASUSG JO ANSIOATUN Aq 6€ 122 2d2/Z001°01/10p/w0a Ko ATeIquautuoy/:sdiy woxy papeofumod 0 “T1£0L60T



CRITICAL LWP FOR THE PESKIN PROBLEM 33

where

def [ &
U4=U4[||Xg||L;o,p—1]§(2 X1 > (ZP’IIX’I > (3.44)

j=1
The above general estimate will be used in Section 5.1.
Specifically for £, = £,[X’,X’,X’'] from (3.16) following a similar procedure we obtain

—| 185112, + CxsCE 118X 117 + IS I12,Cor U, (3.45)
BZ 6

where recalling (3.3) then x3 = x;3[X’](n) is
2

def M2 2
Xy = —— “IMITY) (14 p2M?), (3.46)
P Ty <j§p > f
and
def
Vs = Us[M, o7 = Mn‘IZp‘JM’ ! (3.47)
Jj=1

This is our main estimate for the term £,. We will later choose # > 0 small enough so that under
our assumptions CK3C127, < A
Putting together our estimates for £, (3.25), £, (3.45) and £ (3.31) into (3.16) we arrive at

d
EII%X'IIi —II%X’IIZ < Ci CirlISpX' 117,
B2 B},
+C(C o + chK3)||55X’||2§o +Cl|8sX| |ig(1f1 + U, + Ci7 U3),
where we recall (3.22), (3.33), (3.46), (3.24), (3.32) and (3.47), respectively.
For convenience from (3.24), (3.30), (3.32) and (3.47) we now define U" by
def
U =VI[M,p,4,Cor,Cir] = U1 + U3+ Ci7 Us. (3.48)

From (3.33) and (3.46) we also define

def ., 2
Ky = CZTK2+C17K3

Now we can choose 7 > 0 small enough so that Cx;C;7 < 1/4. Thus we obtain

d
EII%X’II —|I5ﬁX’||2 <CKO||5ﬁX,||2;o +CU 16X 117,
BZ ]

Further integrating in time, we get that

2 2
l16sX"112 (t) +—II5ﬁX’II 1 <II5ﬁX{)IlLs

LZ(BZZ)

/ /
+ Ol 85X 117, ) + CUNGEX I, o

)
8
35
3
3
B
e
o
g
Z
E
5
g
&
&
)
El
ES
g
o
g
&
]
2
g
g
<
2
2
g
S
S
8
N
s
g
s
S
3
5
8
<
2
=
B.
g
2.
Q
2
o
g
2
Z
=
H
£
5
&
o
A
2
£
g
]
<
2
3
°
N}
8
S
=1
»
b5
8
Ed
g
et
5
2
=
g
2
o
15
g
S
g
2
El
S

25UdI SUOUIWIOD) AATEAI) a[qatdde a1 Kq POUIAS ATk SAIIE YO 125N Jo Sa[N 10] AIRIQIT AUIUQ ASIAY UO (SUOIPUOD-PUE-SULIAY W0 Ka1A



34 | CAMERON and STRAIN

Note that trivially, we have the bound

|16pX"112 )= (18X 11?7 (3.49)

LZ(L2 L°°(L2
Now we take the essential supremum over 0 < ¢t < T, at the cost of an extra factor of 2 on the RHS,
to obtain

A
l16pX" 117

, —_—
[165X IILW(LZ) 1
L3(B

1

< 2|185X 112,
) 0
2,2

+Crl 18X |2

+ CTU| |5ﬁX’|| (3.50)

LZ(L°°) L°°(L2)

Next, note that for any constants A and B we have

L (JAl + IB]) < (A2 + BYY2 < |A| + |B|. (3:51)

\/5

So taking the previous inequality and raising it to the 1/2 power, we obtain

1/2
A
185X 112 +<Z) 18X 1 < 2018pX;1;2
0 LZ(BZ) 0
TV"2,2

/2 1/29,1/2
Cey 110X 121y + CT 12y 18X |10(12)

Then further integrating the above in d against |8 ~3/2u(|8|~!) thus gives us

1/2
A
X711+ <Z> X[ < 211X 5

1/2 dp
+Cx, 2
T 1Bl

To handle the term containing K(l)/ ?

BBl 1) + CTY2U 21X

we will use the following lemma.

Lemma 3.7. There exists a constant C >0 such that
<cC dp s 7\§ =C 3.52
V1L, b < | TR Iy = Cull (3.52)
1

The proof of Lemma 3.7 is a direct combination of Proposition A.5 with (A.12). Then after using

Lemma 3.7 we can further choose 7 > 0 small enough so that (%)1/2 CKI/ZC > cAl/2 > 0 for

some small positive constant ¢ <« 1. We thus obtain
X1+ 21X | < 201X+ CTV2 U 21X e

This completes the proof of Proposition 3.1.
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4 | CONTROL OF THE ARC-CHORD CONDITION
In this section we will establish the a priori control over the arc-chord condition defined with

(1.11) for a solution to the Peskin problem (1.13) with a general tension (1.14) satisfying the a priori
estimates (4.2). Recall from (1.20) with (1.19) and (1.40) that X'(¢) solves the equation

3,X' + AT(X") = V(6), V(6) dﬁf i—fA(e,a)aaT(X’(e)). 4.1)
T

We suppose that we are given initial data satisfying (3.1) for equation (4.1). For some C, > 0 we
will further suppose for T > 0 that for some ¢ > 0 and for 4 > 0 as in (1.33) that we have

1
X' || 3¢ 4 cA2[|X" || pp < C.M. (4.2)
T T
Next we have the following estimate on the L? (H 1Y norm of a solution.

Lemma 4.1. Given a solution to (4.1) satisfying (3.2) and (4.2). For any ¢ > 0, there exists T, =
T(g, M, u,p,A) > 0 such that

T,
[ asixei, <
0

Proof. We splitinto |B]| < n and || > # for some small 7 > 0 to be chosen:

/0 X'l S N/ ds/de/ /—|5,35 X'(s,0)|*
1 -1\2 d da 2
N /‘(’7‘1)2/“«7 Pl H(BI ) / / e/ —18584X"(s,06)|
T ’
+l/d9/ dS/dC(laaX (5,0)|?
nJr  Jo T a’

2

TIX'II”

L2<32 8! LB} C>M? C2M°T
1)2 + < 1)2 +

u(n=1) n ~ ou(n~1H22 n

Ine X’II

Above we use the spaces from (1.23) with (1.24) as in (1.26) and (1.27), and the last line follows from
2 2

(4.2). We can choose 7 > 0 small enough so that C < %s, and then we can choose T = T,

=122
2
small enough so that C CIMPT < %s. O
n

Next, we prove the following lemma, which controls the L?(T) norm of the time derivative of a
solution by the H(T) norm.

Lemma 4.2. A solution to (4.1) satisfying (3.2) and (3.3) has the estimate

110: X" Ol 2y < CLIX Ol gy
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for some constant C; = C;(M, p, Cy7) > 0 and for any time0 < t < T.

Proof. We use the equation (4.1) to obtain that
118X 112 < [IATX )|z + V]2

We will therefore estimate each of the two terms in the upper bound. For the first term, we have
from (1.34) that

IATX)|z2 ~ ITX)] |z ~ [IDTX)X"|| 2
SCrIX" 2 S CrlIX g

For the term ||V||}2, by the structure of A from (3.18) with (3.2) and (3.10), it is straightforward to
get that

5.X' O 16X O
1V(6)] sclf/doc <| “pa(z ) " “pzoiz)l ) (4.3)
T
Applying Minkowski’s inequality, we then get that
VI s Cr [ 9% (o7 18X 12, + o 2118.X 11
JEAIN IT-D—O(Z‘O a 4 P a 16 )*
In terms of the Besov spaces the upper bound above is
IVl S Corp X112, + Corp 2 LIXV 11 o
B4,2 BG,S
From Proposition A.5 and Lemma A.6, we have the embedding inequalities
X/ 2 s X’ 2 S X/ . X’ 1,
I ”ij I IIB;,; Il ||B;{12 X g
and
HX13 5 SUXTNE,, S HX12,, NX
B} B BY?
Plugging in these inequalities and using (4.2) we have
[Vl S Cur (oM + p72M?) [IX ||
This completes the proof. O

Corollary 4.3. Given a solution to (1.13) satisfying both (3.2) and (4.2). Then for any € > 0 there
exists a time T, = T(e, M, u, p, A, C17) > 0 such that

T
/ de |19, X' (0)|]%, <.
0 Ly

The proof of Corollary 4.3 follows from Lemma 4.2 and Lemma 4.1.
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Proposition 4.4. Given a solution to (1.13) satisfying both (3.2) and (4.2). Then for any small € > 0
there exists a time T, = T(e, M, u, p, 4, Cy7) > 0 such that

1X'(6) = X} [ <€,
forallo <t <T..

Proof. We use the embedding (3.29) and (4.2), and then we have for any 7 > 0:

dg
IX7(6) = X s/ 165X () = X))I| zs/ +/
Ot g P T Jien gz

IIX'IIB¢+IIX{)IIB;4 IIX'(t)—X{)IILg M IIX'(t)—X(']IILé
1 + ’S 1 +
u(n=1) nl/2 u(n=1) nl/2

Now fix € > 0 small. Then we take # sufficiently small, and we can guarantee

I1X(6) = X2

1) — X e < &
IO =Xl <5+ 0

Next we apply the Minkowski and Holder inequalities so that we can bound the latter term as
follows

1

t 1 t 2
/ dso x| <o / ds 16X )2, ) .
0 Lg 0 Ly

Lastly we apply Corollary 4.3, and then the result then follows so long as T, > 0 is taken
sufficiently small. O

KO =%}z = |

We now point out that the argument in [25, Prop 8.7 on page 337] shows that for any two vectors
X, and X, from (1.10) and (1.11) we have

il = Xal.] = [inf ID.,@)] ~ inf IDX,(@)I|
< sup |5az|’;1|(9)| _ |5oc)|i(2|(6)|‘ < sup 8c(X, |;|X2)(9)|'
We thus conclude that
[1X1 1 = X1 < J1X] — X1 (44)

We can now deduce from Proposition 4.4 and (4.4) that if initially |X{|,. > 0, then for a solution to
(1.13) satisfying (4.2) for any fixed p satisfying 0 < p < |X;|, there exists a small-time T, > 0 such
that (3.2) holds over 0 <t < T,.
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5 | STRONG CONTINUITY ESTIMATE

In this section we will prove two a priori continuity estimates that will imply the uniqueness
of solutions. In Section 5.1 we will prove the estimate that will establish the strong continuity
result in Theorem 1.11. Then Section 5.2 we prove the estimates that will give the uniqueness in
Theorem 1.8.

5.1 | Strong continuity estimate

We consider two different solutions to (1.13), X'(¢,8) and Y'(t, 6), with corresponding initial data
X, and Y, respectively. In this section we will sometimes use the notation Z to denote either X
or Y. When we use Z in the estimates below it will not matter whether it is X or Y. We consider
initial data for (1.13), Z,, satisfying

1Z§lle = \ZGl1 1, <M. 1Zol. = Inf IDZo(O)] > 0. (51)

2,1

Here 0 < M < oo is allowed to be large. Then for some C,, > 0 we suppose for T > 0 that for some
¢>0and A > 0asin (1.33) we have

1
NZ"]1 g + cA211Z" || < CM. (5.2)

We also prove our estimate in this section, for some p > 0 that is allowed to be small, under the
following condition

Z()], > p, O<I<T. (53)

Given u from Definition 1.1 we will use the equivalent semi-norm defined with v instead of u
where v is given by

u(r)

v(r) def 1+
- C; max{l, M}’

C;>1. (5.4)

We will choose C; = C5(171, C;7) to be a possibly large constant at the end of the proof of Propo-
sition 5.1. Notice that v defines equivalent norms /37, and DJ. to the norms B‘T‘ and D‘T‘ defined in
(1.26) and (1.27), respectively. In particular, from (5.4) we have

s < 2I|f|IB¢, oy < 2IIf|ID;, (5.5)
and
IIfIIB; < Cymax{l, M}||f15, IIfIID;f < Cymax{l, M}||f]lpz.

Then with this equivalent norm we will prove the following continuity estimate.

Proposition 5.1. LetX,Y : [0,T] X T — R? be two weak solutions to the Peskin problem with ten-
sion T in the sense of Definition 1.2 with initial data X, Y, respectively. Assume that X, Y, and
T satisfy the assumptions of Theorem 1.11 including (5.1). Additionally, assume that (5.2) and (5.3)
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hold. For the tension map (1.14) we assume that (1.34) and (1.35) hold. Then for the two solutions X’
and Y’ to (1.13) over 0 < t < T with T > 0 we have

1 1
X" =¥/l + 22X = ¥'lly, < 411X] = Y|l + CIIX = ¥'|[5, T2 W,
where W = W[p, M] is defined in (5.42).

In particular, there exists Ty; = Ty (M, p, 4, A, C17,Cor, C37) > 0 such that forany 0 < T < Ty,
we have the following estimate

1
[1X" = Y'||57 +222[|X" = Y'||Ipy < 8[IX) = Yll50-
For use below we define the following notation using (1.11):

def .

