


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

1 Introduction

Given a high-level hardware design specification (e.g., ex-
pressed in behavioral Verilog), FPGA technology mappers
search for an equivalent low-level implementation in terms
of the target FPGA’s primitives. See Figure 1 for an exam-
ple, where the high-level, behavioral add_mul_and mod-
ule (“input 1”) is converted into FPGA-specific implementa-
tions (“their output” and “our output”) using Xilinx-specific
DSP48E2 and LUT2 primitives.
Historically, FPGAs consisted of relatively simple primi-

tives, such as lookup tables (LUTs) and carry chains. Tools
like ABC [14, 30, 37] automatically map to these basic primi-
tives by translating designs to a library of simple logic gates
and then packing those gates into LUTs.
However, FPGAs are becoming increasingly heteroge-

neous via the inclusion of specialized and diverse primitives
such as digital signal processors (DSPs). Utilizing these spe-
cialized primitives effectively is now crucial for achieving
high performance [49]. These specialized primitives make
FPGA technology mapping far more challenging since tech-
nology mappers must now explore a much larger search
space while also satisfying each primitive’s complex set of re-
strictions and dependencies. For example, Xilinx’s DSP48E2
is a multifunction DSP with nearly 100 ports and parameters,
whose numerous configurations enable support for a large
variety of computations. The manual for the DSP48E2 alone
is 75 pages long, where considerable text details the complex
restrictions between the settings of the nearly 100 ports and
parameters.

Existing technology mapping tools frequently fail to map
designs to specialized primitives like DSPs, requiring manual
work for the hardware designer to recover the performance
of their design. While existing toolchains have the ability to
automatically infer locations where specialized primitives
can be used in large designs, inference often fails [1, 2, 4].
In these cases, the designer can either accept lower perfor-
mance and higher resource utilization, or they can perform
what we call partial design mapping. During partial design
mapping, the designer manually identifies and separates out
the module that should be mapped to a DSP. They can at-
tempt to re-run technology mapping on that module alone,
in the hopes that mapping succeeds. Yet existing toolchains
often fail even in the partial design mapping case: Figure 1
shows a simple module add_mul_and which should fit on a
single DSP48E2 according to the DSP’s manual, but is instead
mapped to multiple DSPs and LUTs by current state-of-the-
art tools.1 In the worst case, hardware designers are forced
to manually instantiate complex primitives by hand, e.g., by
looking through the 75-page DSP48E2 user manual to manu-
ally configure the DSP’s dozens of ports and parameters.

1Licensing restrictions forbid naming the specific proprietary tools, but

they are familiar, standard packages used by many hardware designers.

Current state-of-the-art technology mappers are imple-
mented via ad hoc, handwritten pattern matching proce-
dures, which fall short in three primary ways. First, as we
saw above, they are incomplete: they miss many mapping
opportunities, even across microbenchmarks based on ven-
dor documentation. Second, they do not provide strong

correctness guarantees: recent work highlights the sig-
nificant number of bugs found across all major hardware
synthesis tools [24]. Third, they are difficult to extend:

each new complex primitive requires supporting detailed se-
mantics and adding hundreds of new, special-case syntactic
pattern matching rules [50].

This paper’s key observation is that technology mapping
is well-suited for the application of automated reasoning
procedures—specifically, program synthesis [23]. We observe
that the configuration space of a programmable FPGA prim-
itive is essentially a small, bespoke programming language,
and that program synthesis could be applied to automat-
ically generate primitive configurations. We explore how
program synthesis can simplify the design and implementa-
tion of FPGA technology mappers while providing correct,
extensible, and more complete support for mapping to
diverse, highly configurable primitives like DSPs. Program
synthesis techniques rely on automated theorem provers
like SAT and SMT solvers [8, 17] to automatically generate
programs satisfying a given specification. We demonstrate
how sketch-guided program synthesis [41] can be adapted
for FPGA technology mapping, leveraging the Rosette [46]
program synthesis framework.
Sketch-guided program synthesis requires encoding the

semantics of the target language: in our case, a machine-
readable, mathematical model specifying the behavior of
each FPGA-specific primitive being mapped to. In a typical
synthesis tool, which generates programs for a single target
language, this is a one-time cost. However, in our setting,
each new FPGA primitive introduces yet another new target
language, which in turn requires extending the tool to encode
yet another formal semantics.

To support correct, extensible, and more complete technol-
ogy mapping, we propose automating this process with se-

mantics extraction fromHDL, adapted frompast work [16],
to automatically extract complete primitive semantics from
vendor-published HDL models (Figure 1, “input 3”). Tradi-
tionally, such models have been used only for simulation
and validation after technology mapping; we show that us-
ing the semantics to implement technology mapping with a
program-synthesis-based approach yields substantially more
complete FPGA technology mapping.
Sketch-guided program synthesis also requires sketches,

which are partially complete programs with “holes” to be
filled in by the solver. Sketches primarily serve to scale syn-
thesis by constraining the set of programs that solvers ex-
plore when searching for one that satisfies the given specifi-
cation, i.e., performance at the cost of completeness. In our

417







FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Step 1: Generating a Sketch. In the add_mul_and exam-
ple, Lakeroad generates the following sketch, which we refer
to as sketch:4

module sketch(input clk, input [15:0] a, b, c, d,

output [15:0] out);

DSP48E2 #(

.ACASCREG(??), .ADREG(??), .ALUMODEREG(??), .AMULTSEL(??),

.AREG(??), .AUTORESET_PATDET(??), ...

) DSP48E2_0 (

.A({ 14'h0000, a }), .ACIN(??), .ALUMODE(??),

.B({ 2'h0, b }), .BCIN(??), .C({ 32'h00000000, c }),

.CARRYCASCIN(??), .CARRYIN(??), .CARRYINSEL(??), ...

);

endmodule

This sketch consists of a single DSP48E2 instance with holes
(represented by ??) serving as placeholders for most of its
ports and parameters. It is easy to see the parallels between
sketch and add_mul_and_impl; sketch is simply add_mul_-
and_implwith holes. But how does Lakeroad generate sketch
in the first place?
To maximize portability across architectures, Lakeroad

does not store sketches like sketch directly; instead, it gen-
erates sketches from architecture-independent sketch tem-

plates. Instead of storing the preceding UltraScale+–specific
sketch, Lakeroad generates the sketch from the DSP sketch
template, which the designer has chosen to use with the
--template dsp flag. A simplified form of this template
looks like the following:
module dsp_sketch_template(input clk,

input [n-1:0] a, b, c, d,

output [n-1:0] out);

DSP dsp_instance(.clk(clk), .A(a), .B(b), .C(c), .D(d), .out(out));

endmodule

Sketch templates capture hardware design patterns that
are common across FPGA architectures in an architecture-
independent way. dsp_sketch_template, for example, cap-
tures a basic pattern, i.e., instantiating a single DSP. Lakeroad
includes sketch templates of varying complexity, from the
simplicity of the one above to the complexity of LUT-based
multipliers. Though new sketch templates can be added eas-
ily, in most cases (as in this example) users can simply apply
Lakeroad’s provided templates.

