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Abstract

In this paper, we study the dynamics of fluids in porous media governed
by Darcy’s law: the Muskat problem. We consider the setting of two immiscible
fluids of different densities and viscosities under the influence of gravity in which
one fluid is completely surrounded by the other. This setting is gravity unstable
because along a portion of the interface, the denser fluid must be above the other.
Surprisingly, even without capillarity, the circle-shaped bubble is a steady state
solution moving with vertical constant velocity determined by the density jump
between the fluids. Taking advantage of our discovery of this steady state, we are
able to prove global in time existence and uniqueness of dynamic bubbles of nearly
circular shapes under the influence of surface tension. We prove this global existence
result for low regularity initial data. Moreover, we prove that these solutions are
instantly analytic and decay exponentially fast in time to the circle.
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CHAPTER 1

Introduction

This paper studies the dynamics of fluid drops or bubbles immersed in another
fluid filling a porous media under the action of gravity. This process is governed by
the classical Darcy’s law

(1.1)
μpx, tq
κpx, tqupx, tq “ ´∇ppx, tq ´ gp0, ρpx, tqq,

where u is the velocity of the fluid, p is the pressure, ρ is the density and μ is
the viscosity of the fluid. Above x P R

2 and t ě 0. Here the medium is assumed
to be homogeneous so that the permeability κpx, tq “ κ ě 0 is constant, as is the
gravitational acceleration g ą 0. While Darcy’s law was first derived experimentally
[23], it can be rigorously obtained through homogenization [35,47]. This physical
scenario is mathematically analogous to the evolution of an incompressible flow in
a Hele-Shaw cell [28] where the fluid is set inside two parallel plates that are close
enough together so that the resulting dynamics are two dimensional. In particular,
the results in this paper can be applied to the Hele-Shaw problem.

The presence of two immiscible fluids is modeled by taking the viscosity μ and
the density ρ as piece-wise constant functions:

(1.2) μpx, tq “
#
μ1, x P Dptq,
μ2, x P R

2
�Dptq,

ρpx, tq “
#
ρ1, x P Dptq,
ρ2, x P R

2
�Dptq,

where Dptq is a simply connected bounded domain, namely, the bubble. Thus, there
is a sharp interface between the fluids, moving with the flow, which we assume to
be incompressible:

(1.3) ∇ ¨ upx, tq “ 0.

We consider the physically relevant case where surface tension at the free boundary
is taken into consideration. The Laplace-Young’s formula then states that [36]:

(1.4) p1px, tq ´ p2px, tq “ σKpx, tq, x P BDptq,

where Kpx, tq denotes the curvature of the curve BDptq, σ ą 0 is the constant
surface tension coefficient and p1px, tq, p2px, tq are the limits of the pressure at
x from inside and outside, respectively. We are then dealing with the Muskat
problem, where the main mathematical interest is to study the dynamics of the
free boundary BDptq, especially between water and oil [39]. It is remarkable that
the evolution equation for the free boundary is well-defined even though the velocity
is not continuous. The discontinuity in the velocity is due to the density, viscosity
and pressure jumps. But the interface evolution is dictated only by the normal
velocity, which is continuous by the incompressibility condition.

1
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In this sense it is indeed possible to obtain a self-evolution equation for the
interface BDptq which is called the contour evolution system. This system is equiv-
alent to the Eulerian-Lagrangian formulation (1.1), (1.2), (1.3), (1.4) understood
in a weak sense. Due to the irrotationality of the velocity in each domain Dptq, the
vorticity is concentrated on the interface BDptq. That is, the vorticity is given by a
delta distribution as follows

∇K ¨ upx, tq “ ωpα, tqδpx “ zpα, tqq,
where ωpα, tq is the amplitude of the vorticity and zpα, tq is a parameterization of
BDptq with

BDptq “ tzpα, tq “ pz1pα, tq, z2pα, tqq : α P r´π, πsu.
The Biot-Savart law then yields that

upx, tq “ 1

2π
pv

ż π

´π

px ´ zpβ, tqqK

|x ´ zpβ, tq|2 ωpβ, tqdβ, x ‰ zpβ, tq,

and taking limits in the normal direction to zpα, tq one finds

u1pzpα, tq, tq “ BRpz, ωqpα, tq ´ 1

2

ωpα, tq
|Bαzpα, tq|2 Bαzpα, tq,

u2pzpα, tq, tq “ BRpz, ωqpα, tq ` 1

2

ωpα, tq
|Bαzpα, tq|2 Bαzpα, tq,

where BR is the Birkhoff-Rott integral that is given by

(1.5) BRpz, ωqpα, tq “ 1

2π
pv

ż π

´π

pzpα, tq ´ zpβ, tqqK

|zpα, tq ´ zpβ, tq|2 ωpβ, tqdβ.

Taking the dot product with Bαz in the above equations for u1 and u2 and sub-
tracting one from the other, one then finds that the vorticity strength is given by
the jump in the tangential velocity

ωpα, tq “ pu2pzpα, tq, tq ´ u1pzpα, tq, tqq ¨ Bαzpα, tq.
Then using Darcy’s law (1.1) yields the non-local implicit identity

(1.6) ωpα, tq “ 2Aμ|Bαzpα, tq|Dpz, ωqpα, tq ` 2AσBαKpzpα, tqq ´ 2AρBαz2pα, tq,
where

(1.7) Dpz, ωqpα, tq “ ´BRpz, ωqpα, tq ¨ Bαzpα, tq
|Bαzpα, tq| ,

and

(1.8) Aμ “ μ2 ´ μ1

μ2 ` μ1

, Aσ “ κσ

μ2 ` μ1

, Aρ “ gκ
ρ2 ´ ρ1

μ2 ` μ1

.

Further, in (1.6) the curvature is given by

(1.9) Kpα, tq “ Bαzpα, tqK ¨ B2
αzpα, tq

|Bαzpα, tq|3 .

Since the fluids are immiscible, the interface is just advected by the normal velocity
of the fluid flow:

ztpα, tq ¨ Bαzpα, tqK “ BRpz, ωqpα, tq ¨ Bαzpα, tqK.
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Therefore a tangential velocity T pzpα, tqq can be introduced to change the para-
metrization of the interface, without altering its shape. Let Bαzpα, tq “ zαpα, tq.
Then we denote the unit tangent and normal vectors by

(1.10) τ pα, tq “ zαpα, tq
|zαpα, tq| , npα, tq “ zαpα, tqK

|zαpα, tq| .

Without changing the shape of the interface we can replace the above equation by

(1.11) ztpα, tq “
`
BRpz, ωqpα, tq ¨ npα, tq

˘
npα, tq ` T pzpα, tqqτ pα, tq.

Therefore we have a closed system of equations for the the contour evolution system
with (1.11), (1.5), (1.6), and (1.7).

Given its origins in petrochemical engineering and its mathematical equivalence
with Hele-Shaw flows [44], the Muskat problem has long attracted a lot of attention
from physics [5,43]. Mathematically, the Muskat problem poses many challenges,
since even the well-posedness of the problem is not always guaranteed. Indeed,
when one neglects surface tension, the well-posedness depends on the Rayleigh-
Taylor condition (which is also called the Saffman-Taylor condition for the Muskat
problem). If the fluids have different densities, this condition requires the denser
fluid to be below the less dense fluid. When this condition is satisfied, i.e., in the
stable setting [3], local-in-time existence for large initial data is known for both
density and viscosity jump cases in 2d and 3d [13, 19–21] for subcritical spaces
[1,2,17,38,41]. However, finite time singularities can arise even from these stable
configurations. As a matter of fact, the Muskat problem was the first incompressible
model where blow-up was proved starting with well-posed initial data [9–11,33].

From the previous considerations, it is an important question to determine
under which conditions the solution exists and remains regular globally in time.
For the non-surface tension case, the global existence in the stable setting was first
obtained for small enough initial data in subcritical norms, allowing both density
and viscosity jumps [13,21,25,45] and later for some critical norms [6,17]. Very
recently, global well-posedness results appeared that allow initial data of medium
size in critical spaces, meaning initial data explicitly bounded independent of any
parameter: first only for the density jump case [7, 8, 15, 16], and later extended
to the density-viscosity jump case [29]. In particular in [29] there is a medium-
size bound for the initial data that is independent of any parameter of the system
when |Aμ| “ 1, and that value of the bound for the initial data is improved when
|Aμ| ă 1. In all these results, the magnitude of the slope of the first derivative
appears as a crucial quantity. However, this restriction is removed in [22,31] by
assuming smallness in the critical L2 based Sobolev norm.

On the other hand, in the unstable scenario, the problem is ill-posed in all
Sobolev spaces Hs, s ą 0 [29], unless surface tension is taken into account. In that
case, surface tension controls the instabilities at large scales, giving well-posedness.
Classical results for this scenario can be found in [12,24,26]. See the recent work
[40] for low regularity initial data, and [37] for weak solutions constructed by
interpreting the Muskat problem as a gradient flow in a product Wasserstein space.
Unstable scenarios are known [42] which exhibit exponential growth locally in time
of low order norms [34], and finger shaped unstable stationary solutions were also
studied [25]. In particular, Rayleigh-Taylor stable solutions with surface tension
converge to the solution without surface tension [4] with optimal decay rate or low
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regularity [27]. Here, this is not the case as the scenario we deal with is Rayleigh-
Taylor unstable. Recently, while writing this paper, unstable fluid layers have been
proved to exist globally in time for initial near flat configurations [30].

In this paper, we aim to improve the understanding of the effects produced
by the surface tension for bubble-shaped interfaces. In particular, we consider
the movement of fluid bubbles under the effect of gravity in another fluid with
both different densities and viscosities. This is a highly unstable situation, as
the Rayleigh-Taylor condition cannot hold for a closed curve. The function that
provides the Rayleigh-Taylor condition has mean zero in this scenario. Moreover,
as one expects, we will show that a less dense bubble moves upwards. But this
means that on the top part of the interface, the less viscous fluid may push the
more viscous one and the denser one is on top of the lighter one: both classic
conditions in the linear Rayleigh-Taylor analysis are violated here. So that in our
scenario, gravity effects make hard to find global-in-time control. Previous results
dealing with this setting [18, 48, 49] assumed no gravity force (i.e., g “ 0 or no
density jump) and required small initial data in high regularity spaces (such as Hr

for r ě 4).
We show here that even without surface tension, circle shaped curves are steady

state solutions evolving vertically due to gravity. Furthermore, this surprising state
in this unstable configuration allows to find global-in-time existence for capillarity
bubbles. We will show that if the initial interface of a bubble is close to a circle
with respect to a constant depending on the dimensionless constants

|Aμ| and
R2|Aρ|
Aσ

, with πR2 “ |Dp0q|,

then the solution exists globally in time and, moreover, it becomes instantly ana-
lytic. In particular, in our proof it is possible to compute the explicit numerical
condition that the initial data must satisfy. It is interesting to notice that only two
quantities are involved, where the second represents the ratio between gravity force
per length and surface tension,

|Aρ|R2

Aσ

“ gR2|ρ2 ´ ρ1|
σ

.

We will also show that these bubbles converge exponentially fast in time to a circle
that moves vertically with constant velocity equal to Aρ (upwards if Aρ ą 0). Due
to the incompressibility condition, the area of the bubble is preserved during the
process. We give precise statements of these results in Chapter 3. In next section,
we provide the contour equations we use throughout the paper.

Note that the parameterization that is used in for instance [7,15,16,21,29]
is difficult to use in our scenario (those results are close to a horizontal line while
in contrast the results in this paper are close to a circle) because our system in
general sends the solution to a nearby circular steady state, and not to the one that
we linearize around. The steady state that the solution converges to is determined
by the dynamics and, without another conservation law that may not exist, then
the limit can not be predicted by the initial data alone. In particular, the standard
parametrization for star-shape bubbles given by

zpα, tq “ Rp1 ` fpα, tqqpcos pαq, sin pαqq
does not do a good job of describing the nearby circular steady states, and therefore
it is hard to use in this context. In particular, unless the center is the origin, which
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one cannot know a priori, circles parametrized in this form do not have a simple
expression. From the analytical point of view, looking at the decay on the Fourier
side, it is easy to find that there is no dissipation at the linear level for the ˘1 Fourier
coefficients, which corresponds to the fact that the center of a circle parametrized
in this way is given by the ˘1 Fourier coefficients of f . At the nonlinear level,
these Fourier coefficients are present and mixed in the evolution together with the
rest of them, making it difficult to control globally in time. In order to handle
this issue we reparametrize the interface getting a tangent vector to the curve with
length independent of the parameter α so that Bα|zα| “ 0 [36]. Therefore, the
system can be reformulated in terms of the angle formed between the tangent and
the horizontal, α ` ϑpα, tq, and the length of the curve as follows

zαpα, tq “ Lptq
2π

pcospα ` ϑpα, tqq, sinpα ` ϑpα, tqqq.

The main unknown to control in this setting is ϑ.
In this parametrization circles correspond to a constant value of ϑ. The evolu-

tion of the zero frequency of ϑ is decoupled from the rest. While the ˘1 are also
neutral in this formulation, the simple compatibility condition

ż π

´π

zαpα, tqdα “ 0

used in [48,49], allows us to control the ˘1 Fourier coefficients of ϑ in terms of
the higher modes. For the higher Fourier modes we can use the dissipation due to
surface tension. All the frequencies, together with the initial condition, determine
the evolution of the center of the bubble.

On the other hand, in the analysis done around circles, it is possible to check
that the Fourier coefficients of different frequencies interact together in the evolu-
tion, even at the linear level. If the ratio |Aρ|R2{Aσ between gravity and surface
tension forces is large, it is not straightforward how to take advantage of the dissi-
pation. Thus it is not clear how to obtain the global-in-time result in terms only
of the size of the initial data and not upon the size of the parameters. In order to
obtain a global result that does not rely on the size of the physical parameters of the
problem, we preform a transformation in Fourier space of the infinite-dimensional
nonlinear system and we prove that this transformation diagonalizes the linear sys-
tem so that our result holds for any size of the physical parameters. In particular,
we show that it is possible to obtain explicitly the size of the smallness constant.
Finally, the analysis we perform is for low regularity initial data, (z0pαq P C1, 1

2 pTq),
allowing unbounded initial curvature and providing instant (analytic) smoothing.

1.1. Outline

The rest of the paper is structured as follows. In Chapter 2, we explain the
contour dynamics formulation of the system of equations for the interface and we
derive the full linearization. Chapter 3 records the notation that will be used
in the rest of the paper and explains the main theorem proving global existence,
uniqueness and exponential large time decay. Then Chapter 4 gives the proof of

the implicit function theorem to obtain the implicit relation between θ̂p˘1q and the
higher Fourier modes. In Chapter 5 we prove the Fourier multiplier estimates for
the operators R and S. Chapter 6 proves the a priori estimates on the vorticity
strength ω. In Chapter 7 we use all the previous estimates to prove the global



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6 1. INTRODUCTION

existence and instant analyticity of solutions. Lastly in Chapter 8 we explain the
proof of uniqueness.
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CHAPTER 2

Contour dynamics formulation

In this chapter we introduce the contour evolution equations that will be used
throughout the paper. We suppress the dependence in t for clarity of notation.
We note that in the introduction it was convenient to introduce the system using
vector notation. However in the rest of the paper, we will study the equation using
complex notation. In Section 2.1 we explain some complex notation used in the
rest of this paper. In Section 2.2, we rewrite the equations (1.11), (1.5), (1.6),
(1.7) in terms of the length of the curve and the angle of the tangent vector [36].
Then in Section 2.3 we derive an equivalent expression for the evolution of the
length of the curve. In Section 2.4, we explain the calculations that we will use
involving the Fourier transform in our further decompositions. Lastly in Section
2.5 we decompose the equations into linear and nonlinear parts. In particular, the
calculation of the expression for the linearized operator is given in Proposition 2.2.

2.1. Complex notation and vector notation

In particular given x “ px1, x2q and y “ py1, y2q in vector notation and given
z “ x1 ` ix2 and w “ y1 ` iy2 in complex notation, then the inner product is
expressed as

x ¨ y “ x1y1 ` x2y2 “ Repzwq.
Here z “ x1 ´ ix2 is the complex conjugate. Similarly in two dimensions in vector

notation we can write x ^ y
def“ x1y2 ´ x2y1 in vector notation and this is equal to

Im pxyq in complex notation. Then for a vector the perpendicular is xK “ p´x2, x1q,
and in complex notation the perpendicular is iz “ ´x2 ` ix1. We will use the
complex notation in most of the rest of the paper.

2.2. Parametrization

Now we define ϑpαq so that α ` ϑpαq is the angle formed between the tangent
to the curve and the horizontal. In complex notation, this means that

(2.1) zαpαq “ |zαpαq|eipα`ϑpαqq.

In this formulation the normal and tangential vectors from (1.10) are

npαq “ ieipα`ϑpαqq, τ pαq “ eipα`ϑpαqq.

We will then denote the normal velocity by Upαq with

(2.2) Upαq “ RepBRpz, ωqpαqnpαqq “ RepBRpωqpαqieipα`ϑpαqqq,
with the Birkhoff-Rott integral (1.5) given by

BRpz, ωqpαq “ 1

2πi
pv

ż π

´π

ωpβq
zpαq ´ zpβqdβ.

7
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Note that BRpz, ωq is the complex conjugate of (1.5) written in complex notation,
this holds in particular since ωpβq is seen to be real as in (2.9) below. These
expressions can be written in terms of zαpαq by noticing that

zpαq ´ zpα ´ βq “
ż α

0

zαpηqdη ´
ż α´β

0

zαpηqdη “ β

ż 1

0

zαpα ` ps ´ 1qβqds.

The equation (1.11) then reads as follows

(2.3) ztpαq “ Upαqnpαq ` T pαqτ pαq.
Taking a derivative in α and projecting into normal and tangential components, we
obtain the evolution equations for ϑpαq and |zαpαq|:

(2.4)
ϑtpαq “ 1

|zαpαq|
´
Uαpαq ` T pαqp1 ` ϑαpαqq

¯
,

|zαpαq|t “ Tαpαq ´ p1 ` ϑαpαqqUpαq.
Now, we can choose a tangential velocity T pαq so that the parametrization of zpαq
has a tangent vector whose modulus does not depend on α. Indeed, we impose

(2.5) |zαpαq| “ 1

2π

ż π

´π

|zαpηq|dη “ Lptq
2π

,

where Lptq is the length of the curve at time t. We then differentiate in time the
equation above and use equation (2.4)2 twice to obtain that

(2.6) T pαq “
ż α

0

p1 ` ϑαpηqqUpηqdη ´ α

2π

ż π

´π

p1 ` ϑαpηqqUpηqdη ` T p0q,

where T p0q simply provides a change of frame in the parametrization. There-
fore, after substitution of this expression of T pαq into (2.4) and using the relation

|zαpαq| “ Lptq
2π

, the evolution system in terms of ϑpαq and Lptq is the following

(2.7)

ϑtpαq “ 2π

LptqUαpαq ` 2π

LptqT pαqp1 ` ϑαpαqq,

Ltptq “ ´
ż π

´π

p1 ` ϑαpαqqUpαqdα,

where T pαq is defined in (2.6), with T p0q free to choose, and Upαq is given by (2.2)
with

(2.8) BRpωqpαq “ 1

iLptqpv
ż π

´π

ωpα ´ βqş1
0
eipα`ps´1qβqeiϑpα`ps´1qβqds

dβ

β
.

Recalling the expression of the curvature in terms of the angle using (1.9),

Kpzqpαq “ 2π

Lptq p1 ` ϑαpαqq,

the equation for the vorticity strength ωpαq in (1.6) reads as follows

(2.9) ωpαq “ 2Aμ

Lptq
2π

Dpωqpαq ` 2Aσ

2π

Lptqϑααpαq ´ 2Aρ

Lptq
2π

sin pα ` ϑpαqq,

with Dpz, ωqpαq in (1.7) given by

(2.10) Dpωqpαq “ ´RepBRpωqpαqeipα`ϑpαqqq.
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In addition, we notice that because |zαpαq| is constant in α and zpαq is a closed
curve, then the following constraint must hold

(2.11) 0 “
ż π

´π

zαpαq
|zαpαq|dα “

ż π

´π

eipα`ϑpαqqdα.

Finally, once the system (2.6)-(2.10) is solved, one can track the evolution of a
single point, say that with α “ 0, by integrating in time (1.11) (notice that the
right hand side of (1.11) has been shown to depend only on zα, given by (2.1),
(2.5), and (2.7)).

2.3. Evolution System

For our purposes, equation (2.7)2 is not convenient to study Lptq. Instead, we
will make use of the fact that the fluid is incompressible, and thus the volume is
preserved. The volume is given in terms of the curve zpαq by

V “ 1

2

ż π

´π

zpαq ^ zαpαqdα,

which in complex notation reads as

V “ 1

2
Im

ż π

´π

zpαqzαpαqdα.

Since Upαq in (2.2) is a total derivative in α, the conservation of volume is obtained
by simply taking a time derivative in the equation above. Now, from (2.1) and (2.5)
we have that

zαpαq “ Lptq
2π

eipα`ϑpαqq,

and we can write

zpαq “ zp0q `
ż α

0

zαpηqdη.

Then the conservation of volume writes as follows

(2.12)

V0 “ πR2

“ 1

2

´Lptq
2π

¯2

Im
´ ż π

´π

ż α

0

eipα´ηqeipϑpαq´ϑpηqqdηdα
¯

“ 1

2

´Lptq
2π

¯2

Im
´
2πi `

ż π

´π

ż α

0

eipα´ηq
ÿ

ně1

in

n!
pϑpαq ´ ϑpηqqndηdα

¯
.

This yields the following equation for Lptq:

(2.13)
´Lptq

2π

¯2

“ R2
´
1 ` 1

2π
Im

ż π

´π

ż α

0

eipα´ηq
ÿ

ně1

in

n!
pϑpαq ´ ϑpηqqndηdα

¯´1

.

This is the equation for Lptq that will be use later in the paper,
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Conversely, it is not hard to check that (2.13) implies (2.7)2. In fact, taking a
time derivative of (2.12), and assuming Lptq ‰ 0, gives that

L1ptq “ 1

4πR2

´Lptq
2π

¯3

Im

ż π

´π

ż α

0

ieipα´ηqeipϑpαq́ ϑpηqqpϑtpαq´ϑtpηqqdηdα

“ 1

4πR2

´Lptq
2π

¯3

Im

ż π

´π

ieiαeiϑpαqϑtpαq
ż α

0

e´iηe´iϑpηqdηdα

´ 1

4πR2

´Lptq
2π

¯3

Im

ż π

´π

ieiαeiϑpαq

ż α

0

e´iηe´iϑpηqϑtpηqdηdα.

Thus writing in the first term eiαeiϑpαqϑtpαq “ Bα
şα
0
eiηeiϑpηqϑtpηq and integrating

by parts we obtain that

(2.14) L1ptq “ ´1

2πR2

´Lptq
2π

¯3

Im

ż π

´π

ieiαeiϑpαq

ż α

0

e´iηe´iϑpηqϑtpηqdηdα.

Using the equation for ϑ in (2.7)1, we have

Lptq
2π

ż α

0

e´iηe´iϑpηqϑtpηqdη “
ż α

0

e´iη´iϑpηq
`
Uαpηq ` T pηqp1 ` ϑαpηqq

˘
dη

“ e´iα´iϑpαqUpαq ´ e´iϑp0qUp0q ` i

ż α

0

e´iη´iϑpηqp1 ` ϑαpηqqUpηqdη

` i

ż α

0

Bη
`
e´iη´iϑpηq

˘
T pηqdη.

We then integrate by parts once more in the last term, also using (2.6), to obtain

i

ż α

0

Bη
`
e´iη´iϑpηq

˘
T pηqdη “ ie´iα´iϑpαqT pαq ´ ie´iϑp0qT p0q

´ i

ż α

0

e´iη´iϑpηqp1 ` ϑαpηqqUpηqdη ` i

2π

ż π

´π

p1 ` θαpηqqUpηqdη
ż α

0

e´iη´iϑpηqdη.

Substituting into the previous equation we find that

Lptq
2π

ż α

0

e´iηe´iϑpηqϑtpηqdη “ e´iα´iϑpαqUpαq ´ e´iϑp0qUp0q ` ie´iα´iϑpαqT pαq

´ ie´iϑp0qT p0q ` i

2π

ż π

´π

p1 ` θαpηqqUpηqdη
ż α

0

e´iη´iϑpηqdη.

Thus, plugging this back into (2.14) and using relation (2.11) gives

L1ptq “ ´1

2πR2

´Lptq
2π

¯2´
Im

ż π

´π

eiα`iϑpαq

ż α

0

e´iη´iϑpηqdηdα
¯ż π

´π

p1`ϑαpηqqUpηqdη,

which recalling (2.12) implies (2.7)2.
We will later show (see Section 7.1) that the condition on the initial data will

guarantee that Lptq ą 0 for all time, and thus the formulations using (2.7)2 and
(2.13) are equivalent.

In summary, the closed system of equations that define the evolution of the
Muskat bubble can be expressed by (2.7)1 and (2.13), together with (2.11). We will
study the evolution of this system to prove our main results.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.5. LINEARIZATION AND NONLINEAR EXPANSION 11

2.4. Calculations Involving the Fourier Transform

In this section we recall basic calculations for the periodic Fourier transform
that will be used in the next section. In particular we define the Fourier transform
of a periodic function g with domain T “ r´π, πs as:

Fpgqpkq def“ pgpkq “ 1

2π

ż π

´π

gpαqe´ikαdα,

and the corresponding Fourier series

gpαq “
ÿ

kPZ

pgpkqeikα.

For later use, we also define the periodic Hilbert transform as

(2.15) Hpgqpαq def“ 1

2π
pv

ż π

´π

gpα ´ βq
tan pβ{2q .

We notice that Hpgqpαq “ ´ 1
2π

pv
şπ

´π

gpα`βq
tan pβ{2q . Adding half of these together one

can calculate that Hpcq “ 0 if c P C is a constant and

Hpgqpαq “ ´i
ÿ

k‰0

sgnpkqpgpkqeikα.

And further FpHpgqqpkq “ ´i sgnpkqpgpkq. Then we define the operator Λ using

the Fourier transform as FpΛgqpkq def“ |k|pgpkq. And we observe that Hpgαqpαq “ř
kPZ |k|pgpkqeikα “ Λg. And furthermore

BαHpgααqpαq “ ´
ÿ

kPZ

|k|3pgpkqeikα “ ´Λ3g.

Also one can compute by plugging in the Fourier series that

(2.16) F
´ ż α

0

gpηqdη ´ α

2π

ż π

´π

gpηqdη
¯

pkq “
#

´ i
k

pgpkq, k ‰ 0,ř
j‰0

i
j
pgpjq, k “ 0,

These calculations will be used in the next section when we take the Fourier trans-
form of the linearization.

2.5. Linearization and Nonlinear Expansion

We proceed next to decompose the equation for ϑ in the system (2.6)-(2.10)
into linear and nonlinear parts. We will Taylor expand the nonlinear terms around
the zero frequency of ϑpαq. Define

(2.17) θpαq “ ϑpαq ´ ϑ̂p0q.
Taking into account that

ż 1

0

eipα`ps´1qβqds “ eiα
1 ´ e´iβ

iβ
,

we write the denominator of (2.8) as follows

ż 1

0

eipα`ps´1qβqeiϑ̂p0qeiθpα`ps´1qβqds “

eiϑ̂p0qeiα
1 ´ e´iβ

iβ

ˆ
e´iα iβ

1 ´ e´iβ

ż 1

0

eipα`ps´1qβqeiθpα`ps´1qβqds ´ 1 ` 1

˙
.
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Then after performing a Taylor expansion, (2.8) is given by

BRpωqpαq “ e´iϑ̂p0q

iLptq pv

ż π

´π

ωpα ´ βq
βeiα 1´e´iβ

iβ

¨
ÿ

ně0

ˆ
1 ´ iβ

1 ´ e´iβ

ż 1

0

eips´1qβeiθpα`ps´1qβqds

˙n

dβ.

By further Taylor expanding the exponential term, we find that

BRpωqpαq “ e´iϑ̂p0qe´iα

iLptq
ÿ

ně0

pv

ż π

´π

ωpα ´ βq
β

p´1qnpiβqn`1

p1 ´ e´iβqn`1

¨
´ ÿ

mě1

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmds
¯n

dβ.

We further Taylor expand eiθpαq. Then plugging these expansions into (2.2) provides
the series for Upαq

Upαq “ Re

˜
1

Lptq
ÿ

n,lě0

piθpαqql
l!

pv

ż π

´π

ωpα ´ βqp´1qnpiβqn`1

βp1 ´ e´iβqn`1

¨
˜ ÿ

mě1

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmds

¸n

dβ

¸
.

For convenience, we introduce the following notation for the operators R and S.
We first define R:

(2.18) Rpfqpαq“ i

π
pv

ż π

´π

fpα´βq
β

β2

p1´e´iβq2
ż 1

0

eips´1qβθpα`ps ´ 1qβqdsdβ.