Then the next two lemmas will be used in the proof of Proposition 5.1.
Lemma 5.2. We have the following uniform estimate
JAIX] = A[Y]] S IXI7 (|65 X = Y')(O)| + [62(X" —Y')(6)])
+IX[77 (|65 X" = Y)(6)||8:X"(8)] + |8, (X" —Y')(6)||55Y'(6)])

+ X, Y72 D (X = Y)O)|(|8,Y(0)| + |85Y(©)])

+1X, Y1 [Do (X" — Y)(O)|[6Y'(0)]|55Y(6)].
We also use the decomposition in (3.34) as
O AIX] = Ap[X]+ AplX], SpA[Y] = AplY]+ AplY]

We further introduce the following notation

def
[6gD X, 65D, Y| = max{|63D,X(0)|, 65D, Y (6} (5.7)
Lemma 5.3. We have the uniform estimate for the difference

ArplX] = AylY]| 5 (18585 (X = Y)O)] + 18582 (X" = YO X"
+ (1885 (X" = Y)O)lI7587X(O)] + 18557 (X' = Y)O)ISLY'©)])IX 32
+18505 Y O)I178: (X = Y)ONIX I + 165 (X' — ¥Y')(O)]16:8: X' (91X |22
+(18,85Y'©)] + 1858, Y'O)]) [£ DX = YNOIX, Y |32
+18585Y'O)I178:Y' (Ol Do (X' = Y)O)IIX, Y |5

+162Y' (011635, Y'(O)IID(X" = Y)(O)IIX, YIZ°. (5.8)
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And we have

+ ! / — v/ — v/ |5ﬁDocX(e)|

’-AZ,B[X] = AxplY]| S 165 X" = YO + |15, X' (O)| + |6, X (6)|)X—|3
vt o o o o 185D, X(6)]
+ (|78, (X" = YNO)I18,Y'(B)| + |8, (X —Y')(O)|(1 + |65Y (e)|))T

16gDo(X" — Y")(©)I

+(167Y'(O)I(A + 16 Y'(O)] + 76 Y'(O)) + |6, (O)]) XYP

Y (O 12-6-Y' (@)D (X" — )0y | PELeX 08DV |
+16 Y Oll758, Y (O)lltgD (X" — Y'X( NW
165D, X, 83D, Y|
+(I83Y'O)7567Y'O)| + 165Y"(©)187Y'(9)]) Do (X — Y’)(en%
165D X, 85D, Y |

+(18Y' @1 +18:¥' @) DX ~ YOI =—1 5

(5.9)

The proofs of Lemmas 5.2 and 5.3 are contained in Section B.

Proof of Proposition 5.1. For now we consider (1.13), and we take the difference of two solutions
as

KIX](6,a)
o2

0X'®)-0Y'©®) = [ da 6. (TCX'(8)) — T(Y'(6)
T

1o AXIE, @) — AIY V6. a)

. 5, T(Y'(0)).
(04

We now take J of the equation above to obtain
K[X]6,a)
6;0p(X" —Y")(©®) = / au 8« (T(X'(€)) = T(Y'(6)))
T
SﬁA ,0)
+ [ da 5. (T(X'(8)) ~ T(Y'(6))
T

+ a 839, T(Y'(0))

az

/ 4 T3(A[X] = A[Y])(O, o)
.

) - o,
i p(A[X] — A[Y])( a)éaT(Y’(e)).

+ =2

S~

Now we consider this expression in L? similar to (3.4) as

d ! ! ! ! [ ]( ) ! !
16X - 55Y|I2, = —/TdG/Tdoc 858, (X' —Y')(©) - —5ﬁ5 (T(X'(6)) — T(Y'(8)))

- [0 [[awsz. - ve P D s vy - 1o
T T a
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_ 0,
- / do / da 838,(X' — Y')(©) - pAX] af[y]x a)555aT(Y’(9))
T

T

- / do / da 856,(X' = Y')(©) -
T T

To prove our estimate, we will first expand out each of the terms above.
To this end we recall (3.8) and (3.11). As in (3.8) we expand out

S5(A[X] - ?[Y])(G, @) 5. T(Y'(6)). (5.10)

5,(T(X'(6)) —T(Y'(6))) = DT[X']6,(X’ — Y')(6)
+(DT[X'] — DT[Y'])5,Y’(6). (5.11)
Further as in (3.9) we calculate that

1
DT[X'] - DT[Y'] = / ds; DPT(s;,6,a) (&, [X'] — g1 [Y']), (5.12)
0
where g;[X'] = g,[X'](s;, a, 6) is defined below (3.9) and
— def [* ,
DzT(Sl’e’ a) = dSZD T(fZ[X,’Y ](S15S2’ 99 CC)) (513)
0

Here we also use the definition

f
FalX, Y (51,52,6, ) = (517X = Y')(6) + (1 — 5 )X’ — Y')(6))

+5,7,Y'(0) + (1 — 5)Y'(6).

Thus recalling Remark 3.3 and using (1.34) we have

16,(TX"(6)) —TY' O < Ci7 |6, X" —Y')O)
+Cor |(X" = Y)(O)16,Y'(O)].

We will use this estimate for the second term in (5.10).
For the first term in (5.10), we expand (3.11) out as

858,(T(X'(6)) —T(Y'(6))) = 7sDT[X"1636,(X" — Y')(6)
+75(DTIX'] = DT[Y'])856,Y'(6) + 6z DTIX'16(X' — Y')(6)
+(84DT[X'] — 83DT[Y'])3, Y’ (6).

Notice that 6 ﬁﬁ[X "is calculated in (3.12) and it has the bound (3.14). We further calculate using
g7 from (3.9) and (3.12) that

1
5,DT[X'] - 6,DT[Y'] = / ds, DPTIX'|(0)g: (85X’ — Y")](s1.a,6)
0

1
+ / ds; (D?TIX'] - D>T[Y' Dg1[85Y (51,2, 6),  (5.14)
0
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where
— — 1 —
DPT[X'] — D?T[Y'] = / ds, DT, @, B, IX’ — Y'],
0
where g,[X’ — Y'] is defined in (3.13). We further use

— def [
DT f) S [ dsy DT(es(ss.6..6)
0
and with g,[X’] defined in (3.13) we use

def
g3(S3, 9, a, 6) = s3g2[X,](S29 81, &, 9’ ﬁ) + (1 - S3)g2[Y,](S25 S, A, 69 6)

Notice that Tﬁﬁ[X "1856,(X" — Y')(6) with (3.9) will give rise to the crucial elliptic term in (5.10)
using (1.33). Putting all of this together including Remark (3.3) using (3.14), (1.34) and (1.35) we
conclude the following bound

1858, (T(X"(6)) —T(Y'(6))) — 75DT[X'1858,(X" - Y')(©O)|
< Cor (186, Y'ONX — YO + 165X (0)]16.(X" — Y')(O)])
+Cor|8p(X" = YO0, Y'(0)] + Car |(X" — Y)(O)165Y (0)]16,Y' ()]

We will use this to estimate the first term in (5.10). To bound the third term in (5.10), we recall
(3.11) and (3.15). Lastly, to bound fourth term in (5.10) we recall (3.8) and (3.10).

Plugging all of these calculations into (5.10), and using (1.18) with (1.19) and (1.33) and Remark
(3.3) we obtain

d da
S8 = YOI, +2 [ de [ 5 igg8.x - v@
T T

3

Z +ZN +ZN (5.15)
j=4

To ease the notation, when we list the terms below we will drop the (8) and (8, &) notation from
each term. For example we will write 75 A[X](6, ) = 75.A[X]. Then with (1.18) and (1.19) we have

def da
No e [ do [ 5 g8, - vOPIzsAIXIL
T T

def da
N Eerr [0 [ S 156,00 - Y ONI8 - Y)IIBAIX,
T

N, e, / do / 9 1555, (X" — Y)][858,¥" | [25(AIX] — ALY,

def da
N Eey, / de / 2 656X = Y118, ¥'1185(AIX] - ALY D,
T

def a
N Ee,, / / 24 1536, (X! — Yz KIXIIIX = Y']1858, Y"1,
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def da
N> Zer [ ds [ 55 1650, = YOl RIX IS 6K = Y,
T T

(o4
N Ee, / a6 / 92 | 506X — Yl [TKIXTII85(X — Y)II8,Y'],

def a
N, e,y / / 24 |56, (X! = YIS AKX - V'I16,Y],

def
N % e, / do / de |5 5.(X" — YN Irs(AIX] — ATYDIIS; Y116, '].

def
Ny = C3T/d6/— 1858.(X" — YN||7gKIX]|IX" —Y'||8Y' |8, Y.

We will estimate each of the terms above individually. In the all of the following estimates we will
use a small 7 > 0 to be chosen at the end of the proof.
First notice that N is analogous to £, from (3.16) and (3.18). Thus similar to (3.25) we have

A ~1
NQ < <a + CK1C17> ||55A2(X/ - Y/)Hi; + Clléﬁ(X’ - Y/)lliévl’ (5.16)

where x; = x;(n) is given by (3.22) and U7 is defined in (3.24). Later we will be able to choose
7 > 0 small enough in so that we have Cx,C;7 < %é. This is our main estimate for the term N,,.

Then the term W] is exactly £,[X’ — Y, X', X’ — Y'] from (3.37). Thus as in (3.43), N satisfies
the estimate

N < 64||c55Az(X' Y’)llig + CrsCrr 118X 7 |1X" = Y1175
1
+6_4||56(X,_Y,)” +C||8sX’ ||22||X' Y/l Clr W, (517)

where k3 = x3(7) is given by (3.46) and as in (3.44) we have

2
2
def o
Wy = WM, oL 071 = n‘2<2 p‘fMH) (1+p2M?). (518)
j=1

This is our main estimate for the term M.
Next we consider N5. After bounding | X’ — Y'| < ||1X' —Y/| |Lg°a then as in (3.43) with (5.2) the

term N satisfies the bounds
s xS 2 2 a2 2 2
N7 < all%AZ(X' —Y’)IILé + CiesC; M2 [|X" — Y'IILSOII5,@X’|| 3
1
+ = 15p(X" = Y") 'ig +C| |5ﬁX’||ié X' —Y’| |250M2C227W2. (5.19)

This is our main estimate for N;.
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Next, we apply the estimate (3.27) to N5 to obtain
1 <3 2 2 2 2
Ns < 6—4II5/3A2(X’ - Y’)IILg + CKsCZTII%X'IIL;oIIX’ = gl
1 / / 2 1112 / 1112 2
+6—4||65(X -Y )||Lg + C||osX ||Lg||X -Y'|| g’CzTWS' (5.20)

where recalling W, = W;[p, M] = C(1 + p~2M?) from (3.30) we define

def (1 + p2M?)

= 5.21
= TGy G20
and
def
We = 921+ p M2 (5.22)
Next, we apply the estimate (3.27) to N to obtain
/1 ~l / ! 2 2 / / 2
No < glI8sA (X!~ Y )||L§ +CiC2 | |65X" =Y N
+ClI8s(X" = Y)II7,Cor M + p~>M*)n~", (5.23)
6
where
? 207212
= —— 0+ p°M°)~. 5.24
% = T+ PTM) (5.24)

We also apply the estimate (3.27) to Ny to obtain
A e 2 2 2 2
No < G lIBRLX = YOI, + CreChr 1K = ¥ IE185Y 117
1 _ —
+ 10X = Y") |§§C||55Y’||§é X = Y|} C M1+ oM 72 (525)

This is our main estimate for Ny.
We will now estimate the terms N, and Ng. From Lemma 5.2, Remark 3.3 and (5.3) we have

[A[X] - A[Y]] S 16X = Y)O)I(p7! + p2(18.X"(0)] + 16, Y’ O)]))
+ | De(X = Y)|I8, Y O (072 + p 7316, Y'(0)]). (5.26)

We thus define
def _,; — _1
W21 = W21 [p,M] = p + P M, sz =p W21. (527)

Then for W, using (3.5) we split it up as

)
8
35
3
3
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e
o
g
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5
g
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o
g
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]
2
g
g
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2
g
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g
s
S
3
5
8
<
2
=
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g
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N < CWzlclr/dQ/ i—f 160X = Y")(O)165Y' (O)]16,(X" —Y")(O)
T T

do
+CW22C17||X’_Y/||L§O/d6/¥ |5/35a(xl_Y/)(6)||55Y'(e)||5ayf(9)|
T T

=N21+N22.
Then for N,; we use (3.27) to obtain
A ! 2216127
< = e I _ v\ |2 _ <17 1112 I _v/12
N1 < g lI85RE (X' = YOI, + 218V I X = Y1
1 2 2 2 W2 2 42
+6—4||55(X’ —Y’)||Lg +C||5/3Y’||L5||X’ -Y'|| ;szlcn’? . (5.28)
And for N, we similarly obtain
2 2 pp2
21 1 CWyLCI M
Ny < =16A2(X" = YN|I?, + ———————18:Y' |17 [IX" = Y'| |2
2 < S8R I+ — 2 2 1Y 17
1
+ all%(X’ = YOI, + ClISsY |12, 11X — Y/ ||} M*W3,CE 2 (5.29)
0 0 0

These are our main estimates for N>.
For the term N, also using (3.5), with (5.2) and Remark 3.3 we will use the following estimate

|AIX] - A[Y]| < CWg|IX" — Y’IILgo,
where
def , 3 g2
Wy =Wg[p,M] = p~ +p*M + p°M". (5.30)

Then for Ny we further use (3.27) to find

2A12 2
Ny < LissRix! - Y12 +c&n6 Y|P IX = Y|
8= 6a!"F L Au(ypryz P e 6
1
+ 2! 165(X" = Y")] |§5 +C| |55Y’||ié [IX" —Y| |280M2W§77‘2C227. (5.31)

This is our main estimate for N.
We will now estimate N5. To this end we use the decomposition in (3.34) as

O A[X] = Ap[X] + AplX], SpA[Y] = Apg[Y]+ AplY].
Then from (5.8) with Remark 3.3 and (5.3) we have the following bound
AlX] = AplY]| S 1656, (X" = Y)(©O)p™!
+18,(X" = YOI (1658, Y'(8)] + 658, X" (8)])p~>
+188, (X" = YOI (16,Y' ()] + |8.X'(©)1)p~>
+180.Y' ()| 1Do(X = Y)(O) (1 + p~'[8,Y"(0)])p 2.
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And from (5.9) we have
|[AsslX] = AlY]| S p7218.(X" = YNO)IS5 DX (©)]
+p7(18.Y' ()] + 18X (O)DISX" — Y)O)I8;D.X (O
+p7 (18X (O)] +18,Y'(©))185Do(X — Y)(O)]
+p7(18.Y(O)] + 18, Y'(O))IDo(X — Y)(O)I(185D.X(O)] + 185D Y O)]).