To specialize dsp_sketch_template into sketch, Lakeroad
translates the sketch template’s generic DSP primitive inter-

face into an UltraScale+–specific DSP48E2 using the Ultra-
Scale+ architecture description. The generic DSPmodule is
an instance of a primitive interface: a Lakeroad-introduced
abstraction that captures the similarities between primitives
across diverse FPGA architectures. For example, Lakeroad’s
DSP primitive interface captures the facts that DSPs on all
FPGA platforms generally have two to four data inputs (cap-
tured by A–D) and a clock input (captured by clk). To convert
the sketch template’s DSP primitive interface instance into
a DSP48E2, Lakeroad utilizes the Xilinx UltraScale+ archi-
tecture description, which the designer has pointed to with

4Though this example is presented in a Verilog-like language, Lakeroad’s

sketches are actually encoded in a Racket DSL that resembles structural

Verilog.

the --arch-desc xilinx-ultrascale-plus.yml flag. An
architecture description specifies how Lakeroad’s various
primitive interfaces are implemented for a given architecture.
The following simplified snippet of the UltraScale+ archi-
tecture description, for example, tells Lakeroad that, when
generating a sketch for UltraScale+, instances of the DSP
primitive interface should be implemented with a DSP48E2:
- interface: {name: DSP, params: { out-width: 48, a-width: 30, ...}}

holes: [?ACASCREG, ?ADREG, ?ALUMODEREG, ?AREG, ...]

implementation:

module: DSP48E2

ports: [{ name: A, bitwidth: 30, value: A }, ...]

parameters: [{ name: ACASCREG, value: ?ACASCREG }, ...]

outputs: { O : P }

Thus, while converting dsp_sketch_template into sketch,
Lakeroad reads this architecture description and converts
the single DSP instance into a DSP48E2, filling the ports and
parameters with the concrete values and holes contained in
the architecture description. Architecture descriptions are
usually short (100-400 LoC) and written only once per FPGA
architecture; Lakeroad already contains such descriptions
for Xilinx UltraScale+, Lattice ECP5, Intel Cyclone 10 LP, and
the open-source FPGA SOFA [43].
To generate a sketch, Lakeroad takes an architecture-

independent sketch template and specializes it using an ar-
chitecture description. Once the sketch is ready, the designer
can move on to synthesis.

Step 2: Program Synthesis. The next step fills in the holes
to generate a complete, correct hardware design, which is
done automatically using a technique called program syn-
thesis. Program synthesis is the process of using automated
reasoning tools (like SMT solvers) to generate correct pro-
grams by encoding program generation as a constraint solv-
ing problem. In our add_mul_and example, Lakeroad, aided
by Rosette [45, 46], generates a query like the following:5

∃ ACASCREG, ADREG, ... .∀inputs.

add_mul_and(inputs) = sketch(inputs, ACASCREG, ADREG, ...)

The query asks: are there concrete values for ACASCREG,
ADREG, etc., that will make our sketch’s behavior equiva-
lent to the input design’s behavior on all inputs? If the solver
finds such values, Lakeroad can use them to fill the holes
in the sketch and produce a compiled design. However, if
Lakeroad tries to pass the preceding formula to an SMT
solver, the solver will throw an error since the query is not
expressed at a level it understands, viz., as equalities between
bitvector expressions, using simple Boolean or arithmetic
operations. While it is conceivable that add_mul_and could
be converted to a bitvector expression since its core compu-
tation is already expressed as (a+b)*c&d, it is unclear how
to express sketch as an expression over bitvectors. In par-
ticular, Lakeroad must express bitvector-level semantics for
Xilinx’s DSP48E2 primitive.

To generate bitvector-level semantics for complex FPGA
primitives, Lakeroad introduces the concept of semantics

5We formalize this synthesis query and explain it precisely in Section 3.

420



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

extraction. Rather than requiring manual effort to encode
the semantics of the underlying hardware, which is notori-
ously difficult even for experts [10], Lakeroad’s key insight
is that these challenges can be avoided altogether by ex-
tracting low-level semantics directly from vendor-supplied
simulation and verification models. Lakeroad builds on in-
ternal passes in Yosys [50] to automatically extract solver-
ready semantics from these vendor-provided HDL models,
which we detail in Section 4.4. For the add_mul_and example,
the DSP48E2’s semantics have already been imported into
Lakeroad. Semantics need to be imported only when adding
support for a new architecture, i.e., about as infrequently
as writing a new architecture description. In most cases,
Lakeroad users can rely on already-imported semantics.
With the sketch generated and the DSP48E2’s semantics

imported, program synthesis can begin. Lakeroad utilizes
Rosette to drive program synthesis, as detailed in Section 3. In
our example, Rosette returns a configuration for theDSP48E2.
The last step, then, is to convert the compiled design to
Verilog.

Step 3: Compilation to Verilog. Compiling Lakeroad’s
internal representation into Verilog is a purely one-to-one
syntactic mapping; no optimizations are done at this stage,
reducing the likelihood that bugs could be inserted. In our
example, the final Verilog produced results in the add_mul_-
and_impl we saw at the start of Section 2.2.
In summary. Lakeroad delivered an implementation of

the designer’s add_mul_and module, improving upon both
state-of-the-art compilers and manual approaches in multi-
ple ways. Lakeroad’s implementation is significantly more
resource-efficient than the state-of-the-art compiler’s—one
DSP versus one DSP, 32 registers, and 16 LUTs. Lakeroad
delivered its implementation in mere seconds, compared to
the hours to days of work that manually instantiating a DSP
might take. Lastly, Lakeroad’s implementation is formally
guaranteed to be correct. Meanwhile, Lakeroad did all of
this while requiring no input from the user other than the
Verilog to be compiled.

3 Formalization

Wenow formalize Lakeroad with functions 5lr and 5
∗
lr, and

use these models to argue for the correctness and partial com-
pleteness of Lakeroad. We first define 5lr (Section 3.1) and
then motivate and define the language Llr, specify its syn-
tax and semantics, and define behavioral (Lbeh), structural
(Lstruct), and sketch (Lsketch) sublanguages (Section 3.2).
We next explain the underlying queries Lakeroad uses to
synthesize hardware programs that meet the desired speci-
fication (Section 3.3). We demonstrate the correctness and
partial completeness of 5lr, enumerate our Trusted Comput-
ing Base (Section 3.4) and extend 5lr to 5 ∗lr, which ensures
the generated program’s semantics matches the design over

multiple timesteps (Section 3.5). Finally, we highlight poten-
tial future applications that could be built on this section’s
formalization (Section 3.6).

3.1 The Lakeroad Function 5lr

Wemodel the execution of Lakeroadwith the partial function

5lr : Sketch × Lbeh × Time ⇀ Lstruct,

where 5lr (Ψ, 3, C) invokes Rosette to synthesize a C-cycle
implementation of behavioral design 3 using sketch Ψ to
guide the search, where a C-cycle implementation of 3 is a
program that is equivalent to 3 at clock cycle C . By not requir-
ing program equivalence before clock cycle C we allow the
synthesized program’s semantics to differ from the design
during an initialization period (e.g., as the pipeline is being
filled). To get guarantees beyond a single point in time C , we
generalize 5lr to 5 ∗lr, which synthesizes a program that is
equivalent to the design from time C to C + =. We formalize a
sketch Ψ ∈ Sketch as a tuple (k,ℎ), wherek is a program
in Lsketch and ℎ is a map from the holes ink to a finite set
of valid hole-free nodes in Lstruct that can be used to fill
the mapped hole. This mapping ℎ is handled implicitly by
Rosette’s choose and hole constructs and need not be explic-
itly specified by the sketch writer. We write 5lr (Ψ, 3, C) = ?

to indicate that synthesis succeeded and produced Lakeroad
program ? . However, it is possible that sketch Ψ cannot im-
plement 3 , in which case the synthesis fails (i.e., returns
UNSAT) and 5lr does not return anything. Design 3 belongs
to Llr’s behavioral fragment, Lbeh (see Section 3.2). When
C = 0, 5lr synthesizes a combinational design; when C > 0, 5lr
synthesizes a sequential design over C clock cycles. The rest
of this section considers sequential design synthesis since
its combinational counterpart is a special case covered by
our general approach.

3.2 Defining Llr

Lakeroad uses the Llr language to translate behavioral HDL
programs to structural, hardware-specific HDL programs.
To facilitate this translation, we designed Llr to satisfy the
following properties:

P1. Easy translation to/fromHDLs:wemust be able to trans-
late designs from a behavioral HDL to Llr and trans-
late synthesized implementations to a structural HDL.

P2. Support parallel stateful execution: FPGA designs con-
sist of potentially stateful elements executing in paral-
lel. Llr must allow unambiguous parallel execution.

P3. Support graph-like program structures: An FPGA com-
ponent’s outputs can bewired tomultiple other compo-
nents, including back to itself. This means that FPGA
programs can form arbitrary graphs, and Llr must be
able to express this.

P4. Support for sequential designs: Llr must handle designs
that run over multiple clock cycles.