Above R is chosen to be a linear function in θ, it corresponds to l “ 0, n “ 1 and
m “ 1 in Upαq above. Then, we further define the operator S to be the nonlinear
in θ terms inside Upαq above:

(2.19) Spfqpαq “ 1

π

ÿ

n,lě0
n`lě2

p´1qnil`n`1pθpαqql
l!

pv

ż π

´π

fpα ´ βqβn`1

βp1 ´ e´iβqn`1

¨
˜ ÿ

mě1

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmds

¸n

dβ

` 1

π
pv

ż π

´π

fpα ´ βqβ2

βp1 ´ e´iβq2
ÿ

mě2

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmdsdβ.

The S operator corresponds to the terms in Upαq above where n, l ě 0 and n`l ě 2
plus the case where l “ 0, n “ 1 and m ě 2.

For the cases in Upαq where n “ l “ 0 and n “ 0, l “ 1 we further notice that

(2.20)
1

π
pv

ż π

´π

fpα ´ βq
1 ´ e´iβ

dβ “ ´iHfpαq ` f̂p0q,

where Hf denotes the periodic Hilbert transform of f as given in (2.15). The previ-
ous identity (2.20) is obtained multiplying above and below by 1´eiβ and using the
trigonometric identities 1´cos pβq “ 2 sin2 pβ{2q and sin pβq “ 2 sin pβ{2q cos pβ{2q.
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Further ωpαq in (2.9) can be written as an exact derivative, its mean value is zero
and therefore ω̂p0q “ 0. These calculations show that we can write the expression
inside (2.2) as

iBRpωqpαqeipα`ϑpαqq “ π

Lptq piθpαqHpωq ` Hpωq ` Rpωqpαq ` Spωqpαqq .

Thus, noticing that the term with n “ 0, l “ 1 vanishes in Upαq in (2.2) because
it is purely imaginary, using the notation above we can write Upαq in the following
manner

(2.21) Upαq “ π

Lptq
´
Hωpαq ` ReRpωqpαq ` ReSpωqpαq

¯
.

Proceeding similarly, in (2.10), one finds that

(2.22) Dpωqpαq “ ´π

Lptq
´
θpαqHωpαq ` ImRpωqpαq ` ImSpωqpαq

¯
.

We shall now split all the terms into zero, first or higher order polynomials of θpαq.
First, the vorticity strength (2.9) is split as follows

ωpαq “ ω0pαq ` ω1pαq ` ωě2pαq,
where

(2.23)

$
’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’%

ω0pαq “ ´ Aρ

Lptq
π

sin pα ` ϑ̂p0qq,

ω1pαq “ Aμ

Lptq
π

D1pω0qpαq ` 2Aσ

2π

Lptqθαα

´ Aρ

Lptq
π

cos pα ` ϑ̂p0qqθpαq,

ωě2pαq “ Aμ

Lptq
π

Dě2pωqpαq

´ Aρ

Lptq
π

sin pα ` ϑ̂p0qq
ÿ

jě1

p´1qjpθpαqq2j
p2jq!

´ Aρ

Lptq
π

cos pα ` ϑ̂p0qq
ÿ

jě1

p´1qjpθpαqq1`2j

p1 ` 2jq! ,

ωě1 “ ω1 ` ωě2.

Above we used the trigonometric identity sinpa`bq “ sinpaq cospbq`cospaq sinpbq, as
well as the Taylor expansions for sine and cosine. Then D1pω0qpαq and Dě2pωqpαq
are obtained, in turn, by introducing (2.23) into (2.22) as follows

Dpωqpαq “ D1pω0qpαq ` Dě2pωqpαq,
where

(2.24)

$
’’&
’’%

D1pω0qpαq “ ´π

Lptq
´
θpαqHω0pαq ` ImRpω0qpαq

¯
,

Dě2pωqpαq “ ´π

Lptq
´
θpαqHωě1pαq ` ImRpωě1qpαq ` ImSpωqpαq

¯
.

Analogously, the splitting for Upαq from (2.21) is

Upαq “ U0pαq ` U1pαq ` Uě2pαq,
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with

(2.25)

$
’’’’’&
’’’’’%

U0pαq “ π

LptqHω0pαq,

U1pαq “ π

Lptq
´
Hω1pαq ` ReRpω0qpαq

¯
,

Uě2pαq “ π

Lptq
´
Hωě2pαq ` ReRpωě1qpαq ` ReSpωqpαq

¯
.

Recalling the expression for T pαq in (2.6), we find that

T pαq “ T0pαq ` T1pαq ` Tě2pαq,

where, using
şπ

´π
U0pηqdη “ 0, we have

(2.26)

$
’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’%

T0pαq “T p0q `
ż α

0

U0pηqdη,

T1pαq “
ż α

0

U1pηqdη ´ α

2π

ż π

´π

U1pηqdη

`
ż α

0

θαpηqU0pηqdη ´ α

2π

ż π

´π

θαpηqU0pηqdη,

Tě2pαq “
ż α

0

p1 ` θαpηqqUě2pηqdη ´ α

2π

ż π

´π

p1 ` θαpηqqUě2pηqdη

`
ż α

0

θαpηqU1pηqdη ´ α

2π

ż π

´π

θαpηqU1pηqdη.

These are all the splittings that we will use in the following.
We first examine the zero order terms from (2.4)1. The zero order terms on

the right side of the equality (2.4)1 would be

Θpαq “ pU0qαpαq ` T0pαq.

Now a direct calculation from (2.23) shows that

(2.27) Hpω0qpαq “ Aρ

Lptq
π

cos pα ` ϑ̂p0qq.

Then we plug this into (2.25)1 and (2.26)1 to obtain

(2.28)

#
U0pαq “ Aρ cos pα ` ϑ̂p0qq,
T0pαq “ Aρ sin pα ` ϑ̂p0qq ´ Aρ sin ϑ̂p0q ` T p0q.

In particular then the zero order term Θpαq does not depend on α,

Θpαq “ ´Aρ sin ϑ̂p0q ` T p0q.

Now we choose

(2.29) T p0q “ Aρ sin ϑ̂p0q.

Thus the parametrization of the circle solution is independent of time (see Propo-
sition 2.1 below). Further Θpαq “ 0.
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Now we introduce the splittings (2.25) and (2.26) into the equation for ϑ in
(2.7), we find that

(2.30)

$
’’’&
’’’%

θtpαq “ 2π

Lptq
´
Lpαq ` Npαq

¯
,

Lpαq “ pU1qαpαq ` T1pαq ` T0pαqθαpαq,
Npαq “ pUě2qαpαq ` Tě2pαqp1 ` θαpαqq ` T1pαqθαpαq.

Now we will expand the linear terms in Lpαq in (2.30). To do this we first split U1pαq
in (2.25) into parts corresponding to the parameters Aρ, Aσ and Aμ respectively as

U1pαq “ AρU1ρpαq ` 4Aσ

π2

pLptqq2U1σpαq ` AμAρU1μpαq,

To calculate these terms we plug ω0pαq and ω1pαq from (2.23) into U1pαq in (2.25)
using also D1pω0qpαq from (2.24) and (2.27). We obtain

(2.31)

$
’’&
’’%

U1ρpαq “ ´H
`
θpαq cos pα ` ϑ̂p0qq

˘
´ ReRpsin pα ` ϑ̂p0qqq,

U1σpαq “ Hθααpαq,
U1μpαq “ ´H

`
θpαq cos pα ` ϑ̂p0qq

˘
` H ImRpsin pα ` ϑ̂p0qqq.

We analogously write the linear part, Lpαq in (2.30), as follows

Lpαq “ AρLρpαq ` 4Aσ

π2

pLptqq2Lσpαq ` AμAρLμpαq,

where

(2.32)

$
’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’%

Lρpαq “ pU1ρqαpαq `
ż α

0

U1ρpηqdη ´ α

2π

ż π

´π

U1ρpηqdη

`
ż α

0

θαpηq cos pη ` ϑ̂p0qqdη ´ α

2π

ż π

´π

θαpηq cos pη ` ϑ̂p0qqdη

` θαpαq sin pα ` ϑ̂p0qq,

Lσpαq “ ´Λ3θpαq `
ż α

0

Hθααpηqdη,

Lμpαq “ pU1μqαpαq `
ż α

0

U1μpηqdη.

Here we used that BαHθαα “ ´Λ3θpαq. We also used that
ż π

´π

Hθααpηqdη “
ż π

´π

U1μpηqdη “ 0

since both integrals are of a Hilbert transform and thus have zero value for the zero
Fourier frequency. This completes our decomposition of the equation (1.11) into
(2.30).

In the following, we explain the steady states circles for equation (1.11) using
the reformulation of the equations given above.

Proposition 2.1. A circle of radius R, defined by (2.1) and (2.5) with ϑpαq “
pϑp0q constant in time and Lptq “ 2πR, is a time-independent solution of (2.6)-
(2.10) with T p0q given by (2.29). It corresponds to the solution of (1.11) given by
a circle of radius R moving vertically with velocity Aρ.
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Proof. For ϑpαq “ pϑp0q, all the linear and nonlinear terms in the decompo-
sitions (2.23)-(2.26) are zero. Thus, with Lptq “ 2πR, as in (2.28) with (2.29) we
have

Upαq “ U0pαq “ Aρ cos pα ` pϑp0qq,
T pαq “ T0pαq “ Aρ sin pα ` pϑp0qq.

Both equations in (2.7) are then trivially satisfied; equation (2.7)1 is decomposed
as (2.30) with Lpαq “ Npαq “ 0.

Then we integrate (2.1) to obtain

zpα, tq “ zp0, tq ` R

ż α

0

eipη` pϑp0qqdη.

We differentiate the above in time, and then use (2.3) to obtain

ztpα, tq “ ztp0, tq “ Up0, tqnp0, tq ` T p0, tqτ p0, tq

“ Aρ cos ppϑp0qqieipϑp0q ` Aρ sin ppϑp0qqeipϑp0q “ 0 ` iAρ.

This completes the proof. �

Next, we compute the Fourier transform of the linearized system. Because the
function θpαq is real and has zero average, we only need to compute the positive
frequencies.

Proposition 2.2. (Linear system in Fourier variables.) For k ě 1, k ‰ 2, the
Fourier transform of the linear terms (2.32) are given by

pLpkq “ ´Aσ

4π2

Lptq2 kpk2´1qθ̂pkq´p1`AμqAρ

pk2´1qpk`1q
kpk`2q e´iϑ̂p0qθ̂pk ` 1q,

and for k “ 2,

pLp2q “ ´ Aσ

4π2

Lptq2 6θ̂p2q ` p1 ´ AμqAρ

3

2

ˆ
3

4
´ log 2

˙
eiϑ̂p0qθ̂p1q

´ p1 ` AμqAρ

9

8
e´iϑ̂p0qθ̂p3q.

Proof. First, we note that, for a general function fpαq and k ‰ 0 we have
(2.16). Therefore, for k ě 1, the Fourier coefficients of (2.32) are given by

(2.33)

pLσpkq “ ´kpk2 ´ 1qθ̂pkq,

pLμpkq “ i

ˆ
k ´ 1

k

˙
pU1μpkq,

pLρpkq “
ˆ
k ´ 1

k

˙ ˜
ipU1ρpkq ` eiϑ̂p0q

2
θ̂pk ´ 1q ´ e´iϑ̂p0q

2
θ̂pk ` 1q

¸
,

so it remains to compute pU1μpkq and pU1ρpkq. From (2.31), we can write

pU1μpkq “ i

2

´
eiϑ̂p0qθ̂pk´1q`e´iϑ̂p0qθ̂pk`1q

¯

´iF
´
ImRpsin pα`ϑ̂p0qqq

¯
pkq,
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and

pU1ρpkq “ i

2

´
eiϑ̂p0qθ̂pk´1q`e´iϑ̂p0qθ̂pk`1q

¯

´F
´
ReRpsin pα`ϑ̂p0qqq

¯
pkq.

Recalling the expression of R in (2.18), we have that

F
´
ImRpsin pα ` ϑ̂p0qqq

¯
pkq “

1

π
pv

ż π

´π

ż 1

0

Im

ˆ
iβeips´1qβ

p1 ´ e´iβq2
˙
F

´
θpα ` ps ´ 1qβq sin pα´β`ϑ̂p0qq

¯
pkqdsdβ.

Using that

Im

ˆ
iβeips´1qβ

p1 ´ e´iβq2
˙

“ ´ β cos pβsq
4 sin2 pβ{2q

,

and computing the Fourier transform inside the integral, we obtain that

F
´
ImRpsinpα`ϑ̂p0qqq

¯
pkq “

´ eiϑ̂p0q

2π
θ̂pk´1qpv

ż π

´π

ż 1

0

β cos pβsq
4 sin2 pβ{2q

sin ppk´1qps´1qβ´βqdsdβ

` e´iϑ̂p0q

2π
θ̂pk`1qpv

ż π

´π

ż 1

0

β cos pβsq
4 sin2 pβ{2q

sin ppk`1qps´1qβ`βqdsdβ.

Taking into account that

Re

ˆ
iβeips´1qβ

p1 ´ e´iβq2
˙

“ β sin pβsq
4 sin2 pβ{2q

,

and proceeding analogously, the following expression is found for the real part:

F
´
ReRpsinpα`ϑ̂p0qqq

¯
pkq “

´ ieiϑ̂p0q

2π
θ̂pk´1qpv

ż π

´π

ż 1

0

β sin pβsq
4 sin2 pβ{2q

cos ppk´1qps´1qβ´βqdsdβ

` ie´iϑ̂p0q

2π
θ̂pk`1qpv

ż π

´π

ż 1

0

β sin pβsq
4 sin2 pβ{2q

cos ppk`1qps´1qβ`βqdsdβ.

The above integrals are calculated in Lemma 2.3 below. Plugging in their values,
we have

(2.34) F
´
ImRpsinpα`ϑ̂p0qqq

¯
pkq “ e´iϑ̂p0q

2π
θ̂pk`1q ´kπ

2 ` k
1kě1

´ eiϑ̂p0q

2π
θ̂pk´1q

ˆ
´π1kě1,k‰2 ` π

ˆ
1

2
´ log 4

˙
1k“2

˙
,

and

(2.35) F
´
ReRpsinpα`ϑ̂p0qqq

¯
pkq “ ´ ieiϑ̂p0q

2π
θ̂pk´1qπ

ˆ
log 4 ´ 3

2

˙
1k“2

` ie´iϑ̂p0q

2π
θ̂pk`1q 2π

2 ` k
1kě1.
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We conclude the Fourier transform of U1μ and U1ρ are given by

pU1μpkq “

$
’&
’%

i

2
e´iϑ̂p0q

´
1 ` k

2 ` k

¯
θ̂pk ` 1q, k “ 1, 3, 4, . . . ,

i

2
eiϑ̂p0q

´3

2
´ log p4q

¯
θ̂p1q ` 3i

4
e´iϑ̂p0qθ̂p3q, k “ 2,

and

pU1ρpkq “

$
’&
’%

i

2
eiϑ̂p0qθ̂pk´1q` i

2
e´iϑ̂p0q

´
1´ 2

2`k

¯
θ̂pk`1q, k “ 1, 3, 4, . . . ,

i

2
eiϑ̂p0q

´
´ 1

2
` log 4

¯
θ̂p1q ` i

4
e´iϑ̂p0qθ̂p3q, k “ 2.

Substituting these expressions into (2.33) gives that

pLμpkq “

$
’’&
’’%

´ e´ipϑp0q pk2 ´ 1qpk ` 1q
kpk ` 2q

pθpk ` 1q, k “ 1, 3, 4, . . . ,

´ 3

4

´3

2
´ log 4

¯
ei

pϑp0qpθp1q ´ 9

8
e´ipϑp0q pθp3q, k “ 2,

and

pLρpkq “

$
’’&
’’%

´ ei
pϑp0q pk2 ´ 1qpk ` 1q

kpk ` 2q
pθpk ´ 1q, k “ 1, 3, 4, . . . ,

3

4

´3

2
´ log 4

¯
ei

pϑp0qpθp1q ´ 9

8
e´ipϑp0qpθp3q, k “ 2,

Finally, adding them according to (2.32), the result follows. �

Lemma 2.3. For k P Zzt0u, define the integrals

I1pkq “
ż π

´π

ż 1

0

β cos pβsq
4 sin2 pβ{2q

sin ppk´1qps´1qβ´βqdsdβ,

I2pkq “
ż π

´π

ż 1

0

β sin pβsq
4 sin2 pβ{2q

cos ppk´1qps´1qβ´βqdsdβ.

For k ě 1 and k ‰ 2,

I1pkq “ ´π, I2pkq “ 0,

while for k ď ´1.

I1pkq “ ´kπ

2 ´ k
, I2pkq “ 2π

2 ´ k
.

The value k “ 2 is given by

I1p2q “ π
´1

2
´ log 4

¯
, I2p2q “ π

´
log 4 ´ 3

2

¯
.

Remark 2.4. Notice that

I1p´kq “ ´
ż π

´π

ż 1

0

β cos pβsq
4 sin2 pβ{2q

sin ppk`1qps´1qβ`βqdsdβ,

and

I2p´kq “
ż π

´π

ż 1

0

β sin pβsq
4 sin2 pβ{2q

cos ppk`1qps´1qβ`βqdsdβ.

Thus Lemma 2.3 covers all the integrals in (2.34) and (2.35).
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Proof. Both integrals are computed similarly. We only show the details for
I1pkq. First, consider the case k ‰ 2. Using complex exponentials, we write the
numerator as follows

cos pβsq sin ppk´1qps´1qβ´βq “ 1

4i

´
eikps´1qβ ´ e´ipkps´1qβ´2sβq

` eipkps´1qβ´2sβq ´ e´ipkps´1qβq
¯
.

Thus integration in s gives that

I1pkq“ ´1

16

ż π

´π

´1´e´ikβ

k
` e2iβ´eikβ

k ´ 2
` e´2iβ´e´ikβ

k ´ 2
` 1´eikβ

k

¯ dβ

sin2 pβ{2q

“ ´1

16

ż π

´π

´2´eikβ´e´ikβ

k
` e2iβ`e´2iβ

k ´ 2
´ eikβ`e´ikβ

k ´ 2

¯ dβ

sin2 pβ{2q
.

We then write the denominator in complex form too

sin2 pβ{2q “ ´1

4

`
eiβ{2 ´ e´iβ{2

˘2
,

and formally expand it
`
sin β{2q

˘´2 “ ´4e´iβ
`
1´e´iβ

˘´2 “ ´4e´iβ
ÿ

lě1

le´ipl´1qβ “´4
ÿ

lě1

le´ilβ,

where we have used that
1

p1 ´ xq2 “
ÿ

lě1

lxl´1.

Therefore, for k ‰ 0, 2, we have

I1pkq“ 1

4

ÿ

lě1

l

ż π

´π

´2e´ilβ´eipk´lqβ´e´ipk`lqβ

k
` eip2´lqβ`e´ip2`lqβ

k ´ 2

´ eipk´lqβ`e´ipk`lqβ

k ´ 2

¯
dβ.

Thus performing the integral in β we obtain that

I1pkq “ 1

4

ÿ

lě1

l
´2π

k

`
´ δpk ´ lq ´ δpk ` lq

˘

` 2π

k´2

`
δp2´lq`δp2`lq´δpk´lq´δpk`lq

˘¯

“ 1

4

´
´ 2π sgnpkq ` 2π

k ´ 2
2 ´ 2π

k ´ 2
|k|

¯
,

which gives

I1pkq“ π

2

´
´ sgnpkq` 2´|k|

k´2

¯
“ π

2

´2|k|`2psgnpkq`1q
k´2

.

It follows then that for k ě 1 (k ‰ 2),

I1pkq “ ´π,

and for k ď ´1,

I1pkq “ π

2

2k

k ´ 2
“ π

|k|
2 ` |k| .
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The above computations can be justified by writing x “ λe´iβ with 0 ă λ ă 1.

Then,
`
1´λe´iβ

˘´2 “ ř
lě1 lλ

l´1e´ipl´1qβ converges uniformly and one can repeat
the steps above and take the limit λ Ñ 1.

Lastly, we deal with the case k “ 2. We first rewrite it as follows

I1p2q “
ż π

´π

ż 1

0

β

8 sin2 pβ{2q
psin p2βs ´ 2βq ´ sin p2βqq dsdβ,

so after integration in s we obtain

I1p2q “
ż π

´π

β

8 sin2 pβ{2q

ˆ´1 ` cos p2βq
2β

´ sin p2βq
˙
dsdβ.

Using repeatedly the double angle formula, we find that

I1p2q “ ´1

2

ż π

´π

cos2 pβ{2qdβ ´ 1

2

ż π

´π

β cos pβq cos pβ{2q
sin pβ{2q dβ

“ ´π

2
´ 1

2

ż π

´π

β cos pβq cos pβ{2q
sin pβ{2q dβ,

which can be further simplified

I1p2q “ ´π

2
`

ż π

´π

β sin pβ{2q cos pβ{2qdβ ´ 1

2

ż π

´π

β cos pβ{2q
sin pβ{2q dβ

“ π

2
´ 1

2

ż π

´π

β cos pβ{2q
sin pβ{2q dβ.

Integration by parts gives that

I1p2q “ π

2
` 2

ż π

0

log | sin pβ{2q|dβ.

This integral above is related to the known Clausen function [14] of order two
(whose value at π is zero):

0 “ Cl2pπq “
ż π

0

log |2 sin pβ{2q|dβ “
ż π

0

log | sin pβ{2q|dβ ` π log 2,

We thus conclude

I1p2q “ π

2
` 2

ż π

0

log | sin pβ{2q|dβ “ π

2
´ 2π log 2 “ π

´1

2
´ log 4

¯
.

This completes the proof. �

We notice that in Proposition 2.2 the first frequency mode is neutral at the
linear level. However, the restriction (2.11) is an equation that relates this frequency
with all the higher ones. Thus, the rough idea is to proceed as follows: apply an

implicit function theorem to (2.11) to solve pθp´1q and pθp1q in terms of pθpkq for

|k| ě 2; use (2.30) to compute pθpkq for |k| ě 2, for which the linear operator
provides dissipation when we are able to control the nonlinear terms. Then we will
use (2.13) to control Lptq in terms of θptq. Finally we can compute the evolution of

the zero frequency pϑp0q from (2.30).
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CHAPTER 3

Notation and main results

We introduce the notation that will be used in the rest of the paper in Section
3.1. We will then state the main results in Section 3.2.

3.1. Notation

We recall the complex vector notation introduced in Section 2.1 and the Fourier
transform notation introduced in Section 2.4. We use T “ r´π, πs as our domain
with periodic boundary conditions.

We introduce the space F0,1 to denote the Wiener algebra, i.e., the space of
absolutely convergent Fourier series. The norm in this space is

}f}F0,1
def“

ÿ

kPZ

|f̂pkq|.

We analogously introduce the homogeneous spaces 9Fs,1 with norm

}f} 9Fs,1

def“
ÿ

k‰0

|k|s|f̂pkq|, s ě 0.

Further in Chapter 8 we will use the notation

(3.1) }f1, f2, . . . , fk} 9Fs,1

def“
kÿ

j“1

}fj} 9Fs,1 .

Moreover, we will use the spaces of analytic functions 9Fs,1
ν where these norms

include exponential weights as follows:

(3.2) }f}
F

0,1
ν

def“
ÿ

kPZ

eνptq|k||f̂pkq|,

and

(3.3) }f} 9F
s,1
ν

def“
ÿ

k‰0

eνptq|k||k|s|f̂pkq|, s ě 0,

with

(3.4) νptq def“ ν0
t

1 ` t
ą 0,

where 0 ă ν 1ptq ď ν0 is bounded and small enough for all time when ν0 ą 0 is
chosen small enough.

We recall the embeddings 9Fs2,1
ν ãÑ 9Fs1,1

ν for 0 ă s1 ď s2, with norm inequality

(3.5) }f} 9F
s1,1
ν

ď }f} 9F
s2,1
ν

, 0 ă s1 ď s2.

21
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This inequality also holds if s1 “ 0 with F0,1 in the lower bound provided that

f̂p0q “ 0. We also recall the interpolation inequality

(3.6) }f} 9F
s,1
ν

ď }f}1´σ
9F
s1,1
ν

}f}σ
9F
s2,1
ν

, s “ p1 ´ σqs1 ` σs2,

for 0 ď σ ď 1, s, s1, s2 ě 0.
We further will use the discrete delta function δpkq for k P Z which is defined

as δp0q “ 1 and δpkq “ 0 for k ‰ 0. We also define 1A to be the standard indicator
function of the set A so that 1Apxq “ 1 if x P A and 1Apxq “ 0 if x R A.

We define the �p “ �ppZq norms for 1 ď p ă 8 of a sequence a “ takukPZ as

}a}�p def“
˜ÿ

kPZ

|ak|p
¸1{p

,

and for p “ 8 we use

}a}�8
def“ sup

kPZ
|ak|.

We also define the following notation for s ě 0:

(3.7) bpn, sq def“
#
1, 0 ď s ď 1,

ns´1, s ą 1,

Further define the high frequency cut-off operator JN for N ě 0 by

(3.8) zJNfpkq def“ 1|k|ďN
pfpkq.

We will use these norms and notations in the rest of the paper.
Throughout the paper, we will denote

Ci “ Cipxq “ Ci

ˆ
x;Aμ,

|Aρ|R2

Aσ

˙
ą 0

as functions that are increasing in x ě 0 and might depend on the physical param-

eters such as Aμ,
|Aρ|R2

Aσ
, with the property that Cipxq « 1 for all ´1 ď Aμ ď 1,

|Aρ|R2

Aσ
ě 0. Typically, x will be the norm }θ} 9F

s,1
ν

with s “ 0 or s “ 1{2.
We denote f ˚ g as the standard convolution of f and g. We use the iterated

convolution notation

(3.9) ˚kf “ f ˚ ¨ ¨ ¨ ˚ floooomoooon
k ´ 1 convolutions of k copies of f

Thus for instance ˚2f “ f ˚ f . We then sometimes also use the notation g ˚k f “
g ˚ f ˚ ¨ ¨ ¨ ˚ floooomoooon

k ´ 1 convolutions

to avoid an additional ˚ in the notation.

3.2. Main Results

The main result of this paper states that, for any value of the physical pa-
rameters Aρ, Aμ, Aσ, a bubble in a porous medium, with arbitrary volume πR2

and shape that is not too far from a circle, converges exponentially fast to a circle
that rises (or falls) with constant velocity proportional to the difference between
the inner and outer density. The initial interface needs to have barely more than a
continuous tangent vector, allowing in particular for unbounded curvature. In par-
ticular since we suppose θ0 P 9F

1

2
,1 then the initial interface has regularity W

3

2
,8,

in terms of the tangent vector the initial regularity is W
1

2
,8. In particular the
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initial curvature doesn’t need to be bounded. Moreover, the interface becomes
instantaneously analytic.

We summarize here the system that models our problem. For clarity, we write
the zero frequency of ϑ apart because it is decoupled from the rest, and the equation
for θ with the linear and nonlinear terms separated:

(3.10)

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

pϑtp0q “ 2π

Lptq
pT ˚ {p1 ` θαqp0q,

θtpαq “ 2π

Lptq
´
Lpαq ` Npαq

¯
,

Lptq “ 2πR
´
1 ` 1

2π
Im

ż π

´π

ż α

0

eipα´ηq
ÿ

ně1

in

n!
pθpαq ´ θpηqqndηdα

¯´ 1

2

,

0 “
ż π

´π

eipα`θpαqqdα,

where the linear and nonlinear terms Lpαq, Npαq are given by (2.30) with T pαq
defined in (2.6), (2.26), and (2.29), Upαq in (2.2) and (2.25).

Theorem 3.1. Fix Aμ P r´1, 1s, Aρ P R, Aσ ą 0, and R ą 0. Assume that

the initial data ϑ0pαq “ pϑ0p0q ` θ0pαq P 9F
1

2
,1 satisfies the medium-size condition

(3.11) }θ0}
9F
1

2
,1 ă K

´ |Aρ|R2

Aσ

, Aμ

¯
,

where K is defined in (7.26). Then, for any T ą 0, there exists a unique global

strong solution ϑpα, tq “ pϑp0, tq ` θpα, tq to the system (3.10), which lies in the
space

ϑ P Cpr0, T s; 9F
1

2
,1

ν q X L1pr0, T s; 9F
7

2
,1

ν q, 0 ă T ă 8,

with νptq given by (3.4). In particular the solution becomes instantaneously analytic.
Moreover, the following energy inequality is satisfied for 0 ď t ď T :

(3.12) }θ}
9F

1

2
,1

ν

ptq ` Aσ

R3
D

ż t

0

}θ}
9F

7

2
,1

ν

pτ qdτ ď C2
S}θ0}

9F
1

2
,1 ,

with

D “ D
´
CS}θ0}

9F

1

2
,1

ν

,
|Aρ|R2

Aσ

, Aμ,
Aσ

R3
, ν

¯
ą 0

defined in (7.22), and CS “ CS

`
Aμ,

|Aρ|R2

Aσ

˘
defined in (7.11). In addition, we have

the uniform in time estimate

(3.13) }θ}
9F

1

2
,1

ν

ptq ď C2
S}θ0}

9F
1

2
,1e

´ Aσ
R3

Dt.