We thus define W; = Ws[p, M] by

def
Wy Z o7l 4 o721+ M)(1+ p7 (1 + M) + p~*M(1 + M), (5.32)

And then we plug these estimates in, using also (3.5), to observe

N3 < CC17W3AdQAi—Z |5/35a(X' -Y"©O)|6,X’ —Y')(6)||5ﬁZ/(9)|
+CC17W3/d9/— |6584 X' - Y')(Q)Héa(X'—Y')(9)||55DQZ(9)|
+CCWs / d6 / B 556, (X" — YO8 (X" — Y')(O)|18,Z'(6)]
rceirm, [ do [ 55 180,00 - YO8 - )O)IE.2Z'O)

da
+CCr MK =l [ do [ 921688 = Y)O8Y @182/ E)
T T

6
da

+CC WX =Vl [ do [ 92156, - V)OSV @180.20)] = T A

T T j=1
Here we recall the notation Z’ defined above (5.1).
Now for the term N3, we use (3.27) to get
2 02
A ~1 ’ N2 CClTW3 ’ 12 112
N3 < a”%AZ(X -Y )||L; + W”X = Y'|l5:165Z"|| 3
1 ' NI 2 ’ M2 2 W22
+ alléﬁ(X -Y )||L; +Cl||6sZ ||L§||X -Y/|| 5061TW317 . (5.33)

Then because of (3.41), in N3, we can treat |63D,Z(0)| the same as [6gZ’(0)| in N3;. Thus N3,
also satisfies (5.33).
Next for the term M55 we again use (3.27) and (5.2) to obtain
N < A ) 7\§(X’ —-Y)||? ﬂw SsX' —YN|?
55 < 2110 152 + oM 11%s 7

+C|16g(X" = Y")] |izclTW377_lM- (5.34)
¢}
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Then again because of (3.41) N3, also satisfies (5.34).
For the term N55 we use (3.27) to obtain

2 92

s

A’ ~l / ! 2
N3s < a”aﬁAZ(X -Y )||Lg + Ty

M?||65Z |2 IX — Y| |7,

1927117 1 17

1 ! 12 12 / 1112 2 2,=2712
+a||5ﬁ(X —Y)”Lg +C||552 ”L;”X -Y'|| gQCITW3U M-. (5.35)

And again with (3.41) then N5 also satisfies (5.35). These are our main estimates for N.
The last term to estimate is N,. From (3.30) we can bound

da
Ny SWICr|IX = VI /T de /1T 2 1868 = Y)©O)]1855,Y(O)!.
For the term N, we apply Cauchy-Schwartz to obtain
1 ~1
Ny WIGr |IX =Y || [16pA2 (X" — Y’)IIL5|I55A2Y’IIL;-

Notice that this term does not have the same opportunity to achieve an extra smallness using the
regularity from Definition 1.1 similar to the other terms, as in (3.27). Thus, the presence of the term
N, is the reason why we use the equivalent norm with (5.4). For now we apply Young’s inequality

A 1 / AYIA —192 2 / 1112 =1 1112
Ny < aHaﬁAz(X —Y)||L§+Cl WiC |IX' —Y ||L§o||55A2Y ||L§. (5.36)

This completes our individual estimates for all of the terms in (5.15).
Next we collect all the estimates above in (5.16), (5.17), (5.19), (5.20), (5.23), (5.25), (5.28), (5.29),
(5.31), (5.33), (5.34), (5.35) and (5.36) and put them into (5.15) to obtain

d / ATV 3/1 = ! 1N\12
ar 198X = YOI + Zl10pA (X" = YOI,
< CK7<II55X’II2SO + IISﬁY’II230>IIX’ = Y[} + CllsX" = Y17,
]
+Crol 105X = YN[} + C<||5/3X’|Ijz + ||5;3Y’||;>IIX’ — Yl
6 ©
~1 ~1
+Cr Crr 18R (X = Y)IIZ, + ca—1c§TWf||5ﬁAzY’||ig||X' - Y’||2g,.

6

Here we recall (3.22). Further recalling (3.46), (5.21), (5.24), (5.27), (5.30) and (5.32), we define

2 2
def 2 a2 2 2 W Cir

X7 = K3CIT + 'K3C2TM + K5C27 + K6C3T + AIL{(J’)—_I)Z

WHC M?> WMPCs.  CEW;

Au(n=1)? Au(n=1)2 + /1;(;—13)2 1 +M?), (5.37)
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and additionally recalling (5.18) and (5.22) we have

def
Wy = CLWy + M?Co Wy + C Ws + Co MP(1+ p2MP)2n ™2 + W5, CF ™2

+MPWI,Cl 2+ MPWn 205 + € Wi~ (1 + MP). (5.38)
Above we also used the definition

def s
Kg = K6CZ mMz, (539)

and additionally recalling (3.24) we define

def
Wy = 1+ U +Cor M1+ p2M?)n~ ! + CrWin~IM. (5.40)

We now choose 7 > 0 small enough so that we have Cx;C;7 < %A. Next we further integrate in
time over 0 < s <t and afterwards we take the essential supremum in time over 0 <t < T to
obtain

Ao ~1
sup II5;3(X’—Y’)IIi2(t)+5I|5ﬁA2(X’ Y12

0<t<T L3(L)

< 11650K, = YIIZ, + c:<7(||5ﬁX'||Lz ot ||5,3Y’||L2(Lm>> X = Y12

+CRlIGEX" =Y, o+ ClIGE = YOI, o Wo

’ i / !
(||5/3X ||L2(L2 +[18gY ||L2(L2 >||X Y IILOO(LOO)W

1 —
+3T sup 185X = YIS0+ CATC] 185A2 Y'“%z X" —¥'|17
0

LP@yy
Next we suppose that 0 < T < 1, and we use the inequality (3.51) to obtain

1 ! /11/2 !/ !
3 5up 185X - YOl + A l185R3 (X - Yllzaz

1/2
< 185X = Yz + O (185X 200y + 1657 2 )1X = ¥ st
1/2 ’ ’ ' v/ 1/2
[10p(X" =Y )”L%(Lg") +CllopX" Y )||L%(L§)W9
1/2
- C(naﬁxw 22+ 186Y 22 )IIX' = Y'llieasy Wy

1
—-1/2 e
+CATV2Cor 18R Y 221X = Y lipas).

We further integrate the above in dg against |8 ~3/2v(|8]|~") for v defined in (5.4) to obtain

)
8
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1 !’ / A’l/z / ! / /
§||X - Yz + THX = Ylpy <I[IX) =Yl
cl?( 11X’ Y/ X' -y’
+Cx L IXTL 1, + YT 1, 152
1BL) LB )

+oPIX =Y 1, +CTPw,)

X' —Y'|| 5
ek UK =Yl
TV 00,1

1/2
+CT2 (11X 1y + 1Yl JIX = Y llgeamy W,
+ Cl_l/ZCZTHY/HD;HX’ -Y/| Loy

We use the embedding (3.52) to see that || f]| 1, <GS |D;. We also use the embeddings in
LB )
(3.29), Proposition A.5 and then we use Definition 1.1 to obtain

If ey < CUFIL 1 S ClS g2
re L2®B2) T

The last inequality above follows simply because v > 1 in (5.4). Thus we have

1 / !/ /11/2 / ! !/ /
§||X -Ylz +THX = Y'lpy < [IX) =Yl

1/2
+ Cmax{L, MCy; > (Il + 1Y 1y )IX” = Y11

1/2

+CCyx,

X" =Ygy + CT W, |X = Y|

1/2
+CTY2 (11X 11y + 1Yy ) IX” = Y115, 9,

+CAT o 1Y [1X = Y 1.

Now using (5.2) and (5.5) we can choose 7 > 0 additionally small enough so that x; > 0 from (5.37)
enforces

1
C max{1, M}C, 2<||X’||D; + 1Yl ) < 4C max{1, M}C,;°M < 3.

Then we can further choose 7 > 0 additionally possibly smaller so that x4 from (5.39) enforces

1/2
e AP

CCyx, 7

Thus we obtain

31X =Yl + 21X ¥l < IX = Y]
3 B, 1 oy = |1Xy = Ylipr

+CTYPWlIX' = Y|l 5 + CA2Cor 1Y [ 2 [1X! = Y5
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where recalling (5.40), (5.38), (5.2) and (5.5) we define

def 1/2

Wy = w2+ MW/, (5.41)

Next from (5.4) and (1.27) we have that

g . -1 1
Y'||lpr = SsA2Y’ —||IY’ .
Y11 /Tlﬁlwnﬁz 0 * ormaan V1

Since we can bound ||Y’||x < CA71/2| |Y; |13« as in Proposition 3.1 and (5.2), then we can make
T
the second term above arbitrarily small. In particular we can choose C; > 1 large enough so that

Cor l|Y' | Cor |IY!
c,l—l/Z—DT < Cl—lm < C,1—162_T < i
C3; max{1, M} C; max{1, M} Cs 16

It is important that C; = C5(4, C,7) but C; does not depend upon 7. Then for the first term above,
we splitinto |S| < n; and || > 5, for some small 7; > 0. Then similar to (3.19) using also (5.2) we
have

s 1 M
/ |ﬁ|3/2”55 Y/”L%(Lg) = )”Y,”D“ <c———.
o ! /12,u(77 H

For the other part, again with (5.2), we have

/ 4B ||5A Y/||;22 < C 2||7\§Y'|| 2012
B, Iﬁ|3/2 B LE(L3) 771 LE(L))

—-1/2 —-1/2
<cr' Py . <crVemy Y

Lw(Bz 2)

Notice that ( 5 can be made arbitrarily small for ; > 0 chosen small enough. Thus if we choose

ion
7, > 0 small erllough we have

M 1
C/l‘l/ZCZTI— < —.
A2u(nh)
Thus we obtain
X" = Y|l + AY2(X" = Y| py < 411X} — Yyl 50+ CIIX = Y| |5 T /W,

where using (5.41) we define

def )
WS Wy + 97 PMA2C,, (5.42)

The proof is complete. Cd
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5.2 | L? continuity estimate

For some C, > 0 we now suppose for T > 0 that for some ¢ > 0 and 4 > 0 as in (1.33) for some
M > 0 that we have

1
W20 2+ e 12z < CM. (5.43)
T

Notice that this condition is implied by (5.2). Then in this subsection we will prove in the following
proposition that as long as (5.43) holds then the Lé norm of the difference of two solutions to (1.13)
is stable.

Proposition 5.4. Let X,Y : [0,T] x T — R? be two weak solutions to the Peskin problem (1.13)
with tension T (1.14) in the sense of Definition 1.2 with initial data X, Y respectively. Assume
that X, Yy, and T satisfy the assumptions of Theorem 1.6, in particular we assume (1.34). Addi-

tionally assume (5.3) holds with T > 0. Then for two solutions X' and Y' over 0 <t < T we
have

I = Y)Oll2 < CIIX) = Yl

where C = C(M, p,A,Ci7,Cor) > 0.

Proof. Direct calculation gives us that

d o o dadb . ., , : '
X —YIILé —/T/1r — 03X’ = Y') - (K[X]8, T(X") — K[Y]6,T(Y")

_ / / dageaa(X’—Y’)«IC[X](SO((T(X')—T(Y'))
T/T &

_ / / @%(X’—Y’)-(A[X]—A[Y])5aT(Y')=Ilc+IA'
TJT &

Recalling (3.9), we use (1.18) and (5.11) to expand out I as

£= ‘%/ / 20 (X'~ ¥') - DTIX'16,(X' - ¥')
T )t «a

- / / d“feaa(x’—Y’)-A[X]ﬁ[x’]aa(x’—Y')
TJT &

_ / / dadS 5 (%' —Y") - KIX|(DTX'] - DY/ D8,Y = I\ + I+ L.
T/ o
!
Then from (1.33) we have I}C <-AIAX =Y |i2-

0
Next we estimate the following sample term for an integer j > 1 using Proposition A.5 and
Lemma A.6 and Young’s inequality for any small constant ¢ > 0 as

* Korm Krexqrourjuoy/:sdny woiy papeoumod ‘0 ‘z1€0L60T
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da : da i
/def—zlaa(X’—Y’)lzwazwf SC/—2||5a(X/—Y’)||22||5a2’||fm
T Jra a 5 ¢

T

<clix’'=Y'|P, 1z, <clux’=-Y'I1? 1z

1 1 1 i+l
By B2, ey

<CIX' =Y/l 11X = Y112 1121112 ]
H?2 Iz

<cAlIX' Y|, +CAY X/ — Y’||22||Z’||2“ Yz, (5.44)
H2 H?2

Then for 112C we use (3.9), (1.34), (3.18), (5.3) and (5.44) to obtain
Boxc [ do [ SR80 - ¥ 8.X  + o718, X DTN

2 X112,
hevs H2
1+ 2 2

A
<X =Y, IX" = Y'II7,. (5.45)
5 6

Next we will estimate I 13C First similar to (5.44) for an integer j > 1 we estimate
d_a 1yt 1yt 1j
do > 18X = YDIIX" = Y'|[6,Z"|
T T
’ ’ da ’ ’ m
<SCNX" =Yl [ 18X =YDl 2116Z" ||}
o Jra 0 0

< CIX' =Yl X = ¥'11 121

B

00,2

X" — Y’IILIIZ'IIJ 12" g

<ClIX'-Y'|l
H H2

NI

2 1
<cAlIX' =Y'|]?, +CATHIX - Y’I|22IIZ’II(J iz
H?2 a2

Now we use (5.12) with (3.9) and (1.34) to see that

2. (5.46)

|ﬁ[x’] - ﬁ[Y’]| <CrlX' —Y|.

Thus for I 13c with (1.18), (3.18) and (5.46) we have the following bound

S Z/2 ) Zl 3
I;SCCZT//d‘;‘%m(x'—Y’)||X/—Y'|<|5az/|+' < E 1021 )
TJT

‘02
C2
< (14020, + o211

A
1>||Z’||§,1||X’ =Y, + SIX =Y (5.47)
H2 H2 6 12

H?2

These are all of our estimates for I-.
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To estimate I 4 we use the bounds in (3.10) and (5.26) to see that

dadb
Lscr [ [ EREa - vP(e 6.2+ 7152 )
TJT

dadf
rerp [ [ R0 - YOIDLK - VI(18.Z'7 + o 18.2'F) =T + I
TJT

Then similar to (5.44) and (5.45) we have

2
2 11Z'||

A o ah (12115
I < ZIX =Y, + L1+ — X = Y'|I2,.
8 3 A p p L

Also using (3.5) then similar to (5.46) and (5.47) we have

2

2 C2Tp_4 1112 211714 112 / 112 A ’ 112
P<cl— <||z 12, +p211Z] .1>||z 12, 1X = Y112, + SIX = ¥'I1
H?2 H2 © a2

These are our main estimates for I 4.
Now from all of the bounds above we define

EAGIIEE 2
def €7 sl C
oA F I +%(1+p_2)<

J@) = o 2

1+ p741Z' 0)I1* )
H

Then putting all of these bounds together, we get that

d / !/ /
gr (I = YOI < CTONZ IR,

‘We conclude that

t
1K~ YOI, <exp (C/ ds J(SNIZ’(S)llil)”XS ~¥ollzs
0 Gl

Gl
Then applying (5.43) completes the proof. [l

Corollary 5.5. LetX,Y : [0,T] x T — R? be two weak solutions to the Peskin problem (1.13) with
tension T in the sense of Definition 1.2 with initial data X, Y, respectively, satisfying all the con-
ditions in Proposition 5.4. Let u and w satisfy in Definition 1.1 and additionally suppose that there

exists v, > 1 such that % is decreasing for r > r, and in particular
u(r

limﬂz

0.
r—oo Iu(r)
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For any € > 0, there exists 8, > 0 such that for any 0 < § <&, then (5.2) and ||X; — Y(’)||Lé <8
imply

X' = Y| <.

