L))

Check for
Updates

FPGA Technology Mapping Using
Sketch-Guided Program Synthesis

Gus Henry Smith
University of Washington
Seattle, USA
gussmith@cs.washington.edu

Andrew Cheung
University of Washington
Seattle, USA
acheung8@cs.washington.edu

René Just
University of Washington
Seattle, USA
rjust@cs.washington.edu

Abstract

FPGA technology mapping is the process of implement-
ing a hardware design expressed in high-level HDL (hard-
ware design language) code using the low-level, architecture-
specific primitives of the target FPGA. As FPGAs become
increasingly heterogeneous, achieving high performance
requires hardware synthesis tools that better support map-
ping to complex, highly configurable primitives like digital
signal processors (DSPs). Current tools support DSP map-
ping via handwritten special-case mapping rules, which are
laborious to write, error-prone, and often overlook map-
ping opportunities. We introduce Lakeroad, a principled ap-
proach to technology mapping via sketch-guided program
synthesis. Lakeroad leverages two techniques—architecture-
independent sketch templates and semantics extraction from
HDL—to provide extensible technology mapping with stronger
correctness guarantees and higher coverage of mapping op-
portunities than state-of-the-art tools. Across representative
microbenchmarks, Lakeroad produces 2-3.5X the number of
optimal mappings compared to proprietary state-of-the-art
tools and 6-44x the number of optimal mappings compared
to popular open-source tools, while also providing correct-
ness guarantees not given by any other tool.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640387

416

Benjamin Kushigian
University of Washington
Seattle, USA
benku@cs.washington.edu

Steven Lyubomirsky
OctoAl
Seattle, USA
slyubomirsky@octo.ai

Gilbert Louis Bernstein
University of Washington
Seattle, USA
gilbo@cs.washington.edu

Vishal Canumalla
University of Washington
Seattle, USA
vishalc@cs.washington.edu

Sorawee Porncharoenwase
University of Washington
Seattle, USA
sorawee@cs.washington.edu

Zachary Tatlock
University of Washington
Seattle, USA
ztatlock@cs.washington.edu

module add_mul_and(...); P .
always @{posedge <1k x;l;r}x_ultrascale_plus.
re <= ((d+a)*b)&c; module_name: "DSP48E2"
e ports: ...
endmodule i parameters: ...
input 1: design

input 2: architecture description

module DSP48E2 #(
parameter ACASCREG, ...
) (
output [29:0] ACOUT, ...

5
nput 3: FPGA primitive simulation model

expanded

SOTA Lakeroad in fig. 2

module add_mul_and(...);
DSP48E2 #(...) d@ (...);
DSP48E2 #(...) d1 (...);
LUT2 #(...) 10 (...);
LUT2 #(...) 11 (...);

DSP48E2 #(...) d (...);
endmodule

module add_mul_and(...); IT

endmodule

1
1
1
1
1
1
1
! v
1
1
1
1
1
1
1

their output: multi-DSP,
multi-LUT implementation

our output: single-DSP

impl. using all DSP features

Figure 1. Even given a simple input design (input 1), the
state-of-the-art (SOTA) hardware synthesis tool for Xilinx
FPGAs frequently fails to efficiently use programmable
primitives like DSPs. Lakeroad, on the other hand, can utilize
all features of programmable primitives given just a short
description of an FPGA architecture (input 2) and the vendor-
provided simulation models of the primitive (input 3).

ACM Reference Format:

Gus Henry Smith, Benjamin Kushigian, Vishal Canumalla, Andrew
Cheung, Steven Lyubomirsky, Sorawee Porncharoenwase, René
Just, Gilbert Louis Bernstein, and Zachary Tatlock. 2024. FPGA
Technology Mapping Using Sketch-Guided Program Synthesis. In
29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (ASPLOS
'24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3620665.3640387

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

1 Introduction

Given a high-level hardware design specification (e.g., ex-
pressed in behavioral Verilog), FPGA technology mappers
search for an equivalent low-level implementation in terms
of the target FPGA’s primitives. See Figure 1 for an exam-
ple, where the high-level, behavioral add_mul_and mod-
ule (“input 1”) is converted into FPGA-specific implementa-
tions (“their output” and “our output”) using Xilinx-specific
DSP48E2 and LUT2 primitives.

Historically, FPGAs consisted of relatively simple primi-
tives, such as lookup tables (LUTs) and carry chains. Tools
like ABC [14, 30, 37] automatically map to these basic primi-
tives by translating designs to a library of simple logic gates
and then packing those gates into LUTs.

However, FPGAs are becoming increasingly heteroge-
neous via the inclusion of specialized and diverse primitives
such as digital signal processors (DSPs). Utilizing these spe-
cialized primitives effectively is now crucial for achieving
high performance [49]. These specialized primitives make
FPGA technology mapping far more challenging since tech-
nology mappers must now explore a much larger search
space while also satisfying each primitive’s complex set of re-
strictions and dependencies. For example, Xilinx’s DSP48E2
is a multifunction DSP with nearly 100 ports and parameters,
whose numerous configurations enable support for a large
variety of computations. The manual for the DSP48E2 alone
is 75 pages long, where considerable text details the complex
restrictions between the settings of the nearly 100 ports and
parameters.

Existing technology mapping tools frequently fail to map
designs to specialized primitives like DSPs, requiring manual
work for the hardware designer to recover the performance
of their design. While existing toolchains have the ability to
automatically infer locations where specialized primitives
can be used in large designs, inference often fails [1, 2, 4].
In these cases, the designer can either accept lower perfor-
mance and higher resource utilization, or they can perform
what we call partial design mapping. During partial design
mapping, the designer manually identifies and separates out
the module that should be mapped to a DSP. They can at-
tempt to re-run technology mapping on that module alone,
in the hopes that mapping succeeds. Yet existing toolchains
often fail even in the partial design mapping case: Figure 1
shows a simple module add_mul_and which should fit on a
single DSP48E2 according to the DSP’s manual, but is instead
mapped to multiple DSPs and LUTs by current state-of-the-
art tools.! In the worst case, hardware designers are forced
to manually instantiate complex primitives by hand, e.g., by
looking through the 75-page DSP48E2 user manual to manu-
ally configure the DSP’s dozens of ports and parameters.

Licensing restrictions forbid naming the specific proprietary tools, but
they are familiar, standard packages used by many hardware designers.

417

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

Current state-of-the-art technology mappers are imple-
mented via ad hoc, handwritten pattern matching proce-
dures, which fall short in three primary ways. First, as we
saw above, they are incomplete: they miss many mapping
opportunities, even across microbenchmarks based on ven-
dor documentation. Second, they do not provide strong
correctness guarantees: recent work highlights the sig-
nificant number of bugs found across all major hardware
synthesis tools [24]. Third, they are difficult to extend:
each new complex primitive requires supporting detailed se-
mantics and adding hundreds of new, special-case syntactic
pattern matching rules [50].

This paper’s key observation is that technology mapping
is well-suited for the application of automated reasoning
procedures—specifically, program synthesis [23]. We observe
that the configuration space of a programmable FPGA prim-
itive is essentially a small, bespoke programming language,
and that program synthesis could be applied to automat-
ically generate primitive configurations. We explore how
program synthesis can simplify the design and implementa-
tion of FPGA technology mappers while providing correct,
extensible, and more complete support for mapping to
diverse, highly configurable primitives like DSPs. Program
synthesis techniques rely on automated theorem provers
like SAT and SMT solvers [8, 17] to automatically generate
programs satisfying a given specification. We demonstrate
how sketch-guided program synthesis [41] can be adapted
for FPGA technology mapping, leveraging the Rosette [46]
program synthesis framework.