Furthermore, the zero frequency pϑp0q remains bounded for all times

(3.14) |pϑp0, tq| ď |pϑ0p0q| ` C42}θ0}
9F
1

2
,1 ,

where C42 is defined in (7.27).

We remark that none of the uniform constants in Theorem 3.1 depend upon
our choice of T ą 0, and T can be taken arbitrarily large. We also remark that for
νptq given by (3.4) then in ν0 ą 0 is chosen sufficiently small as in (7.24).
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Remark 3.2. From Proposition 2.1, the large time decay in (3.13) implies the
exponential convergence to rising or falling circles. Moreover, as part of the proof,
it will be proven in (7.2) that the length satisfies for all times t ě 0 that

(3.15)
Rb

1 ` π
2

`
e
2}θ}

9F

1

2
,1

ptq ´ 1
˘ ď Lptq

2π
ď Rb

1 ´ π
2

`
e
2}θ}

9F

1

2
,1

ptq ´ 1
˘ ,

which also shows that Lptq Ñ 2πR as t Ñ 8.

Remark 3.3. The size condition (3.11) of the theorem above is explicit: for
any value of the physical parameters, it gives a bound for the norm of the initial
data that can be computed. We also notice that, thanks to the diagonalization
performed in Chapter 7, the dissipative character of the equation is shown in (3.12)
for any Aσ ą 0, no matter how large the gravity effects are.

Remark 3.4. We further point out that all of the estimates in Chapter 4,
Chapter 5, Chapter 6, Chapter 7, and Chapter 8 carefully track the constants in
each estimate. If one only wanted to replace (3.11) and (7.26) with a non-explicit
smallness condition then the proof presented in this paper could be substantially
shortened.

Remark 3.5. The gain of analyticity property for any t ą 0 of the solution

from our main Theorem 3.1 in 9F
1

2
,1

ν makes equivalent any of the formulations used
in this paper, including the equivalence between (2.3) and (3.10).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 4

Implicit function theorem

In this chapter, we will prove an explicit uniform upper bound for the ˘1
frequencies of θ in terms of the higher Fourier frequencies of θ. The main result of
this chapter is the implicit function theorem in Proposition 4.1.

For ease of notation, only in this chapter we will use the following space. For
s ě 0, we define the normed space

(4.1) F̃s,1 def“ tu : T Ñ T | ûp0q “ ûp˘1q “ 0 and }u}
F̃s,1 ă 8u .

Here we use the norm

}u}
F̃s,1

def“
ÿ

|k|ě2

|k|s|ûpkq|.

In view of (4.1), recalling (3.8), we consider θ̃
def“ pI ´ J2q θ. We then remark that

θ̃pαq “ pI ´ J2q θpαq “
ÿ

|k|ě2

θ̂pkqeikα.

An implicit relation between the frequencies θ̂p˘1q and the function θ̃ can be derived
from (2.11) and is given by

(4.2)

ż π

´π

eiα`iθ̂p´1qe´iα`iθ̂p1qeiα`iθ̃pαqdα “ 0.

Note that θ̂p´1q “ θ̂p1q “ Re θ̂p1q ´ i Im θ̂p1q since θ is real. Further

θ̂p´1qe´iα ` θ̂p1qeiα “ 2Re θ̂p1q cospαq ´ Im θ̂p1q sinpαq.
We will also use the following notation

(4.3) ψpα, x, uq “ α ` 2px1 cospαq ´ x2 sinpαqq ` upαq, x P R
2.

Then we express the integral in (4.2) as a vector as follows

(4.4) gpu, xq “
„şπ

´π
cospψpα, x, uqqdαşπ

´π
sinpψpα, x, uqqdα

j
“

„
g1pu, xq
g2pu, xq

j
.

Here g : F̃0,1 ˆ R2 Ñ R2. Now we can rewrite the relation (4.2) as

gpθ̃, pRe θ̂p1q, Im θ̂p1qqq “ 0.

The main result in this chapter is the following proposition.

Proposition 4.1. Fix 0 ă r ă 1
2
logp 5

4
q. Consider }θ}F0,1 ă r. Let

B
F̃0,1p0, rq def“ tu P F̃0,1 : }u}

F̃0,1 ă ru.
25
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Then there exists a unique function F : B
F̃0,1p0, rq Ñ R2 such that F pθ̃q “

pRe θ̂p1q, Im θ̂p1qq and (4.2) is satisfied. We further have

(4.5) |θ̂p`1q| ` |θ̂p´1q| ď CIprqr
ÿ

|k|ě2

|θ̂pkq|.

Here the constant CIprq ą 0 is given by

(4.6) CIprq def“ 1

r

2 expprqpexpprq ´ 1q
1 ´ 4pexpp2rq ´ 1q .

We note that CIprq is an increasing function of r and that CIprq Ñ 2 as r Ñ 0 and
CIprq Ñ 8 as r Ñ 1

2
logp 5

4
q.

We point out that the explicit constant K ą 0 in our main Theorem 3.1 in
(3.11) and (7.26) is smaller than 1

2
logp 5

4
q. Therefore the smallness condition in

Proposition 4.1 is consistent with Theorem 3.1.
This proposition is shown by an implicit function theorem argument on the

function described in (4.4) around the value gp0, 0q “ 0. The remainder of this
chapter is dedicated to proving Proposition 4.1.

4.1. Calculation of the Fréchet derivatives

First, we compute the Fréchet derivatives with respect to u P F̃0,1 and x P R2.
Below we use the notation Du to denote the one component Fréchet derivative of
gpu, xq so that Dugpu, xq is a two dimensional vector, and we denote Dx to denote
the two component Fréchet derivative of gpu, xq so that Dxgpu, xq is a 2ˆ2 matrix.
We will also use the notation D “ pDu, Dxq to denote the derivative in the variables
pu, xq and then Dgpu, xq can be represented as a 3 ˆ 3 matrix.

Lemma 4.2. The Fréchet derivatives of g, recalling (4.3), are given by

(4.7) Dugpu, xqh “
ż π

´π

dα hpαq
„

´ sinpψpα, x, uqq
cospψpα, x, uqq

j
,

for h P F̃0,1 and

(4.8) Dxgpu, xqy “
„´2

şπ
´π

dα sinpψq cosα 2
şπ

´π
dα sinpψq sinα

2
şπ

´π
dα cospψq cosα ´2

şπ
´π

dα cospψq sinα

j „
y1
y2

j
,

for y “
„
y1
y2

j
P R2.

For simplicity, we write (4.4) in complex notation as

gpu, xq “
ż π

´π

eiα`2ipx1 cospαq´x2 sinpαqq`iupαqdα.

In particular then in complex notation (4.7) takes the form

Dugpu, xqh “
ż π

´π

ihpαqeiψpα,x,uqdα.

We will prove Lemma 4.2 using this expression for gpu, xq.
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Proof of Lemma 4.2. Computing the derivative with respect to u, we have

|gpu ` h, xq ´ gpu, xq ´ Dugpu, xqh|

“
ˇ̌
ˇ
ż π

´π

eiψpα,x,uqpeihpαq ´ 1 ´ ihpαqqdα
ˇ̌
ˇ

ď 2π}eihpαq ´ 1 ´ ihpαq}L8 ď 2π
8ÿ

n“2

}h}nL8

n!

ď
´
2π

8ÿ

n“1

}h}n
F̃0,1

pn ` 1q!
¯

}h}
F̃0,1 ď

´
2πe}h}

F̃0,1

¯
}h}

F̃0,1 ,

since for h P F̃0,1 we have that ĥp0q “ ĥp˘1q “ 0 and so

}h}L8 ď
ÿ

kPZ

|ĥpkq| “
ÿ

|k|ě2

|ĥpkq|.

Thus, as h Ñ 0, we obtain validation of (4.7). Then (4.8) is proven in a similar
way. �

4.2. Proof of the Implicit function theorem

We will now prove Proposition 4.1.

Proof of Proposition 4.1. First notice that from (4.8) we have

(4.9)

Dxgp0, 0qy “
„´2

şπ
´π

dα sinpαq cosα 2
şπ

´π
dα sinpαq sinα

2
şπ

´π
dα cospαq cosα ´2

şπ
´π

dα cospαq sinα

j „
y1
y2

j

“ 2π

„
0 1
1 0

j „
y1
y2

j
“ 2π

„
y2
y1

j
,

Therefore Dxgp0, 0q´1 “ 1
2π

„
0 1
1 0

j
. For simplicity, we normalize the function g

around p0, 0q by defining

(4.10) g̃pu, xq “
„
g̃1pu, xq
g̃2pu, xq

j
“ Dxgp0, 0q´1

„
g1pu, xq
g2pu, xq

j
“ 1

2π

„
g2pu, xq
g1pu, xq

j
,

and thus, Dxg̃p0, 0q “ IR2 which is the identity matrix on R2. Next, define the

function φ : F̃0,1 ˆ R2 Ñ F̃0,1 ˆ R2 by

(4.11) φpu, xq “ rDφ̃p0, 0qs´1φ̃pu, xq, where φ̃pu, xq “

»
–

u

g̃1pu, xq
g̃2pu, xq

fi
fl .

Then also Dφ̃pu, xq is a 3 ˆ 3 matrix. We will obtain the implicit function F given

in Proposition 4.1 by inverting φ in a neighborhood of the point p0, 0q P F̃0,1 ˆR2.

We will also calculate rDφ̃p0, 0qs´1, notice that

Dφ̃p0, 0q “
„

I
F̃0,1 0

Dug̃p0, 0q Dxg̃p0, 0q

j
“

„
I
F̃0,1 0
0 IR2

j
.
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Here I
F̃0,1 is the identity map on F̃0,1. The last equality holds since

Dug̃p0, 0qh “ Dxgp0, 0q´1Dugp0, 0qh

“ 1

2π

ż π

´π

dα hpαq
„
0 1
1 0

j „
´ sinpψpα, x, uqq
cospψpα, x, uqq

j
“ 0,

since h P F̃0,1 so that ĥp˘1q “ 0. Therefore rDφ̃p0, 0qs´1 “
„
I
F̃0,1 0
0 IR2

j
.

For two norms } ¨ } and | ¨ |, we will use the notation that

(4.12) f “ op|h|q, if }f} Ñ 0 and
}f}
|h| Ñ 0 as |h| Ñ 0.

Now, to invert φ, we first define the function

(4.13) τ pu, xq def“ pu, xq ´ φpu, xq.

We will show that τ pu, xq is a contraction map by computing Dτ . We will calculate
that

Dτ pu, xq “ I ´ rDφ̃p0, 0qs´1Dφ̃pu, xq,

where I is the identity map on F̃0,1 ˆ R2. To this end, we compute

φ̃pu ` h, x ` yq ´ φ̃pu, xq
“ φ̃pu ` h, x ` yq ´ φ̃pu, x ` yq ` φ̃pu, x ` yq ´ φ̃pu, xq

“
„

I
F̃0,1 0

Dug̃pu, xq Dxg̃pu, xq

j „
h

y

j
` op}h}

F̃0,1 ` |y|q.

Then using, (4.12), the above holds as }h}
F̃0,1 ` |y| Ñ 0. Hence,

Dτ pu, xq “ I ´
„
I
F̃0,1 0
0 IR2

j„
I
F̃0,1 0

Dug̃pu, xq Dxg̃pu, xq

j

“
„

0 0
´Dug̃pu, xq IR2 ´ Dxg̃pu, xq

j
.

To obtain τ as a contraction on some ball BRp0q Ă F̃0,1 ˆ R
2, it is sufficient to

show that the following holds

(4.14)
›››Dτ pu, xq

„
h

y

j ›››
F̃0,1ˆR2

ă r}ph, yq}
F̃0,1ˆR2 ,

for some 0 ă r ă 1 and for any ph, yq P BRp0q Ă F̃0,1 ˆ R2 where

BRp0q def“ tpu, xq | |x| ` }u}
F̃0,1 ă Ru, R ą 0.

Here we also denote }ph, yq}
F̃0,1ˆR2 “ }h}

F̃0,1 ` |y|.
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Since we have (4.9) then, using (4.7) and (4.8), condition (4.14) becomes the
condition that the inequality

(4.15)
›››Dτ pu, xq

„
h

y

j›››
F̃0,1ˆR2

“
ˇ̌
ˇ̌
ˇ
1

2π

ż π

´π

dα hpαq
„

´ cospψpα, x, uqq
sinpψpα, x, uqq

j

` 1

2π

„
2

şπ
´π

dα cospψq py1 cosα ´ y2 sinαq ´ 2πy1
´2

şπ
´π

dα sinpψq py1 cosα ´ y2 sinαq ´ 2πy2

j ˇ̌
ˇ̌
ˇ

ă r}h}
F̃0,1 ` r|y|,

holds for a fixed 0 ă r ă 1, for all pu, xq P BRp0q, and for any ph, yq P F̃0,1 ˆ R
2.

We also use the definition (4.3) in the integral above.
We further claim that condition (4.15) is satisfied for any ball BRp0q such that

2|x| ` }u}
F̃0,1 ă logp2q holds for all pu, xq P BRp0q.

Proof of the claim: Let

(4.16) A1 “
„
A11

A12

j
“ 1

2π

ż π

´π

dα hpαq
„

´ cospψpα, x, uqq
sinpψpα, x, uqq

j
.

We will use the complex exponential representation of cospψpα, x, uqq and
sinpψpα, x, uqq with (4.3). We will further Taylor expand

exp pi2px1 cospαq ´ x2 sinpαqq ` iupαqqq

and use that 1
2π

şπ
´π

hpαqe˘iαdα “ ĥp¯1q “ 0 since h P F̃0,1. We obtain

|A11| ď 1

4π

ˇ̌
ˇ
ż π

´π

hpαqeiα
8ÿ

n“1

inp2px1 cospαq ´ x2 sinpαqq ` upαqqn
n!

dα
ˇ̌
ˇ

` 1

4π

ˇ̌
ˇ
ż π

´π

hpαqe´iα
8ÿ

n“1

inp2px1 cospαq ´ x2 sinpαqq ` upαqqn
n!

dα
ˇ̌
ˇ.

For simplicity we estimate the term with eiα below:

1

2π

ˇ̌
ˇ
ż π

´π

hpαqeiα
8ÿ

n“1

inp2px1 cospαq ´ x2 sinpαqq ` upαqqn
n!

dα
ˇ̌
ˇ

“ 1

2π

ˇ̌
ˇ
ż π

´π

hpαqeiα
8ÿ

n“1

nÿ

k“0

ˆ
n

k

˙
2kpx1 cospαq ´ x2 sinpαqqkupαqn´k

n!
dα

ˇ̌
ˇ

ď
8ÿ

n“1

nÿ

k“0

ˆ
n

k

˙
1

n!

ˇ̌
ˇ
´
ĥ ˚k Ft2px1 cospαq ´ x2 sinpαqqu ˚n´k û

¯
p´1q

ˇ̌
ˇ

ď
8ÿ

n“1

nÿ

k“0

ˆ
n

k

˙
1

n!
}ĥ}�1}û}n´k

�1
2k´1|x|k.

The last line is obtained using Young’s inequality for convolutions and

xcospkq “ 1

2
pδp1 ´ kq ` δp´1 ´ kqq, xsinpkq “ ´i

2
pδp1 ´ kq ´ δp´1 ´ kqq,
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and thus the �1 norm of the Fourier transform is

(4.17) }p2px1 cospαq ´ x2 sinpαqqq^}�1 “ 2|x|,
and the �8 norm of the Fourier transform is

}p2px1 cospαq ´ x2 sinpαqqq^}�8 “ |x|.
Then, rewriting the series in function form using Taylor’s theorem, we get

|A11| ď 1

2
}h}

F̃0,1

´
e2|x|`}u}

F̃0,1 ´ 1
¯
.

Doing the same for the second term in (4.16) we obtain

(4.18) |A1| ď }h}
F̃0,1

´
e2|x|`}u}

F̃0,1 ´ 1
¯
.

Since the latter term in (4.15) does not involve h, for this term we need

e2|x|`}u}
F̃0,1 ´ 1 ă r ă 1.

These estimates give the upper bound in terms of }h}
F̃0,1 in (4.15).

The other term in (4.15) will give us the upper bound in terms of |y|. Now let

A2 “
„
A21

A22

j
“ 1

2π

„
2

şπ
´π

dα cospψq py1 cosα ´ y2 sinαq ´ 2πy1
´2

şπ
´π

dα sinpψq py1 cosα ´ y2 sinαq ´ 2πy2

j
.

Then using (4.3), again we use the complex exponential form of cospψq and by
Taylor expansion we have

A21 “ 1

2π

ż π

´π

dαpy1 cospαq ´ y2 sinpαqqeiα
8ÿ

n“1

inpψpα, x, uq ´ αqn
n!

` 1

2π

ż π

´π

dαpy1 cospαq ´ y2 sinpαqqe´iα
8ÿ

n“1

inpψpα, x, uq ´ αqn
n!

.

We estimate the term with eiα as

1

2π

ˇ̌
ˇ
ż π

´π

dαpy1 cosα ´ y2 sinαqeiα
8ÿ

n“1

inpψpα, x, uq ´ αqn
n!

ˇ̌
ˇ

“
ˇ̌
ˇ

8ÿ

n“1

1

2π

ż π

´π

py1 cosα ´ y2 sinαqeiα p2px1 cosα ´ x2 sinαq ` upαqqn
n!

dα
ˇ̌
ˇ

ď 1

2

8ÿ

n“1

1

n!
}2py1 cosα ´ y2 sinαq^}�8 }p2px1 cosα ´ x2 sinαq ` upαqq^}n�1

ď 1

2

´
e2|x|`}u}

F̃0,1 ´ 1
¯

|y|.

All the other terms are estimated in the same way. Adding all the estimates together
we obtain the condition

|A2| ď 2
´
e2|x|`}u}

F̃0,1 ´ 1
¯

|y|.

This is a bigger coefficient in front of |y| than the coefficient in the bound for A1.
Thus, the following condition

2
´
e2|x|`}u}

F̃0,1 ´ 1
¯

ă 1,
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is sufficient. This yields the claim that condition (4.15) is satisfied on any ball
contained in the set of px, uq such that

2|x| ` }u}
F̃0,1 ă logp3{2q.

This completes the proof of the claim.
Now τ satisfies the contraction (4.14) for pu, xq P BRp0q for R chosen to satisfy

(4.15). Recalling (4.11) and (4.13), for v, w P F̃0,1 ˆ R
2 and for 0 ă r ă 1 fixed in

(4.15), we obtain

}v ´ w}
F̃0,1ˆR2 ď }φpvq ´ φpwq}

F̃0,1ˆR2 ` }τ pvq ´ τ pwq}
F̃0,1ˆR2

ď }φpvq ´ φpwq}
F̃0,1ˆR2 ` r}v ´ w}

F̃0,1ˆR2 .

We conclude that

}v ´ w}
F̃0,1ˆR2 ď p1 ´ rq´1}φpvq ´ φpwq}

F̃0,1ˆR2 .

Hence, φ is an injection on B “ BRp0q and so there exists an inverse φ´1 : φpBq Ñ
B. Now we define the map F puq by

F puq def“ π2 ˝ φ´1pu, p0, 0qq where π2pa, pb1, b2qq “ pb1, b2q.
Further define the map π1 by π1pa, pb1, b2qq “ a.

Given u P π1pBq, by the definition of F puq there exists u1 P π1pBq such
that pu, p0, 0qq “ φpu1, F puqq. Then u “ u1 by (4.11). Further φpu, F puqq “
pu, g̃pu, F puqqq and therefore g̃pu, F puqq “ 0 using (4.11) and (4.10). We have
thus shown that gpu, F puqq “ 0 from (4.4). We conclude that pu, p0, 0qq P φpBq
for all u P π1pBq and so pu, F puqq “ φ´1pu, p0, 0qq P B. Therefore gpu, F puqq “ 0
for any u P π1pBq. This concludes the proof of the existence of the function F

described in Proposition 4.1.
To obtain the estimate (4.5) on B, first note that for x “ px1, x2q we have

|x| “ |π2 ˝ φ´1pu, p0, 0qq| “ |π2 ˝ φ´1pu, p0, 0qq ´ π2 ˝ φ´1p0, p0, 0qq|
ď }u}

F̃0,1}Dupπ2 ˝ φ´1q}.

Above note that gp0, F p0qq “ 0 and so F p0q “ 0. Also the norm on Dupπ2 ˝ φ´1q
on is the operator norm. We calculate Dupπ2 ˝ φ´1q as follows:

π2 ˝ φ´1pu ` h, yq ´ π2 ˝ φ´1pu, yq “ π2pu ` h, xhq ´ π2pu, xq “ xh ´ x,

where we suppose pu, yq P φpBq and pu ` h, yq P φpBq for small h. Therefore

g̃pu ` h, xhq “ y and g̃pu, xq “ y.

We conclude that rg̃pu ` h, xhq ´ g̃pu, xqs “ 0. Thus

0 “ g̃pu ` h, xhq ´ g̃pu, xhq ` g̃pu, xhq ´ g̃pu, xq.
Then, using (4.12), we have

0 “ Dug̃pu, xhqh ` op}h}
F̃0,1q ` Dxg̃pu, xqpxh ´ xq ` op|xh ´ x|q.

We can now conclude that

xh ´ x ` Dxg̃pu, xq´1op|xh ´ x|q
“ ´Dxg̃pu, xq´1Dug̃pu, xqh ´ Dxg̃pu, xq´1op}h}

F̃0,1q.
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We will show that Dxg̃pu, xq´1 is a bounded operator with bound (4.28) for px, uq
satisfying (4.30). Thus, for px, uq satisfying (4.30), we have

Dupπ2 ˝ φ´1q “ ´Dxg̃pu, xq´1Dug̃pu, xq.
Then we conclude that

(4.19) |x| ď }Dxg̃pu, xq´1}}Dug̃pu, xq}}u}
F̃0,1 .

The term Dug̃pu, xq, using (4.7) with (4.9), is given by

Dug̃pu, xq “ Dxgp0, 0q´1Dugpu, xq “ ´A1,

where A1 is given by (4.16) with (4.3). Hence, using (4.18), we have

(4.20) }Dug̃pu, xq} ď
´
e2|x|`}u}

F̃0,1 ´ 1
¯
.

Consider the operator Dxg̃pu, xq´1. Using (4.8) and (4.9) with (4.3), we calculate
that

Dxg̃pu, xq “ 1

π

»
–

şπ
´π

cospαq cospψpαqqdα ´
şπ

´π
sinpαq cospψpαqqdα

´
şπ

´π
cospαq sinpψpαqqdα

şπ
´π

sinpαq sinpψpαqqdα

fi
fl.

Inverting this matrix, we obtain

(4.21) Dxg̃pu, xq´1 “ 1

detpDxg̃pu, xqqT pψq,

where

(4.22) T pψq “ 1

π

»
–

şπ
´π

sinpαq sinpψpαqqdα
şπ

´π
sinpαq cospψpαqqdα

şπ
´π

cospαq sinpψpαqqdα
şπ

´π
cospαq cospψpαqqdα

fi
fl .

We will calculate a lower bound for d
def“ detpDxg̃pu, xqq:

d“ 1

π2

ż π

´π

cospαq cospψpαqqdα
ż π

´π

sinpβq sinpψpβqqdβ

´ 1

π2

ż π

´π

cospαq sinpψpαqqdα
ż π

´π

sinpβq cospψpβqqdβ(4.23)

“ 1

π2

ż π

´π

ż π

´π

cospαq sinpβq sinpψpβq ´ ψpαqqdαdβ.

Next, recalling (4.3), define

Rpα, βq def“ 2x1pcosβ ´ cosαq ´ 2x2psinβ ´ sinαq ` upβq ´ upαq.
Then we have

| sinpψpβq ´ ψpαqq ´ sinpβ ´ αq| “ | sinpβ ´ α ` Rpα, βqq ´ sinpβ ´ αq|
“ | sinpβ ´ αqpcospRpα, βqq ´ 1q ` cospβ ´ αq sinpRpα, βqq|(4.24)

ď | cospRpα, βqq ´ 1| ` | sinpRpα, βqq|.
Since |Rpα, βq| ď 4|x| ` 2}u}F0,1 , we have that

(4.25) | cospRpα, βqq ´ 1| ` | sinpRpα, βqq|

ď
8ÿ

n“1

p4|x|`2}u}F0,1q2n
p2nq! `

8ÿ

n“0

p4|x|`2}u}F0,1q2n`1

p2n ` 1q! “ e4|x|`2}u}
F0,1 ´1,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4.2. PROOF OF THE IMPLICIT FUNCTION THEOREM 33

which tends to zero as pu, xq go to zero. Hence, by (4.24) and (4.25) we have
ż π

´π

ż π

´π

cospαq sinpβqpsinpψpβq ´ ψpαqq ´ sinpβ ´ αqqdαdβ

ě ´4π2} sinpψpβq ´ ψpαqq ´ sinpβ ´ αq}L8

ě ´4π2pe4|x|`2}u}
F0,1 ´ 1q

and ż π

´π

ż π

´π

cospαq sinpβq sinpβ ´ αqdαdβ “ π2.

We thus conclude
ˇ̌
ˇ
ż π

´π

ż π

´π

cospαq sinpβq sinpψpαq ´ ψpβqqdαdβ
ˇ̌
ˇ

“
ˇ̌
ˇ
ż π

´π

ż π

´π

cospαq sinpβqpsinpψpαq ´ ψpβqq ´ sinpα ´ βqqdαdβ

`
ż π

´π

ż π

´π

cospαq sinpβq sinpα ´ βqdαdβ
ˇ̌
ˇ

ě ´4π2pe4|x|`2}u}
F0,1 ´ 1q ` π2.

Thus, the determinant given by (4.23) is bounded from below by

(4.26) | detpDxg̃pu, xqq| ě 1 ` 4
`
1 ´ e4|x|`2}u}

F0,1
˘
.

Therefore, it only remains to estimate the norm }T pψq} to obtain a bound for the
norm of Dxg̃pu, xq´1 in (4.21).

Recalling (4.22), we calculate that

T pψq
„
y1
y2

j
“ 1

π

„şπ
´π

sinpαq py1 sinpψpαqq ` y2 cospψpαqqqdαşπ
´π

cospαq py1 sinpψpαqq ` y2 cospψpαqqqdα

j
.

We have for φpαq “ ψpαq ´ α “ 2px1 cospαq ´ x2 sinpαqq ` upαq that

sinα py1 sinpψpαqq ` y2 cospψpαqqq

“ ´1

4
y1

`
eiφe2iα ´ e´iφ ´ eiφ ` e´iφe´2iα

˘

` 1

4i
y2

`
eiφe2iα ` e´iφ ´ eiφ ´ e´iφe´2iα

˘
.

And similarly

cosα py1 sinpψpαqq ` y2 cospψpαqqq

“ 1

4i
y1

`
eiφe2iα ´ e´iφ ` eiφ ´ e´iφe´2iα

˘

` 1

4
y2

`
eiφe2iα ` e´iφ ` eiφ ` e´iφe´2iα

˘
.

We conclude that

T pψq “
1

2

„`
ReFteiφup0q ´ ReFteiφup´2q

˘ `
ImFteiφup´2q ´ ImFteiφup0q

˘
`
ImFteiφup´2q ´ ImFteiφup0q

˘ `
ReFteiφup´2q ` ReFteiφup0q

˘
j
.
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Hence ˇ̌
ˇT pψq

„
y1
y2

j ˇ̌
ˇ ď 2|y|}{eiφpαq}�1 .

Hence, using (4.17), we obtain the bound

}T pψq} ď
8ÿ

n“0

}xφn}�1
n!

ď
8ÿ

n“1

nÿ

k“0

ˆ
n

k

˙
1

n!

››› ˚k |Ft2px1 cosα ´ x2 sinαqu| ˚n´k |û|
›››
�1

ď
8ÿ

n“1

nÿ

k“0

ˆ
n

k

˙
1

n!
2k|x|k}u}n´k

F̃0,1
.

This finally yields the result

(4.27) }T pψq} ď 2e2|x|`}u}
F̃0,1 .

From (4.21), using (4.26) and (4.27), we obtain

(4.28) }Dxg̃pu, xq´1} ď 2e2|x|`}u}
F̃0,1

1 ` 4p1 ´ e4|x|`2}u}
F̃0,1 q

.

In conclusion, we have from (4.19), (4.20) and (4.28) that

(4.29) 2|x| ď 2e2|x|`}u}
F̃0,1 pe2|x|`}u}

F̃0,1 ´ 1q
1 ´ 4pe4|x|`2}u}

F̃0,1 ´ 1q
}u}

F̃0,1 .