421



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Prog F 〈 Id, 〈Id,Node〉∗〉

Node F BV 1 | Var G
| OP >? Id*
| Reg Id (BV 1)

| Prim binds Prog
| �G

Id 83 ∈ N

Bitvectors 1 ∈ BV

Variables G ∈ LegalVarNames

Operators >? ∈ OP1E ∪OPF

binds 1B ∈ (Variables ⇀ Id)

Wire op OPF = {concat,extract, . . .}

Non-wire op OP1E = {+, −, ×, . . .}

Figure 3. Syntax of Llr. �G is a syntactic hole, labeled with variable G . � ⇀ � denotes the set of partial functions from � to �.

P5. Support for different architectures: Llr must handle
FPGA components from different architectures.

We describe how Llr satisfies P1-P5 when we define its
syntax and semantics in the following subsections.

3.2.1 Llr’s Syntax. Figure 3 shows the Llr syntax. An
Llr program Prog consists of a root node ID and a graph of
nodes, each of which is referred to by its ID. A node can be a
constant bitvector, input variable, combinational (pure) oper-
ator, sequential (stateful) register, primitive, or hole. Given a
program ? = (A, 〈831, =>341〉 . . . 〈83=, =>34=〉), we use the no-
tation ?.A>>C = A , ?.83B = {831, . . . , 83=}, and ? [838 ] = =>348 .
We define the free variables of a program ?.5 E = {G8 } as
the set of variable names occurring in ?’s nodes of the form
(Var G8 ).

6 Finally, we use the notation ?.0;;_83B for ?.83B to-
gether with ?′ .0;;_83B of any subprogram ?′ of ? (?′ is a
subprogram of ? if ∃ 9, =>34 9 = Prim 1B ?′).
Given a node =, we specify its inputs with the following

function:

inputs(BV 1) = {},

inputs(Var G) = {},

inputs(OP >? 81 . . . 8=) = {81, . . . , 8=}

inputs(Reg 8 18=8C ) = {8}

inputs(Prim 1B ?′) = {1B [G] | G ∈ domain(1B)}

Note that we use� ⇀ � to denote the set of partial functions
from � to �; given 1B ∈ � ⇀ �, we write domain(1B) to
denote the set of G ∈ � s.t. 1B [G] is defined.

A program ? is well-formed if and only if all the following
conditions hold:

W1. ?.A>>C ∈ ?.83B;
W2. All ids are unique and distinct. (i.e. for any sub-program

?′, ?.83B and ?′ .0;;_83B are disjoint, and for any two
sub-programs ?′ and ?′′, ?′ .0;;_83B is disjoint from
?′′ .0;;_83B .)

W3. The inputs of all nodes in ? are ids of other nodes in
?: ∀83 ∈ ?.83B , inputs(? [83]) ⊆ ?.83B ;

W4. All primitive nodes contain well-formed programs;
W5. All primitive nodes bind exactly their free variables;

i.e., for Prim 1B ?′, domain(1B) = ?′ .5 E ; and

6Note that this does not include variables of sub-programs occurring recur-

sively inside of Prim nodes.

W6. Program ? is free of combinational loops (formalized
below in Property 1).

Property 1 (Free of Combinational Loops). Formally, a pro-
gram ? is free of combinational loops if there exists a function
F : ?.0;;_83B → N, that satisfies the following properties
(collectively “monotonicity”):

1. If ? [83] = Reg _ _, thenF (83) = 0;
2. If ? [83] = Prim 1B ?′, thenF (83) > F (?′ .A>>C);
3. if ? [83] = Prim 1B ?′ and ?′ [83 ′] = +0A G ,

thenF (83 ′) > F (1B [G]); and
4. Otherwise (e.g., ? [83] = OP >? 83B∗),

if 83 ′ ∈ inputs(? [83]), thenF (83) > F (83 ′).

The function F acts as a witness to the absence of combi-
national loops because it is impossible to define a strictly
monotonic function without acyclicity. We consider only
well-formed Llr programs.

BV, Var, and OP nodes encode bitvectors, variables, and
operators.
Reg 830C0 18=8C nodes let Llr implement sequential designs

(P4). 830C0 is the register’s data input, which updates the
stored value at the positive edge of each clock cycle, and
18=8C is the register’s initialization value.

Prim 1B ? nodes let Llr programs use hardware-specific
components from different architectures (P5). The 1B com-
ponent is a variable map, mapping Vars to input Ids. The ?
component is an Llr program that defines the semantics of
the hardware primitive. A Prim node also carries some meta-
data used during compilation to a structural HDL, which we
omit for clarity.
Lbeh is the concrete behavioral fragment of Llr used for

writing specifications; it is formed by excluding Prim nodes
and holes from Llr.
Lstruct is the concrete structural fragment of Llr used for

lowering Llr to structural HDLs; it is formed by excluding
Reg nodes,OP nodes, and holes from Llr, with the following
exception: the ? term in Prim 1B ? must always be from the
Lbeh since it is used to specify the semantics of the Prim node
to the synthesis engine. The behavioral node ? is not used
during compilation to HDL, and this behavioral expression
does not propagate to the structural HDL output.

422



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

Time C ∈ N Env 4 ∈ (Var ⇀ Time → BV)

Interp : Prog → Env → Time → Node → BV

Interp ? 4 C (BV 1) = 1

Interp ? 4 C (Var G) = 4 G C

Interp ? 4 0 (Reg _ 8=8C) = 8=8C

Interp ? 4 (C + 1) (Reg 83 _) = Interp ? 4 C ? [83]

Interp ? 4 C (OP op 83B) = J>?K (map (_83 . Interp ? 4 C ? [83]) 83B)

Interp ? 4 C (Prim 1B ?′) =

let 4′ = _G, C ′ . Interp ? 4 C ′ (? [1B G]) in

Interp ?′ 4′ C ?′ [?′ .A>>C]

Figure 4. Lakeroad’s semantics as pseudocode.

Lsketch is another sublanguage of Llr that is Lstruct but
also including holes. Let B be a program inLsketch with holes
�G1 , . . . ,�G: . These holes can be filled with nodes =1, . . . , =:
in Lstruct by replacing each hole�G8 with its corresponding
node =8 to obtain a complete Lstruct program, denoted by
B [�G1 ↦→ =1, . . .].

The simplicity of this syntax makes translating to and
from HDLs straightforward (P1). Section 4 describes how
Lakeroad implements the translations to and from HDLs.

3.2.2 Llr’s Semantics. Before discussing the formal se-
mantics of Llr, we present key definitions. We assume a
bitvector type and, for simplicity, we elide bitvector widths.
We represent time as a natural number. A stream is a func-
tion from Time to bitvectors. An environment is a map from
variable names to streams.

We give the semantics for Llr as an interpreter in Figure 4.
We define the function Interp to interpret a program ? in
environment 4 at time C and node =. We do not define seman-
tics for holes, as they are intended to be replaced by other
constructs with well-defined semantics.
Most of the rules are straightforward. A bitvector BV 1

evaluates to its backing bitvector value 1. A variable node
Var G in an environment 4 at time C evaluates to the value
returned by the stream associated with G in 4 at time C ; using
function notation, this is denoted by 4 G C . A :-ary operator
node OP >? 81 . . . 8: recursively interprets each operand in
the current environment at the current time and then ap-
plies >?’s semantics, denoted J>?K, to the resulting values. A
register Reg 83 18=8C has two cases depending on the current
time: at time C = 0, a register evaluates to its initial bitvector
value 18=8C ; at nonzero times C + 1, a register evaluates to the
value produced by the input 8 at the previous timestep C . A
primitive Prim 1B ?′ in environment 4 at time C is evaluated
by interpreting the program ?′ under the fresh environment
4′ formed by the binding map 1B .