Sketch-guided program synthesis requires encoding the
semantics of the target language: in our case, a machine-
readable, mathematical model specifying the behavior of
each FPGA-specific primitive being mapped to. In a typical
synthesis tool, which generates programs for a single target
language, this is a one-time cost. However, in our setting,
each new FPGA primitive introduces yet another new target
language, which in turn requires extending the tool to encode
yet another formal semantics.

To support correct, extensible, and more complete technol-
ogy mapping, we propose automating this process with se-
mantics extraction from HDL, adapted from past work [16],
to automatically extract complete primitive semantics from
vendor-published HDL models (Figure 1, “input 3”). Tradi-
tionally, such models have been used only for simulation
and validation after technology mapping; we show that us-
ing the semantics to implement technology mapping with a
program-synthesis-based approach yields substantially more
complete FPGA technology mapping.

Sketch-guided program synthesis also requires sketches,
which are partially complete programs with “holes” to be
filled in by the solver. Sketches primarily serve to scale syn-
thesis by constraining the set of programs that solvers ex-
plore when searching for one that satisfies the given specifi-
cation, i.e., performance at the cost of completeness. In our

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

setting, sketches correspond to arrangements of primitives,
using holes as placeholders for some of the primitives’ ports
and parameters. This could be a single DSP with holes for
its ports and parameters (as in the example in Section 2.2),
or a number of LUTs with holes for their LUT memories, or
even a mixture of LUTs, DSPs, and carry chains. The syn-
thesizer “fills in the holes” as necessary for the low-level
FPGA-specific primitive to implement a given high-level
behavioral design fragment. Unfortunately, developing ef-
fective sketches still requires synthesis expertise [11, 47].
Naively, our approach would also require new sketches for
each new FPGA primitive we target.

To address these challenges, we introduce architecture-
independent sketch templates. Hardware designs are of-
ten implemented using high-level blueprints that are similar
across most FPGA architectures—sketch templates capture
these blueprints and make them reusable across architectures.
Therefore, by using sketch templates, we greatly reduce the
overhead of supporting new architectures and diverse primi-
tives. Typically, when adding support for a new primitive or
FPGA architecture in Lakeroad, the hardware designer need
not write or modify any sketch templates.

We leverage semantics extraction from HDL and architecture-

independent sketch templates to build Lakeroad,” a new
FPGA technology mapper based on program synthesis.

Lakeroad’s prototype implementation automatically im-
ports semantics for the LUTs, arithmetic carry chains, and
DSPs of the Xilinx UltraScale+, Lattice ECP5, Intel Cyclone 10
LP, and SOFA [43] FPGA architectures. The only additional
user input to Lakeroad is a short architecture description that
lists the target FPGA’s primitives (Figure 1, “input 2”). Archi-
tecture descriptions only need to be written once per archi-
tecture, and Lakeroad pre-supplies architecture descriptions
for the aforementioned architectures. With the automati-
cally extracted primitive semantics and the user-provided
architecture description, we demonstrate that Lakeroad is
more complete than proprietary tools on a variety of mi-
crobenchmarks that are representative of program fragments
implemented with DSPs during partial design mapping. In
particular, Lakeroad maps up to 3.5X more microbenchmarks
than state-of-the-art tools for Xilinx, Lattice, and Intel, and
up to 44X more microbenchmarks than Yosys.

This paper makes the following key contributions:

o The novel application of program synthesis to produce
a technology mapper—Lakeroad—that is more correct,
complete, and extensible than state-of-the-art tools.

e A technique for applying semantics extraction from
HDL to automatically generate models of hardware usable
by formal automated reasoning tools.

e The concept of architecture-independent sketch tem-
plates, which capture common patterns in hardware de-
sign in an architecture-independent way, plus primitive

2Lakeroad is publicly available at https://github.com/uwsampl/lakeroad.

418

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

interfaces and architecture descriptions, the abstrac-
tions underlying these templates.

e A formalization of the Lakeroad toolchain and an argu-
ment for its correctness and sketch-completeness.

o The first notion of technology mapping completeness
for FPGA compilers.

e Empirical comparisons of Lakeroad and existing hard-
ware synthesis tools to evaluate both their relative com-
pleteness and ease of extensibility.

In the following sections, we walk through a real-world ex-
ample using both existing tools and Lakeroad and highlight
Lakeroad’s design and key features (Section 2); formalize
Lakeroad and demonstrate its correctness (Section 3); de-
scribe Lakeroad’s implementation (Section 4); and evaluate
Lakeroad on its completeness of mapping, extensibility, and
expressiveness (Section 5) . Section 6 discusses related work,
and Section 7 concludes.

2 Overview

We now walk through an example of how current FPGA
technology mapping tools can fail a hardware designer (Sec-
tion 2.1) and how Lakeroad overcomes these limitations (Sec-
tion 2.2). In the process, we provide a high-level overview of
Lakeroad’s main components.

2.1 Compiling a Design to a DSP with Existing Tools

Consider the following scenario: A hardware designer is de-
signing a large hardware block for the Xilinx UltraScale+
family of FPGAs. The designer is specifically aiming to use
the UltraScale+’s specialized DSP48E2 units, which can im-
plement combined multiplication, arithmetic, and logic op-
erations, as captured in this simplified block diagram [51]:

DSP48E2

The designer’s hardware block involves the computation

(d+a)*b&c, which the manual states is implementable with

a single DSP. In particular, suppose the design consists of

four separate instances of the following computation:
for(i=0; i<4; i++) begin

rfi] <= (d[i] + al[il) = b[i] & c[il;

end
It would be reasonable for the designer to expect the design
to use a total of four DSPs.

Current tools fail. After compiling the design with exist-
ing tools, the designer is frustrated to find that the compiler
returns a design that uses more resources than anticipated.
It does use four DSPs, but it also uses 128 registers (which
hold state) and 64 lookup tables (LUTs, which implement
logic functions). The compiler has thus failed to fully

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

utilize the DSP—it has not configured a DSP48E2 to imple-
ment (d+a)*b&c but has instead implemented a portion of
the computation with LUTs and registers. The designer now
faces a choice: either accept the result or attempt to coax the
compiler into returning a more optimal design.

Coaxing the compiler, to no avail. Though many may
choose to accept a less optimal result, this tenacious® tries to
coax the compiler into giving the expected results by placing
the computation of interest into a separate module:

// add_mul_and.v: computes (atb)*c&d in two clock cycles.
module add_mul_and(input clk, input [15:0] a, b, c, d,
output reg [15:0] out);
reg [15:0] r;
always @ (posedge clk) begin
r <= (atb)*c&d; out <= r;

end
endmodule
This allows the designer to apply specific optimizations while
mapping the module—a process we call partial design map-
ping. They attempt various strategies, including annotating
the module with Xilinx’s use_dsp Verilog attribute (to force
the compiler to use a DSP where possible) and using a differ-
ent synthesis directive (to apply a more resource-intensive
synthesis procedure). Despite these efforts, the compiler
still cannot map the design to a single DSP, instead using
one DSP, 32 registers, and 16 LUTs. Again, the designer must
decide: give up and accept suboptimal results, or press on?

Manual compilation. The hardware designer presses on
and now has only one option remaining: manually instantiat-
ing a DSP48E2 with the desired behavior. Skimming through
the daunting 75-page DSP48E2’s online user manual, the de-
signer quickly discovers that configuring even the “pre-add”
a+b requires correctly setting multiple ports and parameters
(INMODE, AMULTSEL, BMULTSEL, and PREADDINSEL), whose de-
scriptions span 10+ pages and multiple tables. Correctly con-
figuring the subsequent multiplier and logic unit proves even
more difficult and time-consuming. After configuring the
computational units, the designer must still manually ensure
correct pipelining of the 10+ pipeline registers. After hours
of frustration, a configuration is found that seems to work,
which the designer inserts into the design. Precious time has
been wasted, most of which will need to be repeated to con-
figure the DSP again. Making matters worse, the designer
has no formal guarantees about the correctness of this
DSP configuration. It may work in a few simulated test
cases, but are there corner cases that have been missed?