From the denominator term, we need

e4|x|`2}u}
F̃0,1 ´ 1 ă 1

4
.

This yields the condition

(4.30) 2|x| ` }u}
F̃0,1 ă 1

2
log

`
5{4

˘
,

which ensures that the condition 2|x| ` }u}
F̃0,1 ă logp3{2q is also satisfied. Using

|x| “ |θ̂p˘1q| and u “ θ̃, we obtain

2|x| ` }u}
F̃0,1 “ |θ̂p1q| ` |θ̂p´1q| ` }θ̃}

F̃0,1 “ }θ}F0,1 .

Thus, for }θ}F0,1 ă 1
2
log

`
5
4

˘
and using (4.29), we obtain Proposition 4.1. �

The result in Proposition 4.1 will be needed to close the a priori estimates in
Section 7.2. In particular, Proposition 2.2 show that the modes ˘1 are neutral at
the linear level (see also (7.16)).
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CHAPTER 5

Fourier multiplier estimates

In this chapter, we will prove the crucial estimates for the operators R from
(2.18) (in Proposition 5.4) and S from (2.19) (in Proposition 5.5) in the norms F0,1

ν

and 9Fs,1
ν for s ą 0 from (3.2) and (3.3) respectively.

We will use the following facts throughout the section:

Lemma 5.1. We have the estimate

(5.1) }g1g2 ¨ ¨ ¨ gn}
F

0,1
ν

ď
nź

k“1

}gk}
F

0,1
ν

.

For s ą 0, recalling (3.7), we have

(5.2) }g1g2 ¨ ¨ ¨ gn} 9F
s,1
ν

ď bpn, sq
nÿ

j“1

}gj} 9F
s,1
ν

nź

k“1
k‰j

}gk}
F

0,1
ν

.

Remark 5.2. We note that these results and all the apriori estimates in this
paper further hold with F0,1

ν and 9Fs,1
ν replaced by F0,1 and 9Fs,1 respectively since

we can simply take ν “ 0.

Proof. First consider the case 0 ă s ď 1 and n “ 2 in (5.2). Then we use the
inequalities

|k|s ď |k ´ j|s ` |j|s,
and

eνptq|k| ď eνptq|k´j|eνptq|j|,

to see that

}g1g2} 9F
s,1
ν

“
ÿ

kPZ

eνptq|k|eνptq|k||k|s | yg1g2pkq|

ď
ÿ

j,kPZ

eνptq|k´j|eνptq|j|p|k ´ j|s ` |j|sq |ĝ1pk ´ jqĝ2pjq|

ď }g1} 9F
s,1
ν

}g2}
F

0,1
ν

` }g1}
F

0,1
ν

}g2} 9F
s,1
ν

.

For general n and s ą 0, recalling (3.7), we use the following inequality

(5.3) |k|s ď bpn, sqp|k ´ k1|s ` |k1 ´ k2|s ` . . . ` |kn´2 ´ kn´1|s ` |kn´1|sq.
Then the proofs of all the other cases in (5.1) and (5.2) follow similarly. �

We will also use the following repeatedly in this chapter:

Proposition 5.3. We have the useful bound for β P T “ r´π, πs and l ě 1:

(5.4)
ˇ̌
ˇ
´ iβ

p1 ´ e´iβq
¯l

´ 1
ˇ̌
ˇ ď |β| l

2

´π

2

˘l´1

c
1 ` π2

4
.

35
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Proof. By the mean value theorem we have
ˇ̌
ˇ
´ iβ

p1 ´ e´iβq
¯l

´ 1
ˇ̌
ˇ ď |β|

››› d

dβ

´ iβ

p1 ´ e´iβq
¯l›››

L8pTq
.

We compute the above derivative as:

d

dβ

´ iβ

1 ´ e´iβ

¯l

“ l
´ iβ

1 ´ e´iβ

¯l´1 d

dβ

´ iβ

1 ´ e´iβ

¯
.

First, for β P T, we have
ˇ̌
ˇ β

p1 ´ e´iβq
ˇ̌
ˇ “ |β|b

p1 ´ cospβqq2 ` sin2pβq
“ |β|a

2 ´ 2 cospβq

“ |β|
2 sinpβ{2q ď π

2
.

Next, we have
ˇ̌
ˇ d

dβ

´ β

1 ´ e´iβ

¯ˇ̌
ˇ “ |1 ´ e´iβ ´ iβe´iβ |

|p1 ´ e´iβq2|

“ |p1 ´ cospβq ´ β sinpβqq ` ipsinpβq ´ β cospβqq|
4 sin2pβ{2q

.

In absolute value, the real term in the numerator is

|1 ´ cospβq ´ β sinpβq| “ |2 sin2pβ{2q ´ 2β sinpβ{2q cospβ{2q|.
Hence for β P T we have

|1 ´ cospβq ´ β sinpβq|
4 sin2pβ{2q

ď
ˇ̌
ˇ1
2

´ β

2 tanpβ{2q
ˇ̌
ˇ ď 1

2
.

Next, the imaginary part can be checked to have a maximum of

| sinpβq ´ β cospβq|
4 sin2pβ{2q

ď π

4
.

Thus we have ˇ̌
ˇ d

dβ

´ β

1 ´ e´iβ

¯ˇ̌
ˇ ď 1

2

c
1 ` π2

4
.

We conclude that
ˇ̌
ˇ d

dβ

”´ iβ

1 ´ e´iβ

¯l

´ 1
ıˇ̌
ˇ ď 1

2
l
´π

2

¯l´1
c
1 ` π2

4
.

This yields (5.4). �

5.1. Estimates on the operator R

We will now estimate the operator R from (2.18) as follows.

Proposition 5.4. The operator R from (2.18) satisfies the estimates

(5.5)
}Rpfq}

F
0,1
ν

ď CR}f}
F

0,1
ν

}θ}
F

0,1
ν

,

}Rpfq} 9F
s,1
ν

ď bp2, sqCRp}f} 9F
s,1
ν

}θ}
F

0,1
ν

` }f}
F

0,1
ν

}θ} 9F
s,1
ν

q, s ą 0.

where bp2, sq is from (3.7) and the constant

(5.6) CR

def“ 1 ` C̃ ą 0,

and C̃ ą 0 is defined in (5.10).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.1. ESTIMATES ON THE OPERATOR R 37

In the rest of this chapter we will adopt the convention that

(5.7)
1 ´ e´iβp1`k1q

1 ` k1
“ iβ for k1 “ ´1.

This convention will allow us to write many formula’s succinctly.

Proof. Taking the Fourier transform of the operator R from (2.18) and using
the convention (5.7) we obtain

zRpfqpkq “ i

π
pv

ż π

´π

f̂pkqe´ikββ

p1´e´iβq2 ˚
ż 1

0

eips´1qβp1`kqθ̂pkqdsdβ

“ i

π

ÿ

k1PZ

pv

ż π

´π

f̂pk ´ k1qe´ipk´k1qββ

p1´e´iβq2
ż 1

0

eips´1qβp1`k1qθ̂pk1qdsdβ

“ 1

π

ÿ

k1PZ

pv

ż π

´π

f̂pk ´ k1qe´ipk´k1qβ

p1´e´iβq2
1 ´ e´iβp1`k1qθ̂pk1q

1 ` k1
dβ.

Using the convention (5.7), we have

zRpfqpkq “
ÿ

k1PZ

f̂pk ´ k1qθ̂pk1qIpk, k1q,

where

(5.8) Ipk, k1q def“ 1

π
pv

ż π

´π

e´ipk´k1qβ

p1´e´iβq2
1 ´ e´iβp1`k1q

1 ` k1
dβ.

For k1 “ ´1, using (5.7), we split (5.8) as

Ipk,´1q “ 1

π
pv

ż π

´π

e´ipk`1qβ

1 ´ e´iβ
dβ ` 1

π
pv

ż π

´π

e´ipk`1qβ

1 ´ e´iβ

´ iβ

1 ´ e´iβ
´ 1

¯
.

We will first calculate each of these two integrals separately below.
We can calculate the general integral formula:

(5.9)
1

π
pv

ż π

´π

e´i�β

1 ´ e´iβ
dβ “ 1�ď0p�q ´ 1�ě1p�q.

This will be used several times below. It is proven using (2.20) and noticing that
Fpe´i�βqp0q “ δp�q. Further from (2.15) we have

´iHpe´i�βqp0q “ ´ 1

2π
pv

ż π

´π

sinp�βq
tan pβ{2qdβ “ 1�ď´1p�q ´ 1�ě1p�q.

Combining these calculations gives (5.9).
From (5.9), the first term in Ipk,´1q is ˘1 depending on the sign of k ` 1. For

the second integral, we use (5.4) for l “ 1 to obtain

ˇ̌
ˇ 1
π
pv

ż π

´π

e´ipk`1qβ

1 ´ e´iβ

´ iβ

1 ´ e´iβ
´ 1

¯ˇ̌
ˇ ď 1

π

c
1

4
` π2

16

ż π

´π

|β|
2| sinpβ{2q|dβ

ď C̃,

where

(5.10) C̃
def“ 4

π
V

c
1 ` π2

4
.
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In this calculation we used that |1´e´iβ | “ 2| sinpβ{2q|. Here V « 0.916 is Catalan’s
constant:

V “ 1

4

ż π{2

´π{2

β

sinβ
dβ “ 1

16

ż π

´π

β

sinpβ{2qdβ.

Hence, for k1 “ ´1, using (5.6), we have the bound

(5.11) |Ipk,´1q| ď 1 ` C̃ “ CR.

This will be our main estimate for the case for k1 “ ´1.
Now generally in (5.8) for k1 ą ´1 we have

(5.12)
1 ´ e´iβp1`k1q

1 ´ e´iβ
“

k1ÿ

r“0

e´irβ

and if k1 ď ´2 then we have

(5.13)
1 ´ e´iβp1`k1q

1 ´ e´iβ
“ ´

´1´k1ÿ

r“1

eiβr.

Thus for k1 ą ´1, using (5.8), (5.9) and (5.12) we have

Ipk, k1q “ 1

1 ` k1

k1ÿ

r“0

1

π
pv

ż π

´π

e´ipk´k1`rqβ

1´e´iβ
dβ

“ 1

1 ` k1

k1ÿ

r“0

p1k´k1`rď0 ´ 1k´k1`rě1q ,

while for k1 ď ´2 we similarly, using (5.13), have

Ipk, k1q “ ´ 1

1 ` k1

´1´k1ÿ

r“1

1

π
pv

ż π

´π

e´ipk´k1´rqβ

1´e´iβ
dβ

“ ´1

1 ` k1

´1´k1ÿ

r“1

p1k´k1´rď0 ´ 1k´k1´rě1q ,

In both cases, k1 ą ´1 and k1 ď ´2, we conclude that

(5.14) |Ipk, k1q| ď 1.

Hence we conclude that

| zRpfqpkq| ď CR|pf̂ ˚ θ̂qpkq|.
Applying F0,1

ν and 9Fs,1
ν norms to both sides, using Lemma 5.1, gives the result. �

5.2. Estimates on the non-linear operator S

Next, we proceed with the estimates for S from (2.19).

Proposition 5.5. The operator S in (2.19) satisfies the estimates

(5.15)
}Spfq}

F
0,1
ν

ď C1}θ}2
F

0,1
ν

}f}
F

0,1
ν

,

}Spfq} 9F
s,1
ν

ď C3}θ}2
F

0,1
ν

}f} 9F
s,1
ν

` C4}θ}
F

0,1
ν

}f}
F

0,1
ν

}θ} 9F
s,1
ν

, s ą 0,

where the positive constant C1 is given by (5.49). Further the positive constants C3

and C4 for s ą 0 are given in (5.52).
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Proof. From (2.19), we split the operator S as:

(5.16) Spfqpαq “ Apfqpαq ` Bpfqpαq,

where

(5.17) Apfqpαq def“
1

π
pv

ż π

´π

fpα ´ βqβ2

βp1 ´ e´iβq2
ÿ

mě2

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmdsdβ,

and

(5.18) Bpfqpαq def“
ÿ

n,lě0
n`lě2

p´1qnil`n`1pθpαqql
l!

Snpfqpαq.

Here for n ě 0 we define

(5.19) Snpfqpαq def“ 1

π
pv

ż π

´π

fpα ´ βqβn`1

βp1 ´ e´iβqn`1
Mpα, βqndβ,

with

(5.20) Mpα, βq def“
ÿ

mě1

im

m!

ż 1

0

eips´1qβpθpα ` ps ´ 1qβqqmds.

We take the Fourier transform to obtain

(5.21) pBpfqpkq “
ÿ

n,lě0
n`lě2

p´1qnil`n`1p˚lθ̂pkqq
l!

˚ {Snpfqpkq,

where

(5.22) {Snpfqpkq def“ 1

π
pv

ż π

´π

f̂pkqe´ikββn`1

βp1 ´ e´iβqn`1
˚n xMpk, βqdβ.

For k1 ‰ ´1, from (5.20) we have

xMpk1, βq “
ÿ

mě1

im

m!

ż 1

0

eips´1qβ
´

˚m pθ̂pk1qeik1ps´1qβq
¯
ds

“
ÿ

mě1

ÿ

k2,...,kmPZ

im

m!

ż 1

0

eips´1qβ

˜
m´1ź

j“1

θ̂pkj ´ kj`1qeipkj´kj`1qps´1qβ

¸

¨ θ̂pkmqeikmps´1qβds

“
ÿ

mě1

ÿ

k2,...,kmPZ

im

m!

ż 1

0

eips´1qβp1`k1q

˜
m´1ź

j“1

θ̂pkj ´ kj`1q
¸
θ̂pkmqds

“
ÿ

mě1

ÿ

k2,...,kmPZ

im

m!

˜
m´1ź

j“1

θ̂pkj ´ kj`1q
¸
θ̂pkmq1 ´ e´iβp1`k1q

iβp1 ` k1q

“
ÿ

mě1

im

m!

´
˚mpθpk1q

¯ 1 ´ e´iβp1`k1q

iβp1 ` k1q .
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And when k1 “ ´1, analogously we have

xMpk1, βq “
ÿ

mě1

im

m!

´
˚mpθpk1q

¯
.

Thus we define

(5.23) P pkq def“
ÿ

mě1

im

m!
p˚mpθpkqq.

Now we use the convention (5.7) and plug the above into (5.22) to obtain

xSnpk1q “ 1

π
pv

ż π

´π

f̂pk1qe´ik1ββn`1

βp1 ´ e´iβqn`1
˚

ˆ
˚nP pk1q1 ´ e´iβp1`k1q

iβp1 ` k1q

˙
dβ

“ 1

in

ÿ

k2,...,kn`1PZ

Ipk1, . . . , kn`1qf̂pkn`1q
nź

j“1

P pkj ´ kj`1q,(5.24)

where I “ Ipk1, . . . , kn`1q is defined by

(5.25) I
def“ 1

π
pv

ż π

´π

e´ikn`1β

1 ´ e´iβ

nź

j“1

1 ´ e´iβp1`kj´kj`1q

p1 ` kj ´ kj`1qp1 ´ e´iβqdβ.

We suppose that l elements of tkj ´ kj`1unj“1 satisfy kj ´ kj`1 “ ´1 for 0 ď l ď n.
Then ordering the subscripts such that kj ´ kj`1 ‰ ´1 for j “ 1, . . . , n ´ l, we
obtain with the convention (5.7) that the integral I “ Ipk1, . . . , kn`1q given by
(5.25) becomes

I “ 1

π
pv

ż π

´π

e´ikn`1β

1 ´ e´iβ

piβql
p1 ´ e´iβql

n´lź

j“1

1 ´ e´iβp1`kj´kj`1q

p1 ` kj ´ kj`1qp1 ´ e´iβqdβ.

Now, if kj ´ kj`1 ą ´1 then similar to (5.12) we have

1 ´ e´iβp1`kj´kj`1q

1 ´ e´iβ
“

kj´kj`1ÿ

rj“0

e´irjβ

and if kj ´ kj`1 ď ´2 then similar to (5.13) we have

1 ´ e´iβp1`kj´kj`1q

1 ´ e´iβ
“

´1´pkj´kj`1qÿ

rj“1

´eiβrj .

Hence, if kj ´ kj`1 ď ´2 only for j “ m, . . . , n ´ l then

n´lź

j“1

1 ´ e´iβp1`kj´kj`1q

1 ´ e´iβ

“
k1´k2ÿ

r1“0

e´ir1β ¨ ¨ ¨
km´1´kmÿ

rm´1“0

e´irm´1β

km`1´1´kmÿ

rm“1

´eirmβ

¨ ¨ ¨
kn´l`1´1´kn´lÿ

rn´l“1

´eirn´lβ

“
k1´k2ÿ

r1“0

¨ ¨ ¨
km´1´kmÿ

rm´1“0

km`1´1´kmÿ

rm“1

¨ ¨ ¨
kn´l`1´1´kn´lÿ

rn´l“1

p´1qn´l´m`1e´iÃβ
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where

Ã “ r1 ` . . . ` rm´1 ´ rm ´ . . . ´ rn´l.

Hence, in this case

(5.26) I “
n´lź

j“1

1

1 ` kj ´ kj`1

k1´k2ÿ

r1“0

¨ ¨ ¨
km´1´kmÿ

rm´1“0

km`1´1´kmÿ

rm“1

¨ ¨ ¨
kn´l`1´1´kn´lÿ

rn´l“1

p´1qn´l´m`1 1

π
pv

ż π

´π

e´iAβpiβql
p1 ´ e´iβql`1

dβ

where

A “ kn`1 ` Ã.

For the inner integral, which we define as J , we have

(5.27) J
def“ 1

ilπ
pv

ż π

´π

e´iAβpiβql
p1 ´ e´iβql`1

dβ “ 1

il
pJ1 ` J2q,

where we calculate J1 as in (5.9) and

(5.28) J2
def“ 1

π
pv

ż π

´π

e´iAβ

1 ´ e´iβ

”´ iβ

p1 ´ e´iβq
¯l

´ 1
ı
dβ.

We can bound J2 as well. Using the bound (5.4) in (5.28), we have

|J2| ď 1

2π
l
´π

2

¯l´1
c
1 ` π2

4

ż π

´π

|β|
2| sinpβ{2q|dβ

“ C̃l
´π

2

¯l´1

,

where the calculation above is similar to the calculation above (5.10) and the con-

stant C̃ is given by (5.10).
Thus, from (5.26) and (5.27), we have

|I| ď
n´lź

j“1

1

|1 ` kj ´ kj`1|

k1´k2ÿ

r1“0

¨ ¨ ¨
km´1´kmÿ

rm´1“0

km`1´1´kmÿ

rm“1

¨ ¨ ¨
kn´l`1´1´kn´lÿ

rn´l“1

´
1 ` C̃l

`π
2

˘l´1
¯

ď
n´lź

j“1

1

|1 ` kj ´ kj`1|

k1´k2ÿ

r1“0

¨ ¨ ¨
km´1´kmÿ

rm´1“0

km`1´1´kmÿ

rm“1

¨ ¨ ¨
kn´l`1´1´kn´lÿ

rn´l“1

´
1 ` C̃n

`π
2

˘n´1
¯
.

Then we denote

(5.29) an
def“ 1 ` C̃n

`π
2

˘n´1
.

Therefore we have

(5.30) |Ipk1, . . . , kn`1q| ď an @pk1, . . . , kn`1q P Z
n`1.
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Plugging (5.30) into the estimate for (5.24), we obtain

|xSnpk1q| ď
ÿ

k2,...,kn`1PZ

|Ipk1, . . . , kn`1q||f̂pkn`1q|
nź

j“1

|P pkj ´ kj`1q|

ď
ÿ

k2,...,kn`1PZ

an|f̂pkn`1q|
nź

j“1

|P pkj ´ kj`1q|

“ anp|f̂ | ˚n |P |qpk1q.(5.31)

We will use this estimate below to obtain the appropriate upper bound for Spfq
given by (5.21).

Recalling (3.4), in the rest of this proof for convenience of notation we define
the �1ν norm of a sequence a “ takukPZ as

}a}�1ν
def“

ÿ

kPZ

eν|k||ak|p.

Then for s “ 0 using (5.18) and (5.21) we have

}Bpfq}
F

0,1
ν

“
›››

ÿ

n,lě0
n`lě2

p´1qnil`n`1p˚lθ̂pkqq
l!

˚ {Snpfqpkq
›››
�1ν

ď
ÿ

ně0,lě0
n`lě2

1

l!
}θ̂pkq}l�1ν }{Snpfqpkq}�1ν .(5.32)

Let us examine the bound on the {Snpfq term in (5.32) using (5.31). For the quantity
P given by (5.23), we have

(5.33) }P }�1ν ď
ÿ

mě1

1

m!
}θ}m

F
0,1
ν

“ expp}θ}
F

0,1
ν

q ´ 1.

From (5.31) and (5.29), we then have

(5.34) }Snpfq}
F

0,1
ν

ď an}f}
F

0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn.
Hence, from (5.32), we have

(5.35) }Bpfq}
F

0,1
ν

ď
ÿ

ně0,lě0
n`lě2

an

l!
}θ̂pkq}l�1ν }f}

F
0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn.

We will separately look at the above sum when n “ 0, n “ 1 and n ě 2.
First, when n “ 0 then a0 “ 1 and we have

(5.36)
ÿ

lě2

1

l!
}θ̂pkq}l�1ν }f}

F
0,1
ν

“
expp}θ}

F
0,1
ν

q ´ 1 ´ }θ}
F

0,1
ν

}θ}2
F

0,1
ν

}θ}2
F

0,1
ν

}f}
F

0,1
ν

.

When n “ 1 then a1 “ 1 ` C̃ and we have

(5.37)
ÿ

lě1

1

l!
}θ̂pkq}l�1ν

´
1 ` C̃

¯
pexpp}θ}

F
0,1
ν

q ´ 1q}f}
F

0,1
ν

“
´
1 ` C̃

¯ pexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

}θ}2
F

0,1
ν

}f}
F

0,1
ν

.
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Finally, for n ě 2 using also (5.29) we have

(5.38)
ÿ

ně2,lě0

an

l!
}θ̂pkq}l�1ν }f}

F
0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn

“
ÿ

ně2,lě0

1

l!
}θ̂pkq}l�1ν }f}

F
0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn

`
ÿ

ně2,lě0

1

l!
C̃n

`π
2

˘n´1}θ̂pkq}l�1ν }f}
F

0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn.

Now considering the first sum on the right hand side of (5.38), we have

(5.39)
ÿ

ně2,lě0

1

l!
}θ̂pkq}l�1ν }f}

F
0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn

“
expp}θ}

F
0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

ÿ

ně2

}f}
F

0,1
ν

}θ}2
F

0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn´2

“
expp}θ}

F
0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

p2 ´ expp}θ}
F

0,1
ν

qq }f}
F

0,1
ν

}θ}2
F

0,1
ν

.

Then the second sum on the right hand side of (5.38) is

ÿ

ně2,lě0

1

l!
C̃n

`π
2

˘n´1}θ̂pkq}l�1ν }f}
F

0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn

“
expp}θ}

F
0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q
}θ}

F
0,1
ν

¨
ÿ

ně2

C̃n
`π
2

pexpp}θ}
F

0,1
ν

q ´ 1q
˘n´1}f}

F
0,1
ν

}θ}
F

0,1
ν

.

Now using that

ÿ

ně2

nxn´1 “ ´1 `
ÿ

ně1

nxn´1 “ ´1 ` 1

p1 ´ xq2 “ xp2 ´ xq
p1 ´ xq2 ,

we obtain

(5.40)
ÿ

ně2,lě0

1

l!
}θ̂pkq}l�1ν C̃n

`π
2

˘n´1}f}
F

0,1
ν

pexpp}θ}
F

0,1
ν

q ´ 1qn

“ πC̃

2

expp}θ}
F

0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

}f}
F

0,1
ν

}θ}2
F

0,1
ν

¨
´ 2 ´ π

2
pexpp}θ}

F
0,1
ν

q ´ 1q
`
1 ´ π

2
pexpp}θ}

F
0,1
ν

q ´ 1q
˘2

¯
.

Combining (5.36), (5.37), (5.38), (5.39) and (5.40) into (5.35), we obtain in the
space F0,1

ν with ν “ 0 that

}Bpfq}
F

0,1
ν

ď C̃1}θ}2
F

0,1
ν

}f}
F

0,1
ν

,
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where C̃1
def“ C̃1p}θ}

F
0,1
ν

q is an increasing function of }θ}
F

0,1
ν

given by

(5.41) C̃1 “
πC̃

2

expp}θ}
F

0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

2 ´ π
2

pexpp}θ}
F

0,1
ν

q ´ 1q
`
1 ´ π

2
pexpp}θ}

F
0,1
ν

q ´ 1q
˘2

`
expp}θ}

F
0,1
ν

q ´ 1 ´ }θ}
F

0,1
ν

}θ}2
F

0,1
ν

`
´
1 ` C̃

¯ pexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

`
expp}θ}

F
0,1
ν

qpexpp}θ}
F

0,1
ν

q ´ 1q2
}θ}2

F
0,1
ν

p2 ´ expp}θ}
F

0,1
ν

qq .

This completes the estimate (5.15) for the operator (5.18) and for s “ 0.
For the operator (5.18) and s ą 0, from (5.21), (5.22), (5.23), (5.24) with (5.25)

we have

(5.42) }Bpfq} 9F
s,1
ν

“
›››|k1|s

ÿ

n,lě0
n`lě2

p´1qnil`n`1p˚lθ̂pk1qq
l!

˚ {Snpfqpk1q
›››
�1ν

“
›››|k1|s

ÿ

n,lě0
n`lě2

p˚lθ̂pk1qq
l!

˚
ÿ

k2,...,kn`1PZ

Ipk1, . . . , kn`1qf̂pkn`1q
nź

j“1

P pkj ´ kj`1q
›››
�1ν

ď S1 ` S2 ` S3,

where we use an from (5.29) and (3.7) so that, using (5.3) and (5.30) with (5.23),
the terms Si are given by

S1 “
ÿ

n,lě0
n`lě2

bpl ` n ` 1, sq
l!

anl}θ}l´1

F
0,1
ν

}θ} 9F
s,1
ν

}f}
F

0,1
ν

}P }n�1ν ,

S2 “
ÿ

n,lě0
n`lě2

bpl ` n ` 1, sq
l!

an}θ}l
F

0,1
ν

}f} 9F
s,1
ν

}P }n�1ν ,

S3 “
ÿ

n,lě0
n`lě2

bpl ` n ` 1, sq
l!

ann}θ}l
F

0,1
ν

}f}
F

0,1
ν

}P }n´1

�1ν

}F´1pP q} 9F
s,1
ν

.

We recall from (5.23) and (5.33) that }P }�1ν ď exp p}θ}
F

0,1
ν

q ´ 1 and notice with

(5.3) that for s ą 0 we have

(5.43) }F´1pP q} 9F
s,1
ν

ď
ÿ

mě1

bpm, sq
pm ´ 1q!}θ}m´1

F
0,1
ν

}θ} 9F
s,1
ν

.

Then, we have that

S2 ď C̃3}θ}2
F

0,1
ν

}f} 9F
s,1
ν

,

where

(5.44) C̃3
def“

ÿ

ně0,lě0
n`lě2

bpl ` n ` 1, sq
l!

an}θ}n`l´2

F
0,1
ν

´e
}θ}

F
0,1
ν ´ 1

}θ}
F

0,1
ν

¯n

,
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and

S1 ` S3 ď C̃4}θ}
F

0,1
ν

}θ} 9F
s,1
ν

}f}
F

0,1
ν

,

where

(5.45) C̃4
def“

ÿ

ně0,lě0
n`lě2

bpl`n`1, sq
l!

an}θ}n`l´2

F
0,1
ν

´
l
´e

}θ}
F

0,1
ν ´1

}θ}
F

0,1
ν

¯n

`C̃5

¯
,

with

(5.46) C̃5
def“ n

´e
}θ}

F
0,1
ν ´1

}θ}
F

0,1
ν

¯n´1 ÿ

mě1

bpm, sq
pm ´ 1q!}θ}m´1

F
0,1
ν

.

Finally, going back to (5.42), we obtain the result for s ą 0 that

}Bpfq} 9F
s,1
ν

ď C̃3}θ}2
F

0,1
ν

}f} 9F
s,1
ν

` C̃4}θ}
F

0,1
ν

}θ} 9F
s,1
ν

}f}
F

0,1
ν

.

This completes the desired estimate for B in (5.15) for s ą 0.
Now it only remains to bound Apfqpαq as defined by (5.17) in (5.15). Analo-

gously to (5.24) and (5.25), one can obtain that

pApk1q “
ÿ

k2PZ

Ipk1, k1 ´ k2qf̂pk2qP2pk1 ´ k2q

where

P2pkq “
ÿ

mě2

im

m!
p˚mθ̂pkqq

and Ipk1, k1 ´ k2q is given by (5.8) with k “ k1 and k1 in (5.8) replaced by k1 ´ k2
using also (5.7), so that in particular

Ipk1, k1 ´ k2q “ 1

π
pv

ż π

´π

e´ik2β

1 ´ e´iβ

1 ´ e´iβp1`k1´k2q

ip1 ` k1 ´ k2qp1 ´ e´iβqdβ.