Proof. For any small 7 > 0, we can bound

d
=¥l = [ L aipi) sup 15500 - vl < [+ [
7 18] 0<t<T ° Jigl<n J1gl>n

wn™)
nl/2

< win™)

4 !
< oy (Xl 4 1V l) +

sup [|(X" = Y")(®)Il2.
0<t<T 0

Thus by our assumptions on u, @, X', and Y’, we can take 7 > 0 sufficiently small to guarantee
that

wn™)
um=1)

3
i / <
X+ 1Y 1) < 2
Then applying Proposition 5.4, we can take § > 0 sufficiently small to obtain the result. [

6 | HIGHER REGULARITY

In this section we establish the gain of higher regularity for the solutions X'(t, 6) to the Peskin
1

problem (1.13) satisfying (3.1), (3.2) and (4.2). In Section 6.1 we prove the Cfx estimate. Then in
Section 6.2 we prove the Ctl;" estimate and the higher regularity.

1

61 | C Ex estimate for X'(t, 0)

L,

1
We now prove the C;” estimate for solutions X’(t, 6) to the Peskin problem (1.13). We first prove
in Lemma 6.1 a general estimate of some quantities that will come up repeatedly in subsequent
estimates.

Lemma 6.1. For any q € N we have the following uniform estimates:

yqdﬁfAZ—fAde

zqdifA%Ade

2

2(q—-1) 4
S X IIX'IIHI,
2

da
/ 22 15.x/(0)1718,6.X'(@)
T

2
2q 4
SIX X1, -
H2

/ 2 5.x/@17+118,x/ @)
g
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Proof. Fix q € N. We apply Minkowski’s inequality in 6 and «, and then we use the Cauchy-
Schwartz inequality to obtain

1 2
da ! ! 2 da 712 112 5
[ae| [ Euxemssxel <| [ [ wioxpisex
T T T T
da g
q
< </T§||5ax'||L;c||656aX’||Lg>
<IN, 185X 112
oqu
and similarly
2

A

1
’ da 712(g+1) ’2 2
< — do[5 X" |?9 V15X |
T2 LUt

2
doc q
</T;||5QX’|| z(qﬂ)naﬁX’nLgo)

2(g+1) 2
<IXIPED 185X | P
2(g+1),g+1 6

/

da
=z 18.X"(8)|7%1 18X (6)]
T

IA

Integrating against ;—f we obtain

) < IX'I1 l,zq/@naﬁX'nHw SIX P, I

oqu oqu

1/(g+1) 1/(g+1) BY2°
2(q+1) g+1 2(q+1) q+1 oo 2

2 1 5 2 1
2, <X /ﬁznaﬁx'nLMnX’n(q” X2

Then above we will use || X’| |21 n S < |IX |f.{ , from Proposition A.5 . Finally, since g > 1, applying
2

Proposition A.5 and Lemma A.6 gives

’ 112(@=1) 1y
X122, S IRy S DX IR,
oqu
71,2(q+1) 71,2(q+1) ’ ’
X100 S IR S I X,
2(g+1),g+1
completing the estimate. ]

Let X’ be a smooth solution of (1.13) with (1.18) and (1.19), we will use the equation in the form
(4.1). Next we prove the H' estimate.
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Proposition 6.2. Forany 0 < t, <t < T we have the following estimate
t
X112, () < 1IX]12,, (o) exp <C||H||L°°(t0,t)/ dSIIX’IIip(S)) (6.1)
lo
Here H = H(s) = H(||X' ()] 1,07 %,A7Y, Cr, Cor) is a polynomial that is written explicitly in
H2

(6.5). Thus in particular we have that

IIX'112,, () < CM, . p, 4, Cor, COIIX |12, (to). (6.2)

Proof. Notice that we use || X’| |?{1 = [;d6 |AX'(6)|? with (1.40). Thus from (4.1) we have
Ld i = doRax’ - KT(X! o Rax' - A3V 6.3
55” 5 =— 8 : X" + g . . (6.3)

To estimate the first term we split
A3PT(X') = DT(X'(0)A/2X’ + H,,

where similar to (3.8) and (3.9) we have

4 T 0(5/2

1
7, L / d_“< / (DT(X’(@)+s5aX’(6))—DT(X'(G)))ds)éaX’(G).
0

Then similar to (5.13) we have
|DT(X'(6) + 56,X'(6)) — DT(X'(6))| S Co718. X' ().

Then using Minkowski’s inequality and the Besov space embeddings in Proposition A.5, we bound
M, in L? as

IHullz < CzT/ S 116 X'IIL4 < GorlIX! II23/4 S GrIIX'II,

By,

Recalling DT(z) > AI from (1.33), applying Young’s inequality we thus have

3 3
—/de RaX' - RaT(X') < —AlIX'|12 | + COyr [IX'1] 5 1IX'112,
:

3
H2 H?2

(6.4)
< ——||X’||2 +CA” 1CZT||X’||4.1.
H2
This is our main estimate for the first term in (6.3).

1
To estimate the second term in (6.3), it suffices to bound A2 V from (4.1) in L2. This is equivalent
to bounding fT fv d6(83V(6))*. Thus, we have

R~ [ 5

doc 2

N

65[A(6, )6, T(X'(6))]
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[
vl

We now use (3.15), (3.18), (3.2) and Lemma 6.1 to calculate that

da
/T 92 40,01 1655,

—Z‘|55A(e, )| 748, T(X'(6))]

2
= H2+H3.

C127(p_2y1 + p_4y2) + Cgr(p_zzl + p_4Z2)

S+ c27||x'||2 D7+ p X1 DX,
H2

N

These are our main estimates for the term containing H,.
To bound the term H3, we will use (3.10) and the estimate of |53.4(6, a)| in Lemma 3.6, (3.38)
and (3.39). Then as in Lemma 6.1 we have

H3 S Cfr(p_zyl + P_4y2 + 9_421 + P_6ZZ)

SCL 2+ pHIX I, +p O IXII* DIX'IIE,
H2 H2

Notice that above the estimates in (3.39) with [63D, X (6)| can be treated the same as |55X "6)| in
Lemma 6.1 due to (3.5).
Thus putting everything together, we have that

1
2

~ —2(1v/ 14
1Az Y X1,

I 3 CEp™ + e IX I, (L 2 IIXIE DI, +Chrp

1 1
H2 H?2

Thus for the second term in (6.3) after applying Young’s inequality we have

3
/deKEX’-Az %nx'n2 +caic?
.

H2

-2 4
2 o2 IX |1,

+CATHC P72+ G2 IIX 1P A+ 21X 112 DX,

17'/0 1 1
H2 H2

From the above estimate and (6.4) we are motivated to define H = H(s) by

def

H= Ao 1(c1,p—2+c§,>< 2UX/G)IP, (+p 2 (KGR )+ ) 65)

1 1
H2 H2

We plug these estimates into (6.3) and apply Gronwall’s inequality to get (6.1).
Recalling (4.2) and noting that

IIX’IILDoH% S X X 2 S 1IX e,
t

then gives (6.2). O

Next, we prove the gain of H! for small times.
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Lemma 6.3. Let X' be a solution to the Peskin problem (1.13). Then for any fixed € > 0 sufficiently
small, there exists a time T, = T(¢, p, u, M, 1) > 0 such that forall 0 < t < T, we have

X (6) < et™1/2,
Proof. For a fixed € > 0 by Lemma 4.1 for all ¢ > 0 sufficiently small we have

t 2
PR e“log2
[ asti, @ < (66)

Then as

t

2 21 2
/ dss = £982
12 4s 4

there must some time ¢, € [t/2, t] such that

2
€
X712, (1) < — < =,

~

£
4t
Then combining the H' estimate (6.1) with Lemma 4.1 gives us that

t

2 > )
X112, (1) < = exp( C sup H(s) [ ds|IX'[]%,(s) ) < Sexp|C sup H(s)? )<,
= 2 t/2<s<t t)2 H 2t t/2<s<t t

so long as ¢ is sufficiently small. O

/2

0 estimate.

Next we will prove the Czl
Lemma 6.4. Let Q; = [%, t] X T for all times 0 < t < T,, where 0 < T, < T, for some fixed ¢ > 0

and T, as in Lemma 6.3. Then there exists a finite constant C = C(u,M, p, 1, Cy7,Cyr) > 0 such
that

1> RV~ ct1/2,

@)

Proof. Combining Proposition 6.2, Lemma 6.3 and the embedding in Proposition A.5 gives us for
any time t /2 < s < t that

X' Ol 2 S XSl S 6772 6.7)
2]

Thus X’ is uniformly C'/2 in 6 on the time interval [t/2, t].
To show Holder continuity in time, let t/2 < s; < s, < t, and 8 € T. Fixing some a > 0 to be
/% estimate above we have for i € {1, 2} that

(s, 0) — -
X605 |

determined, by the C;

apx's,0+9)] 5 1/% (69
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Taking the difference of the two averages at times s; and s,, we get that

i/adﬁ(xxsz,e+5)_x'(sl,e+ﬁ))] - ‘%/_dﬁ/ ds 6.X/(5.0+B)|. (69)

2a /_,

Applying Cauchy-Schwartz in the d integral to equation (6.9), using Lemma 4.2 and (6.7) we get
that

1 a 5y 1 5y
L / ap / dsatx’(s,ew)'s— / ds [19.X(5)l 12
2 ) o Sy Va /s

1

” ’ sy — 811
ds [IX'()lg S ——. (6.10)

L1
> el Jat

Taking a = s, — s; > 0 and combining equations (6.8) and (6.10) then gives us

|51 —Sz|1/2

!/ /
X (52,6) = X'(s1, )| $ 77

This completes the proof. O

6.2 | C'* estimate for X’

With Lemma 6.4, we have shown that our solution X’ is in CY/2 in both time t and the

parametrization 6. Our next goal is to prove that X’ € C:’g‘([r, T] x T;R?) for any fixed 7 > 0.

Our proof follows from the paper [41], where the authors prove regularity estimates for the
(scalar) fractional porous medium equation

d,u + (—A)°/2p(u) = 0.

They make similar assumptions on their scalar nonlinearity ¢ as we make on our tension map T,
and their proof transfers over to our vector valued case.

We shall go through the argument of [41] and show that it applies. But first, recall that X’ solves
the equation

9, X' + AT(X') = V(t,0),

where V is defined in (4.1). Thus, we are dealing with a fractional porous media equation with an
additional forcing term, so we shall need some estimates on V.

Lemma 6.5. Let V(t,0) beasin (4.1). If X' € Lf"Hé, then

V(t,0) EL;”%.
IfX' e Ctﬁeforsomeé < B <1, then

V(1,0) e,
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IfX' e Cze’ then V is log-Lipschitz. Finally, if X' € C FandT e C, ﬁfor somek>1,0<B8<1
then all k-th order derivatives of V are log-C¥.

Proof. To prove the L*™ estimate, as in (4.3) we bound

11X’ @I X' @O1°

5.X'1> 16X B B
eorser [T B g ol =
g
ce (s Xl py1/2 IIX’IILmHl
S + .
17 - 5

With Proposition A.5, we just used the following embedding and interpolation ||X’|| VAR
1 2 =
S IX S,
H2
Now assume that X’ € Cﬁ for some 1/2 < 8 < 1. Letting ® = (¢,0), and ® = (s, ¢), we need
to bound the difference of |V(®) V(®)|. To begin, we split .A from (1.19) into two pieces .A; and
Ap» where

X1l
H

N

def XX +6,X") - P(D.X(6))D, X(e) (5;X’ +8;X') - R(DX(6))D,X(0)
t ID,X(6)|2 ID,X(6)|2

R(DoX(6)),

and

dgf 5;X’ -P(DaX(e))c?;X’ 5;X’ . R(DaX(e))aon/
Q IDX(6)? 1D, X(0)]

R(D,X(6))

5. X" - (P(DX(8)) — 1) X'
IDX (6)]2

P(DeX(6)).

Correspondingly, we define ¥, and Vy. We will focus on proving that V; is C?%~1 when X’ is
CP. Since X’ € L® n CP then Ag is min{|«a|?,1} smoother than A; so that the proof for Vo
follows similarly.

To show that V; is 28 — 1 Hélder continuous, fixany ® # ® € [0,T] X T

(67 + 6)X'(©) — X' (®)] |6,X'|

V.(0) = V(@) 5 9T / da
o Jr

a2
LGr [ 4, 16a 480X 18.X7(6) ~ 6.X'(P)]
T a
C [(8F +6)X"] 16,.X'|
= | daTm = ID.(X(©) - X(@))]
.
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(I1X'(©) = X'(®)| + |7,(X"(©) — X'(D)|)

Cor / |65 +8)X"| 18.X"]
— [ d
+ g a 2

Cir Cir Cir Cor
=+ X+ 2+ 2L, (6.11)
p e T 2R e

Note that above and below when we do not write the dependence on the variable ® or @ it is
because it will not have an effect on the following argument.
As 3 > 1/2, we can easily bound

[(6F +6)X'| 16X
[ aal RO O U, + I
T
Thus
L+ 1 SUIX112, + X 1EONX o510 — @fF. (6.12)

To bound I; and I,, we split each integral into the regions where |¢| < |® — ®| and || > |©® — D|.
For small «, we use the bounds

18 X"1, 185X S 11X || celaxl?,
and for large o we bound
153 + 82)(X(©) — X' (®)] 18.X"| S 1X']12,10 — @7 ],
(6% +62)X"| 16.X"(0) = 6. X' (@) S 1IX"117,10 — @IF|arl.
Plugging in these bounds, we then get that

L +1 S IX']17,10 — @ (6.13)

As 2 —1 < S8, plugging in (6.12) and (6.13) into (6.11) gives us that V; € Cig_l. The proof for V,
follows similarly, giving the result for V.