3.3 Program Synthesis

5lr performs sketch-based program synthesis [41]. Opera-
tionally, we implement the Interp function from Figure 4
in Rosette, a solver-aided host language [46]. Let sketch
Ψ = (k,ℎ) ∈ Sketch, where k ∈ Lsketch has holes �G8

and ℎ mapsk ’s holes to the set of structural nodes that can
legally fill the mapped hole. Given a design 3 , we query
Rosette if there are nodes =1, =2, . . . =: such that =8 ∈ ℎ[�G8 ]

and ? = Ψ[�G1 ↦→ =1, . . .] is well-formed and equivalent
to 3 (i.e., we ask Rosette to fill each hole with a node asso-
ciated with the node in ℎ). Program equivalence between
well-formed programs ? and 3 at time C , written ? �C 3 , is
defined as

?.5 E = 3.5 E ∧

∀4 B.C . domain(4) = ?.5 E,

Interp ? 4 C ?.A>>C = Interp 3 4 C 3.A>>C .

In Section 3.5, we use bounded model checking to extend
5lr’s guarantees beyond the single timestep at clock cycle C .

3.4 Correctness and Completeness of 5lr

Recall that the synthesis function 5lr is partial. We say that
5lr is correct if it returns a program 5lr (Ψ, 3, C) = ? where
? is a well-formed completion of Ψ = (k,ℎ), meaning ? =

Ψ[�G1 ↦→ =1, . . .] such that =8 ∈ ℎ[�8 ] for all 8 and ? �C 3 .
Furthermore, we say that 5lr is sketch-complete if 5lr (Ψ, 3, C)

is defined whenever there exists a well-formed completion ?
of Ψ such that ? �C 3 . That is, synthesis is correct if it never
returns an erroneous result and sketch-complete if it returns
a correct result whenever one exists.
We have implemented 5lr with Rosette (see Section 3.3),

which guarantees our system is correct and complete under
the following assumptions:

1. Correctness of Rosette and underlying SMT solvers;
2. That our encoding of Lakeroad is bug-free;
3. That the lowering of Interp to SMT formulas by Rosette

always terminates. This is possible when partial eval-
uation of Interp on arguments ? , C and = terminates
(independently of the value of 4).

Lemma 3.1. Let ? be a well-formed program, 4 an environ-
ment, C a Time, and = be a node belonging to ? . Then Interp is
primitive recursive (i.e. terminates) in the arguments ? , C , and=.

Proof of Lemma 3.1. Recall that a function 5 (G,~, I) is primi-
tive recursive in arguments G and~ (under a lexicographic or-
dering) if in the definition of 5 every recursive call 5 (G ′, ~′, I′)
is made with values (G ′, ~′) such that G ′ < G or G ′ = G ∧~′ <

~. If G and ~ are drawn from the natural numbers (or an-
other well-ordered set), then the recursion is guaranteed to
terminate.

Under what order is Interp primitive recursive? Because
our program is well-formed, it must be free of combinational
loops (see Property 1). Formally, this means we have an

423



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

acyclicity witness function F : ?.0;;_83B → N that mono-
tonically increases in the direction of dataflow in our circuit.
Each node = argument passed to Interp has an Id that is
unique and distinct from the Ids used in ? or any of ?’s sub-
programs (W2); we denote this Id as 83= . We can associate
each = argument to a recursive call of Interp with a number
F (83=). We claim that Interp is primitive recursive under
the lexicographic ordering on (C,F (83=)).
To prove this claim we need to demonstrate that if Interp

with time and node arguments C ′ and =′ makes a recursive
call to Interpwith time and node arguments C ′′ and =′′, then
the following condition holds:

C ′′ < C ′ ∨
(

C ′′ = C ′ ∧F (83=′′ ) < F (83=′ )
)

. (1)

To do this it suffices to examine each case of Interp’s defini-
tion.
When =′ is a BV constant, Interpmakes no recursive calls,

and the condition in Equation (1) holds vacuously.
When =′ is a Reg node Interp either terminates (when

C ′ = 0) or makes a recursive call with time value C ′′ = C ′ − 1,
maintaining the condition in Equation (1).
When=′ is an operator node, Interp recursively interprets

the operands with time arguments C ′′ = C ′. However, each
operand’s id 83 ′′ belongs to inputs(=′), and, by Property 1,
F (83=′ ) > F (83 ′′), so our condition holds.
This leaves us with the less obvious cases in which =′

is either a Prim or Var, which work together in tandem.
When =′ = Prim 1B ?′, Interp makes a recursive call with
node argument ?′ .A>>C and time argument C . By Property 1,
F (?′ .A>>C) < F (83=′ ), and the condition in Equation (1)
holds. Interp also defines a new environment for execution
of ?′ via _-abstraction, and this in turn will recursively in-
voke Interp. These environments are only invoked by the
rule for variables, which we handle presently.
When =′ = Var G , the environment is invoked on variable

G . Here, there are two possible cases. First, we are interpret-
ing the top-level program ? . As this is the initial, top-level en-
vironment, there is no further recursion. Second, we are inter-
preting a sub-program ?′ and 4′ G C = Interp ? 4 C (? [1B G])

is actually a recursive call into the program ? one level up,
with its environment 4 . In this latter case, note that F is
defined such thatF (83? [1B G ]) = F (1B G) < F (83Var G ) (item
3 of Property 1), satisfying our property. All cases are com-
plete. �

From this, we conclude that all possible substitutions for
Ψ are attempted, and 5lr is sketch-complete.

Trusted Computing Base. The trusted computing base
(TCB) of a system is the set of components it assumes to be
correct [29]. A bug anywhere in the TCB could cause the
guarantees made by that system to be violated. Lakeroad’s
TCB includes: Rosette and the underlying SAT/SMT solvers
that Rosette queries (Bitwuzla, cvc5, Yices2, and STP); the

internal Yosys passes Lakeroad uses to extract primitive se-
mantics and translate design specifications from behavioral
Verilog into Lbeh; the semantics for Llr, which we assume
conservatively models non-cyclic (DAG) designs; our code
to translate from the Lstruct to structural Verilog; and the
vendor-provided Verilog simulation models for FPGA primi-
tives. Each TCB component has also been thoroughly tested,
as described in Section 5. Importantly, sketches and sketch
generation are not in Lakeroad’s TCB: even if there were a
bug in Lakeroad’s sketch-related components, it would not
violate Lakeroad’s correctness guarantees.

3.5 Multiple Clock Cycle Guarantees with 5 ∗lr

The preceding completeness and correctness properties for
5lr guarantee that running the synthesized program ? and
the design 3 for C clock cycles produces the same output. To
extend this guarantee, Lakeroad supports a form of bounded
model checking, where synthesis ensures that ? is semanti-
cally equivalent to 3 for 2 additional clock cycles starting at
time C . We formalize this with the function 5 ∗lr, which takes
a sketch Ψ, a behavioral design 3 , a number of clock cycles
C , and a model checking time bound 2 ≥ 0 and returns an
implementation ? ∈ Lstruct that is equivalent to 3 at time
steps C, C + 1, . . . , C + 2 .

Our correctness and completeness guarantees are similar
to those for 5lr:

?.5 E = 3.5 E ∧

∀4 B.C . domain(4) = ?.5 E,

8=C+2
∧

8=C

Interp ? 4 8 ?.A>>C = Interp 3 4 8 3.A>>C .

3.6 Beyond Lakeroad

Llr, its semantics, and the synthesis approach we describe
here are useful for applying program synthesis to other hard-
ware design problems. For example, the synthesis problem
detailed above could be “flipped” to decompile structural
designs back to higher-level behavorial designs, i.e., synthe-
sizing from Lstruct to an expression in Lbeh. Such decom-
pilation has seen recent interest for recovering equivalent
but faster-to-simulate models and for porting models across
different architectures [40]. As another example, the syn-
thesis approach could be adapted to help port designs by
synthesizing expressions in Lstruct that use one set of prim-
itives on one architecture from other designs in Lstruct that
use a different set of primitives from a different architecture.
Thus, the formalization in this section transcends the partic-
ular challenges of FPGA technology and provides a reusable
foundation for exploring a much broader range of hardware
design challenges from a program synthesis perspective.