Then analogously to (5.11) and (5.14) we have

|Ipk1, k1 ´ k2q| ď CR,

with CR from (5.6). Note that pA is the operator xS1 in (5.24) with n “ 1 if you
replace P from (5.23) with P2 above. Then we have the same estimate as (5.31)
with P2 replacing P and n “ 1 recalling also (5.29). We estimate P2 similarly to
(5.33) (except that m ě 2). We conclude that

(5.47) }A}
F

0,1
ν

ď CR}f}
F

0,1
ν

}P2}
F

0,1
ν

ď CRC̆1}θ}2
F

0,1
ν

}f}
F

0,1
ν

where

(5.48) C̆1 “
expp}θ}

F
0,1
ν

q ´ 1 ´ }θ}
F

0,1
ν

}θ}2
F

0,1
ν

.

Thus, recalling (5.6), (5.10), (5.41) and (5.48), then we have

(5.49) C1 “ C̃1 ` CRC̆1.

We obtain (5.15) for s “ 0 by combining (5.47) with the bound above (5.41).
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We turn to the estimate for A in (5.17) for s ą 0. We will use (5.3) since s ą 0
and (3.7). We will in this case estimate P2 similarly to (5.43) (except with m ě 2).
We then have the estimate

}A} 9F
s,1
ν

ď CR

ÿ

mě2

bpm ` 1, sq
m!

`
}θ}m

F
0,1
ν

}f} 9F
s,1
ν

` m}θ}m´1

F
0,1
ν

}f}
F

0,1
ν

}θ} 9F
s,1
ν

˘
.

Now define

(5.50) C̆3
def“

ÿ

mě0

bpm ` 3, sq
pm ` 2q! }θ}m

F
0,1
ν

, C̆4
def“

ÿ

mě0

bpm ` 3, sq
pm ` 1q! }θ}m

F
0,1
ν

,

then we have

(5.51) }A} 9F
s,1
ν

ď CRC̆3}θ}2
F

0,1
ν

}f} 9F
s,1
ν

` CRC̆4}θ}
F

0,1
ν

}f}
F

0,1
ν

}θ} 9F
s,1
ν

.

Hence further define

(5.52) C3
def“ C̃3 ` CRC̆3, C4

def“ C̃4 ` CRC̆4.

Then using (5.44), (5.45) (and the estimate below them) and (5.50) (and the esti-
mate above it) we obtain (5.15) for s ą 0. �

In the next chapter we will prove the a priori estimates on the vorticity strength
ω.
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CHAPTER 6

A priori estimates on the vorticity strength

This chapter includes the a priori estimates for the vorticity strength ω from
(2.9) that will be used in particular in Section 7.2. The main result of the section
is the following Proposition 6.1.

Proposition 6.1. The linear part of the vorticity, ω1 in (2.23), satisfies the
following estimates:

(6.1) }ω1}
F

0,1
ν

ď Aσ

4π

Lptq}θ} 9F
2,1
ν

` p1 ` 2|Aμ|q|Aρ|Lptq
π

eνptq}θ}
F

0,1
ν

,

for s ą 0, recalling (3.7), we have

(6.2) }ω1} 9F
s,1
ν

ď Aσ

4π

Lptq}θ} 9F
2`s,1
ν

` p1 ` 2|Aμ|q|Aρ|Lptq
π

2bp2, sqeνptq}θ} 9F
s,1
ν

.

The nonlinear part ωě2 from (2.23) satisfies

(6.3) }ωě2}
F

0,1
ν

ď |Aμ|Aσ

4π

LptqC9}θ}
F

0,1
ν

}θ} 9F
2,1
ν

` |Aρ|Lptq
π

eνptqC10}θ}2
F

0,1
ν

,

while s ą 0 we have

(6.4) }ωě2} 9F
s,1
ν

ď|Aμ|Aσ

4π

LptqC13}θ}
F

0,1
ν

}θ} 9F
2`s,1
ν

`|Aρ|Lptq
π

eνptqC14}θ}
F

0,1
ν

}θ} 9F
s,1
ν

,

where C9 and C10 are defined in (6.10) and C13 and C14 are in (6.16).

Proof. First, recalling (3.7), we note that

(6.5)
} cos pα`ϑ̂p0qqθpαq}

F
0,1
ν

ď eνptq}θ}
F

0,1
ν

,

} cos pα`ϑ̂p0qqθpαq} 9F
s,1
ν

ď 2bp2, sqeνptq}θ} 9F
s,1
ν

, s ą 0,

as similar to the calculations in the proof of Lemma 5.1. We point out that the same

calculations also hold with cos pα`ϑ̂p0qq replaced by sin pα`ϑ̂p0qq. For example,

47
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to see the above in the case 0 ă s ď 1, we have

(6.6) } cos pα` pϑp0qqθpαq} 9F
s,1
ν

“
ÿ

kPZ

eνptq|k||k|s|ppcos pα` pϑp0qqq^ ˚ pθqpkq|

“
ÿ

k,k1PZ

eνptq|k||k|s|1
2

pδp1 ´ k1qeipϑp0q ` δp1 ` k1qe´ipϑp0qqpθpk ´ k1q|

ď
ÿ

kPZ

eνptq|k||k|s 1
2

p|pθpk ´ 1q| ` |pθpk ` 1q|q

ď 1

2

ÿ

kPZ

eνptq|k´1|eνptqp|k ´ 1|s ` 1q|pθpk ´ 1q|

` eνptq|k`1|eνptqp|k ` 1|s ` 1q|pθpk ` 1q|
“ eνptqp}θ}

F
0,1
ν

` }θ} 9F
s,1
ν

q ď 2eνptq}θ} 9F
s,1
ν

.

This explains the difference between (6.1) and (6.2). We will explain the proof of
(6.2) for s ą 0. The proof of the other case, (6.1) when s “ 0, is analogous. It
follows from (2.23) and (6.5) that

}ω1} 9F
s,1
ν

ď |Aμ|Lptq
π

}D1pω0q} 9F
s,1
ν

`Aσ

4π

Lptq}θ} 9F
2`s,1
ν

`|Aρ|Lptq
π

2bp2, sqeνptq}θ} 9F
s,1
ν

,

and from (2.24) with (6.5) and (2.27) we have

}D1pω0q} 9F
s,1
ν

ď π

Lptq
´

|Aρ|Lptq
π

2bp2, sqeνptq}θ} 9F
s,1
ν

` } ImRpω0q} 9F
s,1
ν

¯
.

Recalling (2.34) together with Lemma (6.5) gives the following estimate

} ImRpω0q} 9F
s,1
ν

ď |Aρ|Lptq
π

2bp2, sqeνptq}θ} 9F
s,1
ν

.

Therefore,

}D1pω0q} 9F
s,1
ν

ď 4|Aρ|eνptqbp2, sq}θ} 9F
s,1
ν

,

and thus the estimate (6.2) for ω1 is complete. The estimate for (6.1) is proven in
the same way.

Now we proceed to bound ωě2 from (2.23) in F0,1
ν . In this case we have

(6.7)
}ωě2}

F
0,1
ν

ď |Aμ|Lptq
π

}Dě2pωq}
F

0,1
ν

` |Aρ|Lptq
π

eνptq
ÿ

jě2

}θ}j
F

0,1
ν

j!

“ |Aμ|Lptq
π

}Dě2pωq}
F

0,1
ν

` |Aρ|Lptq
π

eνptqC6}θ}2
F

0,1
ν

,

where

(6.8) C6 “
e

}θ}
F

0,1
ν ´ 1 ´ }θ}

F
0,1
ν

}θ}2
F

0,1
ν

.

From (2.24), one has that

}Dě2}
F

0,1
ν

ď π

Lptq
´

}θ}
F

0,1
ν

}ωě1}
F

0,1
ν

` }Rpωě1q}
F

0,1
ν

` }Spωq}
F

0,1
ν

¯
.
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Using the estimates (5.5) and (5.15) and splitting the vorticity terms as ωě1 “
ω1 ` ωě2, we obtain the estimate

}Dě2}
F

0,1
ν

ď π

Lptq
´

}θ}
F

0,1
ν

}ω1}
F

0,1
ν

` }θ}
F

0,1
ν

}ωě2}
F

0,1
ν

` CR}θ}
F

0,1
ν

}ω1}
F

0,1
ν

` CR}θ}
F

0,1
ν

}ωě2}
F

0,1
ν

` |Aρ|Lptq
π

eνptqC1}θ}2
F

0,1
ν

` C1}θ}2
F

0,1
ν

}ω1}
F

0,1
ν

` C1}θ}2
F

0,1
ν

}ωě2}
F

0,1
ν

¯
,

so, substituting back in (6.7) and solving for }ωě2}
F

0,1
ν

, we obtain that

}ωě2}
F

0,1
ν

ď C8

´
|Aμ|C7}θ}

F
0,1
ν

}ω1}
F

0,1
ν

` |Aμ||Aρ|Lptq
π

eνptqC1}θ}2
F

0,1
ν

` |Aρ|Lptq
π

eνptqC6}θ}2
F

0,1
ν

¯
,

where we defined

(6.9) C7 “ 1 ` CR ` C1}θ}
F

0,1
ν

, C8 “ 1

1 ´ |Aμ|C7}θ}
F

0,1
ν

,

with C1 given in (5.49). Substituting in (6.1) we conclude that

}ωě2}
F

0,1
ν

ď 2|Aμ|Aσ

2π

LptqC7C8}θ}
F

0,1
ν

}θ} 9F
2,1
ν

` |Aρ|Lptq
π

eνptqC8

´
|Aμ|p1 ` 2|Aμ|qC7 ` |Aμ|C1 ` C6

¯
}θ}2

F
0,1
ν

,

which gives the estimate (6.3) by defining

(6.10)
C9 “ C7C8,

C10 “ |Aμ|p1 ` 2|Aμ|qC7C8 ` |Aμ|C1C8 ` C6C8,

where C1, C6, C7, and C8 were previously defined in (5.49), (6.8), and (6.9).
We consider now the case s ą 0 in (6.4). From (2.23), also using (6.6), we have

(6.11) }ωě2} 9F
s,1
ν

ď |Aμ|Lptq
π

}Dě2pωq} 9F
s,1
ν

` |Aρ|Lptq
π

eνptq
ÿ

jě2

bpj, sq}θ}j
F

0,1
ν

j!

` |Aρ|Lptq
π

eνptq
ÿ

jě1

bpj, sq}θ}j
F

0,1
ν

j!
}θ} 9F

s,1
ν

ď |Aμ|Lptq
π

}Dě2pωq} 9F
s,1
ν

` |Aρ|Lptq
π

eνptqC11}θ}
F

0,1
ν

}θ} 9F
s,1
ν

,

where

(6.12) C11 “
ÿ

jě2

bpj, sq}θ}j´2

F
0,1
ν

j!
`

ÿ

jě1

bpj, sq}θ}j´1

F
0,1
ν

j!
.

Recalling (2.24), and (5.3), one has that

}Dě2} 9F
s,1
ν

ď π

Lptq
´
bp2, sq}θ} 9F

s,1
ν

}ωě1}
F

0,1
ν

` bp2, sq}θ}
F

0,1
ν

}ωě1} 9F
s,1
ν

` }Rpωě1q} 9F
s,1
ν

` }Spωq} 9F
s,1
ν

¯
.
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Using the estimates (5.5) and (5.15) with s ą 0 and splitting the vorticity terms
again, we obtain

}Dě2} 9F
s,1
ν

ď π

Lptq

ˆ
p1`bp2, sqCRq}θ} 9F

s,1
ν

}ω1}
F

0,1
ν

`p1`bp2, sqCRq}θ} 9F
s,1
ν

}ωě2}
F

0,1
ν

` p1 ` bp2, sqCRq}θ}
F

0,1
ν

}ω1} 9F
s,1
ν

` p1 ` bp2, sqCRq}θ}
F

0,1
ν

}ωě2} 9F
s,1
ν

` |Aρ|Lptq
π

eνptqpC3 ` C4q}θ}
F

0,1
ν

}θ} 9F
s,1
ν

` C3}θ}2
F

0,1
ν

}ω1} 9F
s,1
ν

`C3}θ}2
F

0,1
ν

}ωě2} 9F
s,1
ν

`C4}θ}
F

0,1
ν

}θ} 9F
s,1
ν

}ω1}
F

0,1
ν

`C4}θ}
F

0,1
ν

}θ} 9F
s,1
ν

}ωě2}
F

0,1
ν

˙
,

which becomes

}Dě2} 9F
s,1
ν

ď π

Lptq
´

|Aρ|Lptq
π

eνptqpC3`C4q}θ}
F

0,1
ν

}θ} 9F
s,1
ν

`C12}θ} 9F
s,1
ν

}ω1}
F

0,1
ν

`C2}θ}
F

0,1
ν

}ω1} 9F
s,1
ν

`C12}θ} 9F
s,1
ν

}ωě2}
F

0,1
ν

`C2}θ}
F

0,1
ν

}ωě2} 9F
s,1
ν

¯
,

where

(6.13)
C2 “ 1 ` bp2, sqCR ` C3}θ}

F
0,1
ν

C12 “ 1 ` bp2, sqCR ` C4}θ}
F

0,1
ν

,

with CR and C4 given in (5.6) and (5.52), respectively. Substituting back in (6.11),
and solving for }ωě2} 9F

s,1
ν

, we have

}ωě2} 9F
s,1
ν

ď |Aμ|C̃8

´
|Aρ|Lptq

π
eνptqpC3 ` C4q}θ}

F
0,1
ν

}θ} 9F
s,1
ν

` C12}θ} 9F
s,1
ν

}ω1}
F

0,1
ν

` C2}θ}
F

0,1
ν

}ω1} 9F
s,1
ν

` C12}θ} 9F
s,1
ν

}ωě2}
F

0,1
ν

¯

` |Aρ|Lptq
π

eνptqC11C̃8}θ}
F

0,1
ν

}θ} 9F
s,1
ν

,

where we defined

(6.14) C̃8 “ 1

1 ´ |Aμ|C2}θ}
F

0,1
ν

.

We introduce the estimates (6.3), (6.1), and (6.2) to obtain that

}ωě2} 9F
s,1
ν

ď |Aμ|C̃8

ˆ
|Aρ|Lptq

π
eνptqpC3 ` C4q}θ}

F
0,1
ν

}θ} 9F
s,1
ν

` Aσ

4π

LptqC12}θ} 9F
s,1
ν

}θ} 9F
2,1
ν

` p1 ` 2|Aμ|q|Aρ|Lptq
π

eνptqC12}θ} 9F
s,1
ν

}θ}
F

0,1
ν

` Aσ

4π

LptqC2}θ}
F

0,1
ν

}θ} 9F2`s,1 ` p1`2|Aμ|q|Aρ|Lptq
π

2bp2, sqeνptqC2}θ}
F

0,1
ν

}θ} 9F
s,1
ν

` |Aμ|Aσ

4π

LptqC9C12}θ}
F

0,1
ν

}θ} 9F
s,1
ν

}θ} 9F
2,1
ν

` |Aρ|Lptq
4π

eνptqC10C12}θ} 9F
s,1
ν

}θ}2
F

0,1
ν

˙
`|Aρ|Lptq

π
eνptqC11C̃8}θ}

F
0,1
ν

}θ} 9F
s,1
ν

.

Next, we use the interpolation inequality (3.6) to find that

(6.15) }θ} 9F
s,1
ν

}θ} 9F
2,1
ν

ď }θ}
F

0,1
ν

}θ} 9F
2`s,1
ν

,
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and therefore

}ωě2} 9F
s,1
ν

ď |Aμ|Aσ

4π

Lptq C̃8

´
C2 ` C12 ` |Aμ|C9C12}θ}

F
0,1
ν

¯
}θ}

F
0,1
ν

}θ} 9F
2`s,1
ν

` |Aρ|Lptq
π

eνptqC̃8

´
|Aμ|pC3 ` C4q ` |Aμ|p1 ` 2|Aμ|qp2C2 ` C12q

` |Aμ|C10C12}θ}
F

0,1
ν

` C11

¯
}θ}

F
0,1
ν

}θ} 9F
s,1
ν

,

which gives the inequality (6.4) by defining

(6.16)

C13 “ C̃8

´
C2 ` C12 ` |Aμ|C9C12}θ}

F
0,1
ν

¯
,

C14 “ |Aμ|C̃8

´
C3`C4`p1`2|Aμ|qp2C2`C12q`C10C12}θ}

F
0,1
ν

¯

`C11C̃8,

where C3 and C4 in (5.52), C2 in (6.13), C̃8 in (6.14), C9 and C10 in(6.10), C11 in
(6.12), and C12 in (6.13) were previously defined. �

In the next chapter we put together all the previous results to prove the global
existence and instant analyticity as in our main Theorem 3.1.
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CHAPTER 7

Global existence and instant analyticity

This chapter is dedicated to the proof of Theorem 3.1. In Section 7.1 we prove
the claimed bound for the length Lptq from (3.15). Then Section 7.2 proves the
main a priori estimates for a solution θ. We prove the global energy inequality
from (3.12). In particular we diagonalize the linearized operator in Proposition 7.1.
We prove operator bounds for the corresponding linear transformations in Lemma
7.2. In Section 7.3 we prove the corresponding non-linear estimates that were used
in the a priori estimates from the previous section. In particular we prove Theorem
7.51. Lastly, in Section 7.4 we describe the scheme of the proof of our main theorem
via a regularization argument.

7.1. Estimate for Lptq
In this section, we prove the bound for Lptq from (3.15). Equation (2.13),

together with the bound

(7.1)
Im

´ ż π

´π

ż α

0

eipα´ηq
ÿ

ně1

in

n!
pθpαq ´ θpηqqndηdα

¯
ď π2

ÿ

ně1

2n}θ}n
F0,1

n!

ď π2
`
e2}θ}

F0,1 ´ 1
˘
,

implies that

(7.2)
R2

1 ` π
2

`
e2}θ}

F0,1 ´ 1
˘ ď

´Lptq
2π

¯2

ď R2

1 ´ π
2

`
e2}θ}

F0,1 ´ 1
˘ ,

and therefore

(7.3) 2πRC37 ď Lptq ď 2πRC38,

where

(7.4) C37 “ 1b
1 ` π

2

`
e2}θ}

F0,1 ´ 1
˘ , C38 “ 1b

1 ´ π
2

`
e2}θ}

F0,1 ´ 1
˘ .

We have thus shown that the length of the curve is controlled for all times. In
particular, we also have the following estimates

(7.5)

ˇ̌
ˇR2

´ 2π

Lptq
¯2

´ 1
ˇ̌
ˇ ď π

2

`
e2}θ}

F0,1 ´ 1
˘
,

ˇ̌
ˇR

´ 2π

Lptq
¯

´ 1
ˇ̌
ˇ ď 1 ´

c
1 ´ π

2

`
e2}θ}

F0,1 ´ 1
˘

“ C39}θ}F0,1 ,

ˇ̌
ˇR3

´ 2π

Lptq
¯3

´ 1
ˇ̌
ˇ ď

´
1 ` π

2

`
e2}θ}

F0,1 ´ 1
˘¯3{2

´ 1 “ C40}θ}F0,1 ,

53
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with

(7.6) C39 “
1 ´

b
1 ´ π

2

`
e2}θ}

F0,1 ´ 1
˘

}θ}F0,1

, C40 “

´
1 ` π

2

`
e2}θ}

F0,1 ´ 1
˘¯3{2

´ 1

}θ}F0,1

.

These are the main estimates that we will use for Lptq. We remark that all the

estimates in this chapter hold with the same proof in the norms F0,1
ν and 9F

1

2
,1

ν . In
the next section we prove the main a priori estimates for θ.

7.2. A priori Estimates for θptq
In this section we obtain the a priori estimates that guarantee the global ex-

istence of the solutions, the instant in time analyticity, and the exponentially fast
convergence to a circle. In particular, the main goal is to show the energy inequality
(3.12).

The results of this section are ordered as follows: First, we write the system
(2.30) using the linearization (2.2) of Section 2.5; then, we diagonalize the system
according to Proposition 7.1 to show its dissipative character; the bounds for this
change of frame are proven in Lemma 7.2; the estimates for the nonlinear terms
are proven in Section 7.3, together with the control of the length in Section 7.1.

Proof of the global energy inequality from (3.12). Equation (2.30)

and Proposition 2.2 show that the equation for pθpkq, 1 ď k ‰ 2, is given by

pθtpkq “ ´Aσ

´ 2π

Lptq
¯3

kpk2´1qpθpkq´
`
1`Aμ

˘
Aρ

2π

Lptq
pk2´1qpk`1q

kpk`2q e´ipϑp0q pθpk`1q

` 2π

Lptq
pNpkq,

and for k “ 2, we have

pθtp2q “ ´Aσ

´ 2π

Lptq
¯3

6pθp2q´ p1 ` AμqAρ

2π

Lptq
9

8
e´ipϑp0qpθp3q

` p1 ´ AμqAρ

2π

Lptq
3

2

ˆ
3

4
´ log 2

˙
ei

pϑp0qpθp1q ` 2π

Lptq
pNpkq.

We notice in the equation above that the terms that are linear in pθpkq have time-
dependent coefficients. However, this dependency happens only through Lptq. We
will show that Lptq is bounded from below and above (see Section 7.1). In fact, it
is not hard to see from (2.13) that, to leading order, Lptq equals 2πR. Thus we
rewrite the equation above as follows

(7.7)

pθtpkq “ ´Aσ

R3
kpk2 ´ 1qpθpkq ´

`
1 ` Aμ

˘Aρ

R

pk2 ´ 1qpk ` 1q
kpk ` 2q e´ipϑp0q pθpk ` 1q

` 2π

Lptq
pNpkq ´ Aσ

R3
kpk2 ´ 1qpθpkq

´
R3

´ 2π

Lptq
¯3

´ 1
¯

´
`
1 ` Aμ

˘Aρ

R

pk2 ´ 1qpk ` 1q
kpk ` 2q e´ipϑp0qpθpk ` 1q

´
R

2π

Lptq ´ 1
¯
,

for 1 ď k ‰ 2, and we decompose the equation analogously for k “ 2.
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Next, we write the corresponding linear system as follows

(7.8) ztpkq “
ÿ

jě1

Mk,jzpjq, k ě 1,

where we denote

Mk,j “

$
’’’&
’’’%

´ apkq, j “ k,

bpkq, j “ k ` 1,

cp1q, j “ 1, k “ 2,

0, otherwise,

with

(7.9) apkq “ Aσ

R3
kpk2 ´ 1q, bpkq “ ´

`
1 ` Aμ

˘Aρ

R

pk2 ´ 1qpk ` 1q
kpk ` 2q e´ipϑp0q,

cp1q “ p1 ´ AμqAρ

R

3

2

ˆ
3

4
´ log 2

˙
ei

pϑp0q.

Notice that this is an upper triangular system except for the entry k “ 2, j “ 1.
This entry, k “ 2 with j “ 1, will require special attention. The eigenvalues of this
system are ´apkq. This is given in the following proposition.

Proposition 7.1 (Diagonalization). Consider z “ pzpkqqkě1, y “ pypkqqkě1 P
�1 and the linear operator

S´1 : �1 Ñ �1

z ÞÑ y “ S´1z,

defined by

ypkq “
ÿ

jě1

S´1
k,jzpjq,

with

(7.10) S´1
k,j “

$
’’’’’’’’&
’’’’’’’’%

p ´ 1qj´k

j´kź

l“1

bpk ´ 1 ` lq
apkq ´ apk ` lq , j ě k ě 2,

1, j “ k “ 1,

´ cp1q
ap2q , k “ 2, j “ 1,

0, otherwise.

Then, the inverse operator S is given by

Sk,j “

$
’’’’’’’’&
’’’’’’’’%

j´kź

l“1

bpk ´ 1 ` lq
apk ´ 1 ` lq ´ apjq , j ě k ě 2,

1, j “ k “ 1,

cp1q
ap2q , k “ 2, j “ 1,

0, otherwise.

Moreover, the linear operator S´1 diagonalizes the system (7.8) as follows

ytpkq “ ´apkqypkq, k ě 1.
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We remark that since
ś0

l“1 “ 1 by definition then Sk,k “ S´1
k,k “ 1 when j “ k

for all k ě 1. We also have the following lemma which gives uniform bounds for
the operators S and S´1.

Lemma 7.2. The operator norms in �1 of the linear operators S and S´1 satisfy
the following bounds

(7.11) }S´1}�1Ñ�1 ď CS , }S}�1Ñ�1 ď CS ,

with CS “ CSpAμ,
|Aρ|R2

Aσ
q where

CS
def“ max

!
1 ` 1

4

`
1´Aμ

˘ |Aρ|R2

Aσ

´3

4
´ log 2

¯
, 6

I3

´
2
b`

1`Aμ

˘ |Aρ|R2

Aσ

¯

´`
1`Aμ

˘ |Aρ|R2

Aσ

¯3{2

)
.

In the constant CS above we used the modified Bessel function of the first kind
of order three. In general, for an integer n ě 0, we define

(7.12) Inpzq def“
´z

2

¯n 8ÿ

j“0

pz{2q2j
j!pj ` nq! .

We will prove Proposition 7.1 and Lemma 7.2 after we finish the proof of the main
global energy inequality.

Remark 7.3. The results in Proposition 7.1 and Lemma 7.2 also hold in the
space �1 with weight eνptq|k||k|s for any s ě 0 without any change to the proof; i.e.

}z} 9F
s,1
ν

ď CS}y} 9F
s,1
ν

, }y} 9F
s,1
ν

ď CS}z} 9F
s,1
ν

,

where ypkq and zpkq are defined in Proposition 7.1.

According to Proposition 7.1, we apply the linear transformation S´1 to (7.7)
to rewrite the system with the linear part in diagonal form

(7.13)

pS´1pθqtpkq “ ´Aσ

R3
kpk2 ´ 1qpS´1pθqpkq ` 2π

Lptq pS´1 pNqpkq

´ Aσ

R3
pS´1uqpkq

´
R3

´ 2π

Lptq
¯3

´ 1
¯

´
`
1 ` Aμ

˘Aρ

R
e´ipϑp0qpS´1vqpkq

´
R

2π

Lptq ´ 1
¯

` p1 ´ AμqAρ

R

3

2

ˆ
3

4
´ log 2

˙
ei

pϑp0q
´
R

2π

Lptq ´ 1
¯

pS´1wqpkq,

where we introduced the notation

upkq “ kpk2 ´ 1qpθpkq, vpkq “ pk2 ´ 1qpk ` 1q
kpk ` 2q

pθpk ` 1q, wpkq “ 1k“2
pθp1q.

Taking into account that θpαq is a real-valued function, we can write the norm (3.3)
in terms of the positive frequencies alone

}θ}
9F

1

2
,1

ν

“
ÿ

kPZ

eνptq|k||k|1{2|pθpkq| “ 2
ÿ

kě1

eνptqkk1{2|pθpkq|.

Define

pypkq “ pS´1pθqpkq, pyp´kq “ pypkq, k ě 1, pyp0q “ 0, y “ F´1py,
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and consider the evolution of the quantity

}y}
9F

1

2
,1

ν

“ 2
ÿ

kě1

eνptqkk1{2|pypkq|.

Taking the derivative in time we obtain that

d

dt
}y}

9F

1

2
,1

ν

“2
ÿ

kě1

ν 1ptqk3{2eνptqk|pypkq|`2
ÿ

kě1

eνptqkk1{2 1

2

pytpkqpypkq`pypkqpytpkq
|pypkq| .

Therefore, substituting (7.13), one finds the following equation

(7.14)

d

dt
}y}

9F

1

2
,1

ν

“2
ÿ

kě1

ν 1ptqk3{2eνptqk|pypkq| ´ 2
Aσ

R3

ÿ

kě1

eνptqkk3{2pk2 ´ 1q|pypkq|

` 2
2π

Lptq
ÿ

kě1

eνptqkk1{2 1

2

pS´1 pNqpkqpypkq ` pS´1 pNqpkqpypkq
|pypkq|

` Yu ` Yv ` Yw,

where

Yu “ ´2
Aσ

R3

´
R3

´ 2π

Lptq
¯3

´1
¯ ÿ

kě1

eνptqkk1{2 pS´1uqpkqpypkq ` pS´1uqpkqpypkq
2|pypkq| ,

Yv “ ´2p1`AμqAρ

R

´
R

2π

Lptq ´1
¯

ˆ
ÿ

kě1

eνptqkk1{2 e
´ipϑp0qpS´1vqpkqpypkq`ei

pϑp0qpS´1vqpkqpypkq
2|pypkq| ,

Yw “ 2p1´AμqAρ

R

´
R

2π

Lptq ´1
¯3

2

´3

4
´log 2

¯

ˆ
ÿ

kě1

eνptqkk1{2 1

2

e`ipϑp0qpS´1wqpkqpypkq`e´ipϑp0qpS´1wqpkqpypkq
|pypkq| .