2.2 Compiling a Design to a DSP with Lakeroad

Lakeroad can save hardware designers the great effort in-
volved in manual DSP configuration while also providing
correctness guarantees. Let us imagine how the designer in
this example, frustrated by conventional tools, can instead

3This may not be purely a personal preference. For example, a hardware
design simply may not fit on an FPGA without manual optimizations!

419

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

Desian Architecture
9 description

FPGA primitiveb
Verilog models

/ Y Y \ 4

! N
Sketch | arch indep. Semantics
! Generator | templates Importer

-

primitive
semantics

arch. specific
K sketch
expanded

from A 4
fig. 1
‘\

T
\ design

Program Synthesis]

Compilation to

Verilog
Y Lakeroad

Y

Verilog file

Figure 2. The components within Lakeroad.

proceed using Lakeroad during partial design mapping. After
putting add_mul_and into its own module, the designer calls
Lakeroad from the command line:
$ lakeroad --template dsp \
--arch-desc xilinx-ultrascale-plus.yml \
add_mul_and.v
The lakeroad command outputs add_mul_and_impl, an im-
plementation of add_mul_and that uses a single UltraScale+
DSP48E2:

module add_mul_and_impl(input clk, input [15:0] a, b, c, d,
output [15:0] out);
DSP48E2 #(
.ACASCREG(32'd0), .ADREG(32'd0), .ALUMODEREG(32'd@),
.AMULTSEL("AD"), .AREG(32'd0), .AUTORESET_PATDET("NO_RESET"),
// ...plus 30+ more parameters
) DSP48E2_0 (
LA({ 14'h0000, a }), .ACIN(30'h00000000), .ALUMODE(4'hc),
.B({ 2'ho, b }), .BCIN(18'h0000o0), .C({ 32'h00000000, c }),
.CARRYCASCIN(1'h@), .CARRYIN(1'h0), .CARRYINSEL(3'h6),
// ...plus 30+ more ports

endmodule

Unlike current compilers, Lakeroad has produced an imple-
mentation using a single DSP48E2 by utilizing more of the
DSP’s features. Importantly, this compiled design is also
formally guaranteed to implement the input add_mul_and
design.

How does Lakeroad provide verified, more complete sup-
port for the DSP48E2 over existing tools? At the core of
Lakeroad’s correctness and completeness is sketch-guided
program synthesis, a technique that begins with a program
sketch, which captures a rough outline of a program and uses
automated reasoning tools (e.g., SMT solvers) to fill in the
sketch’s holes. As shown in Figure 2, Lakeroad uses the fol-
lowing three-step process to generate an efficient and correct
DSP48E2 implementation of the add_mul_and design.

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

Step 1: Generating a Sketch. In the add_mul_and exam-
ple, Lakeroad generates the following sketch, which we refer
to as sketch:*
module sketch(input clk, input [15:0] a, b, c, d,

output [15:0] out);
DSP48E2 #(
.ACASCREG(??), .ADREG(?7), .ALUMODEREG(??), .AMULTSEL(?7),
.AREG(?7), .AUTORESET_PATDET(??), ...
) DSP48E2_0 (

LA({ 14'h0000, a 3), .ACIN(??), .ALUMODE(??),

.B({ 2'ho, b }), .BCIN(??), .C({ 32'h@00e0aso, c }),

.CARRYCASCIN(??), .CARRYIN(??), .CARRYINSEL(??), ...
ezémodule
This sketch consists of a single DSP48E2 instance with holes
(represented by ??) serving as placeholders for most of its
ports and parameters. It is easy to see the parallels between
sketch and add_mul_and_impl; sketch is simply add_mul_-
and_impl with holes. But how does Lakeroad generate sketch
in the first place?

To maximize portability across architectures, Lakeroad
does not store sketches like sketch directly; instead, it gen-
erates sketches from architecture-independent sketch tem-
plates. Instead of storing the preceding UltraScale+-specific
sketch, Lakeroad generates the sketch from the DSP sketch
template, which the designer has chosen to use with the
--template dsp flag. A simplified form of this template
looks like the following:
module dsp_sketch_template(input clk,

input [n-1:0] a, b, c, d,

output [n-1:0] out);

DSP dsp_instance(.clk(clk), .A(a), .B(b), .C(c), .D(d), .out(out));

endmodule
Sketch templates capture hardware design patterns that
are common across FPGA architectures in an architecture-
independent way. dsp_sketch_template, for example, cap-
tures a basic pattern, i.e., instantiating a single DSP. Lakeroad
includes sketch templates of varying complexity, from the
simplicity of the one above to the complexity of LUT-based
multipliers. Though new sketch templates can be added eas-
ily, in most cases (as in this example) users can simply apply
Lakeroad’s provided templates.

To specialize dsp_sketch_template into sketch, Lakeroad
translates the sketch template’s generic DSP primitive inter-
face into an UltraScale+-specific DSP48E2 using the Ultra-
Scale+ architecture description. The generic DSP module is
an instance of a primitive interface: a Lakeroad-introduced
abstraction that captures the similarities between primitives
across diverse FPGA architectures. For example, Lakeroad’s
DSP primitive interface captures the facts that DSPs on all
FPGA platforms generally have two to four data inputs (cap-
tured by A-D) and a clock input (captured by c1k). To convert
the sketch template’s DSP primitive interface instance into
a DSP48E2, Lakeroad utilizes the Xilinx UltraScale+ archi-
tecture description, which the designer has pointed to with

4Though this example is presented in a Verilog-like language, Lakeroad’s
sketches are actually encoded in a Racket DSL that resembles structural
Verilog.

420

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

the --arch-desc xilinx-ultrascale-plus.yml flag. An
architecture description specifies how Lakeroad’s various
primitive interfaces are implemented for a given architecture.
The following simplified snippet of the UltraScale+ archi-
tecture description, for example, tells Lakeroad that, when
generating a sketch for UltraScale+, instances of the DSP
primitive interface should be implemented with a DSP48E2:

- interface: {name: DSP, params: { out-width: 48, a-width: 30, ...}}
holes: [?ACASCREG, ?ADREG, ?ALUMODEREG, ?AREG, ...]
implementation:

module: DSP48E2
ports: [{ name: A, bitwidth: 30, value: A }, ...]
parameters: [{ name: ACASCREG, value: ?ACASCREG }, ...]

outputs: { 0 : P }

Thus, while converting dsp_sketch_template into sketch,
Lakeroad reads this architecture description and converts
the single DSP instance into a DSP48E2, filling the ports and
parameters with the concrete values and holes contained in
the architecture description. Architecture descriptions are
usually short (100-400 LoC) and written only once per FPGA
architecture; Lakeroad already contains such descriptions
for Xilinx UltraScale+, Lattice ECP5, Intel Cyclone 10 LP, and
the open-source FPGA SOFA [43].

To generate a sketch, Lakeroad takes an architecture-
independent sketch template and specializes it using an ar-
chitecture description. Once the sketch is ready, the designer

can move on to synthesis.