424



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

implementations:

- interface: { name: LUT, num_inputs: 4 }

internal_data: { sram: 16 }

modules:

- module_name: frac_lut4

filepath: SOFA/frac_lut4.v

ports:

- { name: in, direction: in, width: 4,

value: (concat I3 I2 I1 I0) }

- { name: mode, direction: in,

width: 1, value: (bv 0 1) }

- { name: lut4_out, direction: out,

width: 1 }

parameters: [{ name: sram, value: sram }]

outputs: { O: lut4_out }

Figure 5. SOFA architecture description.

4 Implementation

Lakeroad is composed of approximately 13K lines of Racket
plus approximately 58K lines of Racket automatically gener-
ated from vendor-supplied Verilog. Vendor-supplied Verilog
was obtained from Lattice Diamond, Intel Quartus, and Xil-
inx Vivado sources. We used Vivado version v2023.1, Quar-
tus 22.1std.1 Build 917 02/14/2023 SC Lite Edition, Diamond
version 3.12, Yosys version 0.36+42 (commit 70d3531), the
cvc5 [8] and Yices2 [18, 19] solvers included in the 2023-08-
06 release of oss-cad-suite from YosysHQ, the Bitwuzla
solver at commit b655bc0 [32], the STP solver at commit
0510509a, Racket version 8.9 [20, 21], and Rosette version
4.1 [36].

4.1 Primitive Interfaces

As described in Section 2, primitive interfaces describe ab-
stract versions of common FPGA primitives, which allow
sketch templates to be architecture-independent. To date,
Lakeroad declares primitive interfaces for =-input LUTs,F-
width carry chains, =-input muxes, and DSPs with up to four
data inputs and one clock input. The next section includes
a concrete example of Lakeroad’s LUT4 primitive interface.

4.2 Architecture Descriptions

As described in Section 2, architecture descriptions convey the
information required to convert each instance of a primitive
interface into the corresponding architecture-specific mod-
ule, which occurs while converting sketch templates into
sketches. The architecture description is the only additional
input that may be required from a user to support a new
architecture; it is a one-time effort that is reusable for any
designs in an architecture. Architecture descriptions are sim-
ply lists (provided as YAML files) of the primitive interfaces
that an architecture implements, but, crucially, also include
architecture-specific port and parameter values in a map
called internal_data. Values in this map become symbolic
values solvable by the SMT solver. Additional constraints can

also be specified in the architecture description to rule out in-
valid configurations and minimize the solver’s search space.

As an example, Figure 5 shows the architecture descrip-
tion for the SOFA [43] FPGA architecture. The description
contains a single primitive interface implementation, i.e.,
LUT4. Lakeroad’s LUT4 primitive interface standardizes the
names of a LUT4’s inputs and outputs, naming the inputs I0
through I3 and the output O. The SOFA implementation of
the LUT4 primitive interface uses the SOFA-specific frac_-
lut4 primitive. Primitive interface inputs I0 through I3 are
mapped to the actual input port of the frac_lut4, named
in. Likewise, the frac_lut4 output lut4_out is mapped
to the primitive interface output O. The internal_data

field declares sram, the LUT’s 16-bit internal memory, as
an architecture-specific detail to be solved during synthesis.

If a sketch template uses a primitive interface not included
in the architecture description (e.g., SOFA does not imple-
ment carries), Lakeroad may still be able to implement the
primitive interface based on primitive interfaces the architec-
ture does implement. To date, Lakeroad can implement any
mux with LUTs, a larger LUT from smaller LUTs, a smaller
LUT from a larger LUT, a carry from LUTs, and a smaller
DSP from a larger DSP; it handles these conversions during
sketch generation.

4.3 Sketch Templates, Sketches, and Sketch

Generation

As described in Section 2, Lakeroad captures common FPGA
implementation patterns in reusable, architecture-independent
sketch templates. Thus far, we have described only the rela-
tively simple dsp sketch template, which instantiates a DSP.
As a more complex example of capturing common FPGA im-
plementation patterns, consider the bitwise-with-carry
sketch template, which uses = LUTs and a carry chain to
implement designs such as addition or subtraction. As of
the paper’s publication date, Lakeroad provides 5 sketch
templates: dsp, bitwise, bitwise-with-carry, compari-
son (LUT- and carry-based arithmetic comparison), and mul-
tiplication (LUT-based multiplication).
The process of converting sketch templates to sketches

is implemented as described in Section 2 and Section 4.2.
Lakeroad iterates over every primitive interface instance
in the sketch and replaces it with the concrete primitive in
accordance with the architecture’s architecture description.
If the architecture description does not implement the re-
quested primitive interface, Lakeroad checks whether it can
implement the primitive interface with other implemented
interfaces (e.g., implementing a smaller LUT with a larger
LUT) and raises an error otherwise.

Sketch templates and sketches alike arewritten in a domain-
specific language (DSL) embedded into Rosette, whose im-
plementation closely mirrors the syntax and semantics of
Llr. The only significant difference is that the interpreter

425



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

implementation does not use bitvector streams natively. In-
stead, each invocation of the interpreter represents a sin-
gle timestep, and all intermediate values from the previous
timestep are taken as input. Streams are then built up using
multiple invocations of the interpreter.

4.4 Importing Semantics from Verilog Modules

Lakeroad uses Yosys [50] to convert Verilog modules into
the btor2 format [33] and then converts the resulting btor2
to Rosette/Racket code.
Due to the semantics of the Verilog language and the in-

ternal implementation of Yosys, extracting semantics from
Verilog modules may require the following manual modifi-
cations to accommodate semantics extraction and synthesis:

• As Yosys converts parameters from variables to constant
values immediately upon module import, module parame-
ters should be converted to ports to ensure they remain
variables (and thus solvable by the SMT solver). Note that
not all parameters can always be converted to ports, mean-
ing some parameters cannot be solved for.

• Strings should be converted to bitvectors.
• All registers should be initialized.
• All instances of x and z values should be converted to
2-state logic (0 or 1).

Note that these caveats apply only to our prototype imple-
mentation, not the general technique of semantics extraction
from HDL. Once these manual modifications are made, the
following series of Yosys passes can be used to convert the
Verilog into suitable btor2: prep; flatten; pmuxtree;

opt_muxtree; clk2fflogic; prep; write_btor.
We implement the translation from btor2 to Rosette bitvec-

tor expressions as a 1:1 translation since both languages are
simply operations over bitvectors.

4.5 Program Synthesis and Compilation to Verilog

We implement the synthesis procedure defined in Section 3.4
with Rosette. Multiple clock cycle guarantees, as described
in Section 3.5, are implemented simply by making 2 + 1 total
assertions, asserting the output of the input design and the
sketch are equal after each of the 2 + 1 timesteps. We use a
portfolio solving method, running Bitwuzla [31], cvc5 [8],
Yices2 [18, 19], and STP [5] in parallel and using results from
the first solver to terminate. To produce Verilog, Lakeroad
compiles the program from its internal DSL to the JSON
format defined by Yosys using a straightforward translation
and then uses Yosys to output Verilog.

4.6 Integration with Other Tools

This paper describes Lakeroad as a standalone tool, but the
core Lakeroad implementation could be integrated directly
into existing tools. Though out of scope for this paper, we
have early, encouraging results integrating Lakeroad as a
Yosys pass that lets users tag modules with annotations

similar to (and much richer than) Xilinx’s use_dsp anno-
tation. We then map annotated modules to primitives using
Lakeroad, which let us easily apply Lakeroad to many frag-
ments within a larger design. We plan to more fully integrate
Lakeroad into Yosys in future work, which should radically
improve the completeness of Yosys’s DSP mapping ability,
as shown in Figure 6.

5 Evaluation

We now evaluate Lakeroad in terms of completeness and
extensibility. In the following experiments, we target four
FPGA architectures: Xilinx UltraScale+, commonly used
for large, high-performance workloads; Lattice ECP5, com-
monly used in low-power, low-cost scenarios; Intel Cyclone
10 LP, an FPGA designed for low-cost, high-volume use
cases, and SOFA [43], a recent, open-source FPGA devel-
oped by the research community. We compare Lakeroad to
existing technology mappers. For Xilinx Ultrascale+, Lat-
tice ECP5, and Intel Cyclone 10 LP, we compare Lakeroad
against both the open source toolchain Yosys [50] and the
state-of-the-art, proprietary, closed source toolchains for
each architecture.7The experiments were conducted on a
system running Ubuntu 20.04.3 with an AMD EPYC 7702P
64-Core CPU. The resident set size of a single Lakeroad pro-
cess did not exceed 300MB while running our evaluation.
We use the software versions listed in Section 4.