We have the bounds

|Yu| ď 2
Aσ

R3

ˇ̌
ˇR3

´ 2π

Lptq
¯3

´ 1
ˇ̌
ˇ

ÿ

kě1

eνptqkk1{2|pS´1uqpkq|,

|Yv| ď 2p1 ` Aμq |Aρ|
R

ˇ̌
ˇR 2π

Lptq ´ 1
ˇ̌
ˇ
ÿ

kě1

eνptqkk1{2|pS´1vqpkq|,

|Yw| ď 2p1 ´ Aμq |Aρ|
R

ˇ̌
ˇR 2π

Lptq ´ 1
ˇ̌
ˇ3
2

´3

4
´ log 2

¯ ÿ

kě1

eνptqkk1{2|pS´1wqpkq|.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

58 7. GLOBAL EXISTENCE AND INSTANT ANALYTICITY

Noticing that pS´1wqpkq “ wpkq “ 1k“2
pθp1q and using the inequalities given by

Lemma 7.2, we have

|Yu| ď 2
Aσ

R3

ˇ̌
ˇR3

´ 2π

Lptq
¯3

´ 1
ˇ̌
ˇCSpAμ,

|Aρ|R2

Aσ

q
ÿ

kě2

eνptqkk1{2|upkq|,

|Yv| ď 2p1 ` Aμq |Aρ|
R

ˇ̌
ˇR 2π

Lptq ´ 1
ˇ̌
ˇCSpAμ,

|Aρ|R2

Aσ

q
ÿ

kě2

eνptqkk1{2|vpkq|,

|Yw| ď 21{23p1 ´ Aμq |Aρ|
R

ˇ̌
ˇR 2π

Lptq ´ 1
ˇ̌
ˇ
´3

4
´ log 2

¯
e2νptq|pθp1q|.

Since

kpk2 ´ 1q ď k3, for k ě 2,
pk2 ´ 1qpk ` 1q
k1{2pk ` 2q ď pk ` 1q3{2, for k ě 1,

it holds that

|upkq| ď k3
ˇ̌
ˇpθpkq

ˇ̌
ˇ , |vpkq| ď pk ` 1qpθpk ` 1q.

Now we use the inequalities for Lptq from (7.5) (see Section 7.1) to obtain that

(7.15)

|Yu| ď 2
Aσ

R3
CSC40}θ}

F
0,1
ν

ÿ

kě2

eνptqkk
7

2 |pθpkq|,

|Yv| ď 2p1 ` Aμq |Aρ|
R

CSC39}θ}
F

0,1
ν

ÿ

kě2

eνptqkpk ` 1q3{2|pθpk ` 1q|,

|Yw| ď 21{23p1 ´ Aμq |Aρ|
R

C39}θ}
F

0,1
ν

´3

4
´ log 2

¯
e2νptq|pθp1q|.

Above we wrote CS “ CSpAμ,
|Aρ|R2

Aσ
q. Going back to (7.14) with the bound (7.3)

and the inequality

k3{2pk2 ´ 1q ě 3

4
k7{2, for k ě 2,

we find using also (7.11) that

(7.16)

d

dt
}y}

9F

1

2
,1

ν

ď ν 1ptq}y}
9F

3

2
,1

ν

´ 3

2

Aσ

R3

ÿ

kě2

eνptqkk7{2|pypkq|

` CSpAμ,
|Aρ|R2

Aσ

qC´1
37

1

R
}N}

9F

1

2
,1

ν

` |Yu| ` |Yv| ` |Yw|.

We will next control the k “ 1 frequency in the dissipation part above. To that
end recall from Proposition 4.1 that, if }θ}F0,1 ă 1

2
log

`
5
4

˘
, then we have

2|pθp1q| ď 2CIp}θ}
F

0,1
ν

q}θ}
F

0,1
ν

ÿ

kě2

|pθpkq|,

which implies

}θ} 9F
s,1
ν

“ 2eνptq|pθp1q| ` 2
ÿ

kě2

eνptqkks|pθpkq|

ď 2
´
CIp}θ}

F
0,1
ν

q}θ}
F

0,1
ν

` 1
¯ ÿ

kě2

eνptqkks|pθpkq|, s ě 0.

We will find an analogous inequality in terms of y. We remark that at the end of
the calculation the constant K in (3.11) and in (7.26) will be smaller than 1

2
log

`
5
4

˘
.
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Now since pyp1q “ pθp1q, for s ě 0 we have that

}y} 9F
s,1
ν

“ 2eνptq|pθp1q| ` 2
ÿ

kě2

eνptqkks|pypkq|

ď 2CIp}θ}
F

0,1
ν

q}θ}
F

0,1
ν

ÿ

kě2

eνptqkks|pθpkq| ` 2
ÿ

kě2

eνptqkks|pypkq|,

thus substituting pθpkq “ pSpyqpkq and using (7.32) with (7.33) and (7.12), we obtain

}y} 9F
s,1
ν

ď 2CIp}θ}
F

0,1
ν

q}θ}
F

0,1
ν

e2νptq2s
ˇ̌
ˇ cp1q
ap2q

ˇ̌
ˇ|pyp1q|

` 2

ˆ
CIp}θ}

F
0,1
ν

q6
I3

´
2
bˇ̌

1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯3{2
}θ}

F
0,1
ν

` 1

˙ ÿ

kě2

eνptqkks|pypkq|.

Subtracting the pyp1q term and using that eνptq ď eν0 for all t ě 0, we find

(7.17) }y} 9F
s,1
ν

ď 2Cy

ÿ

kě2

eνptqkks|pypkq|, s ě 0,

where using also (7.9) we define

(7.18) Cy “

CIp}θ}
F

0,1
ν

q6
I3

´
2

cˇ̌
1̀ Aμ

ˇ̌
|Aρ|R2

Aσ

¯

´ˇ̌
1̀ Aμ

ˇ̌
|Aρ|R2

Aσ

¯
3{2 }θ}

F
0,1
ν

` 1

1 ´ CIp}θ}
F

0,1
ν

q2seν0
1
4

ˇ̌
1´Aμ

ˇ̌ |Aρ|R2

Aσ

´
3
4

´ log 2
¯

}θ}
F

0,1
ν

.

This is the bound for }y} 9F
s,1
ν

that we will use in (7.16).

Notice that in (7.15), regarding Yw, that 3
?
2

`
3
4

´ logp2q
˘

ď 1.91 ď 2. Also in
Lemma 7.2 we have CS ě 1. Thus, from (7.15), we have

|Yv| ` |Yw| ď 2 p1 ` |Aμ|q |Aρ|
R

CSC39e
νptq}θ}

F
0,1
ν

ÿ

kě1

eνptqkk3{2|pθpkq|,

Now we go back to (7.16), use (7.17), and substitute in the bounds for Yu, Yv, Yw

(7.15) to obtain

d

dt
}y}

9F

1

2
,1

ν

ď ν 1ptq}y}
9F

3

2
,1

ν

´ 3

4

Aσ

R3
C´1

y }y}
9F

7

2
,1

ν

` CSC
´1
37

1

R
}N}

9F

1

2
,1

ν

` 2
Aσ

R3
CSC40}θ}

F
0,1
ν

ÿ

kě2

eνptqkk
7

2 |pθpkq|

` 2 p1 ` |Aμ|q |Aρ|
R

CSC39e
νptq}θ}

F
0,1
ν

ÿ

kě1

eνptqkk3{2|pθpkq|,
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where we have combined the bounds for Yv and Yw as above. The reverse inequal-
ities (7.11) and the embeddings (3.5) give that

(7.19)

d

dt
}y}

9F

1

2
,1

ν

ď Aσ

R3

ˆ
´ 3

4
C´1

y ` ν 1ptqR
3

Aσ

` 2
`
CS

˘2
C40}y} 9F

0,1
ν

` 2p1 ` |Aμ|q |Aρ|R2

Aσ

`
CS

˘2
C39e

νptq}y} 9F
0,1
ν

˙
}y}

9F

7

2
,1

ν

` CSC
´1
37

1

R
}N}

9F

1

2
,1

ν

.

Next, we will use (7.53) to control the nonlinear term }N}
9F

1

2
,1

ν

. Together with (7.3),

we obtain

}N}
9F

1

2
,1

ν

ď Aσ

R2
C35C

´2
37 }θ}

9F

1

2
,1

ν

}θ}
9F

7

2
,1

ν

` |Aρ|eνptqC36}θ}
9F

1

2
,1

ν

}θ}
9F

7

2
,1

ν

.

Thus using also (7.11) we have

(7.20) }N}
9F

1

2
,1

ν

ď Aσ

R2

`
CS

˘2´
C35C

´2
37 ` |Aρ|R2

Aσ

eνptqC36

¯
}y}

9F

1

2
,1

ν

}y}
9F

7

2
,1

ν

.

Substitution of (7.20) into (7.19), and using once more (3.5), provides that

d

dt
}y}

9F

1

2
,1

ν

ď ´Aσ

R3

ˆ
3

4
C´1

y ´ ν 1ptqR
3

Aσ

´ 2
`
CS

˘2
C40}y}

9F

1

2
,1

ν

´ 2p1 ` |Aμ|q |Aρ|R2

Aσ

`
CS

˘2
C39e

νptq}y}
9F

1

2
,1

ν

´
`
CS

˘3
C´1

37

´
C35C

´2
37 ` |Aρ|R2

Aσ

eνptqC36

¯
}y}

9F

1

2
,1

ν

˙
}y}

9F

7

2
,1

ν

.

Since Cyp}θ}
F

0,1
ν

q in (7.18), C35p}θ}
F

0,1
ν

q and C36p}θ}
F

0,1
ν

q in (7.54),
`
C37p}θ}

F
0,1
ν

q
˘´1

in (7.4), C39p}θ}
F

0,1
ν

q and C40p}θ}
F

0,1
ν

q in (7.6), are increasing functions of the ar-

gument, we can bound all of them by evaluating at the bigger quantity CS}y}
9F

1

2
,1

ν

since }θ} 9F
0,1
ν

ď }θ}
9F

1

2
,1

ν

ď CS}y}
9F

1

2
,1

ν

. Here we suppress the dependency on Aμ,

|Aρ|R2{Aσ from CS .
For clarity of notation, in formulas (7.22) and (7.23) below, we understand that

all of these functions are evaluated at CS}y}
9F

1

2
,1

ν

. We conclude that

(7.21)
d

dt
}y}

9F

1

2
,1

ν

ď ´Aσ

R3
D}y}

9F

7

2
,1

ν

,

with

(7.22) D
´

}y}
9F

1

2
,1

ν

,
|Aρ|R2

Aσ

, Aμ,
Aσ

R3
, ν

¯
“ 3

4
C´1

y ´ ν 1ptqR
3

Aσ

´ C41}y}
9F

1

2
,1

ν

,

where

(7.23) C41 “

C2
S

´
2C40 ` 2p1 ` |Aμ|q |Aρ|R2

Aσ

C39e
νptq ` CSC

´1
37

´
C35C

´2
37 ` |Aρ|R2

Aσ

eνptqC36

¯¯
.

Note that we can initially choose ν0 ą 0 in (3.4) to be arbitrarily small, and that
ν 1ptq “ ν0

p1`tq2 ď ν0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7.2. A PRIORI ESTIMATES FOR θptq 61

Finally, suppose that the following condition holds initially

(7.24)
3

4
C´1

y ´ C41}y}
9F

1

2
,1

ν

ą 0,

where Cy was defined in (7.18). For ν0 small enough, using (7.21) and the fact that
C41 decreases as }y}

9F

1

2
,1

ν

decreases, then this condition will be propagated in time.

Thus it holds that

(7.25) }y}
9F

1

2
,1

ν

ptq ` Aσ

R3
D

ż t

0

}y}
9F

7

2
,1

ν

pτ qdτ ď }y0}
9F
1

2
,1 .

Above D “ D
´

}y0}
9F

1

2
,1

ν

,
|Aρ|R2

Aσ
, Aμ,

Aσ

R3 , ν
¯
. Now since Cy and C41 are monotoni-

cally increasing in }y}
9F

1

2
,1

ν

, the positivity condition (7.24) is equivalent to a medium-

size condition on the initial data

}y0}
9F
1

2
,1 ă h

´ |Aρ|R2

Aσ

, Aμ

¯
,

where the function h is implicitly defined via (7.24). Recalling the bound for the

inverse relation pθpkq “ pSpyqpkq in (7.11), and denoting

(7.26) K
´ |Aρ|R2

Aσ

, Aμ

¯
“ CS

`
Aμ,

|Aρ|R2

Aσ

˘
h

´ |Aρ|R2

Aσ

, Aμ

¯
,

we obtain the medium-size condition for θ0 given in (3.11). This completes the proof
of (3.11) and (3.12). The proof of (3.13) follows from applying (3.5) to (7.21).

To perform the estimate for pϑp0q from (3.14), we use (2.7)1 to obtain

pϑtp0q “ 2π

Lptq
pT ˚ {p1 ` θαqp0q.

Note that xUαp0q “ 0. We use the splitting for T from (2.26), and notice from (2.28)
with (2.29) that

xT0pkq “ 0 for |k| ‰ 1, |xT0pkq| ď |Aρ|
2

for |k| “ 1,

thus }T0}F0,1 ď Aρ. Then we have

|pϑp0q| ď |pϑ0p0q| `
ż t

0

2π

Lpτ q
´
Aρ}θ} 9F1,1 `

`
}T1}F0,1 ` }Tě2}F0,1

˘`
1 ` }θ} 9F1,1

˘¯
dτ.

The estimates (7.48) and (7.45) with s “ 0 in Section 7.3, together with the bounds
for Lptq in (7.3), give

}T1}F0,1 ď Aσ

R2

´
2

|Aρ|R2

Aσ

eνptq}θ} 9F1,1 `C´2
37 }θ} 9F2,1

`2
|Aρ|R2

Aσ

`
p1`2|Aμ|q`2CR

˘
eνptq}θ}F0,1

¯
,

}Tě2}F0,1 ď Aσ

R2

´ |Aρ|R2

Aσ

C34e
νptq}θ}F0,1}θ} 9F1,1 `C´2

37 C33}θ} 9F1,1}θ} 9F2,1

¯
.

Therefore, reordering and using (7.25), (6.15) and (3.5), we conclude that

|pϑp0q| ď |pϑ0p0q| ` C42}θ0}
9F
1

2
,1 ,
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where

(7.27) C42 “
1

D
C2

SC
´1
37

˜
|Aρ|R2

Aσ

` C´2
37 ` 2

|Aρ|R2

Aσ

eνptq
´
1 `

`
p1 ` 2|Aμ|q ` 2CR

˘¯

` C2
S}θ0}

9F
1

2
,1

ˆ
C´2

37 ` C´2
37 C33p1 ` CS}θ0}

9F
1

2
,1q

` 2
|Aρ|R2

Aσ

eνptq
´
1 `

`
p1 ` 2|Aμ|q ` 2CR

˘
` 1

2
C34p1 ` CS}θ0}

9F
1

2
,1q

¯˙¸
.

In C42 above the quantities (D in (7.22), C37 in (7.4), C33 and C34 in (7.46)) are
evaluated at CS}θ0}

9F
1

2
,1 , with CS defined in (7.11). This completes the proof of

(3.14). �

We will now prove Proposition 7.1.

Proof of Proposition 7.1. Because S´1 is injective and surjective, it suf-
fices to prove that S is a right inverse of S´1, i.e., that

(7.28)
ÿ

jě1

S´1
k,jSj,m “ δk,m,

where δk,m is the Kronecker delta. The cases k “ 1 and k “ 2,m “ 1 are straight-
forward. For the rest of cases, we have that

ÿ

jě1

S´1
k,jSj,m “

ÿ

jě1

p´1qj´kδjěk

j´kź

l“1

bpk ´ 1 ` lq
apkq ´ apk ` lqδměj

m´jź

n“1

bpj ´ 1 ` nq
apj ´ 1 ` nq ´ apmq

“
mÿ

j“k

p´1qj´k

m´jź

n“1

j´kź

l“1

bpk ´ 1 ` lqbpj ´ 1 ` nq
papkq ´ apk ` lqqpapj ´ 1 ` nq ´ apmqq .

If m “ k, then clearly
ř

jě1 S
´1
k,jSj,m “ 1. Now, we notice that

m´jź

n“1

j´kź

l“1

bpk´1`lqbpj´1`nq “ bpkqbpk`1q . . . bpj´2qbpj´1qbpjqbpj`1q . . . bpm´1q

“
m´k´1ź

n“0

bpk ` nq

is independent of j, and thus comes out of the sum as

ÿ

jě1

S´1
k,jSj,m “

m´k´1ź

n“0

bpk ` nq
mÿ

j“k

p´1qj´kApjq,

where we define

Apjq “
m´jź

n“1

j´kź

l“1

1

papkq´apk`lqqpapj´1`nq´apmqq .

Changing n Ð j ´ k ´ 1 ` n, it becomes

Apjq “
m´k´1ź

n“j´k

1

apk ` nq´apmq

j´kź

l“1

1

apkq´apk`lq .
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Thus, multiplying and dividing by the product of apk ` nq ´ apmq from n “ 0 to
n “ j ´ k ´ 1, we rewrite it as follows

Apjq “
m´k´1ź

n“0

1

apk ` nq ´ apmq

j´kź

l“1

apk ` l ´ 1q ´ apmq
apkq ´ apk ` lq .

Since the first product does not depend on j, we obtain that

ÿ

jě1

S´1
k,jSj,m “

m´k´1ź

n“0

bpk ` nq
apk ` nq ´ apmq

mÿ

j“k

p´1qj´k

j´kź

l“1

apk ` l ´ 1q ´ apmq
apkq ´ apk ` lq .

Changing the index j Ð j ´ k and denoting m̃ “ m ´ k, we are left to show that,
for all m̃ ě 1,

m̃ÿ

j“0

p´1qj
jź

l“1

apk ` l ´ 1q ´ apm̃ ` kq
apkq ´ apk ` lq “ 0.

Writing the sum with a common denominator, the identity that we need to prove
is

W “
m̃ÿ

j“0

p´1qj
jź

l“1

`
apk ` l ´ 1q ´ apm̃ ` kq

˘ m̃ź

l“j`1

`
apkq ´ apk ` lq

˘
“ 0.

We add the first two terms in the sum by noticing that they only differ in one term,
which partially cancels as

W “ ´
`
apk`1q´apk`m̃q

˘ m̃ź

l“2

`
apkq´apk`lq

˘

`
m̃ÿ

j“2

p´1qj
jź

l“1

`
apk ` l ´ 1q ´ apm̃ ` kq

˘ m̃ź

l“j`1

`
apkq ´ apk ` lq

˘
.

We now realize that we can repeat the same step with the new first two terms to
obtain that

W “
`
apk`1q´apk`m̃q

˘`
apk`2q´apk`m̃q

˘ m̃ź

l“3

`
apkq´apk`lq

˘

`
m̃ÿ

j“3

p´1qj
jź

l“1

`
apk ` l ´ 1q ´ apm̃ ` kq

˘ m̃ź

l“j`1

`
apkq ´ apk ` lq

˘
.

We can continue the process to find that

W “p´1qr
`
apk`1q´apk`m̃q

˘`
apk`2q´apk`m̃q

˘

. . .
`
apk`rq´apk`m̃q

˘ m̃ź

l“r`1

`
apkq´apk`lq

˘

`
m̃ÿ

j“r`1

p´1qj
jź

l“1

`
apk ` l ´ 1q ´ apm̃ ` kq

˘ m̃ź

l“j`1

`
apkq ´ apk ` lq

˘
.
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Thus for r “ m̃ ´ 1, we conclude that

W “p´1qm̃´1
`
apk`1q´apk`m̃q

˘
. . .

`
apk`m̃´1q´apk`m̃q

˘`
apkq´apk`m̃q

˘

` p´1qm̃
m̃ź

l“1

`
apk ` l ´ 1q ´ apm̃ ` kq

˘
“ 0.

This proves (7.28).
We next prove that S´1 in (7.10) diagonalizes (7.8). Notice that S´1

k,k “ 1 and

S´1
k,j “ 0 for j ă k, k ě 2. Then, for k ě 3, we can write

ytpkq “
ÿ

jěk

S´1
k,jztpjq “ ´apkqS´1

k,kzpkq `
ÿ

jěk`1

´
´ apjqS´1

k,j ` bpj ´ 1qS´1
k,j´1

¯
zpjq.

Finally, notice that

´apjqS´1
k,j ` bpj ´ 1qS´1

k,j´1 “ ´apkqS´1
k,j , j ´ 1 ě k ě 2,

precisely when S´1
k,j is given by (7.10). The case k “ 1 is trivial, while for k “ 2 it

holds that

ytp2q “
ÿ

jě2

S´1
2,j ztpjq “ cp1qzp1q´ap2qzp2q`

ÿ

jě3

´
´ apjqS´1

2,j `bpj´1qS´1
2,j´1

¯
zpjq

“ ´ap2q cp1q
ap2qzp1q ´ ap2q

ÿ

jě2

S´1
2,j zpjq “ ´ap2qyp2q.

This completes the proof. �

We are now ready to prove Lemma 7.2.

Proof of Lemma 7.2. Denote for j ě k ě 2

βpk, jq “ p´1qj´k

j´kź

m“1

bpk ´ 1 ` mq
apkq ´ apk ` mq .

Plugging in the expressions for bpkq and apkq in (7.9), we find that

βpk, jq“
´`

1`Aμ

˘AρR
2

Aσ

¯j´k

e´ipj´kq pϑp0q
j´kź

m“1

pk`mq2pk´2`mq
pk´1`mqpk`1`mq

1

k3´pk`mq3`m
.

Then, we can write

(7.29)

}y}�1 “
ÿ

kě1

|ypkq| ď
´
1 `

ˇ̌
ˇ cp1q
ap2q

ˇ̌
ˇ
¯

|zp1q| `
ÿ

kě2

ÿ

jěk

|βpk, jq||zpjq|

“
´
1 ` 1

4

ˇ̌
1´Aμ

ˇ̌ |Aρ|R2

Aσ

´3

4
´ log 2

¯¯
|zp1q| `

ÿ

lě2

l´2ÿ

j“0

|βpl ´ j, lq||zplq|

ď
´
1 ` 1

4

ˇ̌
1´Aμ

ˇ̌ |Aρ|R2

Aσ

´3

4
´ log 2

¯¯
|zp1q| `

ÿ

lě2

λplq|zplq|,

where

λplq “
l´2ÿ

j“0

|βpl ´ j, lq|.

In the following we will estimate λplq to control β.
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The identity k3 ´ pk ` mq3 ` m “ ´m
`
m2 ` 3mk ` 3k2 ´ 1

˘
gives the bound

(7.30) |pl´ jq3 ´ pl´ j`mq3 `m| ě m
`
m2 `2mpl´ jq ` pl´ jq2

˘
“ mpm` l´ jq2.

Thus

(7.31)

|βpl ´ j, lq| ď
ˇ̌
ˇ
`
1`Aμ

˘AρR
2

Aσ

ˇ̌
ˇ
j

jź

m“1

l ´ j´2`m

mpl ´ j´1`mqpl ´ j`1`mq

ď
ˇ̌
ˇ
`
1`Aμ

˘AρR
2

Aσ

ˇ̌
ˇ
j

jź

m“1

1

mpl ´ j`1`mq

ď
´ˇ̌

`Aμ

ˇ̌ |Aρ|R2

Aσ

¯j
jź

m“1

1

mpm ` 3q ,

where the last step is due to the fact that j ď l ´ 2. Therefore, we have that

λplq ď
l´2ÿ

j“0

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯j 6

j!pj ` 3q! ď
8ÿ

j“0

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯j 6

j!pj ` 3q!

“ 6
I3

´
2
bˇ̌

1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯3{2
,

where I3 is the modified Bessel function of the first kind of order three as in (7.12).
We conclude thereby from (7.29) that

}y}�1 ď
´
1` 1

4

ˇ̌
1´Aμ

ˇ̌ |Aρ|R2

Aσ

´3

4
´ log 2

¯¯
|zp1q| ` 6

I3

´
2
bˇ̌

1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯3{2

ÿ

lě2

|zplq|

ď CSpAμ,
|Aρ|R2

Aσ

q}z}�1 ,

with CS given in (7.11).
We proceed to prove the reverse direction, z “ Sy. For j ě k ě 2, denote

αpk, jq “
j´kź

m“1

bpk ´ 1 ` mq
apk ´ 1 ` mq ´ apjq .

Recalling (7.9), it becomes

αpk, jq “ p´1qj´k
´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯j´k

e´ipj´kq pϑp0q

¨
j´kź

m“1

pk`mq2pk´2`mq
pk´1`mqpk`1`mq

1

pk´1`mq3´j3`j´k`1´m
.

Next, proceeding as in (7.29), we have

(7.32)

}z}�1 “
ÿ

kě1

|zpkq| ď
`
1 `

ˇ̌
ˇ cp1q
ap2q

ˇ̌
ˇ
˘
|yp1q| `

ÿ

kě2

ÿ

jěk

|αpk, jq||ypjq|

ď
´
1 ` 1

4

ˇ̌
1´Aμ

ˇ̌ |Aρ|R2

Aσ

´3

4
´ log 2

¯¯
|yp1q| `

ÿ

lě2

σplq|yplq|,
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where

σplq “
l´2ÿ

j“0

|αpl ´ j, lq|.

The inequality below follows from (7.30) with M `L´J “ j and L´J “ m`k´1

|pk ´ 1 ` mq3 ´ j3 ` j ´ k ` 1 ´ m| ě pj ´ k ` 1 ´ mqj2.

Using the inequality above, and m ď j ď l ´ 2, we obtain that

|αpl ´ j, lq| ď
ˇ̌
ˇ
`
1`Aμ

˘AρR
2

Aσ

ˇ̌
ˇ
j

jź

m“1

pl ´ j`mq2pl ´ j ´ 2 ` mq
pl ´ j´1`mqpl ´ j`1`mq

1

l2pj`1´mq

ď
ˇ̌
ˇ
`
1`Aμ

˘AρR
2

Aσ

ˇ̌
ˇ
j

jź

m“1

1

mpl ´ j`1`mq

ď
´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯j
jź

m“1

1

mpm ` 3q ,

which coincides with the bound found for β in (7.31). Therefore,

(7.33) σplq ď 6
I3

´
2
bˇ̌

1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯

´ˇ̌
1`Aμ

ˇ̌ |Aρ|R2

Aσ

¯3{2
.

Above we recall I3 from (7.12). Then going back to (7.32) we have

}z}�1 ď CS

ˆ
Aμ,

|Aρ|R2

Aσ

˙
}y}�1 ,

with CS defined in (7.11). This completes the proof. �

7.3. Nonlinear Estimates in 9Fs,1
ν

We recall that the nonlinear terms (2.30) are given by

Npαq “ N1 ` N2 ` N3,

with

(7.34) N1 “ pUě2qαpαq, N2 “ Tě2pαqp1 ` θαpαqq, N3 “ T1pαqθαpαq,

where U and T are described in (2.25) and (2.26).
We will first perform the estimates for N1 for s ě 0. From (2.25), we have

(7.35) }N1} 9F
s,1
ν

“ }Uě2} 9F
1`s,1
ν

ď π

Lptq
´

}ωě2} 9F
1`s,1
ν

` }Rpωě1q} 9F
1`s,1
ν

` }Spωq} 9F
1`s,1
ν

¯
.

Using the bound (5.5)2 and splitting ωě1 “ ω1 ` ωě2 gives that

}Rpωě1q} 9F
1`s,1
ν

ď bp2, sqCR}θ}
F

0,1
ν

}ω1} 9F
1`s,1
ν

` bp2, sqCR}θ}
F

0,1
ν

}ωě2} 9F
1`s,1
ν

` bp2, sqCR}θ} 9F
1`s,1
ν

}ω1}
F

0,1
ν

` bp2, sqCR}θ} 9F
1`s,1
ν

}ωě2}
F

0,1
ν

.
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Then introducing the vorticity estimates (6.1), (6.2), (6.3), and (6.4), and ordering
the terms in Aρ and Aσ, it follows that

}Rpωě1q} 9F
1`s,1
ν

ď Aσ

4π

Lptqbp2, sqCR

´
}θ}

F
0,1
ν

}θ} 9F
3`s,1
ν

` |Aμ|C13}θ}2
F

0,1
ν

}θ} 9F
3`s,1
ν

` }θ} 9F
1`s,1
ν

}θ} 9F
2,1
ν

` |Aμ|C9}θ} 9F
1`s,1
ν

}θ}
F

0,1
ν

}θ} 9F
2,1
ν

¯

` |Aρ|Lptq
π

eνptqbp2, sqCR

´
2p1 ` 2|Aμ|q}θ}

F
0,1
ν

}θ} 9F
1`s,1
ν

` C14}θ}2
F

0,1
ν

}θ} 9F
1`s,1
ν

` p1 ` 2|Aμ|q}θ} 9F
1`s,1
ν

}θ}
F

0,1
ν

` C10}θ} 9F
1`s,1
ν

}θ}2
F

0,1
ν

¯
.