Step 2: Program Synthesis. The next step fills in the holes
to generate a complete, correct hardware design, which is
done automatically using a technique called program syn-
thesis. Program synthesis is the process of using automated
reasoning tools (like SMT solvers) to generate correct pro-
grams by encoding program generation as a constraint solv-
ing problem. In our add_mul_and example, Lakeroad, aided
by Rosette [45, 46], generates a query like the following:’

3 ACASCREG, ADREG,Vinputs.
add_mul_and(inputs) = sketch(inputs, ACASCREG, ADREG, ...)

The query asks: are there concrete values for ACASCREG,
ADREG, etc., that will make our sketch’s behavior equiva-
lent to the input design’s behavior on all inputs? If the solver
finds such values, Lakeroad can use them to fill the holes
in the sketch and produce a compiled design. However, if
Lakeroad tries to pass the preceding formula to an SMT
solver, the solver will throw an error since the query is not
expressed at a level it understands, viz., as equalities between
bitvector expressions, using simple Boolean or arithmetic
operations. While it is conceivable that add_mul_and could
be converted to a bitvector expression since its core compu-
tation is already expressed as (a+b)*c&d, it is unclear how
to express sketch as an expression over bitvectors. In par-
ticular, Lakeroad must express bitvector-level semantics for
Xilinx’s DSP48E2 primitive.

To generate bitvector-level semantics for complex FPGA
primitives, Lakeroad introduces the concept of semantics

SWe formalize this synthesis query and explain it precisely in Section 3.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

extraction. Rather than requiring manual effort to encode
the semantics of the underlying hardware, which is notori-
ously difficult even for experts [10], Lakeroad’s key insight
is that these challenges can be avoided altogether by ex-
tracting low-level semantics directly from vendor-supplied
simulation and verification models. Lakeroad builds on in-
ternal passes in Yosys [50] to automatically extract solver-
ready semantics from these vendor-provided HDL models,
which we detail in Section 4.4. For the add_mul_and example,
the DSP48E2’s semantics have already been imported into
Lakeroad. Semantics need to be imported only when adding
support for a new architecture, i.e., about as infrequently
as writing a new architecture description. In most cases,
Lakeroad users can rely on already-imported semantics.

With the sketch generated and the DSP48E2’s semantics
imported, program synthesis can begin. Lakeroad utilizes
Rosette to drive program synthesis, as detailed in Section 3. In
our example, Rosette returns a configuration for the DSP48E2.
The last step, then, is to convert the compiled design to
Verilog.

Step 3: Compilation to Verilog. Compiling Lakeroad’s
internal representation into Verilog is a purely one-to-one
syntactic mapping; no optimizations are done at this stage,
reducing the likelihood that bugs could be inserted. In our
example, the final Verilog produced results in the add_mul_-
and_impl we saw at the start of Section 2.2.

In summary. Lakeroad delivered an implementation of
the designer’s add_mul_and module, improving upon both
state-of-the-art compilers and manual approaches in multi-
ple ways. Lakeroad’s implementation is significantly more
resource-efficient than the state-of-the-art compiler’s—one
DSP versus one DSP, 32 registers, and 16 LUTs. Lakeroad
delivered its implementation in mere seconds, compared to
the hours to days of work that manually instantiating a DSP
might take. Lastly, Lakeroad’s implementation is formally
guaranteed to be correct. Meanwhile, Lakeroad did all of
this while requiring no input from the user other than the
Verilog to be compiled.

3 Formalization

We now formalize Lakeroad with functions fix and f3, and
use these models to argue for the correctness and partial com-
pleteness of Lakeroad. We first define fi; (Section 3.1) and
then motivate and define the language L.z, specify its syn-
tax and semantics, and define behavioral (Lggy), structural
(Lsrrucr), and sketch (Lgkpren) Sublanguages (Section 3.2).
We next explain the underlying queries Lakeroad uses to
synthesize hardware programs that meet the desired speci-
fication (Section 3.3). We demonstrate the correctness and
partial completeness of fix, enumerate our Trusted Comput-
ing Base (Section 3.4) and extend fi; to f;;, which ensures
the generated program’s semantics matches the design over

421

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

multiple timesteps (Section 3.5). Finally, we highlight poten-
tial future applications that could be built on this section’s
formalization (Section 3.6).

3.1 The Lakeroad Function fi
We model the execution of Lakeroad with the partial function

fir : SKETCH X Lggy X Time = Lgrruct,

where fi(¥,d,t) invokes Rosette to synthesize a t-cycle
implementation of behavioral design d using sketch ¥ to
guide the search, where a t-cycle implementation of d is a
program that is equivalent to d at clock cycle ¢. By not requir-
ing program equivalence before clock cycle t we allow the
synthesized program’s semantics to differ from the design
during an initialization period (e.g., as the pipeline is being
filled). To get guarantees beyond a single point in time ¢, we
generalize fi; to f,;, which synthesizes a program that is
equivalent to the design from time ¢ to ¢ + n. We formalize a
sketch ¥ € SKETCH as a tuple (¢, h), where ¢ is a program
in Lsgpren and h is a map from the holes in ¢ to a finite set
of valid hole-free nodes in Lgzucr that can be used to fill
the mapped hole. This mapping h is handled implicitly by
Rosette’s choose and hole constructs and need not be explic-
itly specified by the sketch writer. We write fix(¥,d,t) = p
to indicate that synthesis succeeded and produced Lakeroad
program p. However, it is possible that sketch ¥ cannot im-
plement d, in which case the synthesis fails (i.e., returns
UNSAT) and fi; does not return anything. Design d belongs
to Lx’s behavioral fragment, Ly (see Section 3.2). When
t =0, fiz synthesizes a combinational design; when t > 0, fix
synthesizes a sequential design over t clock cycles. The rest
of this section considers sequential design synthesis since
its combinational counterpart is a special case covered by
our general approach.

3.2 Defining L,y

Lakeroad uses the £, language to translate behavioral HDL
programs to structural, hardware-specific HDL programs.
To facilitate this translation, we designed L, to satisfy the
following properties:

P1. Easy translation to/from HDLs: we must be able to trans-
late designs from a behavioral HDL to £, and trans-
late synthesized implementations to a structural HDL.
Support parallel stateful execution: FPGA designs con-
sist of potentially stateful elements executing in paral-
lel. £,z must allow unambiguous parallel execution.
Support graph-like program structures: An FPGA com-
ponent’s outputs can be wired to multiple other compo-
nents, including back to itself. This means that FPGA
programs can form arbitrary graphs, and £;; must be
able to express this.

Support for sequential designs: L, must handle designs
that run over multiple clock cycles.

P2.

P3.

P4.

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

== (1d, {Id, Node)x)

=BV b |Varx
| OP op 1d*
| Reg Id (BV b)
| Prim binds Prog
| H

Prog
Node

Wire op

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Id id e N

Bitvectors b € BY

Variables x € LegalVarNames
Operators op € OPy, U OP,,
binds bs € (Variables — Id)

OP,, = {concat,extract,...}

Non-wire op OPp, = {+,—, %,...}

Figure 3. Syntax of L. B, is a syntactic hole, labeled with variable x. A — B denotes the set of partial functions from A to B.

P5. Support for different architectures: L, must handle
FPGA components from different architectures.

We describe how L,y satisfies P1-P5 when we define its
syntax and semantics in the following subsections.

3.2.1 L,g’s Syntax. Figure 3 shows the L;; syntax. An
L program Prog consists of a root node ID and a graph of
nodes, each of which is referred to by its ID. A node can be a
constant bitvector, input variable, combinational (pure) oper-
ator, sequential (stateful) register, primitive, or hole. Given a
program p = (r, (idy, nodey) . .. (idy, node,)), we use the no-
tation p.root = r, p.ids = {idy, ..., id,}, and p[id;] = node;.
We define the free variables of a program p.fv = {x;} as
the set of variable names occurring in p’s nodes of the form
(Var x;).° Finally, we use the notation p.all_ids for p.ids to-
gether with p’.all_ids of any subprogram p’ of p (p’ is a
subprogram of p if 3j, node; = Prim bs p’).