5.1 Lakeroad Completeness

The reliance of many technology mappers, including state-
of-the-art tools, on hand-written patterns leads them to fail
when attempting to map many workloads that should be
mapped to a single DSP. In particular, the process of partial
design mapping (illustrated in Section 2) becomes a labo-
rious endeavor because of this incompleteness: hardware
designers hand-instantiate DSPs rather than rely on substan-
dard automated tooling, repeating the work each time they
identify a potential opportunity to use a DSP. Lakeroad’s
greater mapping completeness significantly reduces the bur-
den on hardware designers during partial design mapping
and marks the first step in automated mapping for full de-
signs. We next evaluate how Lakeroad’s program synthesis
approach enables it to achieve greater completeness for these
program fragments.

Evaluation Setup. We highlight three particularly com-
plex DSPs for the Xilinx Ultrascale+, Lattice ECP5, and Intel
Cyclone 10 LP architectures: the Xilinx DSP48E2, Lattice
ALU54A/MULT18X18C (a single DSP composed of two prim-
itives), and Intel cyclone10lp_mac_mult. SOFA provides no
DSP, and is not included in this part of the evaluation. For
each architecture’s DSP, we enumerate a large subset of the

7Again, licensing restrictions prevent our naming the specific proprietary

tools, but they are familiar, standard packages used by many hardware

designers.

426



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

designs theoretically mappable to a single DSP according to
its configuration manual. This microbenchmark set aims to
capture the real-world designs which hardware designers
would attempt to map to a platform’s DSP. For each architec-
ture, we compare Lakeroad to both the corresponding state-
of-the-art toolchain for the architecture as well as to Yosys.
For Xilinx Ultrascale+, the DSP48E2 configuration manual
details the structure of designs mappable to the primitive.
Our designs for Xilinx include all permutations of the design
form ((0±1)∗2)⊙3 , where ⊙ ∈ {&, |,±, ⊕}, as well as designs
of the forms (0∗1) and ((0∗1)±2). We pipeline each of these
workloads from zero to three stages and use bitwidths from
8 to 18 bits. For the DSP on Lattice, we similarly enumerate
all designs of the form (0 ∗1) ⊙2 , where ⊙ ∈ {&, |, ⊕,±}, and
of the form (0 ∗ 1). For each of these designs, we use zero
to two stages and bitwidths from 8 to 18 bits. This results in
1320 microbenchmarks for Xilinx UltraScale+, 396 for Lattice
ECP5, and 66 for Intel Cyclone 10 LP. Though Lakeroad’s
output is correct by construction, we further validate its
output by simulating each Lakeroad-compiled design over
thousands of consecutive cycles using Verilator.

Comparison to Existing Toolchains. As demonstrated
in Figure 6 (top), Lakeroadmaps 44×more designs than Yosys
and 2.1× more designs than the proprietary, state-of-the-art
toolchain on Xilinx Ultrascale+. On Lattice ECP5, Lakeroad
maps 6.0× more designs than Yosys and 3.6× more designs
than the proprietary, state-of-the-art toolchain. On Intel Cy-
clone 10 LP, Lakeroad successfully maps all designs: 3×more
designs than the proprietary, state-of-the-art toolchain for
Intel. Yosys fails to map a single design on Intel. State-of-
the-art toolchains for all architectures fail to map more than
half of the queried designs. Lakeroad times out on less than
20% of designs.8 Note that Lakeroad returns “UNSAT” on ap-
proximately 260 designs on UltraScale+, i.e., Lakeroad claims
there is no possible mapping to a DSP48E2 for the requested
workload. In all of these cases, both Xilinx SOTA and Yosys
agree with Lakeroad and do not map the designs to a single
DSP. We conclude that the set of designs we presented in
Evaluation Setup must be overly broad; though the documen-
tation implies that all of these designs are mappable to a
single DSP, all three Xilinx synthesis tools surveyed indicate
that they are indeed not mappable.
For timing, we compared the mapping time for each of

the tools and report the results in Figure 6 (bottom). The
wide ranges for Lakeroad show that solver time for differ-
ent program synthesis queries is highly variable. This is
explored more deeply in Figure 7, which shows that most
synthesis queries terminate quickly, with a long tail of slower
queries. Note that the state-of-the-art technology mapper for

8We restricted Rosette synthesis time to 120 seconds, 40 seconds, and 20

seconds for Xilinx, Lattice, and Intel respectively, and marked failure past

that (though bitvector synthesis problems are decidable).

Ultrascale+ has a slow running time due to its long start-up
process.

Regarding which solvers in the portfolio were most useful,
of all terminating (success or UNSAT) Lakeroad experiments,
Bitwuzla was the first to complete for 671 of them, STP for
519, Yices2 for 464, and cvc5 for 64.
Lakeroad’s greater completeness directly translates into

resource reduction. On average, for each microbenchmark,
Lakeroad uses 3.9 fewer LEs (logic elements: LUTs, muxes, or
carry chains) and 7.5 fewer registers than the Xilinx SOTA,
7.2 fewer LEs/11.9 fewer registers than the Lattice SOTA, 8.2
fewer LEs/14.3 fewer registers than the Intel SOTA, and 33.3
fewer LEs/11.4 fewer registers than Yosys. In the real world,
the small modules captured by our microbenchmarks may be
reused dozens if not hundreds of times across a large design.
Thus, the sizable resource reduction Lakeroad provides on
a single microbenchmark will be multiplied significantly for
an entire design.

Discussion. Compared to Yosys, it is clear that Lakeroad
provides more complete support for programmable DSPs.
However, Lakeroad’s greater completeness over Yosys is
perhaps not surprising since Yosys is an open-source tool
still under active development. Part of the appeal of the
Yosys toolchain is the diversity of backends it can target;
these results show that, if incorporated into Yosys, Lakeroad
would further increase Yosys’s flexibility and generality. Per-
haps most surprising is that Lakeroad is more complete than
specialized proprietary toolchains. Even the UNSAT results
Lakeroad produces can be useful to designers since they
indicate potential flaws in the documentation or vendor-
provided semantics. In the context of a larger synthesis tool,
Lakeroad would provide stronger guarantees for mapping
modules of larger designs.

5.2 Lakeroad Extensibility and Expressiveness

In addition to being correct by construction (Section 3) and
more complete than existing FPGA technology mappers (Sec-
tion 5.1), Lakeroad can also easily extend to new FPGA archi-
tectures. Furthermore, automatic primitive semantics extrac-
tion from vendor-provided HDL simulation models enables
Lakeroad to support diverse, highly configurable FPGA prim-
itives.

The architecture descriptions vary in length from 20 to 240
source lines of code (SLoC). SOFA (20 SLoC) is the simplest,
shown in full in Figure 5. The descriptions for Xilinx (185
SLoC), Lattice (240 SLoC), and Intel (178 SLoC) are longer
since those FPGA architectures provide a wider range of
configurable primitives.

As a point of comparison, the open-source Yosys toolchain,
which has roughly 200 contributors on GitHub, provides
technology mapping for Xilinx UltraScale+ across over a
dozen complex Verilog, C++, and Python files (about 1300

427





ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

6 Related Work

To the best of our knowledge, Lakeroad is the first work to
apply the technique of program synthesis to FPGA technol-
ogy mapping. Indeed, as noted by Sisco et al. [39], program
synthesis has seldom been applied in the domain of hardware
design although its underlying formal methods techniques
are frequently used for the formal verification of hardware
designs rather than compilation, as in Bluespec SystemVer-
ilog [34], Kôika [12], and Kami [15]. Sisco et al. cite two
examples of works that use program synthesis for hardware
design, Verisketch [7] and Sketchilog [9], both of which ap-
ply program synthesis to produce HDL implementations
from high-level designs. Other works use program synthesis
to generate software that runs on low-powered hardware,
like Chlorophyll [35], which targets extremely memory-
constrained power-efficient processors, Chipmunk [22], which
targets programmable network switches, andDiospyros [48],9

which generates vectorized programs for standalone digi-
tal signal processors (more powerful and general-purpose
devices than the DSP units in FPGAs). These works demon-
strate the utility of program synthesis for generating code
that handles specific wrinkles in hardware designs, as does
the use of program synthesis in Lakeroad to harness the
programmability of FPGA DSPs.

