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Abstract

In this paper, we study the dynamics of fluids in porous media governed
by Darcy’s law: the Muskat problem. We consider the setting of two immiscible
fluids of different densities and viscosities under the influence of gravity in which
one fluid is completely surrounded by the other. This setting is gravity unstable
because along a portion of the interface, the denser fluid must be above the other.
Surprisingly, even without capillarity, the circle-shaped bubble is a steady state
solution moving with vertical constant velocity determined by the density jump
between the fluids. Taking advantage of our discovery of this steady state, we are
able to prove global in time existence and uniqueness of dynamic bubbles of nearly
circular shapes under the influence of surface tension. We prove this global existence
result for low regularity initial data. Moreover, we prove that these solutions are
instantly analytic and decay exponentially fast in time to the circle.
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CHAPTER 1

Introduction

This paper studies the dynamics of fluid drops or bubbles immersed in another
fluid filling a porous media under the action of gravity. This process is governed by
the classical Darcy’s law

p(,t)
k(z,t)

(1'1) u(m,t) = _VP(xvt) —g(O,p(a;,t)),
where v is the velocity of the fluid, p is the pressure, p is the density and p is
the viscosity of the fluid. Above € R? and ¢t > 0. Here the medium is assumed
to be homogeneous so that the permeability x(z,t) = k = 0 is constant, as is the
gravitational acceleration g > 0. While Darcy’s law was first derived experimentally
[23], it can be rigorously obtained through homogenization [35,47]. This physical
scenario is mathematically analogous to the evolution of an incompressible flow in
a Hele-Shaw cell [28] where the fluid is set inside two parallel plates that are close
enough together so that the resulting dynamics are two dimensional. In particular,
the results in this paper can be applied to the Hele-Shaw problem.

The presence of two immiscible fluids is modeled by taking the viscosity p and
the density p as piece-wise constant functions:

1, -
(1.2) w(zx,t) = {52’ N 2 I§2(ti,m pa,t) = {P , zeD(1),

0%, xeR%~ D(t),

where D(t) is a simply connected bounded domain, namely, the bubble. Thus, there
is a sharp interface between the fluids, moving with the flow, which we assume to
be incompressible:

(1.3) V- u(x,t) =0.

We consider the physically relevant case where surface tension at the free boundary
is taken into consideration. The Laplace-Young’s formula then states that [36]:

(1.4) pt(z,t) — p*(z,t) = oK (x,t), x € 0D(t),

where K (x,t) denotes the curvature of the curve 0D(t), o > 0 is the constant
surface tension coefficient and p'(z,t), p?(x,t) are the limits of the pressure at
x from inside and outside, respectively. We are then dealing with the Muskat
problem, where the main mathematical interest is to study the dynamics of the
free boundary dD(t), especially between water and oil [39]. Tt is remarkable that
the evolution equation for the free boundary is well-defined even though the velocity
is not continuous. The discontinuity in the velocity is due to the density, viscosity
and pressure jumps. But the interface evolution is dictated only by the normal
velocity, which is continuous by the incompressibility condition.

1

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 1. INTRODUCTION

In this sense it is indeed possible to obtain a self-evolution equation for the
interface 0D(t) which is called the contour evolution system. This system is equiv-
alent to the Eulerian-Lagrangian formulation (1.1), (1.2), (1.3), (1.4) understood
in a weak sense. Due to the irrotationality of the velocity in each domain D(t), the
vorticity is concentrated on the interface dD(t). That is, the vorticity is given by a
delta distribution as follows

VEu(z,t) = wa, t)d(x = 2(a, b)),
where w(q, t) is the amplitude of the vorticity and z(a,t) is a parameterization of
0D(t) with
0D(t) = {z(a, t) = (z1(a, 1), 22(x, 1)) : € [, 7]}
The Biot-Savart law then yields that

T (-2 L
want) = gove [ SR wnas, o250,

and taking limits in the normal direction to z(c,t) one finds

(:(0,0).) = BR(:1)(0.0) = 51220 005(c ),
us(z(a, t),t) = BR(z,w)(a,t) + %%aaz(a,ﬂ,

where BR is the Birkhoff-Rott integral that is given by

L (7 (zlat) = 2(8,0)*
1.5 BR t) = —
(15) = W i i e
Taking the dot product with 0,z in the above equations for u; and us and sub-

tracting one from the other, one then finds that the vorticity strength is given by
the jump in the tangential velocity

w(a,t) = (ua(z(a, t),t) —ur(z(a, t),t)) - Ouz(a,t).

w(B,t)dp.

Then using Darcy’s law (1.1) yields the non-local implicit identity
(1.6) w(o,t) = 24,|042(a, t)|D(z,w)(a, t) + 245,00 K (2(c, 1)) — 2A,0022(x, t),

where
Oaz(a)
( 7) (Z,CU)(O[, ) R(Z,(JJ)(Q, ) |aaZ(Oé,t)"
and
M2 — 1 Ko P2 — P
1.8 A, ="—"——"—7 A, = , A,=gr——.
(18) et m H2 + p1 g gﬂ2+ul

Further, in (1.6) the curvature is given by
Oaz(a, )t - 02 2(a,t)
0az(a, t)[?

Since the fluids are immiscible, the interface is just advected by the normal velocity
of the fluid flow:

zi(ot) - Oaz(a, t)t = BR(z,w)(a,t) - 0qz(a,t)*.

(1.9) K(a,t) =

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 3

Therefore a tangential velocity T'(z(a,t)) can be introduced to change the para-
metrization of the interface, without altering its shape. Let 0nz(cv,t) = z4(a,t).
Then we denote the unit tangent and normal vectors by

(1.10) (o t) = lj:g%

Without changing the shape of the interface we can replace the above equation by
(1.11) zi(a,t) = (BR(z,w)(a,t) - n(a, t))n(a, t) + T(z(a, )7 t).

Therefore we have a closed system of equations for the the contour evolution system
with (1.11), (1.5), (1.6), and (1.7).

Given its origins in petrochemical engineering and its mathematical equivalence
with Hele-Shaw flows [44], the Muskat problem has long attracted a lot of attention
from physics [5,43]. Mathematically, the Muskat problem poses many challenges,
since even the well-posedness of the problem is not always guaranteed. Indeed,
when one neglects surface tension, the well-posedness depends on the Rayleigh-
Taylor condition (which is also called the Saffman-Taylor condition for the Muskat
problem). If the fluids have different densities, this condition requires the denser
fluid to be below the less dense fluid. When this condition is satisfied, i.e., in the
stable setting [3], local-in-time existence for large initial data is known for both
density and viscosity jump cases in 2d and 3d [13,19-21] for subcritical spaces
[1,2,17,38,41]. However, finite time singularities can arise even from these stable
configurations. As a matter of fact, the Muskat problem was the first incompressible
model where blow-up was proved starting with well-posed initial data [9-11,33].

From the previous considerations, it is an important question to determine
under which conditions the solution exists and remains regular globally in time.
For the non-surface tension case, the global existence in the stable setting was first
obtained for small enough initial data in subcritical norms, allowing both density
and viscosity jumps [13,21,25,45] and later for some critical norms [6,17]. Very
recently, global well-posedness results appeared that allow initial data of medium
size in critical spaces, meaning initial data explicitly bounded independent of any
parameter: first only for the density jump case [7,8,15,16], and later extended
to the density-viscosity jump case [29]. In particular in [29] there is a medium-
size bound for the initial data that is independent of any parameter of the system
when |A4,,| = 1, and that value of the bound for the initial data is improved when
|A,| < 1. In all these results, the magnitude of the slope of the first derivative
appears as a crucial quantity. However, this restriction is removed in [22,31] by
assuming smallness in the critical L? based Sobolev norm.

On the other hand, in the unstable scenario, the problem is ill-posed in all
Sobolev spaces H®, s > 0 [29], unless surface tension is taken into account. In that
case, surface tension controls the instabilities at large scales, giving well-posedness.
Classical results for this scenario can be found in [12,24, 26]. See the recent work
[40] for low regularity initial data, and [37] for weak solutions constructed by
interpreting the Muskat problem as a gradient flow in a product Wasserstein space.
Unstable scenarios are known [42] which exhibit exponential growth locally in time
of low order norms [34], and finger shaped unstable stationary solutions were also
studied [25]. In particular, Rayleigh-Taylor stable solutions with surface tension
converge to the solution without surface tension [4] with optimal decay rate or low
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4 1. INTRODUCTION

regularity [27]. Here, this is not the case as the scenario we deal with is Rayleigh-
Taylor unstable. Recently, while writing this paper, unstable fluid layers have been
proved to exist globally in time for initial near flat configurations [30].

In this paper, we aim to improve the understanding of the effects produced
by the surface tension for bubble-shaped interfaces. In particular, we consider
the movement of fluid bubbles under the effect of gravity in another fluid with
both different densities and viscosities. This is a highly unstable situation, as
the Rayleigh-Taylor condition cannot hold for a closed curve. The function that
provides the Rayleigh-Taylor condition has mean zero in this scenario. Moreover,
as one expects, we will show that a less dense bubble moves upwards. But this
means that on the top part of the interface, the less viscous fluid may push the
more viscous one and the denser one is on top of the lighter one: both classic
conditions in the linear Rayleigh-Taylor analysis are violated here. So that in our
scenario, gravity effects make hard to find global-in-time control. Previous results
dealing with this setting [18,48,49] assumed no gravity force (i.e., g = 0 or no
density jump) and required small initial data in high regularity spaces (such as H"
for r = 4).

We show here that even without surface tension, circle shaped curves are steady
state solutions evolving vertically due to gravity. Furthermore, this surprising state
in this unstable configuration allows to find global-in-time existence for capillarity
bubbles. We will show that if the initial interface of a bubble is close to a circle
with respect to a constant depending on the dimensionless constants

2
|A,| and M, with wR? = |D(0)],
Aq
then the solution exists globally in time and, moreover, it becomes instantly ana-
lytic. In particular, in our proof it is possible to compute the explicit numerical
condition that the initial data must satisfy. It is interesting to notice that only two
quantities are involved, where the second represents the ratio between gravity force
per length and surface tension,
|[ApIR* — gR?|p2 — pi
A, o
We will also show that these bubbles converge exponentially fast in time to a circle
that moves vertically with constant velocity equal to A, (upwards if A, > 0). Due
to the incompressibility condition, the area of the bubble is preserved during the
process. We give precise statements of these results in Chapter 3. In next section,
we provide the contour equations we use throughout the paper.

Note that the parameterization that is used in for instance [7,15,16,21,29]
is difficult to use in our scenario (those results are close to a horizontal line while
in contrast the results in this paper are close to a circle) because our system in
general sends the solution to a nearby circular steady state, and not to the one that
we linearize around. The steady state that the solution converges to is determined
by the dynamics and, without another conservation law that may not exist, then
the limit can not be predicted by the initial data alone. In particular, the standard
parametrization for star-shape bubbles given by

z(ayt) = R(1 + f(ayt))(cos (a),sin («))

does not do a good job of describing the nearby circular steady states, and therefore
it is hard to use in this context. In particular, unless the center is the origin, which
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1.1. OUTLINE 5

one cannot know a priori, circles parametrized in this form do not have a simple
expression. From the analytical point of view, looking at the decay on the Fourier
side, it is easy to find that there is no dissipation at the linear level for the +1 Fourier
coefficients, which corresponds to the fact that the center of a circle parametrized
in this way is given by the +1 Fourier coefficients of f. At the nonlinear level,
these Fourier coefficients are present and mixed in the evolution together with the
rest of them, making it difficult to control globally in time. In order to handle
this issue we reparametrize the interface getting a tangent vector to the curve with
length independent of the parameter « so that du|zo| = 0 [36]. Therefore, the
system can be reformulated in terms of the angle formed between the tangent and
the horizontal, @ + 9(«, t), and the length of the curve as follows
L(t) .
za(ayt) = ?(cos(a + e, t)), sin(a + ¥ a, t))).

The main unknown to control in this setting is .

In this parametrization circles correspond to a constant value of 1. The evolu-
tion of the zero frequency of ¥ is decoupled from the rest. While the +1 are also
neutral in this formulation, the simple compatibility condition

J za(a, t)da =0

—Tr
used in [48,49], allows us to control the +1 Fourier coefficients of ¥ in terms of
the higher modes. For the higher Fourier modes we can use the dissipation due to
surface tension. All the frequencies, together with the initial condition, determine
the evolution of the center of the bubble.

On the other hand, in the analysis done around circles, it is possible to check
that the Fourier coefficients of different frequencies interact together in the evolu-
tion, even at the linear level. If the ratio |A,|R?/A, between gravity and surface
tension forces is large, it is not straightforward how to take advantage of the dissi-
pation. Thus it is not clear how to obtain the global-in-time result in terms only
of the size of the initial data and not upon the size of the parameters. In order to
obtain a global result that does not rely on the size of the physical parameters of the
problem, we preform a transformation in Fourier space of the infinite-dimensional
nonlinear system and we prove that this transformation diagonalizes the linear sys-
tem so that our result holds for any size of the physical parameters. In particular,
we show that it is possible to obtain explicitly the size of the smallness constant.
Finally, the analysis we perform is for low regularity initial data, (zo(«) € C L3 (T)),
allowing unbounded initial curvature and providing instant (analytic) smoothing.

1.1. Outline

The rest of the paper is structured as follows. In Chapter 2, we explain the
contour dynamics formulation of the system of equations for the interface and we
derive the full linearization. Chapter 3 records the notation that will be used
in the rest of the paper and explains the main theorem proving global existence,
uniqueness and exponential large time decay. Then Chapter 4 gives the proof of
the implicit function theorem to obtain the implicit relation between 6(+1) and the
higher Fourier modes. In Chapter 5 we prove the Fourier multiplier estimates for
the operators R and S§. Chapter 6 proves the a priori estimates on the vorticity
strength w. In Chapter 7 we use all the previous estimates to prove the global

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 1. INTRODUCTION

existence and instant analyticity of solutions. Lastly in Chapter 8 we explain the
proof of uniqueness.
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CHAPTER 2

Contour dynamics formulation

In this chapter we introduce the contour evolution equations that will be used
throughout the paper. We suppress the dependence in ¢ for clarity of notation.
We note that in the introduction it was convenient to introduce the system using
vector notation. However in the rest of the paper, we will study the equation using
complex notation. In Section 2.1 we explain some complex notation used in the
rest of this paper. In Section 2.2, we rewrite the equations (1.11), (1.5), (1.6),
(1.7) in terms of the length of the curve and the angle of the tangent vector [36].
Then in Section 2.3 we derive an equivalent expression for the evolution of the
length of the curve. In Section 2.4, we explain the calculations that we will use
involving the Fourier transform in our further decompositions. Lastly in Section
2.5 we decompose the equations into linear and nonlinear parts. In particular, the
calculation of the expression for the linearized operator is given in Proposition 2.2.

2.1. Complex notation and vector notation

In particular given = (x1,x2) and y = (y1,y2) in vector notation and given
z = x1 +ix9 and w = y; + iy2 in complex notation, then the inner product is
expressed as

x -y = T1y1 + x2y2 = Re(Zw).

Here Z = x1 — ix2 is the complex conjugate. Similarly in two dimensions in vector
notation we can write x A y def T1Y2 — T2yy in vector notation and this is equal to
Im (FTy) in complex notation. Then for a vector the perpendicular is z+ = (—x2, 1),
and in complex notation the perpendicular is iz = —xo + iz;. We will use the
complex notation in most of the rest of the paper.

2.2. Parametrization

Now we define ¥(«) so that o + 9¥(«) is the angle formed between the tangent
to the curve and the horizontal. In complex notation, this means that

(2.1) Zo(@) = |za ()]e@FP(@),

In this formulation the normal and tangential vectors from (1.10) are
n(a) = jetlatd(@)) m(a) = eilati(a))

We will then denote the normal velocity by U(«) with

(2.2) U(a) = Re(BR(z,w)(e)n(a)) = Re(BR(w)(a)ie!(@+7(@)),

with the Birkhoff-Rott integral (1.5) given by

BR(z,w)(a) = %pv Jj %dﬂ'

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 2. CONTOUR DYNAMICS FORMULATION

Note that BR(z,w) is the complex conjugate of (1.5) written in complex notation,
this holds in particular since w(/3) is seen to be real as in (2.9) below. These
expressions can be written in terms of z,(«) by noticing that

za) —z(a =) = fa za(1)dn — r—ﬁ za(n)dn = Ll za(a + (s — 1)B)ds.

0 0
The equation (1.11) then reads as follows

(2.3) zi(a) = U(a)n(a) + T(a)m(a).

Taking a derivative in o and projecting into normal and tangential components, we
obtain the evolution equations for ¢(a) and |z4(a)]:

1
0 D) = (Ual@) + T(@)(1 + 9a(a))),

|2a(@)]s = Tala) = (1 + da(a))U(e).

Now, we can choose a tangential velocity T'(«) so that the parametrization of z(«)
has a tangent vector whose modulus does not depend on «. Indeed, we impose

(2.5) a(@) = = [ fzalmldn = 2O,

2 J_, 2m

where L(t) is the length of the curve at time ¢. We then differentiate in time the
equation above and use equation (2.4), twice to obtain that

(o3 « us
20 T() = | 0+ 00U = 5= [ 1+ Dam)U i+ T(0),
where T'(0) simply provides a change of frame in the parametrization. There-
fore, after substitution of this expression of T'(«) into (2.4) and using the relation
|za ()] = LQL;), the evolution system in terms of ¥(a) and L(t) is the following
2 2m
“ U, =
(@) + 0]

Lo(t) = — fr (1 + Po())U(a)da,

—T

T(a)(1 +Ja(a)),
(2.7)

where T'(«) is defined in (2.6), with T'(0) free to choose, and U(«) is given by (2.2)
with
L w(a—B) dg

2.8 BR = -
28) Wie)=Tm™ ), {§ eilar(s—1B) civ(a+(—1B) s B

Recalling the expression of the curvature in terms of the angle using (1.9),

2m
K(2)(a) = m(l + Va0 (@),
the equation for the vorticity strength w(a) in (1.6) reads as follows
(2.9) w(a)= 2AML2L;_)’D(UJ)(OC> + 2A0%19aa(a) — 2AP¥ sin (a + Y(w)),
with D(z,w)(«) in (1.7) given by
(2.10) D(w)(a) = —Re(BR(w)(a)e @F?(@)),

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2.3. EVOLUTION SYSTEM 9

In addition, we notice that because |z, ()| is constant in « and z(«) is a closed
curve, then the following constraint must hold

(2.11) - r 2a(@) 0 r i@ ti(a)) 4oy
x |7a(@)] -

Finally, once the system (2.6)-(2.10) is solved, one can track the evolution of a
single point, say that with o = 0, by integrating in time (1.11) (notice that the
right hand side of (1.11) has been shown to depend only on z,, given by (2.1),
(2.5), and (2.7)).

2.3. Evolution System

For our purposes, equation (2.7)y is not convenient to study L(t). Instead, we
will make use of the fact that the fluid is incompressible, and thus the volume is
preserved. The volume is given in terms of the curve z(«) by

Ve[ @ zalayia,

—Tr
which in complex notation reads as

1 us
V= 3 Im z(a)zq (@) dar.

—T

Since U(c) in (2.2) is a total derivative in «, the conservation of volume is obtained
by simply taking a time derivative in the equation above. Now, from (2.1) and (2.5)
we have that

= A oo
m

and we can write
Ha) = 2(0)+ [ zalmdn

Then the conservation of volume writes as follows

Vo = TR?
- 1 L(t) 2 ™ fe% o i
(2.12) - 5(@) Im(LrJO eilamm i) ﬂ(n))dnda)
L 2 T a o
= %(QL;)) Im (27T’i + J_WL eila—mn) Z %(ﬁ(a) — ﬁ(n))”dnda) .

n=1
This yields the following equation for L(t):

(2.13) (%)2 - R? (1 + % Im ﬁ; J: gitemm N g(ﬁ(a) - 19(17))"d77da>71.

This is the equation for L(¢) that will be use later in the paper,
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10 2. CONTOUR DYNAMICS FORMULATION

Conversely, it is not hard to check that (2.13) implies (2.7)2. In fact, taking a
time derivative of (2.12), and assuming L(t) # 0, gives that

1 L(t
L'(t) = 47TR2( ( J f jet(a=m (P (@)9(m) (9, (a)) — 8, (n))dnda
1 (L(t)\3 " 9 ( Ja —in_—id
— LA iagiv(a) g ing=i(n) gyl
47TR2( 27r) m _ﬂze e +(a) ) e e nda
1 /L(t)\3 " o (¢ —in —i

_ I mz()J =909 (r\dnde.

47TR2( o ) m _ﬂ@e e . e e t(n)dnda

Thus writing in the first term e®e™?(®)9,(a) = 0, S(O; eMet? My, (n) and integrating
by parts we obtain that

-1 t @ )
(2.14) L'(t) = 5T 2— Imf ie'®e (@) J e~ Me= VMY, (n)dnde.
T T

Using the equation for 9 in (2.7)1, we have

% La efmeiw(n)’gt(n)dn _ f: e~ in=i9(n) (Ua(n) +T(n)(1+ ﬂa(n)))dn

_ 0@ () — PO(0) + ZJ &= (1 19, (n))U ()dlny
0

+1 J On (e_”’_m("))T(n)dn.
0

We then integrate by parts once more in the last term, also using (2.6), to obtain

i J Oy (e7 N T (n)dn = ie” "I T (o) — ie O T(0)
0

ﬂj e (L 9o (1)U () + 5= (1+9a(77))U(77)d77J et dy.