Now suppose that X’ is Lipschitz. Then again focusing on the V; bound, we again are left to
bound (6.11). As V is bounded, we may assume without loss of generality that |@ — ®| < 1. We
can bound I, I, using the same argument as the 1/2 < § < 1 case to get

I, Ly S UIX 12, + IXNENX |cor|© — @I (6.14)

2
co.1

To bound I, I, we now need to split our integral into three regions. For |a| < |® — ®|, we again
use the bounds

16X"1,182X"| S 11X [|cor |al- (6.15)
For |®@ — @| < || < 1, we use the bounds
(8% +8:)X'(©) =X (@)] 6.X"| S IX"|1,,1© — @] |al,

(85 + 62)X"118,X"(0) = 8. X" (®)] S [1X"[I2,10 — @] |at]. (6.16)
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62 | CAMERON and STRAIN

And for || > 1, we use
182 + 6)X"(©) = X" ()] 18, X" S [1Xlcor |IX |11 1© — @],
(63 + 8)X"| 16,X"(©) — 6, X"(@)] S 11X [Icor [IX' || |© — @] (6.17)
Integrating and plugging in the above bounds (6.15), (6.16) and (6.17) we then get that
L+ I S X lcoa(H1X | con + 11X [|Le)(1 — log |© — @[))|© — D|. (6.18)

Plugging (6.14), (6.18) into (6.11) gives us that V is log-Lipschitz.

Now assume that X’ € Ck’ﬁ and T € Ck’ﬁ for some k > 1, and 0 < 8 < 1. We claim that for
every 0 < j <k that a{a ’v is log-CP. The difference of |6J 3k JV(G)) - 6J k= JV((ID)l can be
bounded by the sum of a number of integrals. They can all be bounded s1m11arly as above but
for clarity we will directly show how to bound the two most difficult integrals, namely

5

16/05 (8% + 8,)(X'(©) — X'(@)] |8, X'|
Jl =/d
T

o2

5T +8)x . .
I, = / da—l( = +a2°‘) | 5,DFT(X'(0®)) — 8, DFT(X(®))| |10, X" |/ |1X" |k,
T

Without loss of generality, we assume |® — ®| < 1. To bound J;, we again split our integral into
three regions. For || < |® — ®| we use the bound

Iaj 3y (65 + 86X/ (©) = X'(@)] [8.X] < 11X [| s [1X [ coa ||+,
For |® — ®@| < || < 1, we use the bounds
18]35 3y (8 + 8)(X'(0) = X'(@)] 18.X"1 S 11X |1 cks | 1X[[c011© — @[ fa].
Finally for || > 1 we use
16/85 /(8% + 8)(X"(©) = X'(®)] 18X'1 < 11X llcks||Xl]+1© — 0.
Plugging these in, we get that
J1 S X ks ([1X |cor + [1X"]]2)(1 = log |© — @[)|© — @[,
The other important integral to bound is J,. Note that
19XV 1X"" [FT < [IXV]1%,,-

To bound the rest of J,, we split the integral into the same three regions for «. Using the three
bounds

(8% + 8)X'[ 16, D*T(©) = 8, D T(®)] S 1Tl crslIX 11, Il P,
(8% +8:)X'] 16.D*T(©) — 8§, DXT(®)] S |ITlIcks [1X' 112,10 — @1F|al,

(8% + 62)X"| 18, D*T(©) — 6, D*T(®)| S || TlIcks X lIcor [1X' |10 — D7,
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for small, medium, and large a respectively. Plugging these in, we then get that

T2 S Tl s 1X NS UIX Hcor + [1X|1)(1 — log |© — @)|© — |~

All the other integrals involved in bounding |6tj ag‘f Y(0) — 6{ a‘g‘j Y(®)| can be bounded either
following similar arguments, or by using only lower order norms. Thus all k-th order derivatives

of ¥ are log-C¥. [l

With the regularity estimates for ¥V, we can now slightly modify [41]’s proof of regularity for the
scalar fractional porous medium equation. The crux of their argument is an a priori estimate for
solutions to the fractional heat equation.

Lemma 6.6. (Vdzquez, de Pablo, Quirés and Rodriguez [41]) Let f,g : [0,T] X R — R be such
that

atg + Ag = Af,

Fix ©¢ = (ty,6y) € (0,T) X R. Suppose that there exist some 0 < f3,¢ <1 and ry > 0 such that f
satisfies

|f(©1) = f(©p)] <c|®; — ®o|ﬁ+€,
1£(©1) — f(©)] < cré|®; — ©,F,

forall®,,0, € B,(0y) ={0 : |®@ —0Qy| <r}and0<r <r,,.
Then g satisfies

18(0) + @) + g(©) — @) — 28(0)| < |D|F+e.

Note that Lemma 6.6 above is a collection of Lemmas 4.1, 5.1, and 5.3 from [41]. Lemma 6.6
effectively says that if f is C# everywhere and C#*¢ at a fixed point ©,, then so is the solution g.
We also remark that Lemma 6.6 generalizes automatically from R to T. Also as in Section 1.6 then
Lemma 6.6 generalizes automatically from d,g + Ag = Af to 3,g + Ag = Af.

Asin [41], we apply Lemma 6.6 repeatedly to steadily improve the regularity of our solution X’
in a bootstrapping argument.

Proposition 6.7. Let X : [0,T] x T — R? be the solution to the Peskin problem we constructed.
Thenforany0 <t <T, X' € C:’eﬁ [r,T]x T;R?) forall0 < B < 1.

Proof. To begin, fix some point ©, = (t,,0,) € (z,T) X T. Let ¥V be the solution to the equation

VO(r/2,) = X'(t/2,). (6.19)

{atVOO + DT(X'(0,)AV® = —V[X'],
Together Proposition 6.2 and Lemma 6.3 imply that X" € L®*([7/2,T];H 1(T; R?)). Thus in par-
ticular, by Lemma 6.5, V € L®([t/2,T] x T). Notice that (6.19) can be diagonalized using Vo -
X’(®,) and V® - X7(®,)*. Then since V® is a solution to the fractional heat equation with
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bounded initial data and bounded forcing term, we thus have for any 0 < § < 1 that
Ve e Cf([7,T] x T), (6.20)

~ def
with the constant depending on 7,8, ||X’||1e, ||V||i=,A, and C;7. Now take U®(t,0) =

X'(t,0) — V©(t,0). Then using (4.1) we see that U solves the system

3,U% + DT(X'(0p)AU® = AF®o,
U®(z/2,) =0,

where
F%(t,0) = DT(X'(0)X'(t,0) — T(X'(t,0)).
Note that F©o satisfies

|F®(©,) = F%(8)| = |T(X'(©,)) - T(X'(8,)) — DTX'(0))(X'(©,) — X' (®y)|

< GrIX'(©) —X'(0y))?, (6.21)
and

|F®(©,) = F*(8,)| = IT(X'(©,)) - T(X'(0,)) - DT(X"(0))(X'(©,) — X'(0,)|

-I(/

< Gy max{|X'(0,) — X'(0,)], |X'(0,) — X'(0y)}|X'(6,) — X'(0,)|. (6.22)

1
dsDT(sX'(©,) + (1 — $)X'(©,)) — DT(X’(®o))>(X’(®1) -X'(0,)

We will use (6.21) and (6.22) to apply the bounds in Lemma 6.6.
Let U? " = % . X7(®,) and Ug) 0 = U® . X7(®,)*. Then using (1.33) we see that Uf) 9 solves
the scalar equation

3,U + T'(IX'(©)DAU." = A(F® - X7(0y)),
U(z/2,-) =0,

e}
and U, % solves

0 , TUX' O %779 _ 7%/ 10O Y7 L
a,gz T ey 02 = AETE-X1(60)7),
U /2, =0,

Note that from (1.33) and (1.34) we have

T(X'©0)) _

T’/ /
AT (X O, e <

17 -
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As F©o satisfies (6.21), (6.22) and X’ € Ctlgz

Lemma 6.6 to Ui@" with 8 = ¢ =1/2toget

by Lemma 6.4, after rescaling in time we can apply

U (@ + @) + U (0, — @) — U (0y)| S |2l

where the constant depends on ||X’||1/2, 4, Ci7, and C,7. In particular, we have that U® is CP
at @ for any 8 < 1. As X’ = U® + V9, we thus have for any § < 1 that

IX"(©) + @) — X'(0y)] < |®F.

Since ©, € [, T| x T was arbitrary, we thus have that X’ € C8([r, T] x T; R?) forall 0 < 8 < 1.
But now as X’ € CF for all 8 < 1, by Lemma 6.5 we have that V is C? for all § < 1 as well. Thus

as V9 solves (6.19) with a C# forcing term, we must have V e CY8([r,T] x T) for any g < 1.
As F9 satisfies (6.21), (6.22)and X’ € Cf 0 after rescaling in time we can again apply Lemma 6.6

to Ul.@0 with for any e = 8 < 1 to get
[U®(©g + @) + U (6, — @) — U (8))| < 2.

Since X’ = U® + v®© and ®, € [r,T]x T and B < 1 were arbitrary, we thus have that X’ €
CHY([r,T]x T) forall B < 1. g

Proposition 6.8. Assumethat7T € C*7([0, o)) forsomek > 2,and 0 < y < 1. Thenforanyt > 0,
X' e ckr([r, T] x T; R?).

Proof. If k = 2, we will show X’ € C?”. Else, we will show that X’ € C%# for all 8 < 1 and then

proceed by induction on k.
So to begin, we will prove that X" € C17. Differentiating our equation for X’ (4.1), we get that

3,X" + ADTX)X") =V'. (6.23)

Fix some point @, € [7,T) X T. Then we can rewrite (6.23) as

3, X" + DT(X'(O)AX" = V' — X" (0,)ADT(X")

—A[(DT(X") = DTX'(©)(X" — X" (8y))]. (6.24)

As in the proof of Proposition 6.7 again take V' to be the solution to

o (O )AV® = V[X'] — X"(©,)ADT(X’
{atV + DT(X'(©)AV® = V'[X"] - X" (€,)ADT(X"), (6.25)

VO (r/2,)=X"(t/2,").

By Proposition 6.7 and Lemma 6.5 we have that V' € CF forall § < 1.Ifk > 2, then ADT(X") is C*
for all 8 < 1, and if k = 2 then ADT(X’) is C”. Thus V® e CY8([r,T] x T) forall < 1ifk > 2
and V® e CY([r,T] x T) if k = 2. Taking U% = X"’ — V%, subtracting (6.25) from (6.24) gives
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us that U®o solves

3,U% + DT(X'(0p)AU® = AF®o,
U®(z/2,-) =0,

where

F%(0) = (DT(X'(®)) — DT(X'(0:))(X"'(®) — X" (©,))
= 0(IX""(©) — X"'(0))|?) = 0(|© — 6,|?),

for all § < 1. Using Lemma 6.6 and following the same argument as in Proposition 6.7, we then
get that U® is C? at @,. If k = 2, then we get that X”' = U® 4 V© is C'7. And if k > 2, then
X" is C'# for all § < 1. A symmetric argument works for 4,X’, so we get that X’ € C2# for all
B <1ifk>2andX’' € C* ifk = 2.

‘We now proceed by 1nductlon Suppose that we have proven that X’ € C/f for all § < 1 for
some j < k. Let 8/ = 9, 6] for some 0 < I < j be some j-th order derivative. Then for any ©, €
[z,T] X T, similar to (6.24) we can write the equation for /X’ as

8,(0'X") + DT(X'(O)A' X" = 3/Vv — A(0T(X’) — DT(X")3/X")

- 30'X'(0))ADT(X’) — A[(DT(X") — DT(X"(©))(8'X" — 3'X'(8y)].

Then Lemma 6.5 8/V is CF for all § < 1. Since k > 2, ADT(X") is also C? for all 8 < 1. Finally,
AT(X") — DT(X")3/X") is either CF forall g < 1ifk > j + 1, 0rits C” ifk = j + 1.

Thus by defining V', U®,and F® analogously, we can follow the same proof scheme as in
Proposition 6.7 and get that 3/X’ is C1f forall g < 1ifk > j + 1 or d/X’ is C1" ifk = j + 1. Thus
by induction, we have that X’ € Ck7 if T e Ck7. O

7 | PROOF OF THE MAIN THEOREM

In this section we will collect the previous a priori estimates to explain the proofs of our main
theorems from Section 1.3. We will use an approximation argument starting with the existence
and uniqueness theorem for general tension from [36]:

Theorem 7.1. [[36, Theorem 1.2.9 on page 17]] From (1.14) we suppose the tension T : [0, ) —
[0, 00) satisfies T (s) € h'7 (0, o), for any fixed 0 < y < 1, is such that both T (s) > 0 and T'(s) >
0. Consider the fully nonlinear Peskin problem (1.7) and (1.9) with initial data X, € h'7(T)
with |Xy|. > 0. (a) Then there exists T > 0 such that (1.7) and (1.9) has a unique solution
X(t) € C([0,T]; K7 (T)) n CL([0, T]; K%Y (T)). (b) There exists some € > 0 such that if Y, € h'7(T)
with ||Xo — Yollj1r < € then (1.7) and (1.9) has a unique solution Y (t;Y,) € C([0,T]; k27 (T)) N
C([0, T]; h®7 (T)) corresponding to the initial data Y, where T > 0 is the same as in statement (a).

In Theorem 7.1 recall that the little Holder spaces h'7 are the completion of C* in the C'7
norm and that C1* C h'” whenever a > y > 0. We refer to [27, 36] and the references therein for
further discussion of the little Holder spaces.
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1

Now let X/ € BzE L(T; R?) with |X,|. > 0. We choose p such that X, satisfies
|X0|* 2 3P > 0.