Lakeroad is also related to past work in FPGA compilation
and techmapping, much of which does not entreaty to sup-
port programmable DSPswith asmuch generality. ODIN [26]
and ODIN-II [25] are used in hard-block synthesis for FPGAs,
which is the task of mapping portions of hardware designs to
specialized units (hard blocks) like multipliers. They operate
purely over syntax (e.g., mapping * to a multiplier) and so
are greatly limited in their ability to handle programmable
DSPs. The ABC [14] logic synthesis tool is used to lower
hardware designs into LUT and carry-chain configurations;
it is related to Lakeroad in that it also uses constraint solvers
to find configurations, though it is not general enough to
handle a wide variety of programmable DSPs, unlike the
program synthesis techniques used in Lakeroad. Note also
that the use of configuration files in Lakeroad to abstract
away details of the FPGA architecture was inspired by past
work in FPGA compilation, including OpenFPGA [42] and
the Verilog-to-Routing project (VTR) [38], both of which
use abstract architecture descriptions to facilitate portability
across designs, though these projects are limited in their sup-
port for DSPs. Library-Parameterized Models [3, 6] define
generic interfaces for common primitives and are also similar
to Lakeroad’s primitive interfaces, though they are limited
in their ability to represent configurable units like DSPs.

9Diospyros uses symbolic evaluation, which is related to program synthesis,

to lift imperative programs for digital signal processors into a high-level

mathematical representation that can then be used with the technique of

equality saturation [44] to generate optimized code for the target devices.

This is also distinct from the program synthesis techniques referenced

elsewhere in this paper.

Virtual FPGA overlays [13, 27, 28] are another approach
to improving the mapping of hardware designs to hardware.
Overlays present a “virtual” FPGA architecture; each ac-
tual architecture must then define a mapping from virtual
to actual primitives. This required translation is similar to
Lakeroad’s requirement on users to implement primitive in-
terfaces in an architecture description, though it requires
more user effort. The translation from virtual to actual archi-
tecture often comes with a steep resource and performance
overhead.

7 Conclusion

This paper presents Lakeroad, a novel approach to FPGA
technology mapping that leverages program synthesis tech-
niques to provide stronger correctness and completeness
guarantees than state-of-the-art tools. Because program syn-
thesis tools can efficiently explore large search spaces, Lakeroad
can find mappings of hardware designs to FPGA DSPs in
more cases than state-of-the-art tools, often finding more
efficient implementations in the process. With our tech-
niques of semantics extraction from HDL and architecture-
independent sketch templates, users must expend little man-
ual effort to apply Lakeroad to a given FPGA architecture
and extend it to handle further primitives. Moreover, our
formalization of Lakeroad fosters greater confidence in its
correctness. Lakeroad hence enables the extensible, efficient,
and correct lowering of hardware designs to FPGAs, high-
lighting the effectiveness of program synthesis for FPGA
technology mapping.

Acknowledgements

This work was funded by generous grants and awards from
Intel, the U.S. Department of Energy (award number DE-
SC0022081), and theNSF (grant numbers 1836724 and 1749570).

We would like to thank our anonymous reviewers for their
constructive feedback. Thank you to Jonathan Balkind for
serving as our shepherd. Thank you to thosewho contributed
code to early versions of Lakeroad, including David Cao
and Zihao Ye. Thank you to Jin Yang and his team at Intel.
Thank you to Daniel Petrisko, Scott Davidson, Rachit Nigam,
and Adrian Sampson for sharing their deep knowledge of
the hardware design workflow. Thank you to Chandrakana
Nandi for her enthusiasm and unwavering support. Thank
you to Claire Xenia Wolf, Nina Engelhardt, Jannis Harder,
and the YosysHQ team. Finally, thank you to the entire PLSE
lab for their support and camaraderie.

429



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix

A.1 Abstract

Our artifact consists of a zipfile containing the code for our
evaluation. Running the evaluation code will reproduce all
of the figures present in this paper, which artifact evaluators
can validate against our published data. The evaluation code
is comprised largely of the following files: documentation in
a README, a Dockerfile to automatically set up the evalua-
tion environment, the Lakeroad codebase, and the evaluation
scripts themselves (a mix of Python and shell scripts). The
evaluation should be run on an x86 machine running Linux
(ideally Ubuntu). The evaluation benefits from many CPU
cores. The evaluation requires at least 300GB of free space,
mostly for installing proprietary hardware toolchains.

A.2 Artifact check-list (meta-information)

• Algorithm: Program synthesis via Rosette. Hardware syn-

thesis via traditional hardware toolchains.

• Program: Lakeroad, the Rosette-based hardware synthesis

tool presented in this paper, plus Yosys, Xilinx Vivado, Lattice

Diamond, and Intel Quartus, the baseline hardware synthesis

tools we compare against.

• Run-time environment: Linux, ideally Ubuntu.

• Hardware: x86 CPU, ideally with many cores.

• Output: Images and CSV files representing this paper’s

figures and tables.

• Experiments: Each experiment is a single run of a hardware

synthesis tool (either Lakeroad or one of our baseline tools).

The entire experiment consists of thousands of these tool

runs.

• Howmuchdisk space required (approximately)?: 300GB.

• How much time is needed to prepare workflow (ap-

proximately)?: 4 hours: 3 hours to set up proprietary hard-

ware tools, 1 hour to build Docker image.

• How much time is needed to complete experiments

(approximately)?: 2 to 10+ hours, depending on the num-

ber of cores. On our 64-core machine, the evaluation takes

about 4 hours.

• Publicly available?: Yes, at h�ps://github.com/uwsampl/

lakeroad-evaluation and archived publicly on Zenodo, see

DOI link below.

• Code licenses (if publicly available)?: MIT.

• Workflow framework used?: Python DoIt.

• Archived (provide DOI)?: h�ps://doi.org/10.5281/zenodo.

10515833

A.3 Description

A.3.1 How to access. We recommend downloading the
zipped code repository from the DOI link above. The code
can also be cloned from the GitHub repository linked above.

A.3.2 Hardware dependencies. x86 CPU, preferablywith
many cores.

A.3.3 Software dependencies. Linux-based OS, ideally
Ubuntu.

A.4 Installation

Please refer to the README in the artifact. A more read-
able version of the README can be viewed on the GitHub
repository, or by converting the README using a tool like
Pandoc.

A.5 Experiment workflow

Please refer to the README in the artifact.

A.6 Evaluation and expected results

Please refer to the README in the artifact.

A.7 Methodology

Submission, reviewing and badging methodology:

• h�ps://www.acm.org/publications/policies/artifact-review-

badging

• h�p://cTuning.org/ae/submission-20201122.html

• h�p://cTuning.org/ae/reviewing-20201122.html

430



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gus Henry Smith, BK, VC, AC, SL, SP, RJ, GLB, and ZT

References
[1] Can not correctly infer "A*B+C" to DSP48E2. h�ps:

//support.xilinx.com/s/question/0D54U00006AqPXFSA3/can-

not-correctly-infer-abc-to-dsp48e2?language=en_US. Accessed:

2023-12-07.

[2] DSP48E2 inference for convolution/multiplication of 8-bit operands.

h�ps://support.xilinx.com/s/question/0D52E00006hpnGVSAY/

dsp48e2-inference-for-convolutionmultiplication-of-8bit-

operands?language=en_US. Accessed: 2023-12-07.

[3] Eia-is-103 : Library of parameterized modules (lpm).