0 T™J-n 0

Substituting into the previous equation we find that

L) ¢ . . S . L
2( ) J e—zne—zﬁ('q),&t(n)dn _ e—za—zﬁ(a)U(a) _ 6_“9(0)[](0) + ie—za—zﬂ(a)T(a)
T Jo

us (e

(1 -+ 0o () U (1)l J e~ gy

— e~ PO T(0) + 21 f
i 0

Thus, plugging this back into (2.14) and using relation (2.11) gives

L) = 5 () (1 et [Cemmoanaa) [ 1 auivmyan,

—T —T

which recalling (2.12) implies (2.7)s.

We will later show (see Section 7.1) that the condition on the initial data will
guarantee that L(t) > 0 for all time, and thus the formulations using (2.7)2 and
(2.13) are equivalent.

In summary, the closed system of equations that define the evolution of the
Muskat bubble can be expressed by (2.7); and (2.13), together with (2.11). We will
study the evolution of this system to prove our main results.
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2.5. LINEARIZATION AND NONLINEAR EXPANSION 11

2.4. Calculations Involving the Fourier Transform

In this section we recall basic calculations for the periodic Fourier transform
that will be used in the next section. In particular we define the Fourier transform
of a periodic function g with domain T = [, 7] as:

~ (" ;
F@m) @90 = 5 [ sl *da,
m —T
and the corresponding Fourier series
gla) = Y g(k)e™.
keZ
For later use, we also define the periodic Hilbert transform as

def 1 " gla—5)
2.15 = — _.
.15 o)™ e [ KO
We notice that H(g)(«) pv i tigla;/ﬁz)) Adding half of these together one

can calculate that ’H(c) =0 1f c € C is a constant and
a) = —i Y sgn(k)g(k)e™ .
k#0
And further F(H(g))(k) = —isgn(k)g(k). Then we define the operator A using
the Fourier transform as F(Ag)(k) = def |k|g(k). And we observe that H(gs)(a) =
Y res [klG(k)e*® = Ag. And furthermore

O 'H gaa Z |k|3A etk _ —A3g.
keZ
Also one can compute by plugging in the Fourier series that

o a (™ _l"q\(k>7 k # 0,
(2.16) F(L g(mdn — o— Lrg(n)dn) (k) = {2;0 9(), k=0,

These calculations will be used in the next section when we take the Fourier trans-
form of the linearization.

2.5. Linearization and Nonlinear Expansion

We proceed next to decompose the equation for ¥ in the system (2.6)-(2.10)
into linear and nonlinear parts. We will Taylor expand the nonlinear terms around
the zero frequency of ¥(«a). Define
(2.17) 0(a) = 9(a) — 9(0).

Taking into account that
1 iy
J ei(a+(s—1)/3)ds = ¢t 1 —.6 1,87
0 i
we write the denominator of (2.8) as follows

1 -
J (ila+(s=1)B) id(0) Lif(at+(s—1)B) gg _
0

s ] — B . ; L .
6119(0)6104 1 ’6 e ta i ‘ J el(aJr(sfl)ﬁ)619(a+(571)ﬁ)d5 —141).
i 1—ei8

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



12 2. CONTOUR DYNAMICS FORMULATION

Then after performing a Taylor expansion, (2.8) is given by

AL W )
T ™ | paeiew
ZL(t) e ﬂezaT

Bt : "
. Z (1 . ez(sl)ﬂeze(aJr(sl)B)ds) d,@

_ p—ip
n=0 1 € 0

BR(w)(a) =

By further Taylor expanding the exponential term, we find that

672‘19(0)671‘04 T wla—p) (*Dn(zﬂ)rﬁl
RO |55 (1= emoymt

nz=

BR(w)() =

. <n§1%£ ¢8G4 (s — 1),3))mds)"d5.

We further Taylor expand e?(®). Then plugging these expansions into (2.2) provides
the series for U(«)

1 (#0(a) (" wla—B)(=1)"@B)"""
Z I! pr B(1 — e—iB)n+1

n,1=0 . -m

it '
'<Z>ﬁfo6“8‘1>ﬂ<9<a+<s—1>/5’>>’"d8> dﬂ)'

For convenience, we introduce the following notation for the operators R and S.
We first define R:

_i (Tfle=p) B L1
(2.18) R(f)(a)= —pv T3 (1—e—i3)2J06 =DBg(a+(s —1)B)dsdf.

Above R is chosen to be a linear function in 6, it corresponds to [ = 0, n = 1 and
m = 1in U(a) above. Then, we further define the operator S to be the nonlinear
in 6 terms inside U(a) above:

1 -1 "il+"+1 O(a l 0 a— n+1
3 (=1 (6(a)) fla-p)B

(219) S(f)(a) - = 1 pv . ﬂ(l _ efiﬁ)nJrl
=2
im (L "
- (Z —,J VP 0o+ (s - 1>6>>mds) dg
m>1 m:. 0

T fla—pB)p? i

L BL— ey A

The S operator corresponds to the terms in U(«) above where n,l > 0 and n+1 > 2
plus the case where [ = 0, n =1 and m > 2.
For the cases in U(«) where n =1 =0 and n =0, | = 1 we further notice that

(2.20) %pv Jj f(o‘—__?ﬁ)dﬂ = —iH[f(e) + £(0),

1 L it-n8 g —1)B))™dsdg
+7Tpv Oe O+ (s )B)) " dsdp.

1—e

where H f denotes the periodic Hilbert transform of f as given in (2.15). The previ-
ous identity (2.20) is obtained multiplying above and below by 1—e*® and using the
trigonometric identities 1 — cos (3) = 2sin? (8/2) and sin (8) = 2sin (3/2) cos (5/2).
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2.5. LINEARIZATION AND NONLINEAR EXPANSION 13

Further w(«a) in (2.9) can be written as an exact derivative, its mean value is zero

and therefore @(0) = 0. These calculations show that we can write the expression

inside (2.2) as
BR(w)(a)eiet?(@) = T _

L{t)

Thus, noticing that the term with n = 0, [ = 1 vanishes in U(«) in (2.2) because
it is purely imaginary, using the notation above we can write U(«) in the following
manner

(iB(a)H(w) + H(w) + R(w)(a) + S(w)(a)) .

(2.21) Ula) = ﬁ (”Hw(a) + ReR(w)(a) + ReS(w)(a)).
Proceeding similarly, in (2.10), one finds that
(2.22) D(w)(a) = L_T:) (0(@)Hw(a) + ImR(w)(a) + ImS(w)(a)).

We shall now split all the terms into zero, first or higher order polynomials of 8(«).
First, the vorticity strength (2.9) is split as follows

w(a) = wo(a) + wi(a) + wsa(a),

where
wola) = — A,,& sin (a 4+ 9(0)),
1(@) = A, 2Dy (wn) ) + 20 5B
=~ 4,9 s (0 + (0
(223)  {wsal@) = 40D ) )
I ZCI 5 QIO
- 4,18 s (o 4-3(0) )y Coe .
ot = 1+

Above we used the trigonometric identity sin(a+b) = sin(a) cos(b) +cos(a) sin(b), as
well as the Taylor expansions for sine and cosine. Then D;(wp)(@) and Dsa(w)(«)
are obtained, in turn, by introducing (2.23) into (2.22) as follows

D(w)(a) = Di(wo)(a) + DPz2(w)(a),

where
Di(wo)(@) = 735 () Hao(a) + I R(wo) (@),
(2.24) o
Daalw)(e) = 75 (O(e)Hwz1(0) + I R(ws1) (@) + Im S(w)(a) ).

Analogously, the splitting for U(«a) from (2.21) is
U(a) = Up(@) + Ur(a) + Us2(a),
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14 2. CONTOUR DYNAMICS FORMULATION

with
Uo(@) = 7y Heol@),
(2.25) Ui(0) = 75 (Hen(@) + Re R(wo) (@),
Usa(@) = 75 (s (e) + ReR(ws1)(@) + ReS(w)(@))

Recalling the expression for T'(«) in (2.6), we find that
T(a) =To(a) + Ti(a) + T>2(a),

where, using §*_ U (n)dn = 0, we have
To(a) =T(0) + | Ua(mdn
0

1) = [ vian - 5= [ i

(2.26) ; J 0o (mUo(n n—— 9 (mUo(n)dn,

Toale) = [ (14 6a(0)Usat) n—% (1+ 6a () Us2(m)d

—T

= [ oantitidn = 3 [ amvian

0 -

These are all the splittings that we will use in the following.
We first examine the zero order terms from (2.4);. The zero order terms on
the right side of the equality (2.4); would be

O(a) = (Up)ala) + To(a).
Now a direct calculation from (2.23) shows that

(2.27) H(wo) () = AP? cos (a + 9(0)).

Then we plug this into (2.25); and (2.26); to obtain

(2.28)

To(a) = A,sin (a + 9(0)) — A, sind(0) + T(0).

Up(e) = A, cos (o + 9(0)),
{ g
In particular then the zero order term ©(«a) does not depend on «,

6(a) = —A,sind(0) + T(0).
Now we choose

(2.29) T(0) = A, sind(0).

Thus the parametrization of the circle solution is independent of time (see Propo-
sition 2.1 below). Further ©(a) =

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2.5. LINEARIZATION AND NONLINEAR EXPANSION 15

Now we introduce the splittings (2.25) and (2.26) into the equation for ¢ in
(2.7), we find that

O,(a) = % (ﬁ(a) + N(a)),
(2.30) L(a) = (U1)a(@) + Ti(e) + To(a)ba(c),

N(a) = (Uzz2)a(@) + Toa(@)(1 + 0a(@)) + Ta(@)0a(a).

Now we will expand the linear terms in £(«) in (2.30). To do this we first split Uy («)
in (2.25) into parts corresponding to the parameters A,, A, and A, respectively as

U1 (OZ) = ApUlp(OZ) + 4AUWU10-(04) + ANApUm(a),

To calculate these terms we plug wo(a) and wy () from (2.23) into Uy () in (2.25)
using also D;(wp) () from (2.24) and (2.27). We obtain

Urp(a) = =H(0(c) cos (a + 19(0))) — ReR(sin (a + 9(0))),
(2.31) Uio(@) = Hbpo (),
Urp(e) = —H(6(cx) cos (a + 1@(0))) + HImR(sin (a + 9(0))).

We analogously write the linear part, £(a) in (2.30), as follows

2

L(a) =A,L () +4A, Lo(a)+AAL,(a),

L)
where
r (0% a T
£yfe) = Usy)ae) + | Urglmin— 3= [ Uyl
oY R o T .
+ | Batmycos(r-+ 90Dy - 5= [ Bl cos -+ 50)dn
0 —T
(2.32) + 0, () sin (a + 9(0)),
Lo(a) = —A%0(a) + f Hbo (),
0
(£0(0) = Wiale) + | Uy,
Here we used that 0,H0na = —A30()). We also used that
Hboa(n)dn = Ui(n)dn =0

since both integrals are of a Hilbert transform and thus have zero value for the zero
Fourier frequency. This completes our decomposition of the equation (1.11) into
(2.30).

In the following, we explain the steady states circles for equation (1.11) using
the reformulation of the equations given above.

PROPOSITION 2.1. A circle of radius R, defined by (2.1) and (2.5) with ¥(a) =
3(0) constant in time and L(t) = 2w R, is a time-independent solution of (2.6)-
(2.10) with T'(0) given by (2.29). It corresponds to the solution of (1.11) given by
a circle of radius R moving vertically with velocity A,.
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16 2. CONTOUR DYNAMICS FORMULATION

Proor. For d(a) = @(0), all the linear and nonlinear terms in the decompo-
sitions (2.23)-(2.26) are zero. Thus, with L(t) = 27 R, as in (2.28) with (2.29) we
have

U() = Up(er) = A, cos (a + 9(0)),
T(a) = To(a) = A, sin (o + 15(0))

Both equations in (2.7) are then trivially satisfied; equation (2.7); is decomposed
as (2.30) with £(«) = N(a) = 0.
Then we integrate (2.1) to obtain

z(a,t) = 2(0,t) + Rf ei(n+5(0))dn_
0

We differentiate the above in time, and then use (2.3) to obtain
zi(a,t) = 2(0,t) = U(0,t)n(0,t) + T(0,t)7(0,t)
= A, cos (9(0))ie”© + A, sin (9(0))e© =0+ iA,.
This completes the proof. O

Next, we compute the Fourier transform of the linearized system. Because the
function () is real and has zero average, we only need to compute the positive
frequencies.

PROPOSITION 2.2. (Linear system in Fourier variables.) For k > 1, k # 2, the
Fourier transform of the linear terms (2.32) are given by

L(k) = —Ag%k(/&—né(k)—(1+AM)A,J%6—”<O>9(1€ +1),
and for k = 2,
£@2) = - Ag%ﬁé(z) L (1- AM)Ap; G log 2) GP04(1)

9 s
—(1+ A“)Apge*“?(())e(@.

PROOF. First, we note that, for a general function f(«) and k # 0 we have
(2.16). Therefore, for k > 1, the Fourier coefficients of (2.32) are given by

Lo(k) = —k(k* — 1)d(k),

(2.33) Luth) =1 <’“ - %) O, (),

N 1 R 61‘19(0) R efm(o) R
L,(k) = (k - E) iU,(k) + 5 Ok —1)— 5 Ok+1) |,
so it remains to compute ﬁlu(k) and ﬁlp(k). From (2.31), we can write

U1, (k) =%(em(o)é(k—l)+e‘“§(0)é(k+1))

—i}'( Im R (sin (04—1—19(0)))) (k),
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2.5. LINEARIZATION AND NONLINEAR EXPANSION 17

and
01, (k) =%(ei1§<0>é(k—1)+e—i1§<0>é(k+1>)
—}'(ReR(sin (04—1—19(0)))) (k).
Recalling the expression of R in (2.18), we have that

]-"(ImR(sin (o + 19(0)))) (k) =

_pVLJ (llﬂe’t 1)2>}'(9(a+(8—1)6) sin (a—B+9(0)) ) (k)dsdp.

Using that
I ( ifells—1p ) _ Beos(Bs)
(1 —e—ih)2 4sin? (3/2)’
and computing the Fourier transform inside the integral, we obtain that

]-"( Im R(sin(a+1§(0))))(k) =

i9(0) Tl
_ 627T 0(]{:—1)pvJ_Tr 0458;028—((52) sin ((k—1)(s—1)8—p8)dsdp
—i9(0) ™ 1B cos (Bs) .

Taking into account that
Re( ifetts—18 ) _ Bsin(Bs)
(L—e)2 )  4sin®(3/2)

and proceeding analogously, the following expression is found for the real part:

]-'(ReR(sin(a+1§(0)))>(k) -

k] [ 2O o -1t Byt

4sin? (3/2)
ze*m(o) A ! Bsin (Bs)
+ o 0(k+1)pVJ\7ﬂ- OW COS ((k+1)(8*1)ﬁ+ﬂ)d8d,8

The above integrals are calculated in Lemma 2.3 below. Plugging in their values,
we have

—id(0)

. - e A —k
(2.34) ]-'(ImR(51n(a+19(0))))(k) = SOk ) o L
ei1§(0) R 1
- 6(k—1) <—7T1/c>171ﬁe2 + (- - log4) 1k_2) ;
27 2
and
R ieid(0) 3
(2.35) f(ReR(sin(a-l—ﬁ(()))))(k) = 5 0(k—1)m <log4 - 5) lp=2
;o —i9(0) 9
+ 9(k+1)2fk1k>1.
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18 2. CONTOUR DYNAMICS FORMULATION

We conclude the Fourier transform of Uy, and U, are given by

e %ei@@) (g ~log (4))@(1) + %e—i@@)é(:a), k=2,
and
51k = %61'5(0)9(#1)%6’”(0) (I—Hik)é(kﬂ), k=1,3,4,...,
e %d’m ( - % + 1og4)é(1) + ie*m)é(:&), k=2

Substituting these expressions into (2.33) gives that
—i9(0) (K -D(k+1)~

- O(k+1 k=1,3,4,...
~ k . e k(k + 2) ( + )7 ) ) ) b
Lyu(k) = 33 A o -
I i90) 1y _ 2 ,—i9(0) ) _
1 (2 log 4)6 0(1) 3¢ 6(3), k=2,
and
_ WD+ Dg, 13
E k _ k(k + 2) K ) ) y
B =93 5 A o -
S(3 DO A1y _ D —id(0)7 _
: (2 log 4)e 0(1) - e 006(3), k=2,
Finally, adding them according to (2.32), the result follows. O

LEMMA 2.3. For k € Z\{0}, define the integrals

(7 16008(65) . B e
h(k)—L ey S ()= 1)8—5)dsds

(
(T (" Bsin(Bs) cos (E—1)(s—1)3— B)ds
I2(k)‘Lr T (7 s (1) (=) —B)dsd

Fork>1andk # 2,

while for k < —1.

The value k = 2 is given by
1 3
11(2):7T<§—10g4), 12(2):7T<log4—§).
REMARK 2.4. Notice that

=— ! liﬁcos(ﬁs) in 5— S
Rk = = [ s (U4 1) (s 1)+ By

and

[ [ Bsn(s) Si
o(—k) _L e () 5 (U (13 s

Thus Lemma 2.3 covers all the integrals in (2.34) and (2.35).
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2.5. LINEARIZATION AND NONLINEAR EXPANSION 19

PrOOF. Both integrals are computed similarly. We only show the details for
I, (k). First, consider the case k # 2. Using complex exponentials, we write the
numerator as follows

. 1/ ine (et 82
cos(ﬂs)sm((kfl)(sfl)ﬂ—ﬂ)=E(e k(s=1)B _ g=i(k(s—1)8—258)
1 ilk(s—1)p—258) _ efi(k(sfl)ﬁ)).

Thus integration in s gives that

-1 J«ﬂ' ( 1— e—ikﬂ e2iﬁ _ eikﬁ e—2iﬁ _ e—ik,@ 1— eikﬁ > dﬂ
S111

I(k)= +

6 Tk T2 k=2 & Z(8/2)
1 [T 2 eikB_—ikB  (2iB 4 =28 ikB | o—ikp g
T 16 ). ( k * k—2 k-2 )st(ﬁ/Z)'
We then write the denominator in complex form too
1 _
sin® (8/2) = — (77 — e 2)7,
and formally expand it
(sinB/2)) " G (1- eﬂﬁ —4e” Z lem(=1F— 4 Z le™ "8,
1>1 1>1

where we have used that

Zlfcl L

=1
Therefore, for k # 0,2, we have
e—ilB _gi(k=DB _ o—i(k+D)B  i(2=D)B 4 o—i(2+1)B

2
4ZJ % + k2

I>1 Y-
(ik=D)B | o—i(k+D)B
)
Thus performing the integral in 8 we obtain that
27r
L(k) = —Zz( — 5k —1) - 6(k +1))
=1
2
+k—_ﬂ2(6(271)+6(2+l)75(kfl)76(k+l)))
1 27 27
— (= 2rsen(l) + -T52 - TS Ik),

which gives

I (k)= E(—Sgn(k)+2k__|g‘) _ g—2\k|+2(sgn(k)+1).

2 k—2
It follows then that for k > 1 (k # 2),
L(k) = —m,
and for k£ < —
L(k) = w 2k ||

2k—2 "2+ K]
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20 2. CONTOUR DYNAMICS FORMULATION

The above computations can be justified by writing 2 = Xe™* with 0 < X\ < 1.
Then, (1 - )\e*w)f2 = D=1 IN-1e=il=1)B converges uniformly and one can repeat
the steps above and take the limit A — 1.

Lastly, we deal with the case k = 2. We first rewrite it as follows

T 1 6 ] ]
11(2) = Jﬁﬂ_ J;J 8sm2—(ﬂ/2) (Sln (2/85 — Qﬂ) — Sin (2/8)) dsd/B,
so after integration in s we obtain

N = fﬂ p (‘1 +oos(28) _ (2,8)) dsdp.

_» 8sin? (6/2) 23
Using repeatedly the double angle formula, we find that
R 1 (™ Bcos(B)cos(8/2)
L(2)=—-= J_Tr cos” (8/2)dp — 5 B Sin (3/2) dg
7w 17 Beos(S)cos(8/2)
2 §Lr sin (8/2) 9,
which can be further simplified
T 1 (" 2
1) =5+ [ ssin (203208 5 [ Ea
m 1" Beos(B/2)

T2 2) . sin(B/2) dp.