Given a node n, we specify its inputs with the following
function:

iNpUTS(BV b) = {},
iNpUTS(Var x) = {},

INPUTS(OP op iy ...0n) ={i1, ..., in}
iNPUTS(Reg i binir) = {i}
inpuTS(Prim bs p’) = {bs[x] | x € domain(bs)}

Note that we use A — B to denote the set of partial functions
from A to B; given bs € A — B, we write domain(bs) to
denote the set of x € A s.t. bs[x] is defined.

A program p is well-formed if and only if all the following
conditions hold:

W1. p.root € p.ids;

W2. Allids are unique and distinct. (i.e. for any sub-program
p’, p.ids and p’.all_ids are disjoint, and for any two
sub-programs p’ and p”, p’.all_ids is disjoint from
p".all_ids.)

W3. The inputs of all nodes in p are ids of other nodes in
p:Vid € p.ids, inputs(p[id]) C p.ids;

W4. All primitive nodes contain well-formed programs;

W5. All primitive nodes bind exactly their free variables;
i.e., for Prim bs p’, domain(bs) = p’.fov; and

Note that this does not include variables of sub-programs occurring recur-

sively inside of Prim nodes.

422

W6. Program p is free of combinational loops (formalized
below in Property 1).

Property 1 (Free of Combinational Loops). Formally, a pro-
gram p is free of combinational loops if there exists a function
w : p.all_ids — N, that satisfies the following properties
(collectively “monotonicity”):

1. Ifplid] =Reg _ _, then w(id) = 0;
2. If p[id] = Prim bs p’, then w(id) > w(p’.root);
3. ifplid] =Primbs p’ and p’[id'] = Var x,
then w(id") > w(bs[x]); and
4. Otherwise (e.g., p[id] = OP op ids"),
ifid" € iINpUTS(p[id]), then w(id) > w(id’).

The function w acts as a witness to the absence of combi-
national loops because it is impossible to define a strictly
monotonic function without acyclicity. We consider only
well-formed £, programs.

BV, Var, and OP nodes encode bitvectors, variables, and
operators.

Reg iyarq binir nodes let £, implement sequential designs
(P4). iggsq is the register’s data input, which updates the
stored value at the positive edge of each clock cycle, and
bini: is the register’s initialization value.

Prim bs p nodes let £, programs use hardware-specific
components from different architectures (P5). The bs com-
ponent is a variable map, mapping Vars to input Ids. The p
component is an L, program that defines the semantics of
the hardware primitive. A Prim node also carries some meta-
data used during compilation to a structural HDL, which we
omit for clarity.

Lgsn s the concrete behavioral fragment of L, used for
writing specifications; it is formed by excluding Prim nodes
and holes from L.

Lsrrucer is the concrete structural fragment of £, 5 used for
lowering L,y to structural HDLs; it is formed by excluding
Reg nodes, OP nodes, and holes from L3, with the following
exception: the p term in Prim bs p must always be from the
Lygy since it is used to specify the semantics of the Primnode
to the synthesis engine. The behavioral node p is not used
during compilation to HDL, and this behavioral expression
does not propagate to the structural HDL output.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Time teN Env e € (Var — Time — BV)

INTERP :
INTERP p et (BV D) =D

INTERP p et (Varx) =ext

Prog — Env — Time — Node — BV

INTERP p e 0 (Reg _ init) = init
INTERP p e (t + 1) (Reg id _) =INTERP p e t p[id]

INTERP p e t (OP op ids) = [op] (map (Aid . INTERP p e t p[id]) ids)

INTERP p e t (Primbs p’) =
lete’ = Ax,t’ . INTERP p e t’ (p[bs x]) in

InTERP p’ €’ t p’[p’.root]

Figure 4. Lakeroad’s semantics as pseudocode.

Lesxeren 18 another sublanguage of £, that is Lgrrycr but
also including holes. Let s be a program in Lexgrcn With holes
W, ..., W . These holes can be filled with nodes n, . .., nj
in Lgrruer by replacing each hole M., with its corresponding
node n; to obtain a complete Lgrrycr program, denoted by
s[ly, — ny,...].

The simplicity of this syntax makes translating to and
from HDLs straightforward (P1). Section 4 describes how
Lakeroad implements the translations to and from HDLs.

3.2.2 L,3’s Semantics. Before discussing the formal se-
mantics of L5, we present key definitions. We assume a
bitvector type and, for simplicity, we elide bitvector widths.
We represent time as a natural number. A stream is a func-
tion from Time to bitvectors. An environment is a map from
variable names to streams.

We give the semantics for £, as an interpreter in Figure 4.
We define the function INTERP to interpret a program p in
environment e at time ¢ and node n. We do not define seman-
tics for holes, as they are intended to be replaced by other
constructs with well-defined semantics.

Most of the rules are straightforward. A bitvector BV b
evaluates to its backing bitvector value b. A variable node
Var x in an environment e at time ¢ evaluates to the value
returned by the stream associated with x in e at time ¢; using
function notation, this is denoted by e x t. A k-ary operator
node OP op iy ... i recursively interprets each operand in
the current environment at the current time and then ap-
plies op’s semantics, denoted [op], to the resulting values. A
register Reg id b;,i; has two cases depending on the current
time: at time t = 0, a register evaluates to its initial bitvector
value b;p;;; at nonzero times ¢ + 1, a register evaluates to the
value produced by the input i at the previous timestep t. A
primitive Prim bs p’ in environment e at time ¢ is evaluated
by interpreting the program p’ under the fresh environment
e’ formed by the binding map bs.

423

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

3.3 Program Synthesis

fir performs sketch-based program synthesis [41]. Opera-
tionally, we implement the INTERP function from Figure 4
in Rosette, a solver-aided host language [46]. Let sketch
Y = (¢,h) € SkeTcH, where ¥ € Lggren has holes H,
and h maps /’s holes to the set of structural nodes that can
legally fill the mapped hole. Given a design d, we query
Rosette if there are nodes ny, ny, . . . ng such that n; € h[M,,]
and p = Y[M,, — ny,...] is well-formed and equivalent
to d (i.e., we ask Rosette to fill each hole with a node asso-
ciated with the node in h). Program equivalence between
well-formed programs p and d at time ¢, written p =, d, is

defined as

pfo=d.foA
Ve s.t. domain(e) = p.fo,
INTERP p e t p.root = INTERP d e t d.root.

In Section 3.5, we use bounded model checking to extend
fir’s guarantees beyond the single timestep at clock cycle t.

3.4 Correctness and Completeness of fix

Recall that the synthesis function fi; is partial. We say that
fir is correct if it returns a program fiz (¥, d, t) = p where
p is a well-formed completion of ¥ = (i, h), meaning p =
Y[M,, — ny,...] such that n; € h[l;] for alli and p = d.

Furthermore, we say that fiy is sketch-completeif fi (¥, d, t)
is defined whenever there exists a well-formed completion p
of ¥ such that p =, d. That is, synthesis is correct if it never
returns an erroneous result and sketch-complete if it returns
a correct result whenever one exists.

We have implemented fi; with Rosette (see Section 3.3),
which guarantees our system is correct and complete under
the following assumptions:

1. Correctness of Rosette and underlying SMT solvers;

2. That our encoding of Lakeroad is bug-free;

3. That the lowering of INTERP to SMT formulas by Rosette
always terminates. This is possible when partial eval-
uation of INTERP on arguments p, ¢t and n terminates
(independently of the value of e).

Lemma 3.1. Let p be a well-formed program, e an environ-
ment, t a Time, and n be a node belonging to p. Then INTERP is
primitive recursive (i.e. terminates) in the arguments p, t, and n.