Then by Lemma 1.15 there is some function u satisfying the conditions of Definition 1.1 and a
constant M > 0 such that

X)) 1, <M < co.
R

2,1

Let the scalar tension 7 : [0, c0) — [0, o0) satisfy the strong bounds (1.32), (1.33) and (1.34).
Next we define the following approximations

Xou(a) = ) Xp(k)eks, n>1.

[k|<n

Above, for k € Z, we define the standard Fourier transform on T as
~ _def 1 )
P00 = Fi0 S oL [ fleetda.
T Jr

Then X, ,(«) is smooth, ||X; || 1 < XG0 1 , <M for all n, and we have
§ BZ’ Bz’
2,1 2,1

1 1
L= LM

/! ! : 2 2
XO,n - Xo asn — oo in B2’1 ﬁBZ’1 .

1
Since 322 1 controls the L* norm as in Lemma A.8, we have

||5/3f||Lg
Wil 5 [ a1 )

,1

Using this estimate and (4.4) then as n — oo we also have

— 0.

[1X0ls = 1Xo.nle| S 11X —X( I 1
BZ,]
We conclude in particular that |X |, > |Xy|. + o(1). Therefore, for any small ¢ > 0 there is
1 < N, < oo such that |X ,|.. > |Xp|. — € > 0 for all n > N.. Since we will be taking the limit as

n — oo, without loss of generality we can take N, = 1 by throwing away the first N, terms in the
sequence and relabeling. Specifically we choose € = p and then we have

|X0,n|* > Zp >0

uniformly. We also have X,,,, € h"(T) foralln > 1andany0 <y < 1.
Then using the result in [36], as stated above in Theorem 7.1, we have that there exists a unique
solution

X,(t,6) € C([0, Trmax]; hl’é(T)) N CH ([0, Trnax s ho’é(T))
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to the fully nonlinear Peskin problem (1.7) and (1.9) with tension 7 for some time T,y >
1

0. Notice that over 0 <t < T, the solution to (1.7) and (1.9) in C(]O, Tmax];hl’E(T))n

01

CL ([0, Tynax]; b °2(T)) has enough regularity to be a weak solution the equation (1.13) with kernel
(1.18) in the sense of Definition 1.2. If T\,,x < oo then either

limTinf X, ()], =0,

L' max

or

limsup [|X7 ] .1/2(t) = co.
2]

t—=Tmax

We will show that our estimates imply that this cannot happen over a uniform time interval that
is independent of n.

To this end, since the tension 7 satisfies (1.32) and (1.34) then our previous a priori estimates
apply. Next let Ty, be defined by

T:, = inf {T SERD AESBUE] A[ES SM}, 7.2)
where c and 1!/2 are the constants in Proposition 3.1. We further define T, by
T, =inf{t >0 : |X,(0)]. < p} (7.3)
We then take the time T* to be the minimum of the two
T* = min{T,,, T;}. (7.4)

Since under our assumptions the norms |[|X}||;« and [|X}||,+ are continuous in T > 0 then we
T T

have T* > 0. We will estimate this time T* from below in terms of M, u and p. We will show that
T* can be taken independent of n and T\, > T*.

We then estimate X/,(¢) on the time interval [0, T*]. We shall first consider the case that Ty <
T;f, and get a lower bound on T, using Proposition 3.1. For 0 < ¢ < T* under (7.2), (7.3) and (7.4)
we have that

XNl 1, < 5M, (7.5)

2,1

and
X, (0], = p > 0. (7.6)

Then for U = U'[M, p, A, Co7,C7] as defined in (3.48) with (3.24), (3.32) and (3.47), we obtain
from Proposition 3.1 for 0 < T, sufficiently small that

1/2
CTy UM, p, 4, Cor, Cir] <

N

Thus we can plug this back into Proposition 3.1 to obtain
1
SIX g+ A2 e < 201X e < 2M,

which holds for all T € [0, T)]. Thus Ty, > T, > 0 uniformly in n.
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Next, suppose that Ty, > T;. Let T* be as defined in (7.4), then we have (7.5) and (7.6) over
0 <t <T* and we also have (7.1). Thus for a fixed 7 > 0 to be chosen sufficiently small, then
breaking up the integral on the right-hand side of (7.1) into |8] < 5 and |3| > 7, we get in general

that
1651112 161112 11651112
— dB = — — d
/wr 1BI3/2 g /|ﬁ|<n 1BI3/2 b B>y 1BI3/? g

185 £11z2
SM(,,l_l) /T |§|C/2L u(IB1~)dp + l/znfnL

Since u(n~')~! — 0 as  — 0, then under (7.5) for any ¢ > 0, we can choose 7 = n(u, M,c) > 0
such that

€
1Xn(6) — X ||L°o<§+1—/2||X’(t) X)) ol

for some universal constant C > 0. Thus, it remains to control the continuity of X/,(¢) in L?. Then
from Corollary 4.3 over 0 < t < T, uniformly in n we have

t
/ 9,X ;,(s)ds
0

Then by taking T, sufficiently small for some time T, = T,(u, M, p,€) > 0 and using using (4.4)
we can guarantee that

T/

DAGED GRIEES ‘ / 118:X/,(s)||12ds < C, T,

||Xn(t)|>< - |X0,n|*| < ”X:l(t) _AX(/)JLHL‘Jo <g 0L5t< Tp. (7.7)

In particular, taking ¢ = p we can guarantee that (7.6) holds over 0 < t < T, uniformly in n. Thus
T; 2 T, > 0 uniformly in n.

In particular then (7.6) and (7.3) imply that Ty, > T5. Next we consider T}, > 0 defined in
(7.2). By Lemma 6.3 we have for any small ¢, > 0 that ||X/,(t,)||;1 < co uniformly in n. Then by
(6.2) for any t, <t < Ty, we have X, (Ol S 11Xt | g1 - Further from Proposition A.3 and
then Proposition A.5 we have

P AGIIN o = [1X, O RS IOz S HX Ol S 11X E) -

9 Bco,co

Then using (7.1) and (7.2) we have ||X},(¢t)|| e <C D46 1= 5CM uniformly in n over 0 <
B2,1
t < Ty, . We conclude that Tyyax > Ty, Thus Tiax > T* > 0 uniformly in n.
Thus our sequence of solutions X, (¢) are all defined uniformly in n on the interval [0, T*]. They

also satisfy the uniform bounds
X115 + A2 IX I < 5CM,
inf0<t<T |Xn(t)|>k 2P, (78)

| |Xn | |C[2:§([T,T]XT) S C(M’ #7 /17 ClT’ CZT7 T, ﬁ)’ VO < ﬁ < 17

where the last bounds follow by Proposition 6.7. After passing to a subsequence, we then have that
the sequence converges strongly in L;"’B;/lz N LtzH g N Clzo’f((O, T] % T) to a limit X (¢) satisfying the
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same bounds in (7.8). Thus X (¢) will be a strong solution to the Peskin problem with tension 7 and
initial data X, in the sense of Definition 1.4. Thus Theorem 1.6 follows, and the higher regularity
in Theorem 1.6 is a consequence of Proposition 6.8. Theorem 1.8 is then a direct consequence of
Corollary 5.5.

Alternatively, for a tension 7T satisfying also (1.35), then by Proposition 5.1 using the equivalent
weight v in (5.4) we have

1
|1X), = X715y + 222 11X, = Xy 12 < 811XG,, = X015

From (5.5) we have ||X(’),n —X(’),ml | <2 |X(’),n — X(’),ml |ge = 0asm,n — oo. Therefore {X/ (¢)}isa
Cauchy sequencein B N Dy over0 <t <T =T". SinceX(’),n — X(in B*asn — oo then X (t) —
X'(t)in B]. n D} over0 <t < T = T*. Then thelimitX : [0,T*] — R? is a solution to the Peskin
problem (1.13) for tension 7 with initial data X,,. Now Theorem 1.11 follows from Proposition 5.1.

Lastly, suppose that our scalar tension 7 only satisfies the weaker qualitative assumptions
(1.31). We again assume that X, satisfies ||X(’)|| L <M and |X,|, >3p>0.Let 7 : [0,00) —

21

[0, ) be such that
T(r)=T(), p <1 < |IXgllLe + p, (7.9)

and 7 satisfies the stronger assumptions (1.32), (1.33) and (1.34). Then by the above argument,
there exists a strong solution X : [0, T] x T — R? to the Peskin problem with tension 7" and initial
data X,,.

We claim that X(¢) is also a solution over [0,T] to the Peskin problem with our original tension
T as well. To see this, notice that (7.7) implies that

IX'() = X)|lp« <p, 0<t<T. (7.10)

We conclude that p < |X(t)|, < infg |X'(¢,0)] < ||X’(t)||L§o < ||X(’)||L§o +pover0<t<T.Thus
combining (7.9) and (7.10) we obtain

X' 6+ )PD,X)X' 6+ a)T(X'|)6 + a)

0X(1.)= [ da s 23X (®)
_ X'6+a)PDX)X' 0+ ) T(X'NO + )
- 5. X1 X+l

We conclude that X(¢,0) is a solution to the Peskin problem (1.13) for our original tension 7 on
the time interval [0, T]. The gain of higher regularity in Theorem 1.5 follows from Proposition 6.8.
We thus conclude that Theorem 1.5 holds.
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APPENDIX A: LITTLEWOOD-PALEY DECOMPOSITION ON THE TORUS

In this appendix we will state and prove some important Besov space embedding inequalities in
the torus that are used in the main text. Then we will work on T¢ = [—7, 7]¢ for d > 1 since
all the results are the same in any dimension. To this end we quickly build the Littlewood-Paley
operators on T¢. We refer to [4, Section 2.3] regarding the theory of Besov spaces using Littlewood-
Paley operators in R?. The theory of Besov spaces on T¢ is essentially the same, and it has been
developed in [38, Chapter 3.5]. We will explain the main embedding inequalities for Besov spaces
in T¢ using the Littlewood-Paley operators in this appendix. This approach allows us to develop
the embeddings of the spaces B;’fﬁ(Td) in (1.24) and to develop the equivalences of B;’fﬁ(Td) in
Proposition A.3. Although the proofs are known, this appendix is included because we could not
find any reference for these estimates of B;’fﬁ(Td).
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To this end, we choose ¢ € CZ(R?) with 0 < ¢ < 1 such that ¢(x) = ¢(|x|) and ¢(x) = 1 for
|x| < % and ¢(x) = 0 for |x| > g, and ¢(|x|) is non-increasing for |x| > 0. Then define

¢(X) ¢(x) $(2x),

so that ¢(x) > 0 and p(x) = 0 for |x| < % and ¢(x) = 0 for |x| > g Further define

def . )
pi(x) = p27/x), jeZ.
Then we have for x # 0 that
m
Z @j(x) = p(27"x) - $(2M*Hx) > 1 as m — co,m’ — —co.
j=m!

In this sense it holds that

D pi)=1, (x#0). (A1)

oo

These will be the building blocks of the Littlewood-Paley decomposition on T¢.
For a function f : T¢ — C we have the Fourier series representation

fla) = Z flk)e*e,  k-a=kya + - kgatg.
kezd

where the Fourier transform on T¢ is defined by

Fra(f)(0) = i) / F@e-*eda, kez

(2 )

Note that in the remainder of this section our function f will always have mean zero, which means
that

Fra(f)(0) =

an )d/ fla)da = 0.

Then we define the Littlewood-Paley projections on T¢ by

Aif@) = ) pi0fkye*,  jez,

kezd

where the sum above clearly only contains a finite number of terms. In particular we define the
following sets

o def . .
S ke zd 3272 < k| < 27433},

Then

Aif@) =) pk)fkere, jez

kEE]
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We further have from (A.1) that
f@= ) Af(@).
j=—co

We point out that the sum above terminates for sufficiently negative j. In particular ¢;(k) # 0 if
and only if |k| < 2/*3/3. Since f(O) =0 then A;f = 0 whenever 2/%3/3 < 1. Thus there exists a
uniform fixed value j, € Z such that

fl@) =Y Ajf(a). (A2)
J=Jx
Further notice thatif ¢ ;(k)g; (k) # 0for j* > j from the support condition this implies that 2/ % <
%21 *+1 which further implies 0 < j’ — j < 1. This combined with (A.1) further implies that

Aifl)=" Y AjAyf(@). (A3)
lj=j'<1

This will be useful in several places below.
Next define

def .
hi@) = Y pjlele.
kezd

Then we have that A;f(a) = (h; * f)(a). For a Schwartz function ¢ : R? — C the Poisson
summation formula grants

D elkfypi) = @ryd Y FLl@)B+2mm), VB e T

kezd mezd

where the inverse Fourier transform on R¢ is given by

ix- ada

Fra(Hx) =

(27T)2

Therefore we are able to write

hi@ = Y, ¢ike =@2m Y Foi(p)a+27m).

kezd mezd

def
In particular we will denote ¢ = Fuidl (@) to conclude that

hj(a) = @m)@ 24 Y $@2la + 2m2/m). (A4)

mezd

Since ¢ = 7-’[@(;0) is a Schwartz function on R? then the sum converges absolutely and h jisa

periodic function on T<. If we use the form (A.4) for the function h j then the proofs of the Besov
space inequalities on R translate to T¢.
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Lemma A.1. With (A.4), for any M > 0 we have the following uniform estimate
/ dat |2ja|M‘hj(oc)’ < @n)d / da |aM|¢(@)] < 0. (A.5)
Tda Rd

We also have for any M > 0 the following uniform estimate for all o« € T¢:
| j(e)| 5 24727M, (A.6)

Further these bounds imply that for any p € (1, o) we have

1

- . 1
(/ da(|zfa|M|hj(a)()P>P 52‘1](1‘5). (A7)
Td
Proof. We split (A.4) as hj(a) = g1(a) + g»(a), where
def dndi . .
gi(a) = (2m)*2% 2 ¢/ a + 212/ m),
m:2J |a+2rm|<1

and

def . : .
&(a) = (2m)2%) Z ¢QIa + 227 m).
m:2J |a+27wm|>1

For g;(a), since 2/ |a + 2rm| < 1, notice that we have

1 |ex] 1. 1 1 . 1
< — — < —2J < —27Jx —<1.
|m|_2ﬂ|oc+27rm|+2n__2ﬂ2 +2_271'2 +2~1

Since |$(a)| < 1 we have that |g;(a)| < 24.
For g,(), since 2/|a + 27rm| > 1, we use that ¢ is Schwartz on R¢ so that

lp(@)] < Cylal™, V]a|>1, VYN>d+1. (A.8)
In particular

l@l<2%cy Y e+ 2am)| V.