Integration by parts gives that
n@=7+ 2J log | sin (3/2)|d5.
0

This integral above is related to the known Clausen function [14] of order two
(whose value at 7 is zero):

0=Cly(r) = J log [2sin (8/2)|d8 = J log | sin (8/2)|dS + 7 log 2,
0 0
We thus conclude
g 1
L(2) = g + ZL log | sin (5/2)|d8 = g —2mlog2 = 71'(5 - log4).
This completes the proof. O

We notice that in Proposition 2.2 the first frequency mode is neutral at the
linear level. However, the restriction (2.11) is an equation that relates this frequency
with all the higher ones. Thus, the rough idea is to proceed as follows: apply an
implicit function theorem to (2.11) to solve é(—l) and 5(1) in terms of GA(k) for
|k| = 2; use (2.30) to compute o(k) for |k| = 2, for which the linear operator
provides dissipation when we are able to control the nonlinear terms. Then we will
use (2.13) to control L(t) in terms of #(¢). Finally we can compute the evolution of
the zero frequency 1/9\(0) from (2.30).
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CHAPTER 3

Notation and main results

We introduce the notation that will be used in the rest of the paper in Section
3.1. We will then state the main results in Section 3.2.

3.1. Notation

We recall the complex vector notation introduced in Section 2.1 and the Fourier
transform notation introduced in Section 2.4. We use T = [—m, 7] as our domain
with periodic boundary conditions.

We introduce the space F! to denote the Wiener algebra, i.e., the space of
absolutely convergent Fourier series. The norm in this space is

[0 €3 1))

keZ

We analogously introduce the homogeneous spaces F*! with norm

D kPR s =0

k#0

def

[0 =

Further in Chapter 8 we will use the notation
def &
(3.1) 11 forees Bl pos DT 1l
j=1

Moreover, we will use the spaces of analytic functions ]-',fl where these norms
include exponential weights as follows:

(3.2) [ £l 00 €Y e O (k)]
keZ
and
(3.3) 110 S O fR)], s >0,
k+#0
with
def t
3.4 t) = 0
( ) V() V01+t> s

where 0 < V/(t) < vy is bounded and small enough for all time when vy > 0 is
chosen small enough. . .
We recall the embeddings Fs2t < Fst! for 0 < s; < s, with norm inequality

(3.5) Iflon < flgeans 0 <s1<so

21
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22 3. NOTATION AND MAIN RESULTS

This inequality also holds if s; = 0 with F%! in the lower bound provided that
f(0) = 0. We also recall the interpolation inequality

(3.6) #or ST Gns 5= (1= 0)s1 + 05,

for0<o <1, s,s1,50 = 0.

We further will use the discrete delta function §(k) for k € Z which is defined
as 6(0) = 1 and §(k) = 0 for k # 0. We also define 14 to be the standard indicator
function of the set A so that 14(x) =1if x € Aand 14(z) =0if z ¢ A.

We define the ¢ = ¢P(Z) norms for 1 < p < o of a sequence a = {ay}rez as

1/p
def
laller = (Z |ak|p> ;

keZ

and for p = o0 we use

£
[a]ew def sup |ag|.
keZ

We also define the following notation for s > 0:

. ) awof | L 0<s<1,
(37) )

Further define the high frequency cut-off operator Jy for N = 0 by
(38) TnF (k) € Lgenf ().

We will use these norms and notations in the rest of the paper.
Throughout the paper, we will denote
A,|R?
Clzcl(x):Cl <$;A#7 ‘ p‘ ) >0
Ay
as functions that are 1ncreasmg in z > 0 and might depend on the physical param-
eters such as A, |AA‘R , with the property that C;(z) ~ 1 for all -1 < A4, <1
|A,|R?
Ao

)

> 0. Typically, z will be the norm [0] zs.1 with s = 0 or s = 1/2.
We denote f * g as the standard convolution of f and g. We use the iterated
convolution notation

—_—
k — 1 convolutions of k copies of f

Thus for instance *2f = f * f. We then sometimes also use the notation g +* f =
g* f=*.--xf toavoid an additional # in the notation.
—

k — 1 convolutions

3.2. Main Results

The main result of this paper states that, for any value of the physical pa-
rameters A,, A,, A,, a bubble in a porous medium, with arbitrary volume 7R>
and shape that is not too far from a circle, converges exponentially fast to a circle
that rises (or falls) with constant velocity proportional to the difference between
the inner and outer density. The initial interface needs to have barely more than a
continuous tangent vector, allowmg in particular for unbounded curvature. In par-
ticular since we suppose 6, € F21 then the initial mterface has regularity W
in terms of the tangent vector the initial regularity is Wz, In particular the
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3.2. MAIN RESULTS 23

initial curvature doesn’t need to be bounded. Moreover, the interface becomes
instantaneously analytic.

We summarize here the system that models our problem. For clarity, we write
the zero frequency of ¥ apart because it is decoupled from the rest, and the equation
for 6 with the linear and nonlinear terms separated:

3(0) = 75T+ (150,)(0),
0u(0) = £ (£l0) + (@),

(3.10)

1

L(t) = 27R 1+—Imj f gile=m) Z (0 ))”dnda)”,

n=1

0= jﬂ €i(a+9(a))da7

—T

where the linear and nonlinear terms £(«), N(a) are given by (2.30) with T'(«)
defined in (2.6), (2.26), and (2.29), U(«) in (2.2) and (2.25).

THEOREM 3.1. Fiz A, € [-1,1], A, € R, A, >0, and R > 0. Assume that
the initial data ¥o(c) = Uo(0) + Op(r) € F2:! satisfies the medium-size condition
|4, R
(3.11) 0l 3. < K (5 4,).

where K is defined in (7.26). Then, for any T > 0, there exists a unique global
strong solution 9(a,t) = 9(0,t) + (e, t) to the system (3.10), which lies in the
space

9e ([0, T FY) A LY, T F2Y), 0<T < oo,

with v(t) given by (3.4). In particular the solution becomes instantaneously analytic.
Moreover, the following energy inequality is satisfied for 0 <t < T':
(3.12) 191,300+ 250 [ 101,34 < CRldol .

with

|A,|R? Ay
2_0_ y Ay ﬁ’ l/) >0

defined in (7.22), and Cs = Cs(A,, 14, |R2) defined in (7.11). In addition, we have

the uniform in time estimate

D:D(CSHGOH g

_Ag
(3.13) 161 3.1() < C5l100] 13,1 WP

Furthermore, the zero frequency 3( 0) remains bounded for all times
(3.14) [9(0.6)] < [90(0)] + Cuzl o ...
where Cys is defined in (7.27).

We remark that none of the uniform constants in Theorem 3.1 depend upon
our choice of T > 0, and T can be taken arbitrarily large. We also remark that for
v(t) given by (3.4) then in vy > 0 is chosen sufficiently small as in (7.24).
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24 3. NOTATION AND MAIN RESULTS

REMARK 3.2. From Proposition 2.1, the large time decay in (3.13) implies the
exponential convergence to rising or falling circles. Moreover, as part of the proof,
it will be proven in (7.2) that the length satisfies for all times ¢ > 0 that

R L(t) R

\/1 2\\9\\ 11 \/1 2n0u <>_1)’

which also shows that L(t) —» 2nR as t — o0.

(3.15)

REMARK 3.3. The size condition (3.11) of the theorem above is explicit: for
any value of the physical parameters, it gives a bound for the norm of the initial
data that can be computed. We also notice that, thanks to the diagonalization
performed in Chapter 7, the dissipative character of the equation is shown in (3.12)
for any A, > 0, no matter how large the gravity effects are.

REMARK 3.4. We further point out that all of the estimates in Chapter 4,
Chapter 5, Chapter 6, Chapter 7, and Chapter 8 carefully track the constants in
each estimate. If one only wanted to replace (3.11) and (7.26) with a non-explicit
smallness condition then the proof presented in this paper could be substantially
shortened.

REMARK 3.5. The gain of analytlclty property for any ¢ > 0 of the solution

from our main Theorem 3.1 in f " makes equivalent any of the formulations used
in this paper, including the equivalence between (2.3) and (3.10).
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CHAPTER 4

Implicit function theorem

In this chapter, we will prove an explicit uniform upper bound for the +1
frequencies of # in terms of the higher Fourier frequencies of 8. The main result of
this chapter is the implicit function theorem in Proposition 4.1.

For ease of notation, only in this chapter we will use the following space. For
s = 0, we define the normed space

(4.1) For e T - T | a(0) = a(+1) = 0 and |[uf 7., < o0} .

Here we use the norm

J1ul

def S|~
Fer )0 Klack)].
|k|=2

In view of (4.1), recalling (3.8), we consider 6 def (I — J2) 0. We then remark that
0(a) = (I — F)0(a) = Z (k).

|k|=2

An implicit relation between the frequencies é(il) and the function 6 can be derived
from (2.11) and is given by

(4.2) fr eiaJrié(fl)e_m+ié(1)em+ié(a)da —0.

—T

Note that §(—1) = §(1) = Ref(1) — i Im (1) since 0 is real. Further
O(—1)e™™ + 6(1)e’™ = 2Re (1) cos(a) — Im f(1) sin(c).

We will also use the following notation

(4.3) Yo, z,u) = o+ 2(z; cos(a) — zosin(a)) + u(a), = e R

Then we express the integral in (4.2) as a vector as follows

(4.4 o) = [ mioterr Vo] - [ ).

Here g : FO! x R2 — R2. Now we can rewrite the relation (4.2) as
90, (Re (1), Tm (1)) = 0.
The main result in this chapter is the following proposition.

PROPOSITION 4.1. Fiz 0 <r < % log(2). Consider |0]|ro1 <7. Let

def

Bzo.1(0,7) = {ue FOU: |ul g0, <1}

25
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26 4. IMPLICIT FUNCTION THEOREM

Then there exists a unique function F : Bz,.(0,r) — R? such that F(f) =
(Ref(1),Im0(1)) and (4.2) is satisfied. We further have

(4.5) O(+1) +10(=1)| < Ci(r)r Y [0(K)].

[k[>2
Here the constant Cy(r) > 0 is given by

def 1 2exp(r)(exp(r) — 1)
(46) G = T Ao = 1)

We note that Cr(r) is an increasing function of r and that Cr(r) — 2 asr — 0 and
Cr(r) — o asr — 3log(3).

We point out that the explicit constant K > 0 in our main Theorem 3.1 in
(3.11) and (7.26) is smaller than %log(%). Therefore the smallness condition in
Proposition 4.1 is consistent with Theorem 3.1.

This proposition is shown by an implicit function theorem argument on the
function described in (4.4) around the value g(0,0) = 0. The remainder of this
chapter is dedicated to proving Proposition 4.1.

4.1. Calculation of the Fréchet derivatives

First, we compute the Fréchet derivatives with respect to u € FOl and z € R2.
Below we use the notation D,, to denote the one component Fréchet derivative of
g(u, z) so that D,g(u,z) is a two dimensional vector, and we denote D,, to denote
the two component Fréchet derivative of g(u, x) so that D,g(u, ) is a 2 x 2 matrix.
We will also use the notation D = (D,,, D,) to denote the derivative in the variables
(u,z) and then Dg(u,x) can be represented as a 3 x 3 matrix.

LEMMA 4.2. The Fréchet derivatives of g, recalling (4.3), are given by

(4.7) D.g(u,z)h = ) da h(a) [C(S)ISIEQ(;/ZS;T;J)L%)] ,

for he FOl and

_[-2§"_dasin(y)cosa 2§"_dasin(y)sina | [y
(4.8) Dyg(u, )y = [ 2§" _dacos(yp)cosae  —2§" _dacos(v)sin a] [y;] ’

fory = [yl] e R2.
Y2
For simplicity, we write (4.4) in complex notation as
g(u (E) _ JW eia+2i(11 cos(a)—x2 sin(a))-‘riu(a)da
, .
—T

In particular then in complex notation (4.7) takes the form

Dy,g(u,z)h = J ih(a)et (T dq,

—T

We will prove Lemma 4.2 using this expression for g(u, z).
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4.2. PROOF OF THE IMPLICIT FUNCTION THEOREM 27
PROOF OF LEMMA 4.2. Computing the derivative with respect to u, we have
|g(u + h7 x) - g(uv I) - Dug(ua I)h|
T
= 'J ew(a””’“)(eih(o‘) —1- ih(a))da‘
—T

R} o
< 27| — 1 —ih(a)| - < 271’2 ” ”L

n=2
e}

<(2n Z L v Yz < (2 L

since for h € FO! we have that h(0) = h(£1) = 0 and so

|hl= < D IRK) = ) 1h(k)

keZ |k|>2

Thus, as h — 0, we obtain validation of (4.7). Then (4.8) is proven in a similar
way. ([l

4.2. Proof of the Implicit function theorem

We will now prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. First notice that from (4.8) we have

_[-2§"_dasin(a)cosa 2" _dasin(a)sina | [y
D=9(0,0)y = [ 2" _dacos(a)cosa  —2§" _dacos(a)sina| |y

“efi o] -]

Therefore D,g(0,0)~! = i [? (1)] For simplicity, we normalize the function g
around (0,0) by defining
~ gl(ua I) -1 gl(ua I) 1 gQ(Ua I)
4.10 o) = |2 = D_g(0,0 N ,
I | R XU Vo] I P

and thus, D;g(0,0) = Iz which is the identity matrix on R2. Next, define the
function ¢ : FO! x R? - FO! x R? by

(4.11) ¢(u, ) = [DP(0,0)] ' d(u,z), where @(u,z) = |gi(u,z)
§2(u’x)

Then also Dqg(u, x) is a 3 x 3 matrix. We will obtain the implicit function F' given
in Proposition 4.1 by inverting ¢ in a neighborhood of the point (0,0) € F%! x R2.
We will also calculate [D¢(0,0)]~1, notice that

. T2, 0 | [Lz. O
D#(0,0) = [DugF(o,m Dwg(o,O)] = [ 0 HR2] :
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28 4. IMPLICIT FUNCTION THEOREM
Here Iz, is the identity map on FO1. The last equality holds since

Dyg(0,0)h = Dyg(0,0) ™ Dyg(0,0)h

- [aen} o] [avey)| o

since h € FO! so that h(+1) = 0. Therefore [D¢(0,0)]"! = [Hﬁo‘l 0 ]

0 Ige
For two norms || - | and | - |, we will use the notation that
(4.12) f=o(h]), if |fl—0 and %' —0 as |h| —0.

Now, to invert ¢, we first define the function
(4.13) 7(u, ) def (u, ) — o(u, ).

We will show that 7(u, x) is a contraction map by computing D7. We will calculate
that

Dr(u,z) =1 —[D$(0,0)] ' D(u, z),

where I is the identity map on FOLl x R2. To this end, we compute

d(u+h,x+y) —o(u,x)
= d(u+h,x+y) — d(u,x +y) + d(u,z +y) — d(u,x)

- [Duﬂiztx) Dmg(()u,gg)] m +o(|h] zor + [yl)-

Then using, (4.12), the above holds as |[h] z0. + |y| — 0. Hence,

o H]t—o,l 0 ]I./":'O’1 0
Dr(u,x) =1 [0 ]IRQ][DHQ(WU) ng(“"r)]

= [_Dug(u,x) Igz — Dozfl(uax)] '

To obtain 7 as a contraction on some ball Br(0) c F®' x R?, it is sufficient to
show that the following holds

F0,1 4 R2 < T” (ha y)”]}o:l xR2>

(4.14) HDT(U,J;) [h] ‘
)
for some 0 < r < 1 and for any (h,y) € Br(0) c FO! x R? where

Br(0) € {(u,2) | 2] + |u| 0. < R}, R>0.

Here we also denote ||(h, y)| z0.1yg2 = [R] 700 + |yl
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4.2. PROOF OF THE IMPLICIT FUNCTION THEOREM 29

Since we have (4.9) then, using (4.7) and (4.8), condition (4.14) becomes the
condition that the inequality

(415) |Dr(u,2) m‘

FoIxR2

O ] e

1712 S:r doccos(v) (y1 cosa — ya sinar) — 2wy,
-2 S:T dasin(v) (y1 cos a — ya sin ) — 27y

<[l zox + rlyl;

holds for a fixed 0 < r < 1, for all (u,z) € Bg(0), and for any (h,y) € FO! x R2.
We also use the definition (4.3) in the integral above.

We further claim that condition (4.15) is satisfied for any ball Br(0) such that
2|x| + |ul #0.. <log(2) holds for all (u,z) € Br(0).

Proof of the claim: Let

e 73 = IERC) it

We will use the complex exponential representation of cos(y(a,x,u)) and
sin(¢ (o, z,w)) with (4.3). We will further Taylor expand

exp (i2(z1 cos(a) — xo sin()) + iu(a)))

and use that = (" _h(a)e*"da = h(F1) = 0 since h € F%L. We obtain

A < %'J” i "(2(z1 cos(a) — g sin(a)) +u(a))"da‘

|
el n!

n!

N i‘ J_ h(a)e—ie i " (2(z1 cos(a) — zosin(a)) + u(a))"da‘-

For simplicity we estimate the term with e’* below:

n!

1 ’J” i " (2(x71 cos(ar) — xo sin(a)) +u(a))"da‘

_ i‘ J’T h(a)e™ i i (n> 2F (21 cos(a) — xg sin(a))ku(a)—* da’

n!

a0 n 1 R
< 30 0 () e ol et

The last line is obtained using Young’s inequality for convolutions and

(k) = (51— k) +6(~1 —K)), sin(k) = 2 (51— k) — 5(~1 b)),
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30 4. IMPLICIT FUNCTION THEOREM

and thus the ¢! norm of the Fourier transform is

(4.17) (221 cos(a) -z sin(a))) " | = 2lal,

and the ¢* norm of the Fourier transform is
[(2(z1 cos(@) =z sin(a))) " = = |x].

Then, rewriting the series in function form using Taylor’s theorem, we get
Ay < %Hhuﬁo‘l (62\z|+”uuf0:1 _ 1)_

Doing the same for the second term in (4.16) we obtain

(4.18) |Ay] < B £0s (62|w|+uuuf-o,1 _ 1).

Since the latter term in (4.15) does not involve h, for this term we need

Aleltlulzor 1 < p <1,

These estimates give the upper bound in terms of || zo.: in (4.15).
The other term in (4.15) will give us the upper bound in terms of |y|. Now let

Ay — An] 1 2" _dacos(v) (y1 cosa — yasina) — 2my;
2 Ago -2 S dasin(y) (y1 cosa — yasina) — 2mys |

Then using (4.3), again we use the complex exponential form of cos(y) and by
Taylor expansion we have

Ay = % JW do(yy cos(a) — yo sin(a))e’® Z (e 2,u) = o)

1 ™
+ — d — Yo si
5 a(y1 cos(a) — ya sin

-7 n=1

We estimate the term with e*® as

0

1 : . " (Y
— d _ ia E
’ J a(y1 cosa — Yo sina)e ]

io (2(x1 cosa — zasina) + u(w))”

0 T
1 : (10%
’ 2 —J (y1 cosa — yasina)e da‘
=2 n!
Ly 1 . N
<3 Z n_ 2(y1 cos a — ya sin )" | g || (2(x1 cos @ — zasinar) + u(a)) " |
< %(62\30\'*'\\“\\1%0,1 _ 1)|y|

All the other terms are estimated in the same way. Adding all the estimates together
we obtain the condition

|4, < 2(62|x\+uunﬁo,1 _ 1)|y|.

This is a bigger coefficient in front of |y| than the coefficient in the bound for A;.
Thus, the following condition

2(62‘z|+|‘“‘|f'°~1 - 1) <1,
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4.2. PROOF OF THE IMPLICIT FUNCTION THEOREM 31

is sufficient. This yields the claim that condition (4.15) is satisfied on any ball
contained in the set of (z,u) such that

2fa| + Jlul 0.1 < 10g(3/2).

This completes the proof of the claim.

Now 7 satisfies the contraction (4.14) for (u,xz) € Br(0) for R chosen to satisfy
(4.15). Recalling (4.11) and (4.13), for v,w € F' x R? and for 0 < r < 1 fixed in
(4.15), we obtain

$(v) = S(W)] zo.1 g2 + [7(v) = T(W)] 70,1 (R

P(v) = d(W)] o1 g2 + 70 = W] 701 g

[v =] o1 g2

NN

|
|
We conclude that

[v = w] 7o g2 < (1= 1) d(v) = p(w)] 0.1 g2

Hence, ¢ is an injection on B = Br(0) and so there exists an inverse ¢~ : ¢(B) —
B. Now we define the map F(u) by

F(u) ¥ 15067 (u, (0,0)) where ma(a, (b1,b2)) = (b1, bs).

Further define the map m; by m(a, (b1,b2)) = a.

Given u € mi(B), by the definition of F(u) there exists ' € m;(B) such
that (u,(0,0)) = ¢/, F(u)). Then u = «' by (4.11). Further ¢(u, F(u)) =
(u, §(u, F'(u))) and therefore g(u, F'(u)) = 0 using (4.11) and (4.10). We have
thus shown that g(u, F(u)) = 0 from (4.4). We conclude that (u,(0,0)) € ¢(B)
for all u € m(B) and so (u, F(u)) = ¢~*(u, (0,0)) € B. Therefore g(u, F(u)) = 0
for any u € m1(B). This concludes the proof of the existence of the function F
described in Proposition 4.1.