[4] Inferring SIMD accumulator with Xilinx DSP48e2. h�ps:

//old.reddit.com/r/FPGA/comments/tr9vzn/inferring_simd_

accumulator_with_xilinx_dsp48e2/. Accessed: 2023-12-07.

[5] The simple theorem prover.

[6] Altera. Lpm quick reference guide.

[7] Armaiti Ardeshiricham, Yoshiki Takashima, Sicun Gao, and Ryan Kast-

ner. Verisketch: Synthesizing secure hardware designs with timing-

sensitive information flow properties. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’19,

page 1623–1638, New York, NY, USA, 2019. Association for Computing

Machinery.

[8] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna

Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,

Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew

Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A Versatile

and Industrial-Strength SMT Solver, pages 415–442. 01 2022.

[9] Andrew Becker, David Novo, and Paolo Ienne. Sketchilog: Sketching

combinational circuits. In 2014 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 1–4, 2014.

[10] Gilbert Louis Bernstein and Jonathan Ragan-Kelley. What are the se-

mantics of hardware? InWorkshop on Languages, Tools, and Techniques

for Accelerator Design (LATTE), 2021.

[11] James Bornholt and Emina Torlak. Synthesizing memory models from

framework sketches and litmus tests. SIGPLAN Not., 52(6):467–481,

jun 2017.

[12] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. The

essence of bluespec: a core language for rule-based hardware design.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 243–257, 2020.

[13] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga over-

lay architecture. In 2012 IEEE 20th international symposium on field-

programmable custom computing machines, pages 93–96. IEEE, 2012.

[14] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-

strength verification tool. In International Conference on Computer

Aided Verification, pages 24–40. Springer, 2010.

[15] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,

Adam Chlipala, and Arvind. Kami: A platform for high-level paramet-

ric hardware specification and its modular verification. Proc. ACM

Program. Lang., 1(ICFP), August 2017.

[16] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, Nes-

tan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanra-

han. Synthesizing instruction selection rewrite rules from rtl using

smt. In CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED

DESIGN–FMCAD 2022, page 139, 2022.

[17] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient

smt solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Proceedings

of the 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2008), volume 4963 of

Lecture Notes in Computer Science, pages 337–340, Berlin, Heidelberg,

2008. Springer.

[18] Bruno Dutertre. Yices 2.2. In International Conference on Computer

Aided Verification, pages 737–744. Springer, 2014.

[19] Bruno Dutertre and Leonardo De Moura. The yices smt solver.

[20] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-

ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. A

programmable programming language. Communications of the ACM,

61(3):62–71, March 2018.

[21] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-

2010-1, PLT Design Inc., 2010.

[22] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman,

and Srinivas Narayana. Autogenerating fast packet-processing code

using program synthesis. In Proceedings of the 18th ACM Workshop

on Hot Topics in Networks, HotNets ’19, page 150–160, New York, NY,

USA, 2019. Association for Computing Machinery.

[23] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis,

volume 4. NOW, August 2017.

[24] Yann Herklotz and John Wickerson. Finding and understanding bugs

in fpga synthesis tools. In Proceedings of the 2020 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, pages 277–287,

2020.

[25] Peter Jamieson, Kenneth B Kent, Farnaz Gharibian, and Lesley Shan-

non. Odin ii-an open-source verilog hdl synthesis tool for cad re-

search. In 2010 18th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 149–156. IEEE,

2010.

[26] Peter Jamieson and Jonathan Rose. A verilog rtl synthesis tool for het-

erogeneous fpgas. In International Conference on Field Programmable

Logic and Applications, 2005., pages 305–310. IEEE, 2005.

[27] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and

Eric Schkufza. Compiler-driven fpga virtualization with synergy. In

Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, pages

818–831, 2021.

[28] Roman L Lysecky, Kris Miller, Frank Vahid, and Kees A Vissers. Firm-

core virtual fpga for just-in-time fpga compilation. In FPGA, page 271,

2005.

[29] Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust.

The MIT Press, 09 2001.

[30] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. Improve-

ments to technology mapping for lut-based fpgas. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 26(2):240–

253, 2007.

[31] Aina Niemetz and Mathias Preiner. Bitwuzla at the smt-comp 2020.

arXiv preprint arXiv:2006.01621, 2020.

[32] Aina Niemetz and Mathias Preiner. Bitwuzla. In Constantin Enea and

Akash Lal, editors, Computer Aided Verification - 35th International

Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part

II, volume 13965 of Lecture Notes in Computer Science, pages 3–17.

Springer, 2023.

[33] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2

, btormc and boolector 3.0. In CAV (1), volume 10981 of Lecture Notes

in Computer Science, pages 587–595. Springer, 2018.

[34] Rishiyur Nikhil. Bluespec system verilog: Efficient, correct rtl from

high level specifications. In Proceedings of the Second ACM/IEEE In-

ternational Conference on Formal Methods and Models for Co-Design,

MEMOCODE ’04, page 69–70, USA, 2004. IEEE Computer Society.

[35] PhitchayaMangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant

Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-

aided compiler for low-power spatial architectures. ACM SIGPLAN

Notices, 49(6):396–407, 2014.

[36] Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak.

A formal foundation for symbolic evaluation with merging. Proc. ACM

Program. Lang., 6(POPL), January 2022.

[37] Berkeley Logic Synthesis and Verification Group. ABC: A system for

sequential synthesis and verification, 2005. h�p://www.eecs.berkeley.

edu/~alanmi/abc.

431



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[38] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goed-

ers, Andrew Somerville, Kenneth B Kent, Peter Jamieson, and Jason

Anderson. The vtr project: architecture and cad for fpgas from verilog

to routing. In Proceedings of the ACM/SIGDA international symposium

on Field Programmable Gate Arrays, pages 77–86, 2012.

[39] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben

Hardekopf. A position on program synthesis for processor develop-

ment. In Workshop on Languages, Tools, and Techniques for Accelerator

Design–LATTE 2022, 2022.

[40] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben

Hardekopf. Loop rerolling for hardware decompilation. Proc. ACM

Program. Lang., 7(PLDI), jun 2023.

[41] Armando Solar-Lezama. Program synthesis by sketching. University of

California, Berkeley, 2008.

[42] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere,

and Pierre-Emmanuel Gaillardon. Openfpga: An opensource frame-

work enabling rapid prototyping of customizable fpgas. In 2019 29th

International Conference on Field Programmable Logic and Applications

(FPL), pages 367–374. IEEE, 2019.

[43] Xifan Tang, Ganesh Gore, Grant Brown, and Pierre-Emmanuel Gaillar-

don. Taping out an fpga in 24 hours with openfpga: The sofa project.

In 2021 31st International Conference on Field-Programmable Logic and

Applications (FPL), pages 400–400. IEEE, 2021.

[44] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality

saturation: A new approach to optimization. In Proceedings of the 36th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’09, page 264–276, New York, NY, USA, 2009.

Association for Computing Machinery.

[45] Emina Torlak and Rastislav Bodik. Growing solver-aided languages

with rosette. In Proceedings of the 2013 ACM international symposium on

New ideas, new paradigms, and reflections on programming & software,

pages 135–152, 2013.

[46] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual

machine for solver-aided host languages. ACM SIGPLAN Notices,

49(6):530–541, 2014.

[47] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak.

Synthesizing jit compilers for in-kernel dsls. In Computer Aided Verifi-

cation: 32nd International Conference, CAV 2020, Los Angeles, CA, USA,

July 21–24, 2020, Proceedings, Part II, page 564–586, Berlin, Heidelberg,

2020. Springer-Verlag.

[48] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and

Adrian Sampson. Vectorization for digital signal processors via equal-

ity saturation. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 874–886, 2021.

[49] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and

Luis Ceze. Reticle: a virtual machine for programming modern fpgas.

In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, pages 756–771,

2021.

[50] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free ver-

ilog synthesis suite. In Proceedings of the 21st Austrian Workshop on

Microelectronics (Austrochip), 2013.

[51] Xilinx. Ultrascale architecture DSP slice user guide, 2021. h�ps:

//docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp.

432