Interpolation as in (3.6) yields that

(7.36)

}Rpωě1q} 9F
1`s,1
ν

ď Aσ

4π

LptqC21}θ}
F

0,1
ν

}θ} 9F
3`s,1
ν

` |Aρ|Lptq
π

eνptqC22}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

,

where

(7.37)
C21 “ 2bp2, sqCR ` |Aμ|bp2, sqCRpC9 ` C13q}θ}

F
0,1
ν

,

C22 “ 3bp2, sqCRp1 ` 2|Aμ|q ` bp2, sqCRpC10 ` C14q}θ}
F

0,1
ν

,

and CR in (5.6), C9 and C10 in (6.10), C13 and C14 in (6.16) were defined previously.
Next, we split ω “ ω0 ` ω1 ` ωě2 as in (2.23) and use the bound (5.15)2 to

obtain

}Spωq} 9F
1`s,1
ν

ď |Aρ|Lptq
π

pC3 ` C4qeνptq}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

` C3}θ}2
F

0,1
ν

}ω1} 9F
1`s,1
ν

` C3}θ}2
F

0,1
ν

}ωě2} 9F
1`s,1
ν

` C4}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

}ω1}
F

0,1
ν

` C4}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

}ωě2}
F

0,1
ν

.

So again we introduce the vorticity estimates (6.1), (6.2), (6.3), and (6.4), and order
the terms in Aρ and Aσ, to obtain

}Spωq} 9F
1`s,1
ν

ď Aσ

4π

Lptq
´
C3}θ}2

F
0,1
ν

}θ} 9F
3`s,1
ν

` |Aμ|C3C13}θ}3
F

0,1
ν

}θ} 9F
3`s,1
ν

` C4}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

}θ} 9F
2,1
ν

` |Aμ|C9C4}θ}2
F

0,1
ν

}θ} 9F
1`s,1
ν

}θ} 9F
2,1
ν

¯

` |Aρ|Lptq
π

eνptq
´

pC3`C4q}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

` 2bp2, sqp1`2|Aμ|qC3}θ}2
F

0,1
ν

}θ} 9F
1`s,1
ν

` C3C14}θ}3
F

0,1
ν

}θ} 9F
1`s,1
ν

` C4p1 ` 2|Aμ|q}θ}2
F

0,1
ν

}θ} 9F
1`s,1
ν

` C4C10}θ}3
F

0,1
ν

}θ} 9F
1`s,1
ν

¯
.

Applying interpolation (3.6) and the embedding (3.5), we obtain that

(7.38) }Spωq} 9F
1`s,1
ν

ď Aσ

4π

LptqC23}θ}2
F

0,1
ν

}θ} 9F
3`s,1
ν

` |Aρ|Lptq
π

eνptqC24}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν
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where

(7.39)

C23 “ C3 ` C4 ` |Aμ|pC3C13 ` C4C9q}θ}
F

0,1
ν

,

C24 “ C3 ` C4 ` p1 ` 2|Aμ|qp2bp2, sqC3 ` C4q}θ}
F

0,1
ν

` pC3C14 ` C4C10q}θ}2
F

0,1
ν

,

with C3 and C4 in (5.52), C9 and C10 in (6.10), C13 and C14 in (6.16) previously
defined.

Finally, we combine estimates (7.36) and (7.38) together with vorticity estimate
(6.4) to close the bound (7.35). We obtain

(7.40) }N1} 9F
s,1
ν

ď Aσ

´ 2π

Lptq
¯2

C25}θ}
F

0,1
ν

}θ} 9F
3`s,1
ν

` |Aρ|eνptqC26}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

,

where

(7.41) C25 “ |Aμ|C13 ` C21 ` C23}θ}
F

0,1
ν

, C26 “ C14 ` C22 ` C24.

Above C13 and C14 are defined in (6.16), C21 and C22 in (7.37), and C23 and C24

in (7.39). This completes the estimate for N1.
We proceed now to estimate the term N2 from (7.34). For simplicity in this

case we perform the estimate for 0 ď s ď 1. The case s ą 1 would add several
complications to the notation, but can also be proven similarly, as we will see in
the following. For s ě 0 we use (3.7) and (5.3) to obtain

(7.42) }N2} 9F
s,1
ν

ď }Tě2} 9F
s,1
ν

p1 ` bp2, sq}θ} 9F
1,1
ν

q ` bp2, sq}Tě2}
F

0,1
ν

}θ} 9F
1`s,1
ν

.

We recall that for a function fpαq one has (2.16) and then for s ě 0 we have

(7.43)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ż α

0

fpηqdη ´ α

2π

ż π

´π

fpηqdη
ˇ̌
ˇ̌
ˇ̌
ˇ̌

9F
s,1
ν

ď p1 ` 1s“0q }f ´ pfp0q} 9F
´1`s,1
ν

ď Cpsq}f}
9F

ps´1q`,1
ν

,

where ps ´ 1q` “ s ´ 1 if s ě 1 and ps ´ 1q` “ 0 if s ď 1 as usual. We also define

(7.44) Cpsq “ p1 ` 1s“0q .

If we performed the estimate below for s ą 1 we would need work with the norm of
9F

ps´1q`,1
ν instead of the simpler F0,1

ν . Thus we only do 0 ď s ď 1 for the N2 term.
Therefore, for 0 ď s ď 1 recalling the expression for Tě2 in (2.26), we have

}Tě2} 9F
s,1
ν

ď Cpsq}p1 ` θαqUě2}
F

0,1
ν

` Cpsq}θαU1}
F

0,1
ν

ď Cpsqp1 ` }θ} 9F
1,1
ν

q}Uě2}
F

0,1
ν

` Cpsq}θ} 9F
1,1
ν

}U1}
F

0,1
ν

.

Then introducing Uě2 and U1 from(2.25) we obtain that

}Tě2} 9F
s,1
ν

ď Cpsq π

Lptqp1 ` }θ} 9F
1,1
ν

q
`
}ωě2}

F
0,1
ν

` }Rpωě1q}
F

0,1
ν

` }Spωq}
F

0,1
ν

˘

` Cpsq π

Lptq}θ} 9F
1,1
ν

`
}ω1}

F
0,1
ν

` }Rpω0q}
F

0,1
ν

˘
.
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We split the vorticity terms, ωě1 “ ω1 `ωě2, and use ω0 in (2.23). We further use
the estimates for R and S in (5.5) and (5.15) and use (6.5) to obtain

}Tě2} 9F
s,1
ν

ď Cpsq π

Lptqp1 ` }θ} 9F
1,1
ν

q
´

p1 ` CR}θ}
F

0,1
ν

` C1}θ}2
F

0,1
ν

q}ωě2}
F

0,1
ν

` pCR ` C1}θ}
F

0,1
ν

q}θ}
F

0,1
ν

}ω1}
F

0,1
ν

` Aρ

Lptq
π

eνptqC1}θ}2
F

0,1
ν

¯

` Cpsq π

Lptq}θ} 9F
1,1
ν

´
}ω1}

F
0,1
ν

` Aρ

Lptq
π

eνptqCR}θ}
F

0,1
ν

¯
.

Then we introduce the vorticity estimates (6.1) and (6.3) to obtain

}Tě2} 9F
s,1
ν

ď Aσ

´ 2π

Lptq
¯2

Cpsq
´

|Aμ|C9

`
1 ` CR}θ}

F
0,1
ν

` C1}θ}2
F

0,1
ν

˘

` pCR ` C1}θ}
F

0,1
ν

q
¯

p1 ` }θ} 9F
1,1
ν

q}θ}
F

0,1
ν

}θ} 9F
2,1
ν

` Aσ

´ 2π

Lptq
¯2

Cpsq}θ} 9F
1,1
ν

}θ} 9F
2,1
ν

`|Aρ|Cpsq
´
C10p1`CR}θ}

F
0,1
ν

`C1}θ}2
F

0,1
ν

q

` p1 ` 2|Aμ|qpCR ` C1}θ}
F

0,1
ν

q ` C1

¯
eνptqp1 ` }θ} 9F

1,1
ν

q}θ}2
F

0,1
ν

` |Aρ|CRCpsqeνptq}θ} 9F
1,1
ν

}θ}
F

0,1
ν

` p1 ` 2|Aμ|q|Aρ|Cpsqeνptq}θ} 9F
1,1
ν

}θ}
F

0,1
ν

.

The above expression reduces to

(7.45) }Tě2} 9F
s,1
ν

ď Aσ

´ 2π

Lptq
¯2

C33}θ} 9F
1,1
ν

}θ} 9F
2,1
ν

` |Aρ|eνptqC34}θ}
F

0,1
ν

}θ} 9F
1,1
ν

,

where

(7.46)

C33 “ Cpsq ` Cpsq
´

|Aμ|C9

`
1 ` CR}θ}

F
0,1
ν

` C1}θ}2
F

0,1
ν

˘

` pCR ` C1}θ}
F

0,1
ν

q
¯

p1 ` }θ}
F

0,1
ν

q,

C34 “ Cpsq
´
C10p1 ` CR}θ}

F
0,1
ν

` C1}θ}2
F

0,1
ν

q

` p1 ` 2|Aμ|qpCR ` C1}θ}
F

0,1
ν

q ` C1

¯
p1 ` }θ}

F
0,1
ν

q
` CpsqCR ` Cpsqp1 ` 2|Aμ|q,

and CR is defined in (5.6), Cpsq in (7.44), C1 in (5.49), C9 and C10 (6.10).
Then, going back to (7.42), we find that

}N2} 9F
s,1
ν

ď
´
Aσ

´ 2π

Lptq
¯2

C33}θ} 9F
1,1
ν

}θ} 9F
2,1
ν

` |Aρ|eνptqC34}θ}
F

0,1
ν

}θ} 9F
1,1
ν

¯
p1 ` }θ} 9F

1,1
ν

` }θ} 9F
1`s,1
ν

q

ď Aσ

´ 2π

Lptq
¯2

C33}θ} 9F
1,1
ν

}θ} 9F
2,1
ν

´
2}θ} 9F

1`s,1
ν

` 1
¯

` |Aρ|eνptqC34}θ}
F

0,1
ν

}θ} 9F
1,1
ν

´
2}θ} 9F

1`s,1
ν

` 1
¯
.

Finally, interpolation (3.6) gives that

}θ} 9F
1,1
ν

}θ} 9F
1`s,1
ν

}θ} 9F
2,1
ν

ď }θ}
5`2s

3

9F
s,1
ν

}θ}
4´2s

3

9F
3`s,1
ν

,
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Thus we have

(7.47)
}N2} 9F

s,1
ν

ď Aσ

´ 2π

Lptq
¯2

C33

´
2}θ}

5`2s
3

9F
s,1
ν

}θ}
4´2s

3

9F
3`s,1
ν

` }θ} 9F
s,1
ν

}θ} 9F
3`s,1
ν

¯

` |Aρ|eνptqC34

´
2}θ}

F
0,1
ν

}θ} 9F
1,1
ν

}θ} 9F
1`s,1
ν

` }θ}
F

0,1
ν

}θ} 9F
1,1
ν

¯
.

This completes our estimates for N2.
Lastly, the estimate for N3 in (7.34) for s ě 0 is obtained with (3.7) as follows

}N3} 9F
s,1
ν

ď bp2, sq
´

}T1} 9F
s,1
ν

}θ} 9F
1,1
ν

` }T1}
F

0,1
ν

}θ} 9F
1`s,1
ν

¯
.

The bound for T1 in (2.26) for s ě 0 from (7.43) using (2.28) and (6.5) is

(7.48)

}T1} 9F
s,1
ν

ď }U1}
9F

ps´1q`,1
ν

` }θαU0}
9F

ps´1q`,1
ν

ď }U1}
9F

ps´1q`,1
ν

` 2|Aρ|bp2, sqeνptq}θα}
9F

ps´1q`,1
ν

ď π

Lptq
`
}ω1}

9F
ps´1q`,1
ν

` }Rpω0q}
9F

ps´1q`,1
ν

˘

` 2|Aρ|bp2, sqeνptq}θα}
9F

ps´1q`,1
ν

.

We use (6.1), (6.2) and (5.5) with (2.23) and (6.5) to obtain

π

Lptq
`
}ω1}

9F
ps´1q`,1
ν

` }Rpω0q}
9F

ps´1q`,1
ν

˘

ď Aσ

´ 2π

Lptq
¯2

}θ}
9F
2`ps´1q`,1
ν

` 2bp2, sq|Aρ|
´

p1 ` 2|Aμ|q ` 2CR

¯
eνptq}θ}

9F
ps´1q`,1
ν

.

Thus

(7.49)
}N3} 9F

s,1
ν

ď Aσ

´ 2π

Lptq
¯2

bp2, sq}θ}
9F
2`ps´1q`,1
ν

}θ} 9F
1`s,1
ν

` |Aρ|eνptqC 1
3}θ}

9F
ps´1q`,1
ν

}θ} 9F
1`s,1
ν

.

Here

(7.50) C 1
3 “ 2bp2, sq2 p1 ` p1 ` 2|Aμ|q ` 2CRq .

This completes our estimates for N3.
In summary, we can combine the bounds (7.40), (7.47), and (7.49) to prove the

following theorem.

Theorem 7.4. For 0 ď s ď 1 we have the estimate for N from (2.30) as

(7.51)

}N} 9F
s,1
ν

ď Aσ

´ 2π

Lptq
¯2

C1pNq}θ} 9F
s,1
ν

}θ} 9F
3`s,1
ν

` Aσ

´ 2π

Lptq
¯2

2C33}θ}
5`2s

3

9F
s,1
ν

}θ}
4´2s

3

9F
3`s,1
ν

` |Aρ|eνptqC2pNq}θ}
F

0,1
ν

}θ} 9F
1`s,1
ν

,

where

(7.52)
C1pNq “ C25 ` C33 ` bp2, sq,
C2pNq “ C26 ` C34p1 ` 2}θ}

F
0,1
ν

q ` C 1
3.

Further C25 and C26 are defined in (7.41), C33 and C34 in (7.46), and C 1
3 is previ-

ously defined in (7.50).
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Plugging in s “ 1{2 in the bound for the nonlinear term in Theorem 7.4 in
(7.51), we find that

(7.53) }N}
9F

1

2
,1

ν

ď Aσ

´ 2π

Lptq
¯2

C35}θ}
9F

1

2
,1

ν

}θ}
9F

7

2
,1

ν

` |Aρ|eνptqC36}θ}
9F

1

2
,1

ν

}θ}
9F

7

2
,1

ν

,

where

(7.54)
C35 “ C35p}θ}

9F

1

2
,1

ν

q “ C1pNq ` 2C33}θ}
9F

1

2
,1

ν

,

C36 “ C36p}θ}
9F

1

2
,1

ν

q “ C2pNq,

and C1pNq and C2pNq are defined in (7.52), and C33 is defined in (7.46). Notice
that in the definition of C35 and C36 we can evaluated all the previous functions Ci

in the norm }θ}
9F

1

2
,1

ν

instead of }θ}
F

0,1
ν

, which could be done due to (3.5) and the

fact that these Ci are increasing functions of the norm.

7.4. Regularization scheme and completion of the proof of Theorem 3.1

We will now put all the pieces together to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. With all of the previous developments, the proof
then follows a standard regularization argument. Recall the high-frequency cut-off
operator JN by (3.8). Denote fN “ JNf and consider the regularized version of
system (3.10):

pϑN qt “ JN

` 2π

LN ptq pUN qα ` 2π

LN ptqTN p1 ` pϑN qαq
¯
,

LN ptq
2π

“ R
´
1 ` 1

2π
Im

ż π

´π

ż α

0

eipα´ηq
ÿ

ně1

in

n!
pθN pαq ´ θN pηqqndηdα

¯´ 1

2

,

0 “
ż π

´π

eipα`θN pαqqdα.

We abused notation in the definition of LN ptq above since we are not using JN from
(3.8). Solving the last constraint by the implicit function theorem (see Proposition

4.1 in Chapter 4) gives F pθN q “ pRe θ̂p1q, Im θ̂p1qq which can be solved for pθp˘1q.
Thus substituting in as well the expression for LN ptq, we obtain one equation for

ϕN “ pϑp0q `F´1p1|k|‰1
xθN pkqq. We thereby have the system written as an ODE of

the form

9ϕN “ JNG
`
ϕN

˘
, ϕN p0q “ pϑ0p0q ` F´1p1|k|‰1

yθN,0pkqq,
for a certain nonlinear function G. Here θN,0 “ JNθ0 is the initial condition. There-
fore, Picard’s theorem on Banach spaces yields the local existence of regularized
solutions ϕN P C1pr0, TN q;Hm

N q, where the space Hm
N is defined by Hm

N “ tf P
HmpTq : suppp pfq Ă r´N,N su. Furthermore the a priori estimates in Section 7.2,
in particular the energy balance (3.12) and (3.14), hold for the regularized system,

which provides uniform bounds for ϕN in the space L8pR`; 9F
1

2
,1

ν q XL1pR`; 9F
7

2
,1

ν q.
We will next use the following version of the Aubin-Lions lemma [46, Corollary 6]:

Lemma 7.5 (Aubin-Lions’ Lemma). Let X0, X, and X1 be Banach spaces such
that

X0 Ă X Ă X1,
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with compact embedding X0 ãÑ X, and let p P p1,8s. Let G be bounded in
Lppr0, T s;Xq X L1

locpr0, T s;X0q, and BtG be bounded in L1
locpr0, T s;X1q. Then G

is relatively compact in Lqpr0, T s;Xq, q P r1, pq.

Letting X0 “ 9F
7

2
,1

ν , X1 “ F0,1
ν , and X “ 9F

1

2
,1

ν , we get the strong conver-
gence to the full system, up to a subsequence, of the approximated problems in

L2pr0, T s; 9F
1

2
,1

ν q. Next, since pϕN pn, tq Ñ pϕpn, tq as N Ñ 8 for all n P Z and almost

every t, recalling that pϕpn, tq “ pθpn, tq for |n| ě 2, Fatou’s lemma gives that

Mptq “ }θ}
9F

1

2
,1

ν

ptq ` Aσ

R3
D

ż t

0

}θ}
9F

7

2
,1

ν

pτ qdτ

ď lim inf
NÑ`8

´
}θN }

9F

1

2
,1

ν

ptq ` Aσ

R3
D

ż t

0

}θN }
9F
7

2
,1pτ qdτ

¯

ď C2
S}θ0}

9F
1

2
,1 .

Thus we obtain that the limit function θ satisfies

θ P L8pr0, T s; 9F
1

2
,1

ν q X L1pr0, T s; 9F
7

2
,1

ν q.
Since the equation for pϕp0q is decoupled from the rest and its right-hand side

only depends on θ, we conclude the strong convergence of ϕ in L8pr0, T s; 9F
1

2
,1

ν q X
L1pr0, T s; 9F

7

2
,1

ν q. We refer to Section 5 of [30] and [32] for further details of such
an approximation argument, in particular for the instant generation of analyticity
and the continuity in time. �
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CHAPTER 8

Uniqueness

In this last chapter we will prove uniqueness in 9F
1

2
,1 of solutions to (3.10) with

initial data of the size given by the constraint in (3.11). In particular the main result
of this chapter is Theorem 8.2 just below. To prove this theorem, in Section 8.1 we
prove the required estimates for the differences of the lengths. Then in Section 8.2
we prove the estimates on the differences of the vorticity strength. After that in
Section 8.3 we prove the main estimates on the differences of the non-linear terms.
Lastly in Section 8.4 we collect all the previous estimates to prove the uniqueness
of the solutions to (2.30) as in Theorem 8.2.

Throughout the proof of Theorem 8.2, we define coefficients that will be used
in the rest of this chapter.

Definition 8.1. We use the symbol E ą 0 to denote any coefficient that
is integrable in time and may depend upon }θ1, θ2}

9F
1

2
,1 , recalling (3.1), which is

bounded and }θ1, θ2}
9F
7

2
,1 which is time integrable.

The symbol C ą 0 will denote any coefficient that is bounded and can depend
upon }θ1, θ2}

9F
1

2
,1 .

The symbol Cs ą 0 will denote any coefficient that is bounded and can depend
upon }θ1, θ2} 9Fs,1 .

The symbol Es ą 0 will denote any coefficient that may depend upon
C}θ1, θ2} 9F2`s,1 .

Theorem 8.2. Consider two solutions ϑ1 and ϑ2 of (2.30) with the same initial
data satisfying the medium size condition, as in Theorem 3.1. Then these solutions
satisfy the following differential inequality

(8.1)
d

dt

´
|pϑ1p0q ´ pϑ2p0q| ` }θ1 ´ θ2}

9F
1

2
,1

¯

ď pC ` Eqp|pϑ1p0q ´ pϑ2p0q| ` }θ1 ´ θ2}
9F
1

2
,1q.

With Theorem 8.2, we can conclude by Gronwall’s inequality that for any
T ą 0, we have

´
|pϑ1p0q ´ pϑ2p0q| ` }θ1 ´ θ2}

9F
1

2
,1

¯ˇ̌
ˇ
t“T

ď exp

˜ż T

0

pC ` Eqdt
¸ ´

|pϑ1p0q ´ pϑ2p0q| ` }θ1 ´ θ2}
9F
1

2
,1

¯ˇ̌
ˇ
t“0

“ 0.

This holds since E “ C}θ1, θ2}
9F
7

2
,1 with (3.1), is time integrable by Theorem 3.1.

The rest of this chapter is devoted to proving Theorem 8.2. Given two solutions
ϑ1pα, tq and ϑ2pα, tq with initial data ϑ1pα, 0q “ ϑ2pα, 0q that satisfies (3.11); their

73
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respective evolution equations are given by (2.30) as follows

pϑiqtpαq “ 2π

Liptq
´
Lipαq ` Nipαq

¯
,

where the vorticity terms are denoted by ω1 and ω2 respectively. The evolution of
ϑ1 ´ ϑ2 is then given by

pϑ1 ´ ϑ2qtpαq “
´ 2π

L1ptq ´ 2π

L2ptq
¯´

L1pαq ` N1pαq
¯

` 2π

L2ptq pL1pαq ´ L2pαqq

` 2π

L2ptq pN1pαq ´ N2pαqq.(8.2)

Using the evolution equation (8.2), we will prove (8.1). In Proposition 8.4, we give
an estimate to control the length difference in the first term on the right hand side
of (8.2). By the estimates from Section 7.3, the coefficient, L1pαq ` N1pαq, of the
length difference in the first term is bounded by C ` E . The bound on the length
difference is shown in in Proposition 8.4. The second term on the RHS of (8.2) gives
a linear coercive estimate for the time evolution. Lastly, Section 8.3 is dedicated to
controlling the third terms on the RHS of (8.2) using the idea of Proposition 8.3
and the non-linear estimates as in Section 7.3.

Additionally, we will use the following idea repeatedly:

Proposition 8.3. Consider two functions f and g in 9Fs,1 for some s ě 0.
We also consider some operator T . Then, for any n P N we have

(8.3) }fpαqnTfpαq ´ gpαqnTgpαq}F0,1

ď }f}n
F0,1}Tf ´ Tg}F0,1 `

´ n´1ÿ

k“0

}f}n´k´1
F0,1 }g}k

F0,1

¯
}f ´ g}F0,1}Tg}F0,1 .

For s ą 0, we have

(8.4) }fpαqnTfpαq ´ gpαqnTgpαq} 9Fs,1

ď bpn ` 1, sq
´

}f}n
F0,1}Tf ´ Tg} 9Fs,1 ` n}f}n´1

F0,1}f} 9Fs,1}Tf ´ Tg}F0,1

` n}f, g}n´1
F0,1}f ´ g} 9Fs,1}Tg}F0,1 ` n}f, g}n´1

F0,1}f ´ g}F0,1}Tg} 9Fs,1

` npn ´ 1q}f, g}n´2
F0,1}f, g} 9Fs,1}f ´ g}F0,1}Tg}F0,1

¯
,

where we recall the definition (3.1). In the special case where T “ d
dαj for some

j P N, we obtain

(8.5) }fpαqn dj

dαj
fpαq ´ gpαqn dj

dαj
gpαq}F0,1

ď }f}n
F0,1}f ´ g}Fj,1 `

´ n´1ÿ

k“0

}f}n´k´1
F0,1 }g}k

F0,1

¯
}f ´ g}F0,1}g}Fj,1 .

Proof. Since

fpαqnTfpαq ´ gpαqnTgpαq “ fpαqnTfpαq ´ fpαqnTgpαq
` fpαqnTgpαq ´ gpαqnTgpαq

“ fpαqnpTfpαq ´ Tgpαqq ` pfpαqn ´ gpαqnqTgpαq.
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We obtain

}fpαqnTfpαq ´ gpαqnTgpαq}F0,1

ď }f}n
F0,1}Tf ´ Tg}F0,1 ` }fpαqn ´ gpαqn}F0,1}Tg}F0,1 .

Next, we have

}fpαqn ´ gpαqn}F0,1 “
›››
n´1ÿ

k“0

fpαqn´kgpαqk ´ fpαqn´k´1gpαqk`1
›››
F0,1

ď
n´1ÿ

k“0

}f}n´k´1
F0,1 }g}k

F0,1}f ´ g}F0,1 .

This yields (8.3). Then (8.4) is proven similarly. �

8.1. Estimates for the differences of the lengths

We need to control the difference in the lengths L1ptq and L2ptq, for example,
to control the first term on the right hand side of (8.2). In this section, we prove
the following proposition on the differences of the lengths.

Proposition 8.4. Consider the lengths, L1ptq and L2ptq, of two solutions, ϑ1

and ϑ2 respectively, to (2.30) as defined by (2.5). Then, we have

(8.6)

ˇ̌
ˇ̌L1ptq
2π

´ L2ptq
2π

ˇ̌
ˇ̌ ď CL}θ1 ´ θ2}F0,1

with CL defined by (8.9).

Proof. We recall equation (2.13). Thus, denoting ∆f “ fpαq ´ fpηq, we have
that

(8.7)
´L1ptq

2π

¯2

´
´L2ptq

2π

¯2

“
R2

2π

´
Im

πş
´π

αş
0

eipα´ηq
ř
ně1

in

n!
p∆θ2qndηdα´Im

πş
´π

αş
0

eipα´ηq
ř
ně1

in

n!
p∆θ1qndηdα

¯

´
1`Im

πş
´π

αş
0

eipα´ηq
ř
ně1

in

n!
p∆θ1qndη dα

2π

¯́
1`Im

πş
´π

αş
0

eipα´ηq
ř
ně1

in

n!
p∆θ2qndη dα

2π

¯ .

Recalling the estimates in (7.1) - (7.4), the denominator is bounded by

ˆ 2ź

m“1

´
1`Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θmqndη dα

2π

¯̇ ´1

ď
ˆ 2ź

m“1

´
1 ´ π

2

`
e2}θm}

F0,1 ´ 1
˘¯˙´1

.
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Further the numerator has the upper bound

Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θ2qndηdα´Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θ1qndηdα

“ Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θ2 ´ ∆θ1q

n´1ÿ

m“0

`
∆θ1

˘m`
∆θ2

˘n´m´1
dηdα

ď π2
ÿ

ně1

2}θ1 ´ θ2}F0,1

n!

n´1ÿ

m“0

`
2}θ1}F0,1

˘m`
2}θ2}F0,1

˘n´m´1
.

Thus we further obtain the estimateˇ̌
ˇ̌
ˇ̌Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θ2qndηdα´Im

πż

´π

αż

0

eipα´ηq
ÿ

ně1

in

n!
p∆θ1qndηdα

ˇ̌
ˇ̌
ˇ̌

ď 2π2}θ1 ´ θ2}F0,1

2}θ1}F0,1 ´ 2}θ2}F0,1

ÿ

ně1

1

n!

´`
2}θ1}F0,1

˘n ´
`
2}θ2}F0,1

˘n¯

“ 2π2}θ1 ´ θ2}F0,1

e2}θ1}
F0,1 ´ e2}θ2}

F0,1

2}θ1}F0,1 ´ 2}θ2}F0,1

.

We substitute this back into (8.7) to obtain that

(8.8)
ˇ̌
ˇ
´L1ptq

2π

¯2

´
´L2ptq

2π

¯2 ˇ̌
ˇ ď R2CL,2}θ1 ´ θ2}F0,1 ,

where

CL,2 “ π
e2}θ1}

F0,1 ´e2}θ2}
F0,1

2}θ1}F0,1 ´2}θ2}F0,1

ˆ 2ź

m“1

´
1 ´ π

2

`
e2}θm}

F0,1 ´ 1
˘¯˙´1

.