To obtain the estimate (4.5) on B, first note that for x = (z1,z2) we have

2] = |2 0 6™ (u, (0,0))] = |m2 0 6™ (u, (0,0)) — 72 06~ (0, (0,0))]
< Jul 0. Du(mz 0 7).

Above note that g(0, F(0)) = 0 and so F(0) = 0. Also the norm on D, (mg 0 ¢~ 1)
on is the operator norm. We calculate D, (72 0 ¢~ 1) as follows:

m 0 ¢~ (u+ hy) =m0 (u,y) = ma(u+ hyap) — ma(u,x) = 2y -z,

where we suppose (u,y) € ¢(B) and (u + h,y) € ¢(B) for small h. Therefore
gu+h,xp) =y and gu,z) =y.
We conclude that [g(u + h, xp) — g(u, )] = 0. Thus
0=g(u+h,zn) = g(u,zn) + §(u, 2) — §(u, x).
Then, using (4.12), we have
0= Dyg(u,zp)h + o(||h| z0.1) + D2g(u, x)(xn — x) + o(|xn — ).
We can now conclude that
ap — a4 Dypg(u, ) o(|zy — x|)
= —Dyg(u,2) "' Dug(u,2)h — Dyg(u, )~ oA z0.1)-
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32 4. IMPLICIT FUNCTION THEOREM

We will show that D,g(u,z)~! is a bounded operator with bound (4.28) for (x,u)
satisfying (4.30). Thus, for (z,u) satisfying (4.30), we have

Dy(mz0¢™") = =Dag(u,x) " Dug(u, z).
Then we conclude that
(4.19) 2] < [D2g(u, )| Dug(u, @) [ul 20.1-
The term D, §(u, ), using (4. ) with (4.9), is given by

Dug(u,x) = Dyg(0,0) " Dug(u, x) = — Ay,
where A; is given by (4.16) with (4.3). Hence, using (4.18), we have
<

<62|m|+uuuf~o,1 _ 1).

Consider the operator D,g(u,z)~!. Using (4.8) and (4.9) with (4.3), we calculate
that

(4.20) 1D, )]

Dwg(ua 'T) = ;

1 [ §7_cos(a) cos(yp(a))da  —§" _sin(a) cos(ip(ax ))da}
— " _cos(a)sin(y(a))da §*_sin(a) sin(¢(e))da .

Inverting this matrix, we obtain

(4.21) Dyj(u,z)™" = dei(Dogln I))T(qp),
where
1 §"_sin(a) sin(¢(a))de §7_sin(a) cos(())da
(2  TW=-| ) .
§"_cos(a) sin(ip())der  § cos(a) cos(tp(cx))dox

We will calculate a lower bound for d < det(Dgg(u,x)):

d= % :r cos(w) COS(Q/J(CY))danr sin(f) sin(¢(B))dS

s 7T

(4.23) fi cos(a)sin(i(a ))dozf sin(8) cos(1(3))dA

—T
us

cos(a) sin(8) sin(¢(8) — ¥ (a))dadp.

Next, recalling (4.3), de;;e_ﬂ
R(a, 8) def 2z1(cos f — cosar) — 2o (sin B — sina) + u(f) — u(«).
Then we have
|sin(¢(8) — ¥ (a)) —sin(f — )| = |sin(8 — a + R(a, 8)) — sin( — a)|
(4.24) = |sin(B — a)(cos(R(a, B)) — 1) + cos(B — a) sin(R(a, B))]
< |cos(R(a, B)) — 1| + |sin(R(«, B))]-

Since |R(a, B)| < 4|z| + 2|ul| 70,2, we have that

(4.25)  [cos(R(a, ) — 1| + | sin(R(a, B))|

Z 4|I|+2HUHF01 )>" Z (4]z|+ 2] ul| Fo.1 ) > _ Alel+2lulron _q
< (2n +1)! ’
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which tends to zero as (u,x) go to zero. Hence, by (4.24) and (4.25) we have

[ costaysin(@sinw(s) — wia)) = sin(8 — ))dads
> —4r? sin((8) — (o) ~ sin(B — )
> ,47T2(64|w|+2HuH;0,1 —-1)

and

r JW cos(a) sin(3) sin(8 — a)dadf = =°.

—T —T

We thus conclude
‘ Jj _[r cos(a) sin(3) sin(¢(a) — (B))dadp
= ‘ Jj Jj cos(a) sin(B) (sin(¢(a) — ¥(B)) — sin(a — B))dadf

+ ‘r fﬂ cos(«) sin(8) sin(« — ﬁ)dad,@)
o > —dr?(etlelt2ulzon 1y 4 72,
Thus, the determinant given by (4.23) is bounded from below by
(4.26) |det(D,g(u,z))] = 1 +4(1 — etlelt2lulzon),

Therefore, it only remains to estimate the norm |T'(¢))| to obtain a bound for the
norm of D,g(u,z)~! in (4.21).
Recalling (4.22), we calculate that

p] 1[5 sin(a) (g sin(()) + yo cos((a))) da
W) H - [SZ cos(a) (1 sin((a)) + y cos(1())) da]

™

We have for ¢p(a) = (o) — a = 2(z1 cos(a) — xesin(a)) + u(a) that
sina (y1 sin(¢ (@) + y2 cos(Y(a)))
1 o . . . .
_ _Zyl (ezd)eZza _ 6719{) _ 61¢ + 672¢672w¢)
1 o _ _ _ _
+ Eyz (61¢622a + 672@5 _ equ _ 671¢672w¢) .

And similarly

cos a (y1 sin(tp(a)) + y2 cos(Y(a)))
- %yl (€™ — e71? 4 ¢'¢ — eTi%em %)
* in (e 4 7 4 £ e
We conclude that
T(¢) =

1 [ERe}'{ew}(O) - Re]—'{ew}(—Z); glm]-'{ew}(—Z) — Im}'{ew}(O);]
2 | (Im F{e**}(—2) — Im F{e'}(0) Re F{e'?}(—2) + Re F{ei?}(0)) |-
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34 4. IMPLICIT FUNCTION THEOREM

Hence

@) [] | < 2l 1.
Hence, using (4.17) we obtain the bound
th”l\el

;.

iZ ( ) 52l lul

sult

1T

n=0

1
!

#* | F{2(x1 cosa — xasin )}

This finally yields th
(4.27) IT ()] < 2e?I71HIulz0
From (4.21), using (4.26) and (4.27), we obtain

92lal+ul £0.1
1+ 4(1 — etlzl+2lulzon)”
In conclusion, we have from (4.19), (4.20) and (4.28) that

9621+ luf z0,1 (62|$\+\|u|\ﬁ0,1 -1)

(4.28) | Doglu, )~ <

< i
(4.29) 2ol < = e gl

From the denominator term, we need

1
Azl +2fulzon 1 =

This yields the condition
1
(4.30) 20x| + |ul 200 < 3 log (5/4),
which ensures that the condition 2|z| + ||u] z0.. < log(3/2) is also satisfied. Using
2| = |0(£1)| and u = 0, we obtain
2] + Jlul o = 101)] + 6(=1)] + 6] 201 = 8] 0.1.
Thus, for 0] 701 < 3 log (2) and using (4.29), we obtain Proposition 4.1. O

The result in Proposition 4.1 will be needed to close the a priori estimates in
Section 7.2. In particular, Proposition 2.2 show that the modes +1 are neutral at
the linear level (see also (7.16)).
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CHAPTER 5

Fourier multiplier estimates

In this chapter, we will prove the crucial estimates for the operators R from
(2.18) (in Proposition 5.4) and S from (2.19) (in Proposition 5.5) in the norms F2'!

and F5'1 for s > 0 from (3.2) and (3.3) respectively.
We will use the following facts throughout the section:

LEMMA 5.1. We have the estimate
n
(5.1) lg192 - gnll por < | ] gkl o
k=1

For s > 0, recalling (3.7), we have

n n

(5.2) lg1g2 -+ gnll s <b(n,5) Y. sl | ] lorlzor
j=1 k=1
k]

REMARK 5.2. We note that these results and all the apriori estimates in this
paper further hold with 7' and F$'! replaced by F%! and F*! respectively since
we can simply take v = 0.

PROOF. First consider the case 0 < s < 1 and n = 2 in (5.2). Then we use the
inequalities
k[* < |k = jI” + 141,

and
eV (DIE] < e”(t)|k*j|el’(t)\j\7
to see that
”9192‘]':51 _ Z eu(t)\k\eu(t)\k\‘ms |91/§2(1€)|
keZ
< ) eIl UL — j1° + |§1°) g1 (k — 5)g2(5)]
J,ke€Z

< gl gsallgallzon + g1l o1 [gal s
For general n and s > 0, recalling (3.7), we use the following inequality
(5.3) |E]* < b(n,s)(|k —k1|® + k1 — k2® + ... + [kn—a — kn—1]® + |kn—1]®).
Then the proofs of all the other cases in (5.1) and (5.2) follow similarly. O
We will also use the following repeatedly in this chapter:

PROPOSITION 5.3. We have the useful bound for € T = [—m, 7| and I = 1:

(5.4) )(%)l ~1| <z (P 1+ T

35
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36 5. FOURIER MULTIPLIER ESTIMATES

Proor. By the mean value theorem we have

|(ﬁ)l -1 < ﬂ'(\%(ﬁ)l’mm

We compute the above derivative as:

%(1 —if—iﬂ)l - l<1 —if—iﬁ)l 1dd6 (%)
First, for § € T, we have

) B ’: 18] _ 18]
(1 —e—iP) \/(1 — cos(8))? + sin?(B) \/2 —2cos(B)
Bl <7
251n(ﬁ/2) 2

Next, we have

) -
dB\1—e—i8 [(1 —e~iP)2|

_ [(1 — cos(B) — Bsin(B)) + i(sin(B) — B cos(B))]

4sin?(B/2) ’

In absolute value, the real term in the numerator is

|1 — cos(B) — Bsin(B)| = [2sin?(8/2) — 2B sin(B/2) cos(8/2)].
Hence for 5 € T we have
L—cos(®)~psin()| 1 B | _1
4sin?(B/2) S 12 2tan(B/2) T 2
Next, the imaginary part can be checked to have a maximum of

|sin(B) — B cos(B)] 7

4sin®(B/2) 4

\%(%)\ <% ”%2-

sl ) <3 (G) i T
This yields (5.4). O

Thus we have

We conclude that

5.1. Estimates on the operator R
We will now estimate the operator R from (2.18) as follows.

PROPOSITION 5.4. The operator R from (2.18) satisfies the estimates

IR zor < Cr|f 500 701,

IR(F) 251 < b2, $)CR( £l 222 [0 z01 + [ £ 701 [6]
where b(2,s) is from (3.7) and the constant

(5.6) Cr14C>0,

and C > 0 is defined in (5.10).

(5.5)

5,1
7o

]'_-5,1)7 s> 0.
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5.1. ESTIMATES ON THE OPERATOR R 37

In the rest of this chapter we will adopt the convention that
1— e—iB(l-Hcl)
5.7 —— =i fork; =—
(5:7) 14k i for ky

This convention will allow us to write many formula’s succinctly.

ProoFr. Taking the Fourier transform of the operator R from (2.18) and using
the convention (5.7) we obtain

f(k)e= 5 -8R
j e *), 0(k)dsdp

i Z f k—ky)e” i(k— kl)ﬁﬂf i(s— 15(1+k1)9(k1)dsdﬂ

k?IEZ -7 1 e
™ fk— k1) i(k—k1)B | _ e—i6(1+k1)é(k1)d

Using the convention (5.7) we have

= > fk = k)0(k1)I(k, ky),

kleZ
where
def 1 T o—i(k—k1)B | _ o—iB(1+k1)
. Ik k) = — ' dB.
(5 8) ( ) 1) 7_‘_pVJ ﬂ(l_e—lﬁ)2 T kl ﬂ

For k1 = —1, using (5.7), we split (5.8) as

T e—i(k+1)B 1 m —i(k+1)8 .
O g L [Ty,
1—e i 1—e B \1 -8

I(k,—-1) = %pvf

-7 -7
We will first calculate each of these two integrals separately below.

We can calculate the general integral formula:
1 T it
(5.9) - f—w T—omip 98 = le<o() = 1e1(0).

This will be used several times below. It is proven using (2.20) and noticing that
F(e~*P)(0) = 6(¢). Further from (2.15) we have

S 0) = gy [ ST = e (0~ a0

Combining these calculations gives (5.9).
From (5.9), the first term in I(k, —1) is +1 depending on the sign of k + 1. For
the second integral, we use (5.4) for I = 1 to obtain

1 T —i(k+1)B . 1
o [ ()<
T _ - 1 —if T

»1l—eB —e

|8l

1
FRTS 2\smﬂ/2)\d6

<C

where

e 4 2
(5.10) CX Sy
T 4
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38 5. FOURIER MULTIPLIER ESTIMATES

In this calculation we used that |1—e~%| = 2| sin(3/2)|. Here V ~ 0.916 is Catalan’s
constant:

1 /2 6 1 4 6
V=- dp = — ———dg.
4 L,/z sin 3 i) sm@2)?
Hence, for k1 = —1, using (5.6), we have the bound
(5.11) [I(k,~1)| <1+C = Cr.
This will be our main estimate for the case for k; = —1.
Now generally in (5.8) for k; > —1 we have
1 _ e—iB(1+k1) ki o
_ —irp
(5.12) 5 = e
r=0
and if k; < —2 then we have
1 — e—iB(1+k1) —1-k1
_ ipr
(5.13) 5 = > et
r=1
Thus for k; > —1, using (5.8), (5.9) and (5.12) we have
k1 T — ik —
1 1 e i(k—ki+7)8
I(k, k) = — —d
k)= T8, ;0 prLr 1w P
= (1k*k1+7“$0 - 1k7k1+7“21) )
1+ ks =0
while for k; < —2 we similarly, using (5.13), have
—1-k1 7 —i(k—ki—r
1 1 e k=k1=m)p
I(k,ky) = — — —d
( ) 1) 1+ kl ] vaf_ﬂ 1_6—15 ﬂ
1 _12_:’“1
= (Th—ky—r<0 = Lp—ty—r>1) 5
1+ Kk = ! '

In both cases, k1 > —1 and k; < —2, we conclude that
(5.14) |[I(k, k)| < 1.
Hence we conclude that
IR(f)(k)| < CrI(f = 6) (k).
Applying FO' and .7-"51 norms to both sides, using Lemma 5.1, gives the result. [J

5.2. Estimates on the non-linear operator S
Next, we proceed with the estimates for S from (2.19).
PROPOSITION 5.5. The operator S in (2.19) satisfies the estimates
IS(Hlzor < Crll o1 501,
IS 50 < CallOfZ0 | 70 + Callo] zox |£ ] 2010

where the positive constant Cy is given by (5.49). Further the positive constants Cs
and Cy for s > 0 are given in (5.52).

(5.15)

Feol, S>> 0,
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5.2. ESTIMATES ON THE NON-LINEAR OPERATOR S 39

ProoF. From (2.19), we split the operator S as:
(5.16) S(f)(a) = A(f)(@) + B(f)(a),

where
(5.17) A(f)(@) =
%pv Jﬂ Jla=p)B~ '825)2 Z o L D8O + (s — 1)8))"dsdp,

= B(l—e~ =, ml
and
_ nil n+1 a l
(5.18) By, VOO ()
n,1=0 '
n-+1>=2

Here for n > 0 we define

a1 (" flo—B)pm

(5.19) Sn(f)(e) o . WM(OZ,@”CM,
with
(5.20) ) < ZJI m,f D8 (g(a + (s — 1)B))™ds.
We take the Fourier transform to obtain
R —1)ngltn+l *lé k -
(5.21) B = Y, CLE ) 5 T,
it

where
(5.22) S0 Lov [ JR)e gt M(k, B)dg

' N o

For ki # —1, from (5.20) we have

W) = 33 0 [ (o @k =) s

m=1

YOy J i(s—1)8 ("h Fion)e (kjkjﬂ)(sl)ﬁ)
m -

m>1ks,....km€Z

(k) et (= 1B s

.m  rl m—1
L ) ik — )
> m!Le (Hak kﬁl)e(k )ds

m=1 ks, km€Z j
) 1 _ e—zﬁ(l+k1)

’L

Jj=1

H

1—e iB(1+k1)

- mﬁm (*m5<k1>) BaTR)
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40 5. FOURIER MULTIPLIER ESTIMATES

And when ki = —1, analogously we have
—~ i
Mk 8) = 3 2 (+" (k1)) -
Thus we define
def A
(5.23) P(k) < > — (" 0(k)).
m>=1 :

Now we use the convention (5.7) and plug the above into (5.22) to obtain

e 1 I (kl) zkl,B/Bn+1 1— e—tﬁ(1+k1)
Sn(kr) = — "Plky)————— | d
(k1) vafﬂ B ey <\ P =Ty )
1
(524) = ’L_n Z I(klu n+1 n+1 HP ]+1
ko,....;kn41€Z

where I = I(kq,...,knt1) is defined by

o 1 T —ikns1B T 1 — e~ #B(+kj—kj41)
(5.25) 1= J S ‘ B,
v _71.176 =1 (1+kj7:l€j+1)(176 )
We suppose that [ elements of {k; — k;1}7_; satisfy kj —kj 1 = —1for 0 <l <n.
Then ordering the subscripts such that k; — kj4; # —1for j =1, ..., n -1, we

obtain with the convention (5.7) that the integral I = I(ki,...,kn+1) given by
(5.25) becomes

1 T —iknt18 - — e iB(l+kj—kjy1)
I— —pVJ € | | ' dg.
7 ), 1—eB( 1—6 15 il 1—|—I<; kjr1)(1 —e8)

Now, if k; — k;j4+1 > —1 then similar to (5.12) we have

1 — e—iBOkj—kjpa) R kien

1—e 8

’I"j:0

and if k; — k;j11 < —2 then similar to (5.13) we have

1 — e—iB(l+kj—kj41) —1—=(kj—=kjt1)
_ Z el
- = —e'hi
1—e i
Tj::l
Hence, if k; — kj11 < —2 only for j =m, ..., n — 1 then
noly _ emiB(l+k;—kji1)
— B
i1 1—e
k1—k2 km—1—km km+1—1—k‘7n
Z ef’LT‘lﬁ Z e*irm—lﬁ Z 761'7“,,,,5
r1=0 Tm—1=0 =1
kn_iy1—1=kn_y
Z _eirn—18
""n—l=1

k}lsz kwnfl_kmu km+1_1_km knfl+1717knfl

= Z Z Z Z (—1)nimmtl—idB

r1=0 Tm—1=0 rm=1 Tno1=1
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where
fl:rl—l—...—l—rm_l—rm—...—rn_l.
Hence, in this case
n—I1 1 klfk‘z ’Cm—l_k?m km+1_1_km
G26) I=][— 2 S ..y %
j=1 L+ kj - kj+1 r1=0 Tm—1=0 Tm=1
Fnip1—1—Fkp_ - _iAB /s
1+1 l(_l)n—l—m'ﬂlpvf e AB(@B)l 48
e T (1= e ih)lHT
where
A= kni1 + A
For the inner integral, which we define as J, we have
def 1 T eTtAB(B)! 1
(527) J = EpV J_ﬂ_ Wdﬁ = _Z(J1 + J2)7
where we calculate J; as in (5.9) and
def 1 T eTiAB i3 t
2 Lef = , [( , ) - 1]d .
(5.25) 2 o | () 1

We can bound J5 as well. Using the bound (5.4) in (5.28), we have

/2] < _l . V L+ 7T_2 J_ﬂ 2| sm6|5/2 dp
-a (2) ,

where the calculation above is similar to the calculation above (5.10) and the con-
stant C is given by (5.10).
Thus, from (5.26) and (5.27), we have

n—l 1 k1—ko km—1—km km1—1—km
<[] Xoxn X
e L O B S S

kn—i+1—1—=kn_y

Y (t+a@)

Tn—1=1

k1—ko km—1—km kmy1—1—km

]+1| r1=0 Tm—1=0 Tm=1
kn—141—1—kn_y - L
- ne
Z 1+Cn(= ) .
(1+¢cn(3)
Tn—1=1

Then we denote

(5.29) dif1+cn(2) -

Therefore we have

(5.30) 1I(kyy .o kngr)| < an Y(ki, ..., kne1) € Z0HL
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Plugging (5.30) into the estimate for (5.24), we obtain

n
Suk)l < > ke kg DI f g ) ] [ 1Pk — By
K,k 1 €Z j=1

< X alftkea)l [[1P05 k)

koyeooskn41€Z
(5.31) = an(|f] =" |P|) (k1)

We will use this estimate below to obtain the appropriate upper bound for S(f)
given by (5.21).