m:2J|a+2rm|>1

Here we have the following uniform in j bound

> 12/(a + 2zm)|™N < 1. (A.9)

m:2J |a+2rm|>1

We conclude that |g, ()| < 2%/. This establishes (A.6) for M = 0.
We now prove (A.6) for M > 0. To this end, for & € T¢ using (1.37) we define

d
s@P €Y sy
i=1

25UdI sUOIWIOD) aATEAI) a[qratdde a1 Kq PALIOACS ATk SAAIIE YO 1SN Jo Sa[NT 10§ AIRIGIT AUIUQ AS[IAL UO (SUONIPUOD-PUT-SULIa)w0d* Ka[I ATeIqaunuo//:sdit) SUONIPUOD) pur SULaL, U 30§ “[£202/60/81] U0 ATeIqr] QUIUQ AS[IAL “BIURAASUSG JO ANSIOATUN Aq 6€ 122 2d2/Z001°01/10p/w0a Ko ATeIquautuoy/:sdiy woxy papeofumod 0 “T1£0L60T



76 | CAMERON and STRAIN

Then we have |S(a)| ~ |a| uniformly for all « € T¢. Further, from (1.37) we have that |S(a)| =
|S(a + 2rm)| for any m € Z¢ and any a € T%. Thus from (A.4) for any a € T¢ we have

@l |hj(@)| S 1S@IM|Ry@| $ 24 Y 1@+ 2em)M ¢l + 2w27m)|.
mezd

Notice from (1.37) and (1.39) that we have the global uniform bound

S(ax+2
ISa+2mml 1 vaeTd vmez2
| + 27rm|
We thus conclude that
|or|M|hj(oc)| 24 Y |+ 2mmM|p(2a + 2727 m)). (A.10)

mezd

We will split this sum into 2/|a + 27rm| < 1 and 2/|a + 27m| > 1 as previously. On the region
2J|a + 2rm| < 1, as before independent of j we have

Y la+2rmM|¢(@a + 2m27m)| S 1.

m:2J |a+2rm|<1

This follows exactly as in the proof of (A.6) for M = 0. Next on the region 2/|a + 27m| > 1, we
use the estimate (A.8) with N replaced by N + M to obtain

Z la + 2em[M|p(2/a + 272/ m))|

m:2) |a+2mm|>1

. —N-M
<S Cnam 2 la + 2em|M|2/ (a0 + 27rm)|
m:2) |a+2mm|>1
. . -N .
< 27IM Z [2/(a +2zm)| S 27M.
m:2) |a+27rm|>1

The last uniform inequality follows as in (A.9). Collecting these estimates we obtain (A.6) for
M > 0. We will now prove (A.5). Since h; is 27 periodic, from (A.4)

/w da |hy(@)| = @r)'2 Y,

mezd

/ da [p(2/a + 272/ m)|
Td

< (n)d Z / da |p(a +2m2/m)| = (Zﬂ)d/ da |¢(a).
2/Td Rd

mezd

This yields (A.5) for M = 0. For M > 0 we use (A.10) and then the proofis exactly the same. Lastly,
to prove (A.7) for M = 0 for any 1 < p < oo we interpolate as

1

= 1—
Whjllee S 1R TG "

Then (A.7) follows from (A.5) and (A.6). The proof of (A.7) for M > 0 is exactly the same. O
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Lemma A.2. We have the following Bernstein inequalities

1 1
j(==2)d
IIAijILq52<P q> A flle, g=2p2=1 (A1)
Forany 0 < m < 1 we have that
2MAf e S IA™A; flle S 2714 flle, P2 1. (A12)

The proof of Lemma A.2 is in [4, Lemma 2.1 on page 52], if we use (A.4) and Lemma A.l in
T9. Next, we recall the Besov spaces given in (1.22), (1.24), (1.23) and (1.25). Then for 0 < s < 1
and p,q,r € [1,0] and u satisfying Definition 1.1 we more generally define the semi-norm
representation of the Besov spaces over T¢ by

11711 def / ﬁ('wﬁf”u’m))r v (A13)
PorTD =\ S 1814\ 18R ’ '
M1/
def dg (118 f1lracrcray

||f||Z$(Bf,,,(Td)) = /Td W(T , (A14)

def dag N8 ey \ v
||f||B;vf;(Td) = / |5|d< (BI~ )T> , (A15)

r 1/r
def d 16511 9(Lp(Td

1 g3ty = / | 6{2( 18I~ >$) . (A16)

For all the spaces above we use the standard modification when r = co. We can equivalently
write these semi-norms using the Littlewood-Paley operators as follows. We define the ¢" = ¢"(Z)
spaces with the norm

1/r
def
lla; ||fr = <Z|a |’> , 1<r<oo, |lajllee = suglajl.
je

Then we have the following equivalent representations of these Besov spaces.

Proposition A.3. We considerany0 < s < land p,r € [1, oo] and u satisfying Definition 1.1. Then
we have for (A.13) and (A.15) that

Wf s, cray = IIZJSIIAijILgllfr, IIfIIB;f;(Td) ~ II2jSM(2j)IIAijILgI|fr-
Ifalso q € [1, o0] then for (A.16) we have
||f||f?(B‘;;f;(Td)) ~ ||2js,u(2j)||Ajf||L;(Lé’)||fr’ (A17)

—q s ~ |125|1A
and for (A.14) we have ||f||Lg(BZ,,(Td)) ~ |2 ||Ajf||L%(Lg)||fr.
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Remark A.4. These equivalences motivate the standard definition of these Besov spaces for all
s € R, forall p,r € [1, 0] and for any u satisfying Definition 1.1 as

def . def . .
A s cray = N2PHA e lers W gseray = 112°0@DNA; fllgp e

And if also g € [1, 0] then we similarly can define
ef is
”f”Iig(Bj,,r(Td)) = |2 ||Ajf||Lg(Lg)||€ra

def . :
and ||fllgggcray = 1125H@DIAFllggqpler
Proof of Proposition A.3. We only show the proof of the equivalence of (A.16) as in (A.17). The

proofs of the other equivalences are exactly the same, or easier. In this proof we will write the
semi-norm on the RHS in (A.17) as

def . .
1115 = 122 u@DNA gy

def
For brevity we write the LHS of (A.17) as || f|lo = || f]lze (B (1dy) from (A.16).
TN P&
Then, from (A.3), we that A; = le_j,|<1 AjAj. Next we use (A.4) to obtain

8sAif©) = D (8gh; = Ay f)O),

lj—=j'1<1
where we expand Sghj(a) = /01 ds2/8 - (Vh)j(a + sp). Then as in (A.4) we have

(Vh)j(@) = @m)?24 Y (V$)2a + 2727 m).

mezd

Notice that for any y € R4, exactly the same as (A.5), we have
/ da |(Vh)j(oc +y)| hS / da |Vé(a)| S 1.
Td Rd
We conclude from (A.5) and the above that
185,111 < min{1, 27|81} (A18)

Thus using Young’s inequality we have

|I5ﬁAjf||Lg(Lg)Smin{l,Zjlﬁl}l 2‘1 185 F 11312
j=i'lst

Thus we have

1868 f a2y S €27 (@)™ min{1, 2181117,
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where above and in the rest of the proof ¢, ; > 0 is an element of the unit sphere of £”(Z) (which
could be a different element on different lines). In this case

) -1

Lyjojna 27ROy fllgay
=
r 31 1p

Thus we have that

HSﬁf”L‘}(LS) < Z ||5ﬁAjf||Lg(Lg)

j=—o
S IIfI|p<I/3I Y ¢ 2@+ Y cr,jz—”mzf)—l). (A.19)
J<Jo J>Jo

Here j, = jo(|5]) satisfies that —m < 2) < IFTI

We first suppose that 1 < r < co. Then we conclude that

111G < C2NIfIIRU + L), (A.20)

where as in (A.16) we have

def dﬁ =1y r(l1-s s '
I = /T o (1B 181" )<2cr 210-9p(27) >

J<Jo
and
def ﬁ '
(] -1 i i
I,z / (81”1817 (2 ¢ 2 u(2l) 1) .
v |8 J>Jo
We use Holder’s inequality, and 2750 < ||, as

r—1

.
(Z cr,jz—sfu(zf)—1> pS (Z 27 ) D 27T S BT Y el 27 (2l
J>Jo J>Jo J>Jo J>Jo

(A.21)
Then for I, by Fubini’s theorem we have the estimate

(9]

L3 Z ¢ 275 u@)" / ——u(IBI Y 1B Typn S D, €L, ST

]——00 J=—

Above we used that y is increasing from Definition 1.1.
Next for I;, we use Holder’s inequality similar to (A.21) to get

r
(Z C,.,jzj(l_s),u(zj)_l> < |ﬁ|—(1—8)(r—1) Z C;Jz(l—s)jﬂ(zj)—r‘

J<Jo J<Jo
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Then also by Fubini’s theorem, we have

hs Y o iy / BB BT 181 e

]——00

To estimate this term we will use a decomposition that is similar to the one from [3, Equa-
tion (18) on Page 10]. The intuition of the decomposition is that under our assumptions a term
like 2(1=9)/2 4 (27)~" will be effectively eventually increasing. In particular we split

20799 2))" = (1, (2N)ma (275 (2)) 7, (A22)

def
where for c; = exp(%) we have

71(7) def L, 7,(7) def (log(4 + 1))

def
G+ 7 ™ = (g oy O = T e+ 0.

Then, by Definition 1.1, 7;(7) is decreasing for 7 € [0, o). Further m,(7) is clearly uniformly
bounded from above and below. And we will see that 73(7) is decreasing for 7 € [0, ). In
particular

d A r 1-y9) _
el — Q=92 L _ r—1
a7 my(t) =1 (Cs g > log(cg + T)> (log(cg + 1))

1—s)log(cs + 7) 2tr
_ ~(-9/2¢ s ~1) <o.
i 2t <(1 Z e, + D) log(e, + 1) > <

The above holds for all 7 € [0, ), so that 775(7) is decreasing, because

2tr 2r
1 - s)(cs + 1) log(cg + r) (1 — s)log(e3/1=) 4 1—)

wll\)
-

Note that this is also true with a better constant than c,, which was chosen for clarity of the
exposition. We conclude that

o 4B Y18
209 p(2iy T / B Y181
v |g]
) 7 i\— d - -
< 20-9i/27,(2) l/d ug%'ﬁl(l RPN (] Najgrar 51
T

Therefore we have that I; < Z e ” < 1. Thus we conclude that || f||g < || f||p- This proves
the upper bound in (A.17) for 1 <r<oo. Ifr =00 weusec, ; S1in (A.19) then following the
same argument we obtain ||f||o S || f]|».

We will now prove the opposite inequality. Using that the mean value of h;(f) from (A.4) is
zero we have

A, f(6) = /T B hy(B) T ) = /T B hy(8) 8 ©),
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Then if r = co we have

u(27)

2 @I85 2, S 11l / B

D 127811, (B)I.

Then splitting into 2/|8| < 1 and 2/|8| > 1 we can prove that ——— u2)) < 1 asin Definition 1.1 and

w(gI=H "~
(A.22). Thenwhenr = oo, ||f||p S ||f|]o follows from (A.5).
Q
If 1 <r < oo, then we have || f||}, < 2"(Z] + ) where

.
def ; ;
3= Z 215"/,{(2])r</. dg |hj(6)| ||5,6’f||Lq(Lp)> )

jez 2/|BI<1 e

and

hy 2J'Sfu(2f)r< /2 % |;(8) |I55fIILg(Lg)> :

jez

For X} we use Holder’s inequality and (A.7) as

< I ||55fI|L;(Lg))
, r—1
3 dg |h; dg |18z f11"
N</21|/3|51 ¢l ) /zf|/3|31 B9 Mg

szdi/ dB 118511, ».
2|pl<1 PR

We plug this in and use Fubini’s theorem to obtain
DIPS / dg | X 2 @Y Vg JI8pS11a ) S 1IF11G.
Tda jez TV

The last inequality follows since u(7) is increasing from Definition 1.1.
Lastly we consider the term X7. We again use Holder’s inequality as

</2j|ﬁ|>1 4% o) Haﬁf”L?(Lg))

_ dp
— j(d+1)r JjRr1d+1
? </2/|/3|>1 |,3|d 1] ‘h (‘8)|

[ @ 155 g
- 201B1>1 1814 18I

||5/3f| |L%(Lg) '
18I
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Above from (A.7) we used that

(/ 4B |2] g|(@+Dr!
2ig>1 |BI°

We thus conclude that

r

v r! ) )
hi(8)| ) < 2/did(r=D),

||5/3f||rq p
dp , : Ly
IS / — | 2 27 g |z SIFIl
2 - |,3|d <]€ZZ B> 18I Q
Above we just used the following uniform inequality

r(1—s)

3 27U g0 S 181 (BT

jez
which is again a consequence of (A.22). This completes the proof. O
We also refer the reader to the analogous proofs of Proposition A.3 of these equivalences (with-
out the factor u and without the argument in (A.22)) in the whole space case from [4, Theorem

2.36 on page 74].

Proposition A.5. Fors; €R, 1< p; < pp £ 0,1 <r; <1y < o0, any u satisfying Definition 1.1
1 ; :

and s, = s; +d(— — i), we have the uniform estimates
b1 P2

.5 < .S 551 < 5525 .
||f||Bp12,r2(-[|—d) ~ ||f||Bp2”l('|]'d), ||f||Bp12flf2(-n'd) ~ Ilflprllf:I(-n'd)
Additionally forany 1 < q < oo we have
~g S < ~q , -5 ~q , =51, < ~q , -5, .
Hf”L;(Bplz,,z('ﬂ'd)) ~ ”f”L?(szl,rl(Td))’ ”f”L;I_(BplZ:‘:Z('ﬂ'd)) ~ ”f”L?(szl,l:l(Td))

The proof is the standard, see [4, Proposition 2.20 on page 64]. Next we state a lemma about
interpolation in Besov spaces.