Proof of Lemma 3.1. Recall that a function f(x, y, z) is primi-
tive recursive in arguments x and y (under a lexicographic or-
dering) if in the definition of f every recursive call f(x’, ', z’)
is made with values (x’,y’) such thatx” < xorx’ = x Ay’ <
y. If x and y are drawn from the natural numbers (or an-
other well-ordered set), then the recursion is guaranteed to
terminate.

Under what order is INTERP primitive recursive? Because
our program is well-formed, it must be free of combinational
loops (see Property 1). Formally, this means we have an

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

acyclicity witness function w : p.all_ids — N that mono-
tonically increases in the direction of dataflow in our circuit.
Each node n argument passed to INTERP has an Id that is
unique and distinct from the Ids used in p or any of p’s sub-
programs (W2); we denote this Id as id,. We can associate
each n argument to a recursive call of INTERP with a number
w(id,). We claim that INTERP is primitive recursive under
the lexicographic ordering on (t, w(idy)).

To prove this claim we need to demonstrate that if INTERP
with time and node arguments ¢" and n’ makes a recursive
call to INTERP with time and node arguments t’” and n”’, then
the following condition holds:

t <t v(t" =t Aw(idpr) < w(idy)) . 1)
To do this it suffices to examine each case of INTERP’s defini-
tion.

When n’ is a BV constant, INTERP makes no recursive calls,
and the condition in Equation (1) holds vacuously.

When n’ is a Reg node INTERP either terminates (when
t’ = 0) or makes a recursive call with time value t"’ =" — 1,
maintaining the condition in Equation (1).

When n’ is an operator node, INTERP recursively interprets
the operands with time arguments t”’ = t’. However, each
operand’s id id”" belongs to INPUTS(n’), and, by Property 1,
w(id,) > w(id"), so our condition holds.

This leaves us with the less obvious cases in which n’
is either a Prim or Var, which work together in tandem.
When n’ = Prim bs p’, INTERP makes a recursive call with
node argument p’.root and time argument ¢. By Property 1,
w(p’.root) < w(id,), and the condition in Equation (1)
holds. INTERP also defines a new environment for execution
of p’ via A-abstraction, and this in turn will recursively in-
voke INTERP. These environments are only invoked by the
rule for variables, which we handle presently.

When n’ = Var x, the environment is invoked on variable
x. Here, there are two possible cases. First, we are interpret-
ing the top-level program p. As this is the initial, top-level en-
vironment, there is no further recursion. Second, we are inter-
preting a sub-program p’ and e’ x t = INTERP p e t (p[bs x])
is actually a recursive call into the program p one level up,
with its environment e. In this latter case, note that w is
defined such that w(idp[ps x1) = w(bs x) < w(idvar x) (item
3 of Property 1), satisfying our property. All cases are com-
plete. O

From this, we conclude that all possible substitutions for
¥ are attempted, and fi is sketch-complete.

Trusted Computing Base. The trusted computing base
(TCB) of a system is the set of components it assumes to be
correct [29]. A bug anywhere in the TCB could cause the
guarantees made by that system to be violated. Lakeroad’s
TCB includes: Rosette and the underlying SAT/SMT solvers
that Rosette queries (Bitwuzla, cvc5, Yices2, and STP); the

424

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

internal Yosys passes Lakeroad uses to extract primitive se-
mantics and translate design specifications from behavioral
Verilog into Lggy; the semantics for £, which we assume
conservatively models non-cyclic (DAG) designs; our code
to translate from the Lgrpycr to structural Verilog; and the
vendor-provided Verilog simulation models for FPGA primi-
tives. Each TCB component has also been thoroughly tested,
as described in Section 5. Importantly, sketches and sketch
generation are not in Lakeroad’s TCB: even if there were a
bug in Lakeroad’s sketch-related components, it would not
violate Lakeroad’s correctness guarantees.

3.5 Multiple Clock Cycle Guarantees with f,

The preceding completeness and correctness properties for
fir guarantee that running the synthesized program p and
the design d for ¢ clock cycles produces the same output. To
extend this guarantee, Lakeroad supports a form of bounded
model checking, where synthesis ensures that p is semanti-
cally equivalent to d for ¢ additional clock cycles starting at
time ¢. We formalize this with the function f},, which takes
a sketch ¥, a behavioral design d, a number of clock cycles
t, and a model checking time bound ¢ > 0 and returns an
implementation p € Lgrrycr that is equivalent to d at time
stepst,t+1,...,f+c.

Our correctness and completeness guarantees are similar
to those for fiz:

p.fo=d.foA
Ve s.t. domain(e) = p.fo,
i=t+c
/\ INTERP p e i p.root = INTERP d e i d.root.
i=t

3.6 Beyond Lakeroad

L.z, its semantics, and the synthesis approach we describe
here are useful for applying program synthesis to other hard-
ware design problems. For example, the synthesis problem
detailed above could be “flipped” to decompile structural
designs back to higher-level behavorial designs, i.e., synthe-
sizing from Lgrgycr to an expression in Lgpy. Such decom-
pilation has seen recent interest for recovering equivalent
but faster-to-simulate models and for porting models across
different architectures [40]. As another example, the syn-
thesis approach could be adapted to help port designs by
synthesizing expressions in Lgrpucr that use one set of prim-
itives on one architecture from other designs in Lgrpycr that
use a different set of primitives from a different architecture.
Thus, the formalization in this section transcends the partic-
ular challenges of FPGA technology and provides a reusable
foundation for exploring a much broader range of hardware
design challenges from a program synthesis perspective.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

implementations:
- interface: { name: LUT, num_inputs: 4 }
internal_data: { sram: 16 }
modules:
- module_name: frac_lut4
filepath: SOFA/frac_lut4.v
ports:
- { name: in, direction: in, width: 4,
value: (concat I3 I2 I1 IQ) }
- { name: mode, direction: in,
width: 1, value: (bv @ 1) }
- { name: lut4_out, direction: out,
width: 1 }
parameters: [{ name: sram, value: sram }]
outputs: { 0: lut4_out }

Figure 5. SOFA architecture description.

4 Implementation

Lakeroad is composed of approximately 13K lines of Racket
plus approximately 58K lines of Racket automatically gener-
ated from vendor-supplied Verilog. Vendor-supplied Verilog
was obtained from Lattice Diamond, Intel Quartus, and Xil-
inx Vivado sources. We used Vivado version v2023.1, Quar-
tus 22.1std.1 Build 917 02/14/2023 SC Lite Edition, Diamond
version 3.12, Yosys version 0.36+42 (commit 70d3531), the
cvce5 [8] and Yices2 [18, 19] solvers included in the 2023-08-
06 release of oss-cad-suite from YosysHQ, the Bitwuzla
solver at commit b655bc@ [32], the STP solver at commit
0510509a, Racket version 8.9 [20, 21], and Rosette version
4.1 [36].

4.1 Primitive Interfaces

As described in Section 2, primitive interfaces describe ab-
stract versions of common FPGA primitives, which allow
sketch templates to be architecture-independent. To date,
Lakeroad declares primitive interfaces for n-input LUTs, w-
width carry chains, n-input muxes, and DSPs with up to four
data inputs and one clock input. The next section includes
a concrete example of Lakeroad’s LUT4 primitive interface.

4.2 Architecture Descriptions

As described in Section 2, architecture descriptions convey the
information required to convert each instance of a primitive
interface into the corresponding architecture-specific mod-
ule, which occurs while converting sketch templates into
sketches. The architecture description is the only additional
input that may be required from a user to support a new
architecture; it is a one-time effort that is reusable for any
designs in an architecture. Architecture descriptions are sim-
ply lists (provided as YAML files) of the primitive interfaces
that an architecture implements, but, crucially, also include
architecture-specific port and parameter values in a map
called internal_data. Values in this map become symbolic
values solvable by the SMT solver. Additional constraints can

425

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

also be specified in the architecture description to rule out in-
valid configurations and minimize the solver’s search space.