Recalling (3.4), in the rest of this proof for convenience of notation we define
the 1 norm of a sequence a = {ay}rez as

lafer €7 el jay P,

keZ
Then for s = 0 using (5.18) and (5.21) we have

—1)njltn+l *lé k .
B =] 3 EE W) S|
(532) < O IO ISy
n=0,1=0
n+1=2

—

Let us examine the bound on the S, (f) term in (5.32) using (5.31). For the quantity
P given by (5.23), we have

1 m
(5.33) |Ple < ), 101 %0x = exp(|0] z0.) — 1.

m>=1 """

From (5.31) and (5.29), we then have

(531 IS4 s < @l lLras (exp(16] o) — 1)
Hence, from (5.32), we have
An 5 n
(5.35) 1B zor < D5 10K 1 £1 70 (exp(|6] 7o) — 1)"
n=0,1=0
n+i>2

We will separately look at the above sum when n =0, n =1 and n > 2.
First, when n = 0 then ap = 1 and we have

” exp([0] 7o) — 1= 8]0
630 X Iy e = T
&l Fot

1812411500
When n = 1 then a; = 1+ C and we have

(531 X I8, (1+€) exp(lflre) — DIz

=1

~ (exp(HQH 0,1) — ]_)2
(1+6) T2 = o1 g
o2, :
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Finally, for n > 2 using also (5.29) we have

(5.38) ) C;—THé(k)HfgiHf\l;gl(exp(II@Ilfg,l)*1)”

n=2,0>0

1.
= 2 7100 [z 171 701 (exp (6] 0.0) = 1)

n>=2,1>0
1; min—1,5 l n
20 O IO g (exp([6] £o) = 1)

Now considering the first sum on the right hand side of (5.38), we have

(5.39) > l—l,Hé(k)Héi\If\l;g‘l(exp(H@H;s‘l)—1)"

n>=2,1=0
exp(|0] zo.) (exp([|0] zo.1) — 1) e
= . e : D 1F 1201 10150 (exp(0] zo.1) — 1)
Fot n=2

_ ol )eplror) — 1%
01201 (2 = exp([6] £0.1) 701 [0]50.1-

Then the second sum on the right hand side of (5.38) is

> 28 (5)" IO 1l s (exp(18] 1) — 1"

exp([10] zo.1) (exp([[] z0.1) — 1)
161 0.1

5 (T n—1
Y En(E texp0l )~ 1) Ul 101

n=2

Now using that

1 2—
an”flz—l—l—anx"*l:—l—k szc( xz),
n>2 n>1 (1-2) (1-x)

we obtain

G40) D) 10 Cr(5)" g (expll0]zp0) — 1"

n=2,1>0

wC exp([0]l z0.1) (exp([|6]l z0.1) — 1)

2
= 163
92 ”0”.27:01 Hf”]—",? L H H]:Bvl

. ( 2 — Z(exp(]f] zo1) — 1) )
(1 2 (exp(|0] 0.1) — 1))

Combining (5.36), (5.37), (5.38), (5.39) and (5.40) into (5.35), we obtain in the
space FO'' with v = 0 that

1B por < Crll0) %0 £l o1
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where C; & C~’1(||9||f3,1) is an increasing function of [|0]| zo.1 given by

(5.41) Cy =
7C exp([|0] 7o) (exp(|6] z0.1) = 1)* 2 — F(exp(0] z01) — 1)
2 1650, (1 — 2 (exp(|0] 0.1) — 1))
9 0,1 _1_ 9 0,1 ~ 9 0,1 ) — 2
exp([0] o 9)2 10 20 (1 c) (exp(| J; )—1)
16]1%0.. 16]1%0..

exp([6] zo.1) (exp([6] zo.1) — 1)
16]1%0.1 (2 — exp([|6] z0.1))

This completes the estimate (5.15) for the operator (5.18) and for s = 0.
For the operator (5.18) and s > 0, from (5.21), (5.22), (5.23), (5.24) with (5.25)

we have

(—1)”il+n+1(*lé(k1)) .

(5.42) |B(f)ll gz = ||ka|? # Sn(f)(k1)
Il o1
n,1=0 . v
n+1=2
*lé kl n
:H|k1\s Z #* Z I(k1y s ko) f(kns H (kj — kjr1) "
n, =0 ’ koy....kn11€Z j=1 v
n+i=2

<51+SQ+53,

where we use a,, from (5.29) and (3.7) so that, using (5.3) and (5.30) with (5.23),
the terms S; are given by

b(l+n+1,s) _
si— Y MERELS) gyt e

i ol Flzoa PR
n,1=0 ’
n+1=2
b(l+n+1,s)
n,1=0 ’
n+1>=2
b(l+n+1,s)
So= 2 = annlfloa | flzgn 1PIHIF P s
n, =0 ’
n+1>=2

We recall from (5.23) and (5.33) that [P < exp (€] 01) — 1 and notice with
(5.3) that for s > 0 we have

(5.43) P < 3 bl 6],

m=1

Then, we have that

Sz < 6’3”0H_27:871”f|]—"5'17
where
0]l -0,1
~  def b(l+n+1,s) e FvT —1\"
(5.44) Gy BRI ot 2(4”9“ ,
n=0,1>0 : Fol
n+i1=>2
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5.2. ESTIMATES ON THE NON-LINEAR OPERATOR S 45

and
S1+ S5 < Call0] 01 |0] 21 £l 201,
where
161 20,1
y, def b(l—i—n-}—l’s) n4l— e "FuT —1\"m -
a5 G 3 el () 4%
nti>2 0
with
161 0,1
5 der (€ TvT —1ynTd b(m, s) -1
5.46 O, (7) Bm,5) ot
( ) ’ " HQH]-‘Bl mZ;:l (m_ 1)[” |]_-B,1

Finally, going back to (5.42), we obtain the result for s > 0 that
1B 20 < C’3|\9H2fg=1|\f| [fl o

This completes the desired estimate for B in (5.15) for s > 0.
Now it only remains to bound A(f)(«) as defined by (5.17) in (5.15). Analo-
gously to (5.24) and (5.25), one can obtain that

A(ky) = 3 I(ky, by — ko) f (k) Pa(ky — ko)

k}2EZ

gor + Caf] g0 0] 20

where

and I(kq, k1 — k2) is given by (5.8) with k = k; and k; in (5.8) replaced by k1 — ks
using also (5.7), so that in particular

T . 1 T o—ika2f 1— e—i6(1+k1—k2)
(kv by = ko) = ;var 1—e P i(l+ky — ky)(1— e P)

Then analogously to (5.11) and (5.14) we have

dg.

|I(k1, k1 — k2)| < Cr,

with C from (5.6). Note that A is the operator Sy in (5.24) with n = 1 if you
replace P from (5.23) with P, above. Then we have the same estimate as (5.31)
with Ps replacing P and n = 1 recalling also (5.29). We estimate P similarly to
(5.33) (except that m > 2). We conclude that

(5.47) [Al o1 < Crllflror|Pallzon < CRC1O|Z 0] ] 20
where
(5.48) & = exp([|0] zo1) — 1 — [|0]| zo.1
0,
Thus, recalling (5.6), (5.10), (5.41) and (5.48), then we have
(5:49) €1 = Gy + CrCh.

We obtain (5.15) for s = 0 by combining (5.47) with the bound above (5.41).
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46 5. FOURIER MULTIPLIER ESTIMATES

We turn to the estimate for A in (5.17) for s > 0. We will use (5.3) since s > 0
and (3.7). We will in this case estimate P» similarly to (5.43) (except with m > 2).
We then have the estimate

b(m+1,s m —
Al zer < Cr 32 2L (g s OIS 1) 250 ),
m p 79

m=2 :

Now define
v def b(m + 3, S) v def b(m + 3, S)

(5.50) C3 = ——— 0150, Ca = ———— 0] %01,

g@ (m+2)t VIE ";0 (m+ 1)t TIE!
then we have
(5.51) [l 51 < CrC3]0]%0.1 1 £l 231 + CrCal0] zo | 1 701 16] 251
Hence further define
(5.52) Cs def 03 + CRég, Cy ef 04 + CRé4.

Then using (5.44), (5.45) (and the estimate below them) and (5.50) (and the esti-
mate above it) we obtain (5.15) for s > 0. O

In the next chapter we will prove the a priori estimates on the vorticity strength
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CHAPTER 6

A priort estimates on the vorticity strength

This chapter includes the a priori estimates for the vorticity strength w from
(2.9) that will be used in particular in Section 7.2. The main result of the section
is the following Proposition 6.1.

PROPOSITION 6.1. The linear part of the vorticity, wy in (2.23), satisfies the
following estimates:

4 L(t
60l < Argslflzzs + (14 24 DIAL O]

for s > 0, recalling (3.7), we have

47 L(t
(6.2) lelfﬁ'l < Ao-ml‘e”}'—SJrs,l +(1+ 2|AM|)\AP\%2[)(27 S)e"(t)He‘

Fote
The nonlinear part wso from (2.23) satisfies

4 L(t) ,
(63)  lwsalron < 1o s ol 101521 + Lol 2O Crolfg .

while s > 0 we have

47

#ot <IAlAg 2 Cis 6] g [6] 22v

L(t) ,,
114, 2D 004, 0] 61

™

Foby
where Cy and Cyg are defined in (6.10) and C13 and C14 are in (6.16).

PRrROOF. First, recalling (3.7), we note that

| cos (a+9(0))8(a)] zo1 < 6] 0.1,

| cos (a+19(0))0(ax) | 51 < 2b(2, 5)e” 6]

(6.5)

Fol, s >0,

as similar to the calculations in the perof of Lemma 5.1. We point out that the same
calculations also hold with cos (a+4(0)) replaced by sin (a+9(0)). For example,

47
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48 6. A PRIORI ESTIMATES ON THE VORTICITY STRENGTH

to see the above in the case 0 < s < 1, we have

Foo = 2 @ OMIE]|((cos (e 5(0)))" = B) (k)]

keZ

(6.6) | cos (a+0(0))0(c)]

= > eV<t>\k\|k|S%(5(1 — k) 1+ §(1 + kp)e P ONA(k — k)|
k,k1€Z

<) e”(“"“'lkls (18(k = 1)| + 18(k + 1))
keZ

< 5 2 OOk — 17 + 1IG(k — 1)
kEZ

+ eI (11 1 15 + 1)|0(k + 1)
= O (0] 2o + 6] £21) < 2¢7P6)

~s,1.
7o

This explains the difference between (6.1) and (6.2). We will explain the proof of
(6.2) for s > 0. The proof of the other case, (6.1) when s = 0, is analogous. It
follows from (2.23) and (6.5) that

Jwr] g0 < |AM|£HD1(MO)H]—'51+A 1002450 +[A,p IQ%( 8)e" 0] £,

L(t)
and from (2.24) with (6.5) and (2.27) we have

) ™ L(t) v(t)
ID1(wo)l o1 < m(\AP\TQb(Z,s)e 6]

Recalling (2.34) together with Lemma (6.5) gives the following estimate

IR (@) 5z < 14,2202, 5)e O

fs,1.
Fo

Therefore,

ID1(wo)l 5 < 4A,1e”Vb(2, 5)[6)]

517

and thus the estimate (6.2) for wy is complete. The estimate for (6.1) is proven in
the same way.
Now we proceed to bound wso from (2.23) in F2:1. In this case we have

L(t L(t) ||9|| 01
fosal o < A2 D)l + 14,2 e 37 2
(6.7) =
L(t) L) ,
= | Al - HD?Q(W)HFBJ + |Ap|Te (t)C'e’||9||§__3)17
where
18] 0.1
e Fv —1— 0] zo-
(6.8) Co = :
16]%0.1

From (2.24), one has that

P22l 701 < 75 (18052 lmilzgs + 1RG0z + 181 51)-
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6. A PRIORI ESTIMATES ON THE VORTICITY STRENGTH 49

Using the estimates (5.5) and (5.15) and splitting the vorticity terms as ws; =
w1 + ws2, we obtain the estimate

0

+ Crl0] 9 sl 5 + |4,

[P=2 o < (\Iﬂl;g&llwl I7or + 101701 lwsal 701 + CrIO| 2ot lwn ] o1

L(t)

e OC )20 + C118)20s o]
+ G100 lws2l 51 ),
so, substituting back in (6.7) and solving for [wx2| zo.1, we obtain that
L(t
fosalsge < s (14uICHI0 gl + 14,114, e 06 012,

L(t
ria eocyppe, ),

where we defined
1
Y WeAT vy

with Cy given in (5.49). Substituting in (6.1) we conclude that

(6.9) Cr;=14+Cr + OlHGHFS,l, Cs =

lwsal por < 2|4l Ag = CrCs 0] 2 0] 220

( )
14, 2D 00, (14,101 + 214,00 + 14,00 + o) 10130,

which gives the estimate (6.3) by defining

Cy = C7Cs,

Cio = |AL|(1 +2|A,|)C7Cs + |A,|C1Cs + CsCs,

where C1, Cg, C7, and Cg were previously defined in (5.49), (6.8), and (6.9).
We consider now the case s > 0 in (6.4). From (2.23), also using (6.6), we have

(6.10)

H9H

L(t 0,1
(6.11) 1 < |AM|Q\|D>2(W)\fS,1 + A, —Le® Z Fu
o v
j=2
L(¢) b(j, )]0 ”_7_—0 1
+ A== Y 6] s
s j; 7!
L(t) L(t)
<A Do) g0 + 14,1 2O O] 5161 5,
where
b(j, )01 b(j, )01
(6.12) Ciy1 = Z 7]:" + Z 7]:"

j>2 gt i=1 7!
Recalling (2.24), and (5.3), one has that

D2l 551 < 7 (B2, 9161 2z [l pp + B2, 8) 0] o oz 2

L(t)
+ [R(ws1)]

s+ 15@)]z

ar).
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50 6. A PRIORI ESTIMATES ON THE VORTICITY STRENGTH

Using the estimates (5.5) and (5.15) with s > 0 and splitting the vorticity terms
again, we obtain

™
1Po2lren < T <(1+b( 8)OR)0] g1 [wrl 701 +(140(2, ) Or) 0] £ w2 01

(14 B2, 5)Cr) 1Bl o ol g + (1+ B2 )OI s osal
L) .
+ ‘AP‘TE (t)(cg + O4)HOH]_-31 6] For Cg||9||§__3,1||w1|}-:1

s lwsal g+ Calbl 161 5o+l 191 50 sl ).

which becomes

m L) .
[D2a 250 < M(M”'Te 0 (Cy+C1)10] 501 ]0)

721 +C12]|0]

];-5,1 |w1 ||]:2,1

+Co]|0] o o] 251+ Cral|O] o |ws2 zo.1 + C2 0] 701 [wa|

where
Co = 1+ b(2,5)Cr + Cs]6] 5o
Cia=1+ b(2, S)CR + C4HOH]_-B,1,

with Cg and Cy given in (5.6) and (5.52), respectively. Substituting back in (6.11),
and solving for |wxz | 5.1, we have

(6.13)

losal gz < 14ulCs (|4 2200y + €101 5101

+ Craf|f] g1 |wrl o1 + Coll0] zo lon | 51 + Crzf|0] 0 \|w>2\\;3,1)

L(t) , .
+ 14, 201,610l 0

where we defined
~ 1
(6.14) Cs = .
1= 4,0l o

We introduce the estimates (6.3), (6.1), and (6.2) to obtain that

. L@t ,
ol sz < 1410 (140 200 Ca Ol 01015

4 .
Ao Ty CralOlz 10l gz + (4 214114, 1= ( ) vt C128] 1 6] 501
+ AUTCE”@“HM||9||f'2+s‘1 + (1+2|AP‘|)|AP|T2I)(2,S)€ ¢, 101 30116 5.
+ |A |A 09012“9“]:0 1 HO‘ 5 1 |0||]_-2 1

( )
() v L(t) v 2
+ |AP|F€ (t)010012||9||f'5=1\\9“2;3,1 JF|A/J|T€ D11 Cs 0] 0.1 10]] 251

Next, we use the interpolation inequality (3.6) to find that
(6.15) 6]

~s,1
Fo

0521 < 101 201 [60] 52100,
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6. A PRIORI ESTIMATES ON THE VORTICITY STRENGTH 51

and therefore

dr

2t < |Auldo 75 s (Ca+ Cra + 14uICoCr 01 75 )16 ro 101 210
L(t =

+ |Ap|—7(r)e"(t)08<\Au\(C’3 +Ca) + AL (1 + 2[A,])(2C; + Cr2)

lws2|

+ [Au|C10Ch2[ 0] o + Cn) 16]| 0.1 16

Fob
which gives the inequality (6.4) by defining

Ciz = C’g (CQ + Cha + |AH|C9012H0H]-‘B*1)a

(6.16) Cus = |A,|Cs (03+c4+(1+2|AH|)(202+012)+cmcm\|e\|ﬁ,l)
+C11Cs,

where 03 and 04 in (552), CQ in (613)7 ég in (614), Cg and ClO 111(610), 011 in
(6.12), and C2 in (6.13) were previously defined. O

In the next chapter we put together all the previous results to prove the global
existence and instant analyticity as in our main Theorem 3.1.
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CHAPTER 7

Global existence and instant analyticity

This chapter is dedicated to the proof of Theorem 3.1. In Section 7.1 we prove
the claimed bound for the length L(¢) from (3.15). Then Section 7.2 proves the
main a priori estimates for a solution . We prove the global energy inequality
from (3.12). In particular we diagonalize the linearized operator in Proposition 7.1.
We prove operator bounds for the corresponding linear transformations in Lemma
7.2. In Section 7.3 we prove the corresponding non-linear estimates that were used
in the a priori estimates from the previous section. In particular we prove Theorem
7.51. Lastly, in Section 7.4 we describe the scheme of the proof of our main theorem
via a regularization argument.

7.1. Estimate for L(t)

In this section, we prove the bound for L(t) from (3.15). Equation (2.13),
together with the bound

Z"Vl

(7.1) fm (J_ﬂ,r La e ;1 —7(0(a) 9(n))"dnda) <Y %

n=1

< m2(e2lelron 1),

implies that

R? L(t)\2 R?
(7.2) 1+ %(62H9H;o,1 — 1) < ( o ) < 1_ %(BQHQHFO,I _ 1)7

and therefore

(73) 27TR037 < L(t) < 27TRC38,
where

1 1
(74) 037 = C(38 =

\/1 +z(olron — 1) \/1 — x(2olron — 1)

We have thus shown that the length of the curve is controlled for all times. In
particular, we also have the following estimates

2( 2 N2 | < T (20000
i <L(t)) 1| < g(e2r -1,
_271' _ _ _ (200000 — —
(7.5) ’R(L(t)) 11 <1 \/1 5 (2101 1) = Csg6] 501,
3 2m\3 _ T oolren _ ) _
)R (L(t)) 1< (1 5 (e 1)) 1 = Cuo|l0] Fo.1,

53
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54 7. GLOBAL EXISTENCE AND INSTANT ANALYTICITY

with

3/2

1—4/1—Z(e2l0lz0n — 1 1+ Z(e2l0lron — 1 -1
(7.6) Cs9 = \/ |Z|(f0 - ), Cio = ( i ))

B0

These are the main estimates that we will use for L(¢). We remark that all the

.1
estimates in this chapter hold with the same proof in the norms F2o:! and F? ! In
the next section we prove the main a priori estimates for 6.

7.2. A priori Estimates for 0(t)

In this section we obtain the a priori estimates that guarantee the global ex-
istence of the solutions, the instant in time analyticity, and the exponentially fast
convergence to a circle. In particular, the main goal is to show the energy inequality
(3.12).

The results of this section are ordered as follows: First, we write the system
(2.30) using the linearization (2.2) of Section 2.5; then, we diagonalize the system
according to Proposition 7.1 to show its dissipative character; the bounds for this
change of frame are proven in Lemma 7.2; the estimates for the nonlinear terms
are proven in Section 7.3, together with the control of the length in Section 7.1.

PROOF OF THE GLOBAL ENERCY INEQUALITY FROM (3.12). Equation (2.30)
and Proposition 2.2 show that the equation for 8(k), 1 < k # 2, is given by

2 21 1) soiA
T (k )(kH— )6_“9(0)9

~ 2r \3 9 ~
b,(k) = —Ag(m) k(k —1)9(k:)—(1+AM)ApL(t) s (k+1)
+ %ﬁ(k),
and for k = 2, we have
6,(2) = Ag(%)36§(2) (1+ Au)AP%zeﬂﬁ(o)G(i’))

2 YPRON 2T~
+(1-A4,)A 2m 3 (§ - log2> e OF(1) + — N (k).

We notice in the equation above that the terms that are linear in é(k;) have time-
dependent coefficients. However, this dependency happens only through L(t). We
will show that L(t) is bounded from below and above (see Section 7.1). In fact, it
is not hard to see from (2.13) that, to leading order, L(¢) equals 2rR. Thus we
rewrite the equation above as follows

0,(k) = f%k(kg —1)0(k) — (1 + AH)%%&W@@ +1)
(7.7) + %ﬁ(k) - %k(z& — 1)(k) (33(%)3 - 1)
A, (K2 =1)(k+1) _502 27

for 1 < k # 2, and we decompose the equation analogously for k = 2.
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Next, we write the corresponding linear system as follows
(7.8) z(k) = > My j2(4), k=1,
j=1

where we denote

_a(k)v .7 = kv
b(k), j=k+1,
My, ; )
C(l)v J = 1ak = 2,
0, otherwise,
with
A A, (K2 =1)(k+1) _;5
. k)= Z2k(k*—1), b(k)=—(1+A,)L =/ ~i0)
(7.9)  alk) = 5k ), b(k) (+H)R Rh+2) :
(1) = (1— AM)%; (% - 10g2> ¢90),

Notice that this is an upper triangular system except for the entry k = 2, j = 1.
This entry, k = 2 with j = 1, will require special attention. The eigenvalues of this
system are —a(k). This is given in the following proposition.