The estimate (8.8) allows to easily bound terms like L1ptq ´ L2ptq or L1ptq´1 ´
L2ptq´1. In fact, using (7.3), we obtain that

ˇ̌
ˇL1ptq
2π

´ L2ptq
2π

ˇ̌
ˇ “ 1

L1ptq
2π

` L2ptq
2π

ˇ̌
ˇ
´L1ptq

2π

¯2

´
´L2ptq

2π

¯2 ˇ̌
ˇ ď CL}θ1 ´ θ2}F0,1 ,

where, with C37 is defined in (7.4), we have

(8.9) CL “ R
CL,2

2C37

.

This completes the proof of (8.6). �

8.2. Estimates for the differences of the vorticity strength

In this section we will estimate the differences of the vorticity strength terms.
We use the splitting in (2.23) as

ω1pαq ´ ω2pαq
“ pω1q0pαq ´ pω2q0pαq ` pω1q1pαq ´ pω2q1pαq ` pω1qě2pαq ´ pω2qě2pαq.

Above pωiq0pαq is the zero component, as defined in (2.23), of the vorticity term ωi

for i “ 1, 2 etc. In this section, we prove the following estimates on each difference
in the vorticity decomposition.
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Proposition 8.5. For s ě 0, we have the estimates

(8.10) }pω1q0 ´ pω2q0} 9Fs,1 ď 2 |Aρ|CL}θ1 ´ θ2}F0,1 ` Aρ

π
L2ptq|pϑ1p0q ´ pϑ2p0q|,

and

(8.11) }pω1q1 ´ pω2q1} 9Fs,1 ď Csp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q

` E}θ1 ´ θ2} 9Fs,1 ` 4Aσπ

L2ptq }θ1 ´ θ2}Fs`2,1 .

For s ą 0 we further have

(8.12) }pω1qě2 ´ pω2qě2} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q
` E0}θ1 ´ θ2} 9Fs,1 ` Cs}θ1 ´ θ2} 9F2,1 ` Γ̃}θ1 ´ θ2} 9F2`s,1

where Γ̃ is given by (8.28).

We further give the estimate of the form (8.12) when s “ 0 in (8.29). It

is important to notice that Γ̃ given by (8.28) is smaller than the corresponding
coefficient of }θ} 9Fs`2,1 in the estimate of (6.4).

Proof. For the zero-th order term in the splitting we have

pω1q0pαq ´ pω2q0pαq “ ´2Aρ

´L1ptq
2π

´ L2ptq
2π

¯
sin pα ` pϑ1p0qq

´ 2Aρ

L2ptq
2π

psin pα ` pϑ1p0qq ´ sin pα ` pϑ2p0qqq.

Hence, for s ě 0, we have the estimate

}pω1q0 ´ pω2q0} 9Fs,1 ď |Aρ|
π

|L1ptq ´ L2ptq|} sin pα ` pϑ1p0qq} 9Fs,1

` |Aρ|
π

L2ptq} sin pα ` pϑ1p0qq ´ sin pα ` pϑ2p0qq} 9Fs,1 .

We have } sin pα ` pϑ1p0qq} 9Fs,1 ď 1 and

} sin pα ` pϑ1p0qq ´ sin pα ` pϑ2p0qq} 9Fs,1 ď 2
ˇ̌
ˇ sin

´ pϑ1p0q ´ pϑ2p0q
2

¯ˇ̌
ˇ

¨
››› cos

´
α `

pϑ1p0q ` pϑ2p0q
2

¯›››
9Fs,1

We have
››› cos

´
α` pϑ1p0q` pϑ2p0q

2

¯›››
9Fs,1

ď 1 and since we assume the difference is small

we have

(8.13)
ˇ̌
ˇ sin

´ pϑ1p0q ´ pϑ2p0q
2

¯ˇ̌
ˇ ď 1

2
|pϑ1p0q ´ pϑ2p0q|.

Hence, we obtain (8.10), which completes the difference estimates for the zero order
vorticity strength terms.

Next, the linear difference in the vorticity strength terms from (2.23) is

(8.14) pω1q1pαq ´ pω2q1pαq “ Aμ

π
W1 ` 4AσπW2 ´ Aρ

π
W3

where
W1 “ L1ptqD1ppω1q0qpαq ´ L2ptqD1ppω2q0qpαq
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and

W2 “
´ 1

L1ptq ´ 1

L2ptq
¯

pθ1qαα ` 1

L2ptq ppθ1qαα ´ pθ2qααq

and

W3 “ pL1ptq ´ L2ptqq cos pα ` pϑ1p0qqθ1pαq
` L2ptqrcos pα ` pϑ1p0qq ´ cos pα ` pϑ2p0qqsθ1pαq

` L2ptq cos pα ` pϑ2p0qqrθ1pαq ´ θ2pαqs.
We will estimate each of the terms W1, W2 and W3 in the following.

For W1 we have using (2.24) that

W1 “ θ1pαqHppω1q0qpαq ` ImRppω1q0qpαq ´ θ2pαqHppω2q0qpαq ` ImRppω2q0qpαq.
It can be shown by the estimates in R and L1 ´ L2 that for s ě 0 we have

(8.15) }W1} 9Fs,1 ď Csp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q ` E}θ1 ´ θ2} 9Fs,1 .

For W2, we have

(8.16) }W2} 9Fs,1 ď 1

L1ptqL2ptqCL}θ1 ´ θ2}F0,1}θ1}Fs`2,1 ` 1

L2ptq}θ1 ´ θ2}Fs`2,1 .

The important term in W2 for the purposes of the uniqueness argument is the
second term that has the difference }θ1 ´ θ2}Fs`2,1 . For W3, using (8.6), we obtain
that

(8.17) }W3} 9Fs,1 ď Csp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q ` E}θ1 ´ θ2} 9Fs,1 .

Hence, from (8.15), (8.16) and (8.17), we obtain from (8.14) that

}pω1q1 ´ pω2q1} 9Fs,1 ď Csp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q

` E}θ1 ´ θ2} 9Fs,1 ` 4Aσπ

L2ptq }θ1 ´ θ2}Fs`2,1 .

Note that the coefficient in front of }θ1 ´ θ2}Fs`2,1 is the same as that in (6.2) in
front of }θ}

F
s`2,1
ν

. This completes the difference estimates for the linear terms in

the vorticity strength given by (8.11).
Next we estimate differences of the nonlinear terms in the vorticity strength

from (2.23). We decompose the terms as

(8.18) pω1qě2 ´ pω2qě2 “ W21 ` W22 ` W23

where the terms W21, W22, and W23 are given by

W21 “ Aμ

L1ptq
π

Dě2pω1qpαq ´ Aμ

L2ptq
π

Dě2pω2qpαq,

and

W22 “ Aρ

L2ptq
π

sin pα` pϑ2p0qq
ÿ

jě1

p´1qjpθ2pαqq2j
p2jq!

´ Aρ

L1ptq
π

sin pα` pϑ1p0qq
ÿ

jě1

p´1qjpθ1pαqq2j
p2jq! ,
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and

W23 “ Aρ

L2ptq
π

cos pα ` pϑ2p0qq
ÿ

jě1

p´1qjpθ2pαqq1`2j

p1 ` 2jq!

´ Aρ

L1ptq
π

cos pα ` pϑ1p0qq
ÿ

jě1

p´1qjpθ1pαqq1`2j

p1 ` 2jq! .

First, we use (2.24) to observe that

(8.19) W21 “ ´Aμ

´
θ1pαqHppω1qě1qpαq ` ImRppω1qě1qpαq ` ImSpω1qpαq

´ θ2pαqHppω2qě1qpαq ´ ImRppω2qě1qpαq ´ ImSpω2qpαq
¯

“ ´AμpW211 ` W212 ` W213q,
where the differences of like terms with either subscript 1 or 2 are combined in each
W21j . Then for s ě 0 we have

}W211} 9Fs,1 ď bp2, sq}θ1 ´ θ2} 9Fs,1}pω1qě1}F0,1 ` bp2, sq}θ1 ´ θ2}F0,1}pω1qě1} 9Fs,1

` bp2, sq}θ2} 9Fs,1}pω1q1 ´ pω2q1}F0,1 ` bp2, sq}θ2}F0,1}pω1q1 ´ pω2q1} 9Fs,1

` bp2, sq}θ2}F0,1}pω1qě2 ´ pω2qě2} 9Fs,1 ` bp2, sq}θ2} 9Fs,1}pω1qě2 ´ pω2qě2}F0,1 .

Thus, using (6.1), (6.2), (6.3), (6.4) and (8.11) we have

(8.20) }W211} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q ` E0}θ1 ´ θ2} 9Fs,1

` Cs}θ1 ´ θ2}F2,1 ` 4Aσπ

L2ptq bp2, sq}θ1 ´ θ2}F2`s,1

` bp2, sq}θ2}F0,1}pω1qě2 ´ pω2qě2} 9Fs,1 ` bp2, sq}θ2} 9Fs,1}pω1qě2 ´ pω2qě2}F0,1 ,

where Es “ }θ1, θ2} 9F2`s,1E and some bounded constant E and C is a bounded
constant depending on }θ1, θ2}F0,1 .

We now consider the term W212. We have from (5.5) that

(8.21) }Rppω1qě1q ´ Rppω2qě1q} 9Fs,1

ď bp2, sqCRp}pω1qě1 ´ pω2qě1} 9Fs,1}θ1}F0,1 ` }pω1qě1 ´ pω2qě1}F0,1}θ1} 9Fs,1

` }pω2qě1} 9Fs,1}θ1 ´ θ2}F0,1 ` }pω2qě1}F0,1}θ1 ´ θ2} 9Fs,1q.

Hence, using (6.1), (6.2), (6.3), (6.4) and (8.11), we obtain

(8.22) }W212} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q ` E0}θ1 ´ θ2} 9Fs,1

` E}θ1, θ2} 9Fs,1}θ1 ´ θ2}F2,1 ` 4AσCRπ

L2ptq bp2, sq}θ1 ´ θ2}F2`s,1}θ1, θ2}F0,1

` bp2, sqCRp}θ1}F0,1}pω1qě2 ´ pω2qě2} 9Fs,1 ` }θ1} 9Fs,1}pω1qě2 ´ pω2qě2}F0,1q.
This is the estimate for W212.

Next for W213 containing the difference in S, we actually have to consider two
differences. We recall the splitting of S from (5.16) and we will use fi “ ωi below.
First, it can be shown from (5.18) that

}Bpf1q ´ Bpf2q} 9Fs,1 ď B1 ` B2(8.23)
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where

B1 “
›››|k|s

ÿ

n,lě0
n`lě2

p´1qnil`n`1p˚lpθ1pkqq ´ ˚l pθ2pkqq
l!

˚ {Snpf1qpkq
›››
�1

and

B2 “
›››|k|s

ÿ

n,lě0
n`lě2

p´1qnil`n`1 ˚l pθ2pkq
l!

˚ p {Snpf1qpkq ´ {Snpf2qpkqq
›››
�1
.

For B1, we obtain using similar arguments to Proposition 8.3 that

B1 ď
ÿ

n,lě0
n`lě2

bpl ` 1, sq
pl ´ 1q!

´
}θ1, θ2}l´1

F0,1}Snpf1q} 9Fs,1}θ1 ´ θ2}F0,1

` pl ´ 1q}θ1, θ2}l´2
F0,1}θ1, θ2} 9Fs,1}Snpf1q}F0,1}θ1 ´ θ2}F0,1

` }θ1, θ2}l´1
F0,1}Snpf1q}F0,1}θ1 ´ θ2} 9Fs,1

¯
.

For B2, we first consider the difference in the operator Sn. By (5.24), we have for
two functions f1 and f2, with an given by (5.29), that

|inp {Snpf1q ´ {Snpf2qqpkq|
“

ÿ

k2,...,kn`1PZ

|Ipk1, . . . , kn`1q|

¨
´

|f̂1pkn`1q
nź

j“1

P1pkj ´ kj`1q ´ f̂2pkn`1q
nź

j“1

P2pkj ´ kj`1q|
¯

ď an|f̂1 ´ f̂2| ˚n |P1| ` an|f̂2| ˚ | ˚n P1 ´ ˚nP2|.

Hence using the estimates as in (5.42) we have

B2 ď
ÿ

n,lě0
n`lě2

an

›››|k|s ˚lpθ2pkq
l!

˚ p|f̂1 ´ f̂2| ˚n |P1|q
›››
�1

` B̃2

ď C̃3}θ2}2
F0,1}f1 ´ f2} 9Fs,1 ` C̃4}θ2}F0,1}θ2} 9Fs,1}f1 ´ f2}F0,1 ` B̃2

(8.24)

where

B̃2 “
ÿ

n,lě0
n`lě2

an

›››|k|s ˚lpθ2pkq
l!

˚ p|f̂2| ˚ | ˚n P1 ´ ˚nP2|q
›››
�1
.

We have for s ą 0 that

}|k|spP1 ´ P2q}�1 ď
ÿ

mě1

bpm, sq
pm ´ 1q!p}θ1, θ2}m´1

F0,1 }θ1 ´ θ2} 9Fs,1

` pm ´ 1q}θ1, θ2}m´2
F0,1 }θ1, θ2} 9Fs,1}θ1 ´ θ2}F0,1q

with an analogous estimate holding in the case s “ 0. Hence we have

B̃2 ď E
”
p}θ1, θ2} 9Fs,1 ` }fi} 9Fs,1q}θ1 ´θ2}F0,1 ` p}θ1, θ2}F0,1 ` }fi}F0,1q}θ1 ´θ2} 9Fs,1

ı
.
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We also similarly estimate A as in (5.51) to obtain

}Apf1qpαq ´ Apf2qpαq} 9Fs,1 ď E
”
}fi} 9Fs,1}θ1 ´ θ2}F0,1 ` }fi}F0,1}θ1 ´ θ2} 9Fs,1

ı

` CRC4}θ1, θ2} 9Fs,1}θ1, θ2}F0,1}f1 ´ f2}F0,1 ` CRC3}θ1, θ2}2
F0,1}f1 ´ f2} 9Fs,1 .

In summary, for s ą 0, using (8.10) and (8.11), we obtain

}W213} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q ` E0}θ1 ´ θ2} 9Fs,1(8.25)

` Cs}θ1 ´ θ2} 9F2,1 ` C3}θ1, θ2}2
F0,1

4Aσπ

L2ptq }θ1 ´ θ2} 9F2`s,1

` C4}θ1, θ2}F0,1}θ1, θ2} 9Fs,1}pω1qě2 ´ pω1qě2}F0,1

` C3}θ1, θ2}2
F0,1}pω1qě2 ´ pω2qě2} 9Fs,1 ,

where C3 and C4 are given by (5.52) and CR is given by (5.6).
Further using Proposition 8.3, then W22 and W23 can be estimated by a bound

of the type:

(8.26) }W2j} 9Fs,1 ď Csp}θ1 ´ θ2}F0,1 ` |pϑ1p0q ´ pϑ2p0q|q ` E}θ1 ´ θ2} 9Fs,1

for j “ 2, 3. Hence, using (8.20), (8.22), (8.25), we obtain from (8.18) that

}pω1qě2 ´ pω2qě2} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q
` E0}θ1 ´ θ2} 9Fs,1 ` Cs}θ1 ´ θ2} 9F2,1 ` Γ̃}θ1 ´ θ2} 9F2`s,1

` |Aμ|C12}θ1, θ2} 9Fs,1}pω1qě2 ´ pω2qě2}F0,1

` |Aμ|C2}θ1, θ2}F0,1}pω1qě2 ´ pω2qě2} 9Fs,1(8.27)

where

(8.28) Γ̃ “ |Aμ|4Aσπ

L2ptqC2}θ1, θ2}F0,1

with C2 given by (6.13).
Computing an estimate analogous to (8.27) for s “ 0 yields the estimate

(8.29) }pω1qě2 ´ pω2qě2} 9Fs,1 ď Esp}θ1 ´ θ2}F0,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q
` E0}θ1 ´ θ2} 9Fs,1 ` Cs}θ1 ´ θ2} 9F2,1 ` Γ}θ1 ´ θ2} 9F2`s,1

where

(8.30) Γ “ |Aμ|C̃8

4Aσπ

L2ptq
for C̃8 given by (6.14) and the other constants given by Definition 8.1. �

8.3. Estimates for the differences of the main nonlinear term

In this section, we show the following bound on the nonlinear difference term
of (8.2).

Proposition 8.6. We have the following estimate for δ ą 0 given by (8.38)
and for εp}θ1, θ2}

9F
1

2
,1q that can be chosen to be arbitrarily small:

}N1 ´ N2}
9F
1

2
,1 ď Ep}θ1 ´ θ2}

9F
1

2
,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q ` pδ ` εq}θ1 ´ θ2}

9F
7

2
,1

where Eą0 is a time integrable coefficient depending on }θ1, θ2}
9F
1

2
,1 and }θ1, θ2}

9F
7

2
,1 .

Further ε “ εp}θ1, θ2}
9F
1

2
,1q ą 0 can be chosen arbitrarily small.
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We remark that all the terms involving the upper bound of Ep}θ1 ´ θ2}
9F
1

2
,1 `

|ϑ̂1p0q ´ ϑ̂2p0q|q follow similarly to the estimates from Chapter 7 also using the idea
of Proposition 8.3 and the vorticity estimates in Proposition 8.5. Our proof below
is focused on the estimates of the term }θ1 ´ θ2}

9F
7

2
,1 and the constant δ ą 0. In

the proof of Proposition 8.6, when we compute the difference of nonlinear terms
in 9F

1

2
,1, any terms where the difference occurs as }θ1 ´ θ2} 9Fs,1 for s ă 7{2 can be

absorbed by interpolation and the Young’s inequality into the term E}θ1 ´ θ2}
9F
1

2
,1

and contributes an arbitrarily small term ε}θ1 ´ θ2}
9F
7

2
,1 to be absorbed into the

linear decay, e.g. see the estimate to obtain (8.34). This term is then taken care of
by the Gronwall argument described in the comment below Theorem 8.2. In this
way, most of the nonlinear terms can be easily estimated and only the few terms of
order }θ1 ´ θ2}

9F
7

2
,1 need be computed.

Proof. For the nonlinear terms, we will denote the decomposition given in
(7.34) of N1 for θ1 and N2 for θ2 respectively by

N1 “ N11 ` N12 ` N13, N2 “ N21 ` N22 ` N23.

We now consider the differences of N1j ´N2j for j “ 1, 2, 3. We will only explicitly
compute the constant in front of terms with difference }θ1 ´ θ2}

9F
7

2
,1 . We make this

idea clear in the following. Denoting pUiqě2 for the term containing θi, we have

(8.31) }N11 ´ N21}
9F
1

2
,1 ď

ˇ̌
ˇ π

L1ptq ´ π

L2ptq
ˇ̌
ˇ}L1ptq

π
pU1qě2}

9F
3

2
,1

` 1

L2ptq}L1ptq
π

pU1qě2 ´ L2ptq
π

pU2qě2}
9F
3

2
,1 .

In the latter term of (8.31), we have a term of the form

(8.32) }R1ppω1qě1q ´ R2ppω2qě1q}
9F
3

2
,1

ď . . .` 4Aσπ

L2ptq }R1ppθ1qααq ´R2ppθ2qααq}
9F
3

2
,1 ` }R1ppω1qě2q ´R2ppω2qě2q}

9F
3

2
,1 .

Above the dots “. . .” represent that other terms are present which turn out to be
lower order. We similarly denote Ri for the term (2.18) which contains θi. Then
for the first term present in the upper bound above we have the estimate

}R1ppθ1qααq ´ R2ppθ2qααq}
9F
3

2
,1 ď }R1ppθ1qαα ´ pθ2qααq}

9F
3

2
,1

` }R1ppθ2qααq ´ R2ppθ2qααq}
9F
3

2
,1

ď
?
2CRp}θ1 ´ θ2}

9F
7

2
,1}θ1}F0,1 ` }θ1 ´ θ2}F2,1}θ1}

9F
3

2
,1

` }θ2}
9F
7

2
,1}θ1 ´ θ2}F0,1 ` }θ2}F2,1}θ1 ´ θ2}

9F
3

2
,1q.

We therefore have

(8.33) }R1ppθ1qααq ´ R2ppθ2qααq}
9F
3

2
,1

ď
?
2CRp}θ1 ´ θ2}

9F
7

2
,1}θ1}F0,1 ` }θ1}2{3

9F
1

2
,1

}θ1}1{3

9F
7

2
,1

}θ1 ´ θ2}1{2

9F
7

2
,1

}θ1 ´ θ2}1{2

9F
1

2
,1

q

`
?
2CRp}θ2}

9F
7

2
,1}θ1 ´ θ2}F0,1 ` }θ2}1{2

9F
1

2
,1

}θ2}1{2

9F
7

2
,1

}θ1 ´ θ2}1{3

9F
7

2
,1

}θ1 ´ θ2}2{3

9F
1

2
,1

q.
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Hence, if we apply Young’s inequality, e.g.

}θ1}2{3

9F
1

2
,1

}θ1}1{3

9F
7

2
,1

}θ1 ´ θ2}1{2

9F
7

2
,1

}θ1 ´ θ2}1{2

9F
1

2
,1

ď 1

4ε
}θ1}2{3

9F
7

2
,1

}θ1 ´ θ2}
9F
1

2
,1 ` ε}θ1}4{3

9F
1

2
,1

}θ1 ´ θ2}
9F
7

2
,1

we obtain

(8.34) }R1ppθ1qααq ´ R2ppθ2qααq}
9F
3

2
,1

ď Ep}θ1, θ2}
9F

7

2
,1

}θ1 ´ θ2}F0,1 ` cεp}θ1, θ2}2{3

9F
7

2
,1

` }θ1, θ2}3{4

9F
7

2
,1

q}θ1 ´ θ2}
9F
1

2
,1q

` εp}θ1}4{3

9F
1

2
,1

` }θ1}3{2

9F
1

2
,1

q}θ1 ´ θ2}
9F
7

2
,1 `

?
2CR}θ1 ´ θ2}

9F
7

2
,1}θ1}F0,1

for a constant cε. The first two terms in (8.34) are linear in }θ1´θ2} 9Fs,1 for 0 ď s ď
1{2 and the constants are time integrable on r0, T s for any T ą 0 since }θ1, θ2}

9F
7

2
,1

is integrable in time. The final two terms with the difference }θ1 ´ θ2}
9F
7

2
,1 needs to

be absorbed in the linear decay coming from L1 ´L2. For the other term in (8.32),
we have similarly,

(8.35) }R1ppω1qě2q ´ R2ppω2qě2q}
9F
3

2
,1 ď . . . `

?
2CR}θ1, θ2}F0,1Γ}θ1 ´ θ2}

9F
7

2
,1

` ε}θ1 ´ θ2}
9F
7

2
,1 ,

where we use (8.30) and ε “ εp}θ1, θ2}
9F
1

2
,1q is a constant that can be chosen arbi-

trarily small.
The only other terms containing a term like }θ1 ´ θ2}

9F
7

2
,1 are the other two

terms that also come from N11 ´ N12, as can be observed from the terms which
contain }θ}

9F
7

2
,1 in the estimates of Chapter 7. The first term is

π

L2ptq}Hppω1qě2q ´ Hppω2qě2q}
9F
3

2
,1 “ π

L2ptq}pω1qě2 ´ pω1qě2}
9F
3

2
,1

ď . . . ` p πΓ

L2ptq ` εq}θ1 ´ θ2}
9F
7

2
,1 ,(8.36)

where the unwritten terms are lower order due to being linear in }θ1 ´ θ2} 9Fs,1

for 0 ď s ď 1{2 with time integrable coefficients as done in (8.34). Again, ε “
εp}θ1, θ2}

9F
1

2
,1q is a constant that can be chosen arbitrarily small. Similarly, the

final term that we need to compute is
π

L2ptq}Spω1q ´ Spω2q}
9F
3

2
,1 ď . . . ` π

L2ptq}Sppω1q1q ´ Sppω2q1q}
9F
3

2
,1

` π

L2ptq}Sppω1qě2q ´ Sppω2qě2q}
9F
3

2
,1

ď . . . ` pπΓC3}θ1, θ2}2
F0,1

L2ptq ` εp}θ1, θ2}
9F
1

2
,1qq}θ1 ´ θ2}

9F
7

2
,1 ,(8.37)

where we use the estimate on Spf1q ´ Spf2q computed to give (8.25) and so C3 is
given by (5.52) and Γ is given by (8.30).

All remaining nonlinear terms in the estimates of the evolution of θ1 ´ θ2 are
lower order due to having no futher upper bounds in terms of the highest order
difference }θ1 ´ θ2}

9F
7

2
,1 . Hence, in total the difference of nonlinear terms yields

}N1 ´ N2}
9F
1

2
,1 ď Ep}θ1 ´ θ2}

9F
1

2
,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q ` pδ̃ ` εq}θ1 ´ θ2}

9F
7

2
,1 ,
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where ε “ εp}θ1, θ2}
9F
1

2
,1q is a constant that can be chosen arbitrarily small; and for

Γ “ |Aμ|C̃8
4Aσπ
L2ptq given by (8.30), we have δ̃ given by

δ̃ “ π

L2ptq p
?
2CR

4Aσπ

L2ptq ` bp2, 3{2qCR}θ1, θ2}F0,1Γ ` Γ ` ΓC3}θ1, θ2}2
F0,1q

and so by (7.3), setting

(8.38) δ “
Aσ

C2
37R

2
p
?
2CR ` bp2, 3{2qCR}θ1, θ2}F0,1 |Aμ|C̃8 ` |Aμ|C̃8 ` |Aμ|C̃8C3}θ1, θ2}2

F0,1q,

we obtain the result of Proposition 8.6. �

8.4. Proof of uniqueness

We are now ready to prove Theorem 8.2.

Proof of Theorem 8.2. From Proposition 2.2, the difference of the linear
terms is

(8.39) pL1pkq ´ pL2pkq “ ´Aσ

4π2

L2ptq2 kpk2 ´ 1qppθ1pkq ´ pθ2pkqq

´ p1 ` AμqAρ

pk2 ´ 1qpk ` 1q
kpk ` 2q e´ipϑ2p0qppθ1pk ` 1q ´ pθ2pk ` 1qq

` L̃1pkq ` L̃2pkq,
where

L̃1pkq “ ´4π2Aσkpk2 ´ 1qpθ1pkq
´ 1

L1ptq2 ´ 1

L2ptq2
¯

and

L̃2pkq “ ´p1 ` AμqAρ

pk2 ´ 1qpk ` 1q
kpk ` 2q pe´ipϑ1p0q ´ e´ipϑ2p0qqpθ1pk ` 1q.

And similarly for k “ 2. For L̃1, we have

(8.40) }L̃1}
9F
1

2
,1 ď 4π2Aσ

ˇ̌
ˇ 1

L1ptq2 ´ 1

L2ptq2
ˇ̌
ˇ}|k|3{2pk2 ´ 1qpθ1pkq}�1 .

For L̃2, we have

(8.41) }L̃2}
9F
1

2
,1

ď |p1 ` AμqAρ||e´ipϑ1p0q ´ e´ipϑ2p0q|
››› |k|1{2|k2 ´ 1||k ` 1|

2|k||k ` 2| |pθ1pk ` 1q|
›››
�1
.

Using similar arguments as earlier, we obtain from (8.40) and (8.41) that

(8.42) }L̃1, L̃2}
9F
1

2
,1 ď Ep}θ1 ´ θ2}

9F
1

2
,1 ` |ϑ̂1p0q ´ ϑ̂2p0q|q

where E is a time integrable coefficient. Hence, the new quantities from (8.42) do not
need to be absorbed by the linear decay. The coefficient δ of the norm }θ1 ´θ2}

9F
7

2
,1

is less than the coefficients in (7.53), and hence, }θ1, θ2}
9F
1

2
,1 satisfying (3.11) and

taking ε arbitrarily small is sufficient for pδ`εq}θ1´θ2}
9F
7

2
,1 from Proposition 8.6 to

be absorbed into the linear decay terms of (8.39) by following the similar procedure
to Section 7.2. �
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[33] Javier Gómez-Serrano and Rafael Granero-Belinchón, On turning waves for the inhomoge-

neous Muskat problem: a computer-assisted proof, Nonlinearity 27 (2014), no. 6, 1471–1498,
DOI 10.1088/0951-7715/27/6/1471. MR3215843

[34] Yan Guo, Chris Hallstrom, and Daniel Spirn, Dynamics near unstable, interfacial flu-

ids, Comm. Math. Phys. 270 (2007), no. 3, 635–689, DOI 10.1007/s00220-006-0164-4.
MR2276460

[35] Ulrich Hornung (ed.), Homogenization and porous media, Interdisciplinary Applied Mathe-

matics, vol. 6, Springer-Verlag, New York, 1997, DOI 10.1007/978-1-4612-1920-0. MR1434315
[36] Thomas Y. Hou, John S. Lowengrub, and Michael J. Shelley, Removing the stiffness from

interfacial flows with surface tension, J. Comput. Phys. 114 (1994), no. 2, 312–338, DOI
10.1006/jcph.1994.1170. MR1294935

[37] Matt Jacobs, Inwon Kim, and Alpár R. Mészáros, Weak solutions to the Muskat problem with
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