As an example, Figure 5 shows the architecture descrip-
tion for the SOFA [43] FPGA architecture. The description
contains a single primitive interface implementation, i.e.,
LUT4. Lakeroad’s LUT4 primitive interface standardizes the
names of a LUT4’s inputs and outputs, naming the inputs I0
through I3 and the output 0. The SOFA implementation of
the LUT4 primitive interface uses the SOFA-specific frac_-
lut4 primitive. Primitive interface inputs I0 through I3 are
mapped to the actual input port of the frac_lut4, named
in. Likewise, the frac_lut4 output lut4_out is mapped
to the primitive interface output 0. The internal_data
field declares sram, the LUT’s 16-bit internal memory, as
an architecture-specific detail to be solved during synthesis.

If a sketch template uses a primitive interface not included
in the architecture description (e.g., SOFA does not imple-
ment carries), Lakeroad may still be able to implement the
primitive interface based on primitive interfaces the architec-
ture does implement. To date, Lakeroad can implement any
mux with LUTs, a larger LUT from smaller LUTs, a smaller
LUT from a larger LUT, a carry from LUTs, and a smaller
DSP from a larger DSP; it handles these conversions during
sketch generation.

4.3 Sketch Templates, Sketches, and Sketch
Generation

As described in Section 2, Lakeroad captures common FPGA
implementation patterns in reusable, architecture-independent
sketch templates. Thus far, we have described only the rela-
tively simple dsp sketch template, which instantiates a DSP.
As a more complex example of capturing common FPGA im-
plementation patterns, consider the bitwise-with-carry
sketch template, which uses n LUTs and a carry chain to
implement designs such as addition or subtraction. As of
the paper’s publication date, Lakeroad provides 5 sketch
templates: dsp, bitwise, bitwise-with-carry, compari-
son (LUT- and carry-based arithmetic comparison), and mul-
tiplication (LUT-based multiplication).

The process of converting sketch templates to sketches
is implemented as described in Section 2 and Section 4.2.
Lakeroad iterates over every primitive interface instance
in the sketch and replaces it with the concrete primitive in
accordance with the architecture’s architecture description.
If the architecture description does not implement the re-
quested primitive interface, Lakeroad checks whether it can
implement the primitive interface with other implemented
interfaces (e.g., implementing a smaller LUT with a larger
LUT) and raises an error otherwise.

Sketch templates and sketches alike are written in a domain-
specific language (DSL) embedded into Rosette, whose im-
plementation closely mirrors the syntax and semantics of
L.z The only significant difference is that the interpreter

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

implementation does not use bitvector streams natively. In-
stead, each invocation of the interpreter represents a sin-
gle timestep, and all intermediate values from the previous
timestep are taken as input. Streams are then built up using
multiple invocations of the interpreter.

4.4 Importing Semantics from Verilog Modules

Lakeroad uses Yosys [50] to convert Verilog modules into
the btor2 format [33] and then converts the resulting btor?2
to Rosette/Racket code.

Due to the semantics of the Verilog language and the in-
ternal implementation of Yosys, extracting semantics from
Verilog modules may require the following manual modifi-
cations to accommodate semantics extraction and synthesis:

o As Yosys converts parameters from variables to constant
values immediately upon module import, module parame-
ters should be converted to ports to ensure they remain
variables (and thus solvable by the SMT solver). Note that
not all parameters can always be converted to ports, mean-
ing some parameters cannot be solved for.

e Strings should be converted to bitvectors.

o All registers should be initialized.

o All instances of x and z values should be converted to
2-state logic (0 or 1).

Note that these caveats apply only to our prototype imple-
mentation, not the general technique of semantics extraction
from HDL. Once these manual modifications are made, the
following series of Yosys passes can be used to convert the
Verilog into suitable btor2: prep; flatten; pmuxtree;
opt_muxtree; clk2fflogic; prep; write_btor.

We implement the translation from btor2 to Rosette bitvec-
tor expressions as a 1:1 translation since both languages are
simply operations over bitvectors.

4.5 Program Synthesis and Compilation to Verilog

We implement the synthesis procedure defined in Section 3.4
with Rosette. Multiple clock cycle guarantees, as described
in Section 3.5, are implemented simply by making ¢ + 1 total
assertions, asserting the output of the input design and the
sketch are equal after each of the ¢ + 1 timesteps. We use a
portfolio solving method, running Bitwuzla [31], cvc5 [8],
Yices2 [18, 19], and STP [5] in parallel and using results from
the first solver to terminate. To produce Verilog, Lakeroad
compiles the program from its internal DSL to the JSON
format defined by Yosys using a straightforward translation
and then uses Yosys to output Verilog.

4.6 Integration with Other Tools

This paper describes Lakeroad as a standalone tool, but the
core Lakeroad implementation could be integrated directly
into existing tools. Though out of scope for this paper, we
have early, encouraging results integrating Lakeroad as a
Yosys pass that lets users tag modules with annotations

426

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

similar to (and much richer than) Xilinx’s use_dsp anno-
tation. We then map annotated modules to primitives using
Lakeroad, which let us easily apply Lakeroad to many frag-
ments within a larger design. We plan to more fully integrate
Lakeroad into Yosys in future work, which should radically
improve the completeness of Yosys’s DSP mapping ability,
as shown in Figure 6.

5 Evaluation

We now evaluate Lakeroad in terms of completeness and
extensibility. In the following experiments, we target four
FPGA architectures: Xilinx UltraScale+, commonly used
for large, high-performance workloads; Lattice ECP5, com-
monly used in low-power, low-cost scenarios; Intel Cyclone
10 LP, an FPGA designed for low-cost, high-volume use
cases, and SOFA [43], a recent, open-source FPGA devel-
oped by the research community. We compare Lakeroad to
existing technology mappers. For Xilinx Ultrascale+, Lat-
tice ECP5, and Intel Cyclone 10 LP, we compare Lakeroad
against both the open source toolchain Yosys [50] and the
state-of-the-art, proprietary, closed source toolchains for
each architecture.” The experiments were conducted on a
system running Ubuntu 20.04.3 with an AMD EPYC 7702P
64-Core CPU. The resident set size of a single Lakeroad pro-
cess did not exceed 300MB while running our evaluation.
We use the software versions listed in Section 4.

5.1 Lakeroad Completeness

The reliance of many technology mappers, including state-
of-the-art tools, on hand-written patterns leads them to fail
when attempting to map many workloads that should be
mapped to a single DSP. In particular, the process of partial
design mapping (illustrated in Section 2) becomes a labo-
rious endeavor because of this incompleteness: hardware
designers hand-instantiate DSPs rather than rely on substan-
dard automated tooling, repeating the work each time they
identify a potential opportunity to use a DSP. Lakeroad’s
greater mapping completeness significantly reduces the bur-
den on hardware designers during partial design mapping
and marks the first step in automated mapping for full de-
signs. We next evaluate how Lakeroad’s program synthesis
approach enables it to achieve greater completeness for these
program fragments.