ProproOSITION 7.1 (Diagonalization). Consider z = (2(k))k>1,y = (y(k))k>1 €
' and the linear operator

S7h.pt -t
zy =81z,
defined by
y(k) = > Sp32(9),
j>1
with
s j—k
4 b(k—1+1
(—1)* E-1rD - isks
1 a(k) —a(k +1)
(7.10) sit=4 b J=k=1
_C(l)v k=2j=1,
a(2)
0, otherwise.
Then, the inverse operator S is given by
j—k _
1—[ b(k—1+1) ) S k>
7 alk—=1+1)—a(j)
Sos =1 j=k=1,
Al F=2j=1
a(2)
0, otherwise.

Moreover, the linear operator S~! diagonalizes the system (7.8) as follows

ye(k) = —a(k)y(k), k=1,
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56 7. GLOBAL EXISTENCE AND INSTANT ANALYTICITY

We remark that since H?:l = 1 by definition then Sj , = Sk_,l€ =1when j =k
for all £ > 1. We also have the following lemma which gives uniform bounds for
the operators S and S—1.

LEMMA 7.2. The operator norms in £* of the linear operators S and S~ satisfy
the following bounds

(7.11) IS~ oo < Cs, IS]er—er < Cs,

with Cs = Cs(A,, |A2LR2) where

ST,
((+4,1252)"

In the constant C's above we used the modified Bessel function of the first kind
of order three. In general, for an integer n > 0, we define

Z\ " ® z 25
(7.12) () % (5) > ‘7(&

! I
= J1(J + n)!

Cyg Efmax{l—l—i(l A )

We will prove Proposition 7.1 and Lemma 7.2 after we finish the proof of the main
global energy inequality.

REMARK 7.3. The results in Proposition 7.1 and Lemma 7.2 also hold in the
space ¢! with weight e"(t)|k||k‘|S for any s > 0 without any change to the proof; i.e.

531 < Cslylzgr, Iylzgr < Csll

where y(k) and z(k) are defined in Proposition 7.1.

B o

According to Proposition 7.1, we apply the linear transformation S~! to (7.7)
to rewrite the system with the linear part in diagonal form

(5710lk) = ~ZFH(E = (ST D) + (5T F)(b

- W () 1)

(1 - AM)%e—iﬁ(O) (5~Lo) (k) (R% 1)
r(1- AM)%; (Z “log 2> ¢9(0) (R% - 1)(57110)(1@),
where we introduced the notation
u(k) = k(k* = 1)8(k), v(k) = %%ﬁ 1), w(k) = 1L_20(1).

Taking into account that 6(«) is a real-valued function, we can write the norm (3.3)
in terms of the positive frequencies alone

6] 3.0 = D5 " OHR2BR) =2 3] e OFE216(k)).

keZ k=1
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and consider the evolution of the quantity

Iyl 3. =2 D7 e DFE2 (k).
Y k=1

Taking the derivative in time we obtain that

d 3/2 vityk a2 L Ut (R)Y(k) +5 (k)5 (k)
Lyl yo =2 D RO ) +2 Y O : .

k=1 k=1 2 |

Therefore, substituting (7.13), one finds the following equation

d
Syl =23 v Ok R (k)| - 2 DR (K2 = 1)[()]
dt R l;l nggl

(7.14) 21 N kg2 L (ST N)(R)G(R) + (SN (R)G(K)
25 2 709
+ Yy + Yy + Y,

where

Vi ol (m( 2 ) 5 i1z (ST (R)FE) + (ST (k)

R? 2|y (k)| ’
A
Y, = 72(1+Au)fp(Rm71)
x Ser kg2 6’“9(0)(S’lv)(k)z?(kaLew(o)(S‘lv)(k)ﬂ(k)’
= 2y(k)
A 27r 3/3
3 e kk.l/21 el )(S‘lw)(k)ﬂ(kaLe‘”(O)(5*1w)(k)y(k)
k=1 ‘y(k |
We have the bounds
A 27
o en _ v(t)k1.1/2
Y| <275 |R° (L( ) 1‘2 KY2|(S™ ) (K)),
Y,| <201+ 4,) “2 ol ‘R 1‘2 vOREL2(S7 1) (k)|
| Ap| v(t)k1.1/2
Y, <2(1—AN)W‘RL—— ‘2<——10g2) k;e KY2|(S~Yw) (k).
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Noticing that (S~1w)(k) = w(k) = 1k:2§(1) and using the inequalities given by
Lemma 7.2, we have

A, 2m \3 |A,|R? 61 1/2
Y,| <222 —1|Cs(Ay, =) > "Wk 2 lu(k)),
R ( (t)) ‘ A, &
2
il <20+ 40 G R 2 — 1o, ) 3 erorpzuqu),

As k=2

1\(——log2) 2/016(1)].

V| < 21/23(1 — 4,14 |)

Since
(k? —1)(k+ 1)

<(k+1%2, fork>1
k) SEHDT for ’

k(k* —1) <k®, for k=2

it holds that
lv(k)| < (kK+1)8(k +1).

Now we use the inequalities for L(t) from (7.5) (see Section 7.1) to obtain that

[u(k)] < k° |A(k)

A
V| <2 CSC40H9HFU Y " OREEIG(k)),
k=2

(7.15) IV, <2(1+A )‘ P'csaggHerm ek + 1%210(k + 1)),
k=2

A ~
al < 272301 — A0 g0l 0 (2 rog2) el

Above we wrote Cg = Cs(4,, —Pa—) Going back to (7.14) with the bound (7.3)
and the inequality

K2R —1) > %km, for k > 2,

we find using also (7.11) that
d 3A

il g0 <V Olyl 50— 5R—§ " OF KT (k)|
(7.16) k=2
[AplR? 11
+Cs(Ay, A, )Cs7 NI e + Yol + Vo] + [Yal.

We will next control the k = 1 frequency in the dissipation part above. To that
end recall from Proposition 4.1 that, if ||| o1 < %log (%), then we have

210(1)| < 2C1 (6] g0 0] 701 Y 10(k)
k=2
which implies
18] 520 = 2e"O[B(1)] +2 3 e kR (k)|
k=2
<2 (Cr(I0lpp)l0lppr +1) D O kB, s =0,
k=2

We will find an analogous inequality in terms of y. We remark that at the end of
the calculation the constant K in (3.11) and in (7.26) will be smaller than 3 log ().
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~

Now since (1) = 0(1), for s = 0 we have that

[yl 20 =2e" D101 +2 " e OFE2|(k)
k=2
<2C1(|0] o) 0] 701 D e DR B(R)| +2 Y DRk |G(k)),
k=2 k=2

thus substituting §(k‘) = (5%)(k) and using (7.32) with (7.33) and (7.12), we obtain

\|
I(24/[1+4,| 2%
)6 3( } M| As )6‘]_-3,1 +1> Z eu(t)kksm(k”'

(e ey ™

< 207(6] 0.)[18] 7o.1¢* 2

+2(Crllol

k=2

Subtracting the 7(1) term and using that e*®) < e*0 for all ¢t > 0, we find

(7.17) [yl zee <2Cy 3] e OFRIG(R), s =0,

k=2

where using also (7.9) we define

1o (2o 45122 )
(|1+Au|—‘AZLR2)S/2

A,|R? ’
1= Cr(16] 5)20e0 31— A4, U472 (3 10g 2) 0] g

Cr(10] 556 16l 55 +1

(7.18) C, =

This is the bound for ||y .1 that we will use in (7.16).

Notice that in (7.15), regarding Y,,, that 3v/2 (2 —log(2)) < 1.91 < 2. Also in
Lemma 7.2 we have Cs > 1. Thus, from (7.15), we have

A ~
Vol 1Vl <201+ 14,]) 2L OsCnet @ o g 3T 092000,
k=1

Now we go back to (7.16), use (7.17), and substitute in the bounds for Y,,,Y,,Y,,
(7.15) to obtain

3A,
Hy\l s VOl 30— 7550 Il 3.
11
+ CSC371_HNH £

A v
2555 CsCaollll o 3 O kF[A(R)]
k=2

2(1+ |4, Dol CsCuoe @10l g0 3 O 872101,
k=1
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where we have combined the bounds for Y, and Y, as above. The reverse inequal-
ities (7.11) and the embeddings (3.5) give that

A, 3 R? 2
G0 < 55 (= S0t 40 v 209 Culyl

|A | v
(7.19) 20+ AL = — (Cs)*Caoe” @y 0. Iyl .5
+ CsC?}l—HNH e
Next, we will use (7.53) to control the nonlinear term |N| . e Together with (7.3),
we obtain 7
HNH % 1 R2 C’3503 HQH 3 1”0H V% at ‘AP‘ey(t)C%HeHj__V%,lH‘g”j_u%,l-
Thus using also (7.11) we have
A A \R o
(7200 IN| g0 < T3 (C8)(ConCi + 5O Cus) Iyl y a0l 5.0
Substitution of (7.20) into (7.19), and using once more (3.5), prov1des that
d As (3 R3
Gl <=5 (G0 - 05 - 209 Cull .
A,|R? 2 y
21+ 14D I () e Oy

AR
— (0s)°Cs (035037+| |

OCa) ol I

Since Cy ([|0] zo.1) in (7.18), C35(]|0] z0.1) and CgG(HHH]_-o 1) in (7.54), (Ca7([0] o1 )
n (7.4), C39(|0] o) and Cao([|€] 70.1) in (7.6), are increasing functions of the ar-

gument we can bound all of them by evaluating at the bigger quantity Cglly| . £h

since [|0]| zon < [0] 1. < Csllyl . Fh Here we suppress the dependency on A

=3
|A,|R?/A, from Cs.

For clarity of notation, in formulas (7.22) and (7.23) below, we understand that
all of these functions are evaluated at CSHyHF, 1.1 We conclude that

d A,
(721) Sl g0 <~ 25Dl 30
with
|A |R? Ao 3 .1 R3
22 (Il A i) = 10—V O~ Calyl
where
(7.23) Cy =
A ,,|R - |A,| R? v(t)
C2(2040 +2(1 + |A,]) Cs9e’ M + CsC3t (Ca5 O + L e )Cs6 ) ).
Note that we can initially choose vo > 0 in (3.4) to be arbitrarily small, and that
V(t) = uj’r—ot)Q < 1.
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Finally, suppose that the following condition holds initially
3 .
(7.24) 1Cv = 041H3/HE%,1 >0,

where C\, was defined in (7.18). For vy small enough, using (7.21) and the fact that
C}y1 decreases as HyH}_ 1.1 decreases, then this condition will be propagated in time.

Thus it holds that

(7.25) Wl 300+ 25D [ Il 3 01 < ool 1.

R? . .
Above D = D(HyOH 1 AL VAL, ’é—g,u). Now since Cy, and Cy; are monotoni-

cally increasing in Hny,é .1, the positivity condition (7.24) is equivalent to a medium-
size condition on the initial data
|4, R?
ool 2. < B (5 4n).
where the function h is implicitly defined via (7.24). Recalling the bound for the
inverse relation 6(k) = (S9)(k) in (7.11), and denoting
|4, R A IR\ (14, R
n(FE 4,)),
A, A, ) A, #
we obtain the medium-size condition for 6y given in (3.11). This completes the proof
of (3.11) and (3.12). The proof of (3.13) follows from applying (3.5) to (7.21).
To perform the estimate for ¢(0) from (3.14), we use (2.7); to obtain

(7.26) K( 7AM) = Cs(A,,

Note that (?;(0) = 0. We use the splitting for 7' from (2.26), and notice from (2.28)
with (2.29) that

~ —~ A
To(k) = 0 for |k| # 1, |To (k)| < % for |k| =1,
thus |To|| 0.1 < A,. Then we have
~ ~ t 2
90)] < o)+ |
L(7)

The estimates (7.48) and (7.45) with s = 0 in Section 7.3, together with the bounds
for L(t) in (7.3) give

(\A oI R

(410010 + (ITilro + [To2lro) (1+ 0] 1.) )

e O10] 11 +C57 0] 21

|4, R

(e}

i) 501 < 25
+21 2250 (142]4, ) +2CR ) e Heufo,l),

AR,
[Toalros < 22 (L8 et 010700012+ 2 Cuall 21101 ).

Therefore, reordering and using (7.25), (6.15) and (3.5), we conclude that
[9(0)] < 190(0)] + Casl|f0]| -3 1
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where
(7.27) Cy2 =

1 |Ap| B2 AR,
50@037 ( /”1 +C32 +2 20 <1+ (1+2/A,]) +2CR))

+ 3160l (5 + O Canld + Clbnl 13.)

1
e () (1 + (1 +2/A,]) +2Cr) + 5034(1 + CS|90];_%,1)))>.

In Cyo above the quantities (D in (7.22), Cs7 in (7.4), Cs3 and Cs4 in (7.46)) are
evaluated at OSHHOH}'-%,17 with Cg defined in (7.11). This completes the proof of
(3.14). O

We will now prove Proposition 7.1.

PROOF OF PROPOSITION 7.1. Because S~! is injective and surjective, it suf-
fices to prove that S is a right inverse of S~™1, i.e., that

(7.28) > S tSim = Okms

j=1
where 6, is the Kronecker delta. The cases k = 1 and k = 2,m = 1 are straight-
forward. For the rest of cases, we have that

-1 i bk —1+1) T p(j—1+n)
;Sk,jsj,m :;(_1) ké_jzkrg a(k) _a k+l (5m =7 g 0 ]_1+n) —a(m)
i e b(k—1+Db(j —1+n)

_ _1\i—k
-2 =i oG - 1w ey

If m = k, then clearly ijl S,C_}Sjym = 1. Now, we notice that
m—

T b(k—1+0)b(j—1+n) = b(k)b(k+1)...b(j—2)b(j—1)b(j)b(j+1)...b(m—1)

n=1 =1
m—k—1
= [ bk+n)
n=0
is independent of 7, and thus comes out of the sum as
m—k—1
D SiiSim =[] blk+n Z kA
7j=1 n=0 j=k
where we define
P —
el a(k+1))(a(j—14+n)—a(m))
Changing n < j — k — 1 + n, it becomes
m—k—1 —
A(j) = H
ik a(k+n L1 a k+l)
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Thus, multiplying and dividing by the product of a(k + n) — a(m) from n = 0 to
n=j—k—1, we rewrite it as follows

Since the first product does not depend on j, we obtain that
m—k—1

_ B (k+n) & Jim = a(k+1—1) —a(m)
> SiiSim= |1 (k—l—n—; ‘11 a(k) —alk+1)

i=1 n=0

Changing the index j < j — k and denoting m = m — k, we are left to show that,
forall m > 1,

m J ~

“— T — a( +1)

Writing the sum with a common denominator, the identity that we need to prove
is

W= (=1 [lak+1-1)—atm+k) [] (ak)—alk+1) =0.
j=0 =1 l=j+1

We add the first two terms in the sum by noticing that they only differ in one term,
which partially cancels as

W = —(a(k+1)—a(k+m)) - —a(k+1))
l:2
Z JH (k+1—1)—a(m+k) [] (alk)—alk+1).
Jj=2 =1 l=5+1

We now realize that we can repeat the same step with the new first two terms to
obtain that

W = (a(k+1)—a(k+m)) (a(k+2)—a(k+m)) | | (a(k)—a(k+1))

TMS*

JH (k+1—1)—a(m+Fk)) ﬁ (a(k) —a(k +1)).
=1

We can continue the process to find that

W =(=1)"(a(k+1)—a(k+m)) (a(k+2)—a(k+m))

m

- (a(k+r)—a(k+m))] | (a(k)—a(k+1))
Il=r+1
+ i (-1 Jﬁ (k+1—-1)—a(m+k)) ﬁ k) —a(k +1)).
j=r+1 =1
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Thus for » = m — 1, we conclude that

W =(-1)""a(k+1)—a(k+m)) ... (a(k+m—1)—a(k+m)) (a(k) —a(k+m))
ﬁ (k+1—-1)—a(m+k)) =0.
=1

This proves (7.28).
We next prove that S~! in (7.10) diagonalizes (7.8). Notice that S,;i =1 and

Sk_j1 =0 for j <k, k= 2. Then, for k > 3, we can write
B) = Y} Sehali) = —a®)SpizR) + ) (= a()Sed+ 00— VST1,)20)
i=k j=k+1
Finally, notice that
—a(§)S,; +b(i —1)S,iy = —a(k)S, i,  i-1=k=>2,

precisely when S,;jl is given by (7.10). The case k = 1 is trivial, while for k = 2 it
holds that

w(@) = Y, Sz120) = e(V2(1)—a(2)2(2)+ Y (— a(i) Sz +b(—-1)S5) 1 ) 20)
j=2 j=3
—wm%l«w é&i —a(2)y(2).
This completes the proof. O

We are now ready to prove Lemma 7.2.

PrOOF OF LEMMA 7.2. Denote forj >k>=2

Plugging in the expressions for b(k) and a( ) in (7.9), we find that

. ARGk = (k+m)2(k—2+m) 1
5(’“’]):((1+A#) A, ) v W(O)H(k T+m)(k+1+m) B —(k+m)+m’

Then, we can write

Il = Y1) < (1+ [l + 3 3 1806l

k=1 k=2 5>k

(7.29) :(1+§p_A}M*R (3 ~1052) D+ S 18- .0l
1=>23j=0

)it
(1+ - A#}|A |R( )) DIEIWOIET

=2

where
-2
A = Y18 = 34,1)
j=0

In the following we will estimate A(l) to control §.
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The identity k% — (k + m)® + m = —m(m? + 3mk + 3k? — 1) gives the bound
(7.30) |(1—=5)* = (I—j+m)* +m| = m(m*+2m(l—j) + (1—j)?) = m(m+1—j)*.
Thus

A R? i J l—j—24+m
850l < |0+ ) -] 1] mrgmmma e
A,R%)i 1
(7.31) <)(1+Au) A, ’ m1_=[1 m(l — j+1+m)

AR\ 1
< (|+4 )
(=5 }:[1 m(m +3)’
where the last step is due to the fact that j < — 2. Therefore, we have that

0

A(z)glf(}lJrA”Aﬁfz)- 6 < Z (|1+A }|A | R? ) .6

= 17+ 3)! g1+ 3)!

613(21/|1+AH}%)
(‘1+Au’%)3/2 |

where I3 is the modified Bessel function of the first kind of order three as in (7.12).