Lemma A.6. Ifs; < s, are real numbers and 6 € (0, 1), then forany 1 < p < oo we have

1 1 1 0 1-6
< —
1f s +0-002 S < <6 +1 —6>”f”32{m”f”3ffoo

Pl 28

.. e] 1-6
Additionally for any 1 < 1 < oo we have | 1] era-0s < 11115, 11/11}5
s b b

The above is proven in [4, Proposition 2.22 on page 65].
Lemma A.7. Ifs; < s, are real numbers, then for any 1 < p < oo we have
s < .S
IIfIIBP{1 S Mg

The proof of Lemma A.7 follows directly from the property (A.2).
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d_d

2 A d . .
Lemma A.8. For any (p,q) € [1,0]* such that p < q the space B;’,l 1(TY) is continuously
embedded in LY(T%). In particular,

NFNeeray SHFI a_a
By, 1 (T4
d
In addition if p < oo then B I‘; ’1(Td) is continuously embedded in the space of continuous functions.

This is proven in [4, Proposition 2.39 on page 79] using (A.4).

APPENDIX B: ESTIMATES ON THE DIFFERENCES OF THE KERNELS
The purpose of this appendix is to prove the pointwise bounds that are stated in Lemma’s 3.6, 5.2
and 5.3. To ease the notation in this appendix we will drop the dependencies on 6. In particular
we write 67X'(6) =61X',6,X'(6) =6,X',85Y'(0) =62Y',8,Y'(0) =6,Y', D, X(0) = DX,
D, Y(6)=D.Y,5;(X' —Y')0)=67(X'—Y’),and 6, (X' - Y')(6) = 6, (X' —Y') etc.

First we will give the proof of Lemma 3.6.

Proof of Lemma 3.6. Considering A(6, «) from (1.19), for (3.34) we can write

def
47T.A1ﬁ(e, OC) = 477.’./4151 + 47'[./4152 + 477.'./4153 + 477.'.A1ﬁ4, (Bl)

where

P(DeX)
|DX |?

P(D.X)

def
47'['./4151 = 555;}(, *Tg |D X|2
a

158, X'T +6,X' - 830, X'1,
def P(D.X)D . X
47TA1ﬁ2 =e (555;){’ + 5ﬁ507X/) . Tﬁ%
a
R(D.X)D X

+y/ — !
— (5550¢X + 5ﬁ5aX ) ] |DaX|2

TR(D,X),

R(D,X)

R(D.X)
. T — —
#ID.X12

def
47TA153 = —555;X' |D X|2
o4

Tﬁao_{X,TﬁR(DaX) - 5;X’ . 5/350_CX,T5R(DQX),

def (PD,X)-1)
477.'./4154 = 565;}(’ . Tﬁl[;x—XP
[e4

(PDX) - 1)
|Do X |?

748, X 75P(DX)

+5;X’ . 555;X,T57)(DO(X).

Then for A,z we also further split

def
47TA2ﬁ(e, CC) = 47'[./4251 + 47'[./4252 + 47T.A2‘33 + 4”-42,64’ (BZ)

where

def P(D.X) _
477,'./4261 = 5;X’ . 55 <ﬁ>rﬁéaX’I,
a

* Korm Krexqrourjuoy/:sdny woiy papeoumod ‘0 ‘z1€0L60T
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R(D X)
|D. X |2

R(D X)

def
47TA2B2 = —5;X’ 5ﬁ< |D X|2
a

>r,35;X’r,3 R(DX) - 61X’ - 5:X'8;R(D,X),

P(D,X)D,X
DX |2

R(D,X)D X

def
a

)Z - (X +5.X")- 55< R(DaX)>,

dEf

PD,X)—1
4”"4264 = 5;)(’.56(M

DX |
(P(DX) — 1)
|D.X |

>755;X’rﬁP(DaX)

+62x"- 8. X8, P(DeX).

Then the bound (3.35) for .A;2(6, a) follows directly from (B.1). And the bound for term .A,5(6, )
in(3.36) similarly follows from (B.2). This completes the proof. O

Next we give the proof of Lemma 5.2.
Proof of Lemma 5.2. We recall (1.19) and then we split
ATA[X] —4nA[Y] = 4n A, + 4 A,.
Here we are splitting so that .4, contains all the X — Y differences on the terms such as §% (X’ —
Y’)(6),and A, contains the terms that have differences on D, (X’ — Y')(6). Thus for A, we further

split

Ay = A+ A + Az + Ay,

where
ATA;, =8 (X' -Y)- Tlgf;()l? S;X'IT+68%Y - %5;(}{’ -YNI,

ATAL, =0F X' -Y)+6,(X -Y"))- %I

- @1 =¥+ 8 - v FOE R ),
dr Az =—62(X" -Y")- %5;{/7{@#)
& %55(){’ - Y)R(DX),
dTA, =6X' -Y)- %SQX’P(DQX)
+67Y"- Ma;(x’ - Y)P(DX).

|D X |?
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Therefore we observe that .A; satisfies the following uniform estimate
AL IXIZ2(|85 G~ ¥|82X| + (878" — ¥ |87Y])
+IXITH(]sr X =Y + |85, (X" = Y))).
And then for A, we also split
Az = Ag + Ap + Az + Ay,

where

P(D.X) PD.Y)
IDX|> DY

AT Ay =683Y - ( >5;Y’I

P(D,X)D, X PWD,Y)D,Y
+(5;Y’+5;Y’)< ( [e4 ) [e4 _ ( a ) a )I,

|D.X|? |D,Y|?
R(D,X) R(D,Y)
DX |2 |D.Y|?
R(D,Y)
D, Y |?

AT Ay = —62Y" - ( )5;Y’R(DaX)

-8,Y - §;Y'(R(DoX) — R(D,Y)),

R(D,X)D,X R(D,Y)D,Y
|D.X|? [D.Y|?

47TA23 = —(5;Y, + 5;Y’) . < >R(DaX)

R(D,Y)D,Y
ID,Y|?
(P(DaX) - I) (P(Day) - Z)
IDX[2 DY
(P(D,Y) - 1)
ID,Y|?

—(6Y' +6,Y')- (R(D,X) — R(D,Y)),

477.'./424 = SJY, . < >5;Y,p(DaX)

+83Y’ - 5, Y (P(D,X)—-P(D,Y)).

Thus by inspection we have the following uniform estimate for .4, as

|| S IX,Y 3D (X — Y))||8,Y!||82Y| + IX, Y2 Do (X" — Y))|(|6,Y'| + |[85Y|).
This completes the proof. O
We lastly give the proof of Lemma 5.3.

Proof of Lemma 5.3. Then as in (B.1) and (B.2) we decompose the terms A jg;[X] — A ;z[Y] for
j €{1,2}and fori € {1, 2, 3,4} individually as

def
AjgilX] = AjpilY] = AjpnlX, Y]+ Ajpp[X, Y],
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where

A A (X, Y] =6565(X" —Y') - 15 |)§DX)|{2)755;X’I
+658, Y - 15 %rﬁag(){’ -YN1
+67(X' -Y")- Tlgf;f)l? 856,X'1
+68Y - T;Dxﬁ)aﬁa X' -YNI,

P(D.X) PDyY)
IDX|*>  |DY|?

A A1 X, Y] = 63Y - < >5ﬁ5;Y’I,

P(D X) P(DaY)
+6557Y -1 5. Y'T,
Bl <|D X2 Dy )%
P(DO{X)DO[XI
IDX|?

A A1 X, Y] = (8565 (X' —Y') + 836, (X' —Y")) - 15
R(D.,X)D, X
|D.X|?

P(DX)D.X _ P(DY)DeY
DX | DY |?

- (656;{(X’ -Y)+ 5550_((}(, -Y))- 73 TﬁR(DaX),

4 A1l X, Y] = (836, Y + 656, Y') - Tﬁ(

R(DX)D,X

L (6,81Y +8,65Y") -
([3 a + B ) 8 IDaX|2

Tﬁ R(DaX)
R(D,Y)D,Y
D Y|?

R(DyX)
D X|?

+ (68, Y + 658, Y') - 15 g R(D,Y),

Am A3 X, Y] = 036, (X" —Y') - 7 B IDXP 156, X' R(DoX)
5500Y" - R(D.X) 5, (X" =Yg R(DX
— 059 Tﬁm e )TER(DeX)
R(D,X)

|DX |?

R(D,X)
DX |2

—5HX -Y))- 856X/ T5R(D,X)

-8 ———0836, (X' — Y )1gR(D.X),

R(DX) R(D,Y)
IDX[>  |DY|?

4mAplX, Y] = 6585 Y’ 'T,3< >T55;Y’15R(DO¢X)

R(D,Y)

—8360Y - Tp———
Fot T Dy P2

736, Y'15(R(D,X) — R(D,Y))
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sty (ROX) _ RDY)

* IDX[>  |DY|?
R(DX)
|D X |?

)555;Y’TﬁR(DaX)

-8y’

836 Y'15(R(D,X) — R(D,Y)),
(p(DaX) - I)
DX |?
(P(DX) — 1)
ID. X2

(P(DX) — T)
DX |2
(P(D.X) - T)

ID,X|?

AT A X, Y] = 655 (X' —Y') - 15 736, X'15P(D,X)

+68,Y - 15 756, (X" — Y 13P(DX)

+6H (X =Y 387X 13 P(D,X)

+55Y- 8565 (X" — Y')13P(DoX),

(P(DX)—1I) (P(DLY)—1)
IDXI2 D Y[
(P(D,Y) - 1)
ID,Y|?
(P(DaX) - I) (P(Day) - Z)

ID.XI>2 DY

4T Aipar|X, Y] = 838 Y' 'Tﬁ< )Tﬁ5;Y/TﬁP(DaX)

+8564Y - 15 756, Y'15(P(DX) — P(D,Y))

+83Y’ - < >555;Y’TﬁP(DaX)

(P(Dax) - I)

+vy/
+6Y - D.XP

838, Y'15(P(DX) — P(D.Y)).
Therefore by inspection of each term we have

Al X, Y| + [ A3 [X, V]| + [ A1 [X, V]| S 18585 (X = V)l I7p0:X 11X
+ 18585 Y 17607 (X" = Y)IIX 22 + 185 (X = Y1858 X" |IX |52

+163Y' (1855, X" — YNIIX|32, (B.3)

Al X Y| + | AiglX, Y|+ [A1p0lX, Y| S 18505 Y 117507 Y 175Da (X" = Y)IIX, Y13

+185Y/118587 Y/ IIDa(X — Y))IIX. Y|, (B.4)
[A1521[X. Y1| S (18585 (X" = Y')] + 18587 (X" = Y IX I3, (B.5)
[ A152[X, ¥1| 5 (18582Y"1 + 1850 Y1) 175 Da(X" = Y)IIX, Y [2. (B.6)

Then (5.8) follows from collecting the estimates in (B.3), (B.4), (B.5) and (B.6).
Next we consider the differences of the form A,z [X] — A, [Y]. We obtain

P(DoX)
|D X |?

P(D,X

4 Axpn[X, Y] = 65(X" = Y') - 8 P D X2
[e4

156, X'T+85Y' -6

58, (X' - YT,
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P(D,X) P(D,Y)
DX |D.Y|?
R(D,X)
DX |2
R(D,X)
|D. X |2
R(D,X)
DX |2
R(DyX)
|DeX |2
R(D,X) R(D,Y)
D X|>  |D.Y|?

47TA2B12[X,Y] = S;Y/ . 56( >T650_(Y,Z,

AT Ay X, Y] = —6,(X' —Y') - 6 758, X' 13R(D,X)
- 5;Y’ . 5[3 TBSQ(X’ — Y’)T,gR(DaX)
_ S —Y)- 52X'8;R(D,X)

-8 Y - §; (X' — Y8 R(DyX),

A Ayl X, Y] = =83Y' - 85 < >Tﬁ5;Y,T5R(DaX)
R(D.Y)

+vy/
oY O Dy

Tﬁagyl‘['g(R(DaX) - R(DaY))

R(D,X) R(D,Y)
|D. X |2 |D. Y |?

& <

R(DyX)
|D.X |

) 8, Y'85R(DX)

-5y’ 8. Y'83(R(DX) — R(D,Y)),

P(DX)DeX
|D.X|?

R(D,X)D, X
D X|?

P(D,X)D,X P(D,Y)D,Y
|D. X |2 |D, Y |2

A Ay [X, Y] = (65X —Y) +6,(X' —Y"))- &

X - V) + (X~ Y- 55< RDX),

R(D,X)D, X

—(SYY' +67Y) -6
O+ 0:D 5( DX

RO.X))
R(D,Y)D,Y
|D,Y|?
(P(D.X) — 1)
|DoX |2
(P(DX) — 1)

|D.X|?
(P(DX)—-1)

— et — 5ox!

|D. X |2mp16701 ¢ 9pP(DaX)

(P(DX) — 1)
|DX |

+(8FY' +6Y')- 5ﬁ< R(DaY)>,
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+85Y' -85 7567 (X' — Y')13P(D,X)
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, PDX)—-1) PDY)-D)\_ .,
47TA2542[X, Y] = 5;Y . 55( |DaX|2 - |DOCY|2 >Tﬁ5aY TﬁP(DaX)
;s PDY)-T) o,
+ 5;Y . 55 M—YP%CS“ Y Tﬁ(P(DaX) - P(DOCY))
iyr [(PDX)—T) (PDY)-I)\ .,
+61Y ( DXT YT >5aY 85 P(DeX)
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|DX |
Therefore by inspection of each term we have
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e X3
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o 18aDaX = Y)
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> *
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X, Y}
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X, v}

+165Y' 176z Y [|ID (X" = Y"))

+102Y'||70: Y/ |7pDo(X" = Y'))

18D (X" —¥")|
TE (b G-
PR
|55DaX,5[3DaY|

F165Y|165Y|IDo (X! — Y|
a a a IX,YIi

) (B.8)

185D X |

[ Ao X, Y1 5 (165 (X = YN + 16 (X = Y")I) X7

; (B.9)

|8sD (X" —Y")|
’A2,832[X,Y]| S(16xY'1 + lsa_{Yll)ﬁrX—YP
|63DoX, 85D, Y |

+vy/ v/ / /
+(|5aY|+|5aY|)|Da(X _Y)l |X,Y|i

(B.10)

Then (5.9) again follows from collecting the estimates in (B.7), (B.8), (B.9) and (B.10). O
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