We conclude thereby from (7.29) that
I3(24/[1+A,[ 25

@wmﬁwyzm

1 A,R? /3
lyller < (HZ“*A“‘%(Z —1og2))|z(1)\ +6

|4, | B
o AU

with Cg given in (7.11).
We proceed to prove the reverse direction, z = Sy. For j = k > 2, denote

< Cs(A

)zler,

alk, ) = 1—[ (k—1+m)

71+m)fa(j)'

Recalling (7.9), it becomes

2 i -
a(k,j) = (—1)j”“(|1+A#}|AZ|R )J ¥ —ili=k)9(0)

i—k

(k+m)?(k—2+m) 1
(k—=14+m)(k+1+m) (k—14+4m)>—j3+j—k+1—-m

Next, proceeding as in (7.29), we have

b = S 1) < (1 [ S+ 3 S ladk, )y

k=1 (2) k>2j>k

(7.32) 2
< (1 + i’lfAH‘ |A2LR (% — log2))|y(1)| + Z a(Dly@)],
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where
1—2
j=0
The inequality below follows from (7.30) with M +L—J =jand L—J =m+k—1

(k—14+m)® =33 +j—k+1-m|>(j—k+1—m)j>

Using the inequality above, and m < j <1 — 2, we obtain that

A, R? jli[ (1—j+m)?(1—j—2+m) 1

la(l —j4,0)| < ’(1+A) A, (I—j=1+m)(I —j+1+m) 2(j+1—m)

m=1

A R%ji { 1
< |7 A, | WHIm(Z—j+1+m)

< (a2 ] oy
which coincides with the bound found for 8 in (7.31). Therefore,
I (24/ 11+ 4, 422
(In+ 4 2y

Above we recall I3 from (7.12). Then going back to (7.32) we have

A, |R?
el < Cs (4 225 ) 1o,

with Cg defined in (7.11). This completes the proof. O

(7.33) o(l) <6

7.3. Nonlinear Estimates in j—"j’l
We recall that the nonlinear terms (2.30) are given by
N(a) = N1 + Nz + N3,
with
(7.34) N1 = (Usa)ala), Nz =Ts(a)(1+0.()), Nz=T1(x)0u(c),

where U and T are described in (2.25) and (2.26).
We will first perform the estimates for Ny for s > 0. From (2.25), we have

(7.35) [ Ni] g0 = [Usa green
T
< (sl oo+ [R50 | gz + IS | pgre)-
L(t) v v v
Using the bound (5.5)2 and splitting ws1 = wy + wso gives that

IR(w=1)] freen < b(2, $)CR[0] 2o [l | green + b(2, $)Cr[|0] o1 |wsa] 1+
+ b(2, S)CR||0||]’_—3+S,1 FOl + b(Q, S)CRHQH}-’}+51

|ws

|ws2 FOL-
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Then introducing the vorticity estimates (6.1), (6.2), (6.3), and (6.4), and ordering
the terms in A, and A,, it follows that

4

IR(w=1)] ree0 < AUTZ)b(Q’S)CR<”0”]—‘B’1HQH]l‘EJrS*l + [ A Cr3 ]850 6] 3401

+ (0] 100 |0] z20 + ‘AH|C9H0H]'-‘3+S*1‘|0‘|f3’1||0||]53’1)

A, 2O et A6 9 ; 0)%0.1 6] 2

+ A4 p_— b(2, 5)Cr (2(1 + 2[AuD]0] 201 [0] z2+52 + Cral|0] 501 0]] 2+

(L + 21400 101 16] 01 + Coll0] v |e\|;g,l).
Interpolation as in (3.6) yields that

47
|R(wo1)l 2450 < Ao Con 0] 0.1 0] o420
v L(t) v v
(7.36) 1)
+ |AP|TeU(t)C22H9H]:S'1 10] 1401,

where
(7 37) Cy1 = 21)(2, S)CR + |Aﬂ|b(27 S)CR(CQ + 013)H9H}‘B=17

Coy = 3b(2, S)CR(]. + Q‘AMD + b(2, S)CR(Clo + 014)HOH]_—B,1,

and Cr in (5.6), Cy and Cyg in (6.10), C13 and C14 in (6.16) were defined previously.
Next, we split w = wp + w1 + ws2 as in (2.23) and use the bound (5.15)2 to
obtain
L(t)

[S@)l 150 < [Ap| =2 (Cs + Ca)e” 10 04[] 2101 + Cs 00 wn | e

+ 301 %0 lws2l £2eea + Call0 2ot 10] o fwr ] 201

+ Call0] 20116 2340

“U?ZH]:B‘I'

So again we introduce the vorticity estimates (6.1), (6.2), (6.3), and (6.4), and order
the terms in A, and A,, to obtain

47
IS(@)] fresn < Agrs (C3H9H§3,1 6]l z3+s1 + AL C5C13]0] 50,1 6] 350

L(t)
+ Cal0] g0 6] 100 |9\|F-3,1)

0]l 720 + [Au]CoCa 0] %01 0] 151

14, 2000 (03 €01 0] v

+2b(2,8) (1 42| A, C3 101 %01 0] 1+51 + C3C1a]0] 50,1 [0] 1400

4 CalL+ 24,012 161 52 + CaCrolOl g 9] 5110 ).
Applying interpolation (3.6) and the embedding (3.5), we obtain that

47

(7.38) ||S(w)\|];-3+s,1 < AUL(t)

023“9“3:31 H9H]33+s,1

L(t) ,
+ |Ap|Te (t)024H0H}‘S‘1HQHJ'-'I}“'J
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where
023 = Cg +Cy + |A#|(03013 + C4C9)H0”]-‘B’1a
(7.39) Coq = O3 + Cy + (L4 2[A,])(2b(2, 5)Cs + Cy)[6]| o1
+(C3C14 + C1C10) 0] %01,

with C3 and Cjy in (5.52), Cy and Cyg in (6.10), C13 and Cy4 in (6.16) previously
defined.

Finally, we combine estimates (7.36) and (7.38) together with vorticity estimate
(6.4) to close the bound (7.35). We obtain

2w v
(7.40) ||N1 Fol < AJ<L( >) 025H9H]_-0 1H9H]_-3+ 1+ |A |e (t)CQGHQH]_-o 1H9H]_-1+s 1,
where
(741) Cos = |AH|013 + Co1 + CQgHoHJ_—S,l, Cos = C14 + Cag + Coy.

Above Cy3 and Cy4 are defined in (6.16), C2; and Cag in (7.37), and Cas and Coy
n (7.39). This completes the estimate for N;.

We proceed now to estimate the term No from (7.34). For simplicity in this
case we perform the estimate for 0 < s < 1. The case s > 1 would add several
complications to the notation, but can also be proven similarly, as we will see in
the following. For s = 0 we use (3.7) and (5.3) to obtain

(142) Mol g < [Toal gz (152, 8) 100 £3.0) + 002, )| Toal 7 0] 5

We recall that for a function f(a) one has (2.16) and then for s > 0 we have

< (14 1omo) If = FO) e

o
< OO e

ff Vi — f() ]

(7.43)

where (s — 1)t =s—1ifs>1and (s —1)" =0 if s <1 as usual. We also define
(7.44) C(s) = (1+ Lls=0)-

If we performed the estimate below for s > 1 we would need work with the norm of
. _ 1\t
.}’-'l(,S D71 instead of the simpler F2:!. Thus we only do 0 < s < 1 for the Ny term.

Therefore, for 0 < s < 1 recalling the expression for x5 in (2.26), we have
C()I(L+ 0a)Usz| zo.r + C(5)[0al1] o1
O+ 101130 ol g+ CCO) 2210 5

[Tsal g2 <
<

Then introducing Us, and U; from(2.25) we obtain that

L < C(S)ﬁ

Y
+ C(S)MWHE»I (loor ]| zor + IR (wo)l zo.1)-

(14 10 22) (sl + IR w1l 20 + 1S | zg)
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We split the vorticity terms, w=1 = w; + w2, and use wyp in (2.23). We further use
the estimates for R and S in (5.5) and (5.15) and use (6.5) to obtain

1< C(s )ﬁ(l + 0] 22 1)((1 + Cr0] zo.1 + C1l0]%01) lws2] 20

(CR-i-ClHQH}-o 1)”9“701”0.)1”]_-01 +A ( ) t)C ”0”}-0 1)

L®) v
+ Cs) 2 01220 (ol rpa + 4, <t>c 161 791 )

L(t)

Then we introduce the vorticity estimates (6.1) and (6.3) to obtain

2m 2 9
o2l 2;0 < 40 (75) €O (14uICo(1+ Crl0l5gr + C1l01E)

+(Cr+ G101 25)) (1 + [0 22160 20 10) 22
Ay (25N (8] 100 A,|C(s)(Cro(1+Cr|0 C1)0)2
+ 4o (2i7) COWIZI61521 +14,1C() (Cro(1+Crlfl g +Cal610.)
+ (1 +2[Au)(Cr + C1]0] £or) + Cl)@”(t)(l + (0] z22) 16 %00
+]A4,|CRC(8)e” 0] 11 |0] zo1 + (1 + 2| AL A, C()e” D 0] 1.1 ]6] o.1-
The above expression reduces to

21

per < Ao () Conlll g 191520 + 14,170 Caal] 0]

where
Cas = C(5) + C(5) (|44/Co (1 + Cr 0] 01 + C16)20.)
+ (Cr + Calfl z90) ) (1 + 6] 50),
(T46)  Cyy = C(s) (Cro(1 + Crlbl g1 + C1l6)200)

+ (1+2/4,)(Cr + Cal0 792) + C1 ) (1 + 6] 591)
+ C(s)Cr + C(s)(1 +2|A,l),

and Cx is defined in (5.6), C(s) in (7.44), C; in (5.49), Cy and Cyq (6.10).
Then, going back to (7.42), we find that

2
Mol < (40 (£ )) Ca 0] 53,416 52
+ |A |€V t)034|\9|\Fo,1H9H¢1,1>(1 + HQHJ}I,I + He“fﬁﬁ-s,l)
21
< Ag(u )) Cis |01 2.1 6] 22 (2||9||F1+51 + 1)
+ | Aple” D Ca4]|6] 2o 160] 211 (2H9H]-",}+S’1 + 1) -

Finally, interpolation (3.6) gives that

5+2 _
O350 < 1600 150 1013

161 524101 140
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Thus we have

4—2s
[ V2| 2aven + (0]

21 \ 2 5+2s
son < Ar () Caa (200121 16)

o) ; )
L(t) | H]_-3+ 1
1A OCas (2060018110101 23500 + 18] [0

3
—s,1
F3 F

This completes our estimates for Ns.
Lastly, the estimate for N3 in (7.34) for s > 0 is obtained with (3.7) as follows

s <0(208) (1Tl 10230 + [T g 0] 5 ) -
The bound for 7} in (2.26) for s = 0 from (7.43) using (2.28) and (6.5) is

| V3|

s, 1
Fo

HTIH}"ﬁ’l < ”U1||]'_-£s—1)+,1 + ”gaUOHj_-l(/s—l)*,l

< HUl ”];—(s—l)’f,l + Z‘Ap‘b@a 5)6V(t) ‘|9a|‘_7_'-(s—1)+,1

(7.48) T
< W(lellﬁs-m,l + HR(WO)“;y—l)hl)
+2|A4,b(2, 5)e’® ||9aH;£s—1>+,1~
We use (6.1), (6.2) and (5.5) with (2.23) and (6.5) to obtain
™
—L(t) (le H]'_.l(ls—l)JrJ + HR(WO)Hj__l(IS,l)Jr,])
21\ 2 v
< A (Tg5) 100 gascemres + 202 ) Agl (14 214, + 20 ) O0] i
Thus
21 2
HN3”f,f’l < Ao b(2, )]0 '2+(s—l)+‘1H6Hf3+511
(7.49) L(t) Fv
+ 1 Aple” O 0N omrye 1 0] e
Here
(7.50) C% = 2b(2,8)* (1 + (1+2|A,]) +2Cr).

This completes our estimates for Nj.
In summary, we can combine the bounds (7.40), (7.47), and (7.49) to prove the
following theorem.

THEOREM 7.4. For 0 < s < 1 we have the estimate for N from (2.30) as

I¥lLez < Ao (Zh5) CrNIBzza 8] 53
(7.51) ; Ag(%)ﬁcggnmjfleljﬁ,l
+1Ale O o) 6] 70 10] v
where
(752) C1(N) = Cy5 + C33 + b(2, 5),

CQ(N) = (O + 034(1 + 2H6‘H]_-(V11) + Cé

Further Cas and Cys are defined in (7.41), Csg and Csq in (7.46), and C4 is previ-
ously defined in (7.50).
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Plugging in s = 1/2 in the bound for the nonlinear term in Theorem 7.4 in
(7.51), we find that

21 v
(1.53) IVl g0 < Ao(F55) Conlll yalOl 5. + 14,16 Caalbly 0], 5
where
Cs5 = Cs5(0] . e 1) = CL(N) +2053]0] .1,
(7.54) v

C36—036(H9H %1) C2(N)v

and C1(N) and Cy(N) are defined in (7.52), and Cs3 is defined in (7.46). Notice
that in the definition of C35 and C3g we can evaluated all the previous functions C;
in the norm HOH .11 instead of || zo.1, which could be done due to (3.5) and the

fact that these C’ are increasing functions of the norm.

7.4. Regularization scheme and completion of the proof of Theorem 3.1

We will now put all the pieces together to complete the proof of Theorem 3.1.

ProoOF OF THEOREM 3.1. With all of the previous developments, the proof
then follows a standard regularization argument. Recall the high-frequency cut-off
operator Jy by (3.8). Denote fy = Jnf and consider the regularized version of
system (3.10):

27 27
Ly(t) Ln(t)

Ly () _ 1+_Imf J i(a—n) Z L‘)N (n))"dnda)_ ’

n>1

(On)e = In( (UN)a + w—=Tn(1+ (ﬂN)a)),

W=

0= fﬂ el atOn () goy,

We abused notation in the definition of Ly (t) above since we are not using Jy from
(3.8). Solving the last constraint by the implicit function theorem (see Proposition
4.1 in Chapter 4) gives F(fx) = (Re(1),Im (1)) which can be solved for a(il).
Thus substituting in as well the expression for Ly (t), we obtain one equation for
ON = 15(0) + f‘l(l‘k#lé]\\;(k)). We thereby have the system written as an ODE of
the form

on = ING(en), on(0) = Uo(0) + F L 10n,0(k)),
for a certain nonlinear function G. Here Oy o = Jnbp is the initial condition. There-
fore, Picard’s theorem on Banach spaces yields the local existence of regularized
solutions pxn € C1([0,Tn); HY), where the space HY is defined by HY = {f €
H™(T) : supp(f) < [N, N]}. Furthermore the a priori estimates in Section 7.2,
in particular the energy balance (3.12) and (3.14), hold for the regularized system,
.1 -7
which provides uniform bounds for ¢y in the space L* (R, ; .7:3’1) N LY(R,; ]-'3’1).
We will next use the following version of the Aubin-Lions lemma [46, Corollary 6]:

LEMMA 7.5 (Aubin-Lions’ Lemma). Let Xy, X, and X; be Banach spaces such
that
Xo cXc Xl,
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72 7. GLOBAL EXISTENCE AND INSTANT ANALYTICITY

with compact embedding Xo — X, and let p € (1,0]. Let G be bounded in
Lr([0,T]; X) n L ([0, T]; Xo), and 6;G be bounded in L} ([0,T]; X1). Then G

loc

is relatively compact in L1([0,T]; X), q € [1,p).

.7 1
Letting Xy = .7-'1,2’1, X, = F%! and X = .7-',)‘"1, we get the strong conver-

v
gence to the full system, up to a subsequence, of the approximated problems in

.1
Lz([O,T];f,f’l). Next, since ¢y (n,t) — @(n,t) as N — oo for all n € Z and almost
every t, recalling that g(n,t) = 0(n,t) for |n| > 2, Fatou’s lemma gives that

M(t) = 16] 10 +—D[ lol

< timint (16x] .0 (0) + R—Df o] f%,lde)
e
Thus we obtain that the limit function 0 satisfies
0 e L([0,T]; F2"') 0 LM([0,T]; F ).
Since the equation for ¢(0) is decoupled from the rest and its right-hand side

1
only depends on 6, we conclude the strong convergence of ¢ in L*([0,T]; .7-'1,2’1) N

.1
L([0,T]; ,,2’1). We refer to Section 5 of [30] and [32] for further details of such
an approximation argument, in particular for the instant generation of analyticity
and the continuity in time. O
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CHAPTER 8
Uniqueness

In this last chapter we will prove uniqueness in F31 of solutions to (3.10) with
initial data of the size given by the constraint in (3.11). In particular the main result
of this chapter is Theorem 8.2 just below. To prove this theorem, in Section 8.1 we
prove the required estimates for the differences of the lengths. Then in Section 8.2
we prove the estimates on the differences of the vorticity strength. After that in
Section 8.3 we prove the main estimates on the differences of the non-linear terms.
Lastly in Section 8.4 we collect all the previous estimates to prove the uniqueness
of the solutions to (2.30) as in Theorem 8.2.

Throughout the proof of Theorem 8.2, we define coefficients that will be used
in the rest of this chapter.

DEFINITION 8.1. We use the symbol £ > 0 to denote any coeflicient that
is integrable in time and may depend upon H01,02H];_%’1, recalling (3.1), which is
bounded and |61, Gng.%J which is time integrable.

The symbol C > 0 will denote any coefficient that is bounded and can depend
upon H91,92\|f_%,1.

The symbol Cs; > 0 will denote any coefficient that is bounded and can depend
upon |01, 0z £... .

The symbol & > 0 will denote any coefficient that may depend upon
CH917 92 H_7."2+s,1 .

THEOREM 8.2. Consider two solutions 1 and U2 of (2.30) with the same initial
data satisfying the medium size condition, as in Theorem 3.1. Then these solutions
satisfy the following differential inequality

(8.1) %(\51(0) =~ 02(0)] + 61— 6] 1. )

<€+ E)([91.(0) = Do(0)] + 1 — 02 13 ).

With Theorem 8.2, we can conclude by Gronwall’s inequality that for any
T > 0, we have

(191(0) = 3a(0)| + 161 = b2l 3.

t=T

0 t=0

< exp ( f ‘c +£>dt> (191(0) = 2(0) + 161 = B2l 1y.4) | =0.

This holds since & = C||64, HQHJL_%J with (3.1), is time integrable by Theorem 3.1.
The rest of this chapter is devoted to proving Theorem 8.2. Given two solutions
%1 (e, t) and Yo (e, t) with initial data ¢4 (e, 0) = d2(a, 0) that satisfies (3.11); their

73
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74 8. UNIQUENESS

respective evolution equations are given by (2.30) as follows
27
9, =—(L; N; ,
0i(@) = 75 (£ite) + Nife)

where the vorticity terms are denoted by w; and wo respectively. The evolution of
1 — 2 is then given by

(0= 02u(0) = (i — Toggy) (G100 + Ni(@)) + Fors (L) = £a(@)
(8:2) + T (Vi) = Nafa),

Using the evolution equation (8.2), we will prove (8.1). In Proposition 8.4, we give
an estimate to control the length difference in the first term on the right hand side
of (8.2). By the estimates from Section 7.3, the coefficient, £1(a) + N1 («), of the
length difference in the first term is bounded by C + £. The bound on the length
difference is shown in in Proposition 8.4. The second term on the RHS of (8.2) gives
a linear coercive estimate for the time evolution. Lastly, Section 8.3 is dedicated to
controlling the third terms on the RHS of (8.2) using the idea of Proposition 8.3
and the non-linear estimates as in Section 7.3.
Additionally, we will use the following idea repeatedly:

PrROPOSITION 8.3. Consider two functions f and g in as for some s = 0.
We also consider some operator T. Then, for any n € N we have

83) 1f(a)"Tf(a) —g(a)"Tg(a)|rFos
n—1
<P TF = Tglzon + (35 17155 gl )L = gllzo. | Tglron.
k=0

For s > 0, we have

(8:4) £(@)"TS(a) = 9(a)"Tg(a) | 5.
<b(n+1,5) (1|30 |Tf = Tg)

+nllf, gl%e1lf — gl

gea + 0I5 Il e |TF = Tyl ron

[ Tglzon +nlf glailf = glror|Tgl 20
+n(n—D|f, 9|53 f, 9l g | f = gllron HTQHFM),

j‘s,l

Fs.1

d

where we recall the definition (3.1). In the special case where T = 35

7 € N, we obtain

for some

(85) 7(0)" < f(@) ~ gla)" = g(a)] 7o

< U oalf =gl + (X 171505 ol )1 = gllrocs gl
k=0
PROOF. Since
f(@)"Tf(a) = g(a)"Tg(a) = f()"T f(a) — f(e)"Tg(ax)
+ f()"Tg(e) — g(a)"Tg(cx)
= f(a)"(T'f(a) = Ty(a)) + (f(a)" = g(a)")T'g(cv).
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8.1. ESTIMATES FOR THE DIFFERENCES OF THE LENGTHS 75

‘We obtain

[£()"Tf(a) = g(a)"Tg(a)] ro.
< FI3o|TF = Tglros + |£(@)" = g(@)"|ros| Tglro.r.

Next, we have

[£(a)" = g(a)"|For = H Z fla)" kg f(a)"—k—lg(a)k-ﬁ-l‘

FO,1
n—1
k
< Y AI5A gl ol f = gllzoa.
k=0

This yields (8.3). Then (8.4) is proven similarly. O

8.1. Estimates for the differences of the lengths

We need to control the difference in the lengths L (¢) and Ls(t), for example,
to control the first term on the right hand side of (8.2). In this section, we prove
the following proposition on the differences of the lengths.

PROPOSITION 8.4. Consider the lengths, Li(t) and Ly(t), of two solutions, ¢
and 9o respectively, to (2.30) as defined by (2.5). Then, we have

Li(t)  La(t)
or  or

(8.6) < Cp|61 — 05| 70n

with Cp, defined by (8.9).

PROOF. We recall equation (2.13). Thus, denoting Af = f(a)— f(n), we have
that

0 (50 - (57)
7§C§Y€““"” S (A dnda—Tm § § e 5 T (AG) dndo)

n=1 —70 n=1

(1+Im § feilamm 3 it (AG)ndnd )(1+1m { {eite-m %(Aez)ndng—g)
—70 n>

—70 n=1

Recalling the estimates in (7.1) - (7.4), the denominator is bounded by

( 1+ImJJ i(a- n)E A0 "dndo‘)>
< < ﬁ (1 - g(eQH"meovl - 1)))1.

m=1
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Further the numerator has the upper bound

gile=m Z A91 )" dnda

n>1

Im JJ ia—n) (Aé)g)”dnda Im
n>l

Lol ey
O—0

n

_ JJ i(a- ")Z Aerml) (A0,)™ (A0,)" ™ dnda
n>1

-7 0 "o
216, — 6 , n—1 —m—
< 3 AU S (o0 210al)
n>1 ’ m=0

Thus we further obtain the estimate

Im JJ ile=m) (A92 "dnda—Im JJ ila=m) Z A91 )Y dnda
n>l

—m 0 —m 0 n>1

27201 — 02 Fon n
< 291|]__01 _ 22|9J:|}_0 R nZ: ! ((2H91H}'° 1) (2“92H}‘°~1) )
e2l01lz0,1 _ o2[62] z0,1
2[01]|70.1 = 2[02] 501"

We substitute this back into (8.7) to obtain that

(8.8) ‘(L;S))Q - (L;(Tt)ﬂ < R2Cy 01 — s 7o,

where

= 27‘(2“91 — 02”]:0,1

e2l01]z0,1 _ £2[62] x0,1 ( 2 T -1
C =T (1 _ 0 eQHGmH}—O,l -1 )) ]
L2 2”91“]:0,172”02”]:0,1 771;[1 2 ( )
The estimate (8.8) allows to easily bound terms like Li(t) — La(t) or Li(t)~! —
Ly(t)~!. In fact, using (7.3), we obtain that

Li(t) La(t) 1 Li(t)\2 Lo(t)\2
— = — < — 1

2m 2m Lé_(t) + LS_(t)K 2m ) ( 2m ) ‘ < Crlfr = Oaflzo,

where, with Cs7 is defined in (7.4), we have
CL2

8.9 Cr, =R—".
(8.9) L T
This completes the proof of (8.6). O

8.2. Estimates for the differences of the vorticity strength
In this section we will estimate the differences of the vorticity strength terms.
We use the splitting in (2.23) as
wi(a) —ws(a)
= (wi)o(a) = (w2)o(a) + (wi)1(a) = (w2)1(a) + (wi1)>2(a) — (w2)>2(a).

Above (w;)o() is the zero component, as defined in (2.23), of the vorticity term w;
for i = 1,2 etc. In this section, we prove the following estimates on each difference
in the vorticity decomposition.
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PROPOSITION 8.5. For s = 0, we have the estimates

~

A ~
For < 2[A,| CL[01 — O2] 700 + 7”L2(t)|191(0) —J2(0)],

(8.10) [l (w1)o — (w2)ol

and
(811) ”(wl)l - (w2)1H]_'-s,1 < Cs(H91 - 02”]:0,1 + "[/9\1(0) — 52(0)|)
4A T
+ 5”01 - 02“]35,1 + m“91 — 92H}'S+2,1~

For s > 0 we further have

(812) [(wi)s2 — (w2)s2l e < Es(61 = O]l r0i +[91(0) — D2(0)))

+ E0[01 — 0o o + Cs[01 — Oof 21 + T)01 — 02 2ren

where T is given by (8.28).

We further give the estimate of the form (8.12) when s = 0 in (8.29). It
is important to notice that I' given by (8.28) is smaller than the corresponding
coefficient of 6| z.42. in the estimate of (6.4).

PROOF. For the zero-th order term in the splitting we have

(w1)o(@) — (wa)o(a) = szp(L;th) B L;(rt)

— 24, L;(f) (sin (o + 91(0)) — sin (v + D2(0))).

) sin (o + 91(0))

Hence, for s > 0, we have the estimate

A . .
por < 2210, — L@l sin o+ 0,00))

l(w1)o = (w2)ol Fo

el @) sin o+ 10) — sin (0 + 95(0)

]‘:s,l-

We have | sin (« + 31(0))\\];-5,1 <1 and

~ ~ %1(0) — ¥2(0
| sin (@ + 9(0)) — sin (a + 92(0)) ] . < Q‘Sin( 10) 5 2( ))‘
01(0) + 95(0)
Joos (o =522
We have H cos (a+ W) HF ) < 1 and since we assume the difference is small
we have
~ s L ~

(8.13) sin (M)) < 51910 = 32(0)].

Hence, we obtain (8.10), which completes the difference estimates for the zero order
vorticity strength terms.
Next, the linear difference in the vorticity strength terms from (2.23) is
A A
(814) (wl)l(a) — (wg)l(a) = %Wl + 4AU7TW2 — 7PW3
where
Wi = Ly (H)D1((w1)o)(@) — La(t)D1((w2)o)(e)
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and

@ LQ(t)>(91)w T L@

and
W5 = (L1(t) — La(t)) cos (a + 91(0))61 ()
+ Ly(t)[cos (a + 91 (0)) — cos (a + 92(0))]61 ()
+ Lo(t) cos (o + D2(0))[61 () — b2 (ax)].

We will estimate each of the terms W7, W5 and W3 in the following.
For W1 we have using (2.24) that

Wi = 61 (a)H((w1)o)(a) + Im R ((w1)o)(a) — O2(a)H((w2)o) () + ImR((w2)o)(ev).
It can be shown by the estimates in R and L; — Ly that for s > 0 we have

(815) [ Wi g < Co(6r — O2] 501 + [91(0) = Da(0)]) + £]61 — 6|

Fs,l-
For W5, we have
1 1
or S —
Ly (t)La(t) Lo(t)
The important term in W for the purposes of the uniqueness argument is the

second term that has the difference [ — 02| zs+2.1. For W3, using (8.6), we obtain
that

Cr|01 — 02| Fo.1[01]

01 — 0s]

Fs+2,1 + Fs+2.1.

(8.16) W3]

(817) HW?,‘]:;1 < CS(H91 — 92“]:0,1 + |1/9\1(0) — @2(0)|) + 5”91 _ 92|j‘s,1~
Hence, from (8.15), (8.16) and (8.17), we obtain from (8.14) that
H(Wl)l - (UJ2>1|]L—S,1 < Cs(Hel — 92”_7:0,1 + |{9\1(O> — 1,9\2(O>|)
4A T
+ gHgl - 92“]35,1 + m“91 - 92‘]:54.271,

Note that the coefficient in front of || — 02| Fs+2.1 is the same as that in (6.2) in
front of 6] zs+21. This completes the difference estimates for the linear terms in
the vorticity strength given by (8.11).

Next we estimate differences of the nonlinear terms in the vorticity strength
from (2.23). We decompose the terms as

(8.18) (w1)>2 - (&Q);Q = W21 + W22 + W23

where the terms Wy, Was, and W3 are given by

W = AMLIT(t)Dzz(wl)(a) — Ay L27T(t) Dza(w2)(e),
and
Wr = 4,20 i o 9,0 L )
o, L) sin (D (=) (61())*
A, - ( ‘H91(0))j§1 (2))! )
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and
i 1) (By(ar 1425
Was = A, L27r(t) cos (a + 192(0)) Z ( 1)(1(3' (2])>)'
R —1)J )
—ApL17T(t> cos (o + 91(0)) Y] ( 1)(1(6;(21')))! :

First, we use (2.24) to observe that
(819) Wor = A, (Bu(@)H((w1)=1) (@) + InR((w1)=1)(0) + ImS () (@)

—b2(a)H((w2)>1) () = ImR((w2)>1) () — ImS(wz)(a))
= —A,(Wai1 + Waia + Waig),

where the differences of like terms with either subscript 1 or 2 are combined in each
Wo;. Then for s > 0 we have

IWari] zon < b(2,8)[601 — 02| oa [(wi) 1] 700 + 6(2,5) |01 = b2 701 [ (wi)>1]

+b(2, 8)[02]| o1 [(wi)1 — (w2) 1] 701 + (2, 8)[02] 7o [[(w1)1 — (w2)1] 221

+b(2,5) |02 7o [(w1) 52 — (w2) 52 o0 + B(2, 8)[02]| 2.1
Thus, using (6.1), (6.2), (6.3), (6.4) and (8.11) we have

Fs,l

[(w1)32 — (w2)52] Fo.r.

(8:20)  [Wart] e < E([61 — 2] 701 + [91(0) — F2(0)]) + Eol61 — 62|

4A,m
— 2,1 —b(2 — 24,1
+ Cs|01 — O] 720 + o) b(2, 5)[01 — 02| 72+

+0(2,8)[02] For[[(wWi)z2 = (wW2)z2f o + b(2, 8) 0] 01 [(w1)z2 — (wo) =2 7o,

Fsil

where & = (01,02 z21..€ and some bounded constant £ and C is a bounded
constant depending on [0y, 02| zo.1.
We now consider the term Wa15. We have from (5.5) that

(821) [R((w1)=1) — R((w2)>1)] e
<b(2,5)Cr([(w1)z1 — (W2)z1ll e [01 ] 700 + [(w1)51 — (w2) 1] 700 61 ] 220

+ [(wa2) 1] g1 01 — O]l For + [(wo)=1llFor 01 — 2] £ ).

Hence, using (6.1), (6.2), (6.3), (6.4) and (8.11), we obtain

£ea < E(01 — Oa] o + [01(0) — D2(0)]) + Eo[61 — 02 ...
4A,Crm
L(t)
+6(2,8)Cr([01] 701 [(w1)>2 — (w2)>2] 700 + [61]
This is the estimate for Woqs.
Next for W13 containing the difference in S, we actually have to consider two

differences. We recall the splitting of S from (5.16) and we will use f; = w; below.
First, it can be shown from (5.18) that

(8.23) IB(f1) — B(f2)]

(8.22) |Waa

+5H91,92|

61 — Oal] 0 + b(2, )01 — O 2+

Fs.l ‘91,92”]:0,1

Fsil [(w1)z2 — (w2)>2]70.1)-

Fo1 < B1+ B
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where
—1)ngltntl *zé k _*lé\ k -
B, = H‘MS Z ( ) ( l‘l( )) 2( )) *Sn(fl)(k) ”
and
—1)ngltn+1 *15 k - -
P S = Ak Ny A AT
!

For B;, we obtain using similar arguments to Proposition 8.3 that

b(l+1,s _
Bi< Y W(wﬂ;&l IS (1)l 50161 — 2] .
n,1=0 '
n+l=2

+ (1= 1)]01, 02]'=2 |61, 62

ForlSuF) 061 = Bz o
61,05t 1o (F1) o 101 = Bl . ).

For By, we first consider the difference in the operator S,,. By (5.24), we have for
two functions f; and fo, with a,, given by (5.29), that

—_—

[™(Sn(f1) = Su(f2))(K)]
= > Uk kng)]

k2,....kn11€Z

: <|f1(kn+1> ﬁ Pi(k; = kjs1) = fa(kni1) ﬁ Py (k; — kj+1)|)
j=1 Jj=1

J
< an|fi — fao| #™ [P + an|fo] # |+ Py — 5" Py,

Hence using the estimates as in (5.42) we have

B2< Z an’

(8.24) n,1>0
n+i1=2

< 03H92H3T011 Hfl — /2 H]':sJ + 04”92“}‘0«1 HGQH];'S,l Hfl — fa H]:o,l + Bg

*lé\ k A A -
620 4y i+ B

where
B s*l§2<k) ¢ n n
By= Y anlb === s (1fel x| P = <" Pl
n,l=0
n+il=2
We have for s > 0 that
b(m’ S) m—1
[K]°(Py = P2)n < mZ>1 T =11 161, Bl e 161 = Bl e
+ (m —1)]01, 025 201, 02 7.1 |61 — O2] 50.1)

with an analogous estimate holding in the case s = 0. Hence we have

By < £[(161,62)

For T fill #2100 = 2] 0.0 + (101, 02] o1 + [ fil 7o) 162 — 92Hf's,1]-
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We also similarly estimate A as in (5.51) to obtain

A1) (@) = AU (@)] £ < E[[Fil g 102 = Oalzon + £l 70100 = O] 5. |

+ CRrCu||01, 0a] 7.1 01, 02 7o | f1 = follFor + CRC3|01, 02 %0 | f1 — fol
In summary, for s > 0, using (8.10) and (8.11), we obtain

(8:25)  [Wars|fen < E(|01 — O] 7o + [91(0) — 92(0)]) + Eol61 — 2] 5o
4A T
+ CSHgl - 02”];'11 + C3H017 92”.27-'0»1 H91 - 02“]’:2+g,1
Lo(t)

‘(w1)>2 - (Wl);QH}-o,l

Fsil

Fs.l Fs,l-

+ C4|01, 02 Fo.1 (61, 02|

+ G301, 050, [ (w1) 52 — (wa) 2 for

Fs.1

where C5 and Cjy are given by (5.52) and Cg is given by (5.6).
Further using Proposition 8.3, then Wss and Wa3 can be estimated by a bound
of the type:

(8.26) [ Wajlpen < Callfr — B2 7o + [91(0) = D2(0)]) + E]61 — b2 ...
for j = 2,3. Hence, using (8.20), (8.22), (8.25), we obtain from (8.18) that
Fo1 < Es([01 — 02 For + 191(0) — 92(0)])

[(w1)=2 — (w2)>2]

+ 50“91 - 02|_7_'-s,1 + C9H01 - 92”]’:2,1 + f‘Hel - 92”_7_'-2+s,1
+ [Au[C12[01, 02 o1 [(w1) 2 — (W2)>2] 701

(8.27) + [Au|Ca[[01, 02| 7ot [ (wi) 2 — (w2) 22 £:.1

where
~ 4A T

8.28 I = |A,|—2Z-C5|01, 03] o1

( ) | M|L2(t) 2” 1 2”.7:0

with Cy given by (6.13).
Computing an estimate analogous to (8.27) for s = 0 yields the estimate

(8:29) [[(wi)s2 — (w2)s2] e < Es(61 = Oa] 0 + 91 (0) — D(0)))

+ &o01 — O2] 5o + Csl01 = O2] 2 + T([01 — 02| 2400

where
~ 4A,m
8.30 I'=|A,|Cs—Z~
( ) | P«| 8 L2 (t)
for Cyg given by (6.14) and the other constants given by Definition 8.1. |

8.3. Estimates for the differences of the main nonlinear term

In this section, we show the following bound on the nonlinear difference term
of (8.2).

PROPOSITION 8.6. We have the following estimate for § > 0 given by (8.38)
and for €(]|61, 92”14_%,1) that can be chosen to be arbitrarily small:

|Ny = N2l 20 < €61 = 62] 30 + [92(0) = F2(0)]) + (6 + )61 — b2 1z,

where E>0 is a time integrable coefficient depending on 61,02 1., and [[61,62] .z ...
Further € = €(|01, 02”;%,1) > 0 can be chosen arbitrarily small.
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We remark that all the terms involving the upper bound of £(]|#; — 62 H;‘%,l +

91 (0) —92(0)|) follow similarly to the estimates from Chapter 7 also using the idea
of Proposition 8.3 and the vorticity estimates in Proposition 8.5. Our proof below
is focused on the estimates of the term |6 — 92H .71 and the constant 6 > 0. In
the proof of Proposition 8.6, when we compute the difference of nonlinear terms
in F2-!, any terms where the difference occurs as [[0; — 0, |71 for s < 7/2 can be
absorbed by interpolation and the Young’s inequality into the term £|6; — 65| Fia
and contributes an arbitrarily small term €[6; — HQH}._%J to be absorbed into the
linear decay, e.g. see the estimate to obtain (8.34). This term is then taken care of
by the Gronwall argument described in the comment below Theorem 8.2. In this
way, most of the nonlinear terms can be easily estimated and only the few terms of
order [0; — 02“;%)1 need be computed.

PRroOF. For the nonlinear terms, we will denote the decomposition given in
(7.34) of Ny for 6, and N for 65 respectively by

Ny = Nig + Nig + Niz, Ny = Nai + Nog + Na3.

We now consider the differences of Ni; — Ny; for j = 1,2,3. We will only explicitly
compute the constant in front of terms with difference ||6; — 65| #3.- We make this

idea clear in the following. Denoting (U;)s2 for the term containing 6;, we have

T w |, L1(t)
831) |[[N11 — Nai| 11, < - U -3
(8.31)  [|[N11 — Nai 11 ) L I (U1)z2 154
Li(t) Ly(t)

fAD) (U1)z2 = == (U2)>2] 15.1-
In the latter term of (8.31), we have a term of the form
(8.32)  |R1((w1)=1) — Ra((w2)>1)] z5.

4A,m

S Y La(0) IR1((61)aa) — R2((92)aa)”f%,1 +R1((w1)>2) —R2((W2)>2)Hﬁg,1-
Above the dots “...” represent that other terms are present which turn out to be

lower order. We similarly denote R; for the term (2.18) which contains 6;. Then
for the first term present in the upper bound above we have the estimate

IR1((01)aa) = R2((02)aa)l z3.1 < [R1((01)aa — (B2)aa)l 25.1
+ [R1((02)aa) = R2((02)aa)] 131
< V2CR([01 — b2 171 [01] 70 + 61 — Oz 21 [64] 5.,
+ 102 2220161 — Oz o + [|02] 72161 — 02 15.1)-

‘We therefore have
(8:33)  [R1((01)an) — Ra((02)aa)] 131
< V2OR(101 = Ol 7.2 10000 + 1003 L1013 100 — 02115 100 — 6215 )
+ V2 CR<H92|\.71|\91—92\|f01+|\92\|”2 |\92H1/2 16; — 92\\1/3 16, — 92H2-/3 ).
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Hence, if we apply Young’s inequality, e.g.
031775 102115 102 — 6217 0n — 6] /7

SIS 161 = 6ol + el

N0y =62 2.
we obtain
(8.34) [R1((01)aa) — Rz((gz)aa)H -3
E(I61,0] ;161 b2l 70 +ce<\|91,92n2/3 101,623 )61 =02 13.0)
+e<nelu4/3 100 I8 = 02l 1.+ V2CR16L = O] .5 6] 0.

for a constant c.. The first two terms in (8.34) are linear in || — 03| z., for 0 < s <
1/2 and the constants are time integrable on [0, 7] for any T > 0 since |61, 92”]:-% 1
is integrable in time. The final two terms with the difference |0 — 6 H]'_-g,l needs to

be absorbed in the linear decay coming from £; — £L5. For the other term in (8.32),
we have similarly,

(8:35) |Ri((wi)s2) = Ra((wo)z2)| g0 < -+ V2CR[61,02] 01 D01 — o] 7

+ 6H91 — 92”]___ 19

where we use (8.30) and e = €(||f1, 02”;%71) is a constant that can be chosen arbi-
trarily small.

The only other terms containing a term like ¢, — GQHF. 7. are the other two
terms that also come from Ni; — Nis, as can be observed from the terms which
contain HGH .1 in the estimates of Chapter 7. The first term is

m”}[((wl)ZQ) - H((WZ)ZZ)Hj_-%,l = m\\(wl)ﬂ — (w1)22“]_:% .
(8.36) <.+ (LZZ) + €)|61 —92H}-g,1,

where the unwritten terms are lower order due to being linear in [0 — O3] £...
for 0 < s < 1/2 with time integrable coefficients as done in (8.34). Again, ¢ =
6(H91a92“7%,1) is a constant that can be chosen arbitrarily small. Similarly, the
final term that we need to compute is

L I860) = 8@l g < o+ TS0 = S(@2))l 445
+ LIS (en)s) = Slw)s2)l 5.
(8.37) <o (ROl 01,0213 )01 — 02l

where we use the estimate on S(f1) — S(f2) computed to give (8.25) and so Cj is
given by (5.52) and T is given by (8.30).

All remaining nonlinear terms in the estimates of the evolution of 6; — 05 are
lower order due to having no futher upper bounds in terms of the highest order
difference |6, — 62| +3.1- Hence, in total the difference of nonlinear terms yields

|NL = No| 2y < €61 = 62 30 + [92(0) = 2(0)]) + (6 + €)61 — b2 151,
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where € = e(H@l, 02H].__%71) is a constant that can be chosen arbitrarily small; and for

= |A,|Cgilen T,0 given by (8.30), we have & given by

< 4A,m
5= ot )(\/—CR a0 +b(2,3/2)Cr |01, 02] 7oaT + T + TC361, 62| %0.1)
and so by (7.3), setting
(8.38) =
A,
LR (V20R +0(2,3/2)Cr 01, 62] 0.1 | A, |Cs + [ A4 Cs + |4, CsCs 61, 821 F0.1),

we obtain the result of Proposition 8.6. ]

8.4. Proof of uniqueness
We are now ready to prove Theorem 8.2.

PrROOF OF THEOREM 8.2. From Proposition 2.2, the difference of the linear
terms is

~ ~ 472 ~ ~
(339) £1(k) = £2(b) = —Ao s b = 1)(B:(4) = 02(8)
_ (K =Dk +1) _i5,0 _
(1+A4,)A4, Wkt 2) e (B (k + 1) — b5(k + 1))
+ L (k) + La(k),
where 1 1
7 42 2 1\n o
Li(k) = —4n? A k(k 1)01(k:)<L1(t)2 Lz(t)2>
and
= _ (k> =1 (k+1) —iD1(0) _ —iDa(0\ 7
Lo(k) = —(1+ A“)Ap—k(k 9 (e e )01 (k + 1).
And similarly for k = 2. For L, we have
- s |1 2 2
(8.40) HLlHﬁ%,1 <4rt A, IO AGE k? —1)01(k)| -

For Ly, we have

(8:41) |Lal ;4.

. 9 EIYV2 k2 =1k + 1] »
< (1 + A A|le 1@ — ¢mi92( H' 6i(k + 1) -
|( + #) P||e e | 2|]€Hk‘+2| ‘ 1 + |
Using similar arguments as earlier, we obtain from (8.40) and (8.41) that
(8.42) 24, Bl 1y < €161 — 2]y 1 + [02(0) — D20))

where £ is a time integrable coefficient. Hence, the new quantities from (8.42) do not
need to be absorbed by the linear decay. The coefficient § of the norm [0, — 92”73 In

is less than the coefficients in (7.53), and hence, |6, 92”}._%,1 satisfying (3.11) and
taking e arbitrarily small is sufficient for (§ +€)|6; —HQH}._%J from Proposition 8.6 to

be absorbed into the linear decay terms of (8.39) by following the similar procedure
to Section 7.2. |
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