Evaluation Setup. We highlight three particularly com-
plex DSPs for the Xilinx Ultrascale+, Lattice ECP5, and Intel
Cyclone 10 LP architectures: the Xilinx DSP48E2, Lattice
ALU54A/MULT18X18C (a single DSP composed of two prim-
itives), and Intel cyclone10lp_mac_mult. SOFA provides no
DSP, and is not included in this part of the evaluation. For
each architecture’s DSP, we enumerate a large subset of the

7 Again, licensing restrictions prevent our naming the specific proprietary
tools, but they are familiar, standard packages used by many hardware
designers.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

designs theoretically mappable to a single DSP according to
its configuration manual. This microbenchmark set aims to
capture the real-world designs which hardware designers
would attempt to map to a platform’s DSP. For each architec-
ture, we compare Lakeroad to both the corresponding state-
of-the-art toolchain for the architecture as well as to Yosys.
For Xilinx Ultrascale+, the DSP48E2 configuration manual
details the structure of designs mappable to the primitive.
Our designs for Xilinx include all permutations of the design
form ((a+b)*c)©d, where © € {&, |, +, ®}, as well as designs
of the forms (axb) and ((a*b) +c). We pipeline each of these
workloads from zero to three stages and use bitwidths from
8 to 18 bits. For the DSP on Lattice, we similarly enumerate
all designs of the form (a*b) © ¢, where © € {&, |, ®, =}, and
of the form (a * b). For each of these designs, we use zero
to two stages and bitwidths from 8 to 18 bits. This results in
1320 microbenchmarks for Xilinx UltraScale+, 396 for Lattice
ECP5, and 66 for Intel Cyclone 10 LP. Though Lakeroad’s
output is correct by construction, we further validate its
output by simulating each Lakeroad-compiled design over
thousands of consecutive cycles using Verilator.

Comparison to Existing Toolchains. As demonstrated
in Figure 6 (top), Lakeroad maps 44X more designs than Yosys
and 2.1x more designs than the proprietary, state-of-the-art
toolchain on Xilinx Ultrascale+. On Lattice ECP5, Lakeroad
maps 6.0X more designs than Yosys and 3.6X more designs
than the proprietary, state-of-the-art toolchain. On Intel Cy-
clone 10 LP, Lakeroad successfully maps all designs: 3X more
designs than the proprietary, state-of-the-art toolchain for
Intel. Yosys fails to map a single design on Intel. State-of-
the-art toolchains for all architectures fail to map more than
half of the queried designs. Lakeroad times out on less than
20% of designs.® Note that Lakeroad returns “UNSAT” on ap-
proximately 260 designs on UltraScale+, i.e., Lakeroad claims
there is no possible mapping to a DSP48E2 for the requested
workload. In all of these cases, both Xilinx SOTA and Yosys
agree with Lakeroad and do not map the designs to a single
DSP. We conclude that the set of designs we presented in
Evaluation Setup must be overly broad; though the documen-
tation implies that all of these designs are mappable to a
single DSP, all three Xilinx synthesis tools surveyed indicate
that they are indeed not mappable.

For timing, we compared the mapping time for each of
the tools and report the results in Figure 6 (bottom). The
wide ranges for Lakeroad show that solver time for differ-
ent program synthesis queries is highly variable. This is
explored more deeply in Figure 7, which shows that most
synthesis queries terminate quickly, with a long tail of slower
queries. Note that the state-of-the-art technology mapper for

8We restricted Rosette synthesis time to 120 seconds, 40 seconds, and 20
seconds for Xilinx, Lattice, and Intel respectively, and marked failure past
that (though bitvector synthesis problems are decidable).

427

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

Ultrascale+ has a slow running time due to its long start-up
process.

Regarding which solvers in the portfolio were most useful,
of all terminating (success or UNSAT) Lakeroad experiments,
Bitwuzla was the first to complete for 671 of them, STP for
519, Yices2 for 464, and cvc5 for 64.

Lakeroad’s greater completeness directly translates into
resource reduction. On average, for each microbenchmark,
Lakeroad uses 3.9 fewer LEs (logic elements: LUTs, muxes, or
carry chains) and 7.5 fewer registers than the Xilinx SOTA,
7.2 fewer LEs/11.9 fewer registers than the Lattice SOTA, 8.2
fewer LEs/14.3 fewer registers than the Intel SOTA, and 33.3
fewer LEs/11.4 fewer registers than Yosys. In the real world,
the small modules captured by our microbenchmarks may be
reused dozens if not hundreds of times across a large design.
Thus, the sizable resource reduction Lakeroad provides on
a single microbenchmark will be multiplied significantly for
an entire design.

Discussion. Compared to Yosys, it is clear that Lakeroad
provides more complete support for programmable DSPs.
However, Lakeroad’s greater completeness over Yosys is
perhaps not surprising since Yosys is an open-source tool
still under active development. Part of the appeal of the
Yosys toolchain is the diversity of backends it can target;
these results show that, if incorporated into Yosys, Lakeroad
would further increase Yosys’s flexibility and generality. Per-
haps most surprising is that Lakeroad is more complete than
specialized proprietary toolchains. Even the UNSAT results
Lakeroad produces can be useful to designers since they
indicate potential flaws in the documentation or vendor-
provided semantics. In the context of a larger synthesis tool,
Lakeroad would provide stronger guarantees for mapping
modules of larger designs.

5.2 Lakeroad Extensibility and Expressiveness

In addition to being correct by construction (Section 3) and
more complete than existing FPGA technology mappers (Sec-
tion 5.1), Lakeroad can also easily extend to new FPGA archi-
tectures. Furthermore, automatic primitive semantics extrac-
tion from vendor-provided HDL simulation models enables
Lakeroad to support diverse, highly configurable FPGA prim-
itives.

The architecture descriptions vary in length from 20 to 240
source lines of code (SLoC). SOFA (20 SLoC) is the simplest,
shown in full in Figure 5. The descriptions for Xilinx (185
SLoC), Lattice (240 SLoC), and Intel (178 SLoC) are longer
since those FPGA architectures provide a wider range of
configurable primitives.

As a point of comparison, the open-source Yosys toolchain,
which has roughly 200 contributors on GitHub, provides
technology mapping for Xilinx UltraScale+ across over a
dozen complex Verilog, C++, and Python files (about 1300

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

Xilinx UltraScale+ Lattice ECP5 Intel Cyclone 10 LP

W succeeded
. failed
m unsat
. timeout

100%

80% A

60% -

40% A

Percentage (%)

20% A

0% -

(CRPRYS SPNL-Y S A2 eN® (o} N NS
\,a“em:o'(h*\\\(\ RosY La\‘e‘oao<pLa‘“C*09\l \,a\‘e(o?—,oﬁp'“\‘e o5y
S

Tool I Median Time (s) I Min / Max Time (s)
Xilinx

Lakeroad 14.99 2.99 127.70

SOTA Xilinx 261.61 227.82 598.67

Yosys 14.97 6.66 21.10
Lattice

Lakeroad 9.49 6.70 55.23

SOTA Lattice 2.32 0.95 4.52

Yosys 2.31 0.90 4.01

Intel

Lakeroad 2.92 2.12 4.13

SOTA Intel 38.73 19.11 43.49

Yosys 0.96 0.48 1.88

Figure 6. Results of the completeness experiments described
in Section 5.1, measuring the completeness of technology
mapping tools for DSPs on Xilinx UltraScale+ and Lattice
ECP5, plus timing information. A single bar in the bar chart
communicates, for a given FPGA architecture and technol-
ogy mapper, the proportion of the microbenchmarks that
the given technology mapper could map to a single DSP. In
Lakeroad’s case, experiments can either succeed (Lakeroad
maps the microbenchmark to a single DSP), timeout, or re-
turn UNSAT. For the other tools, experiments can either
succeed or fail (i.e., the tool returns a mapping, but the map-
ping uses more than a single DSP). There are a total of 1320
experiments/microbenchmarks for Xilinx, 396 for Lattice,
and 66 for Intel.

lines of code). We cannot provide similar numbers for state-
of-the-art proprietary tools, but a developer of one such
technology mapper shared that extending their tool to sup-
port new FPGA architectures was extremely difficult since it
“spans millions of lines of low-level C” This is not surprising;
Yosys aims to target a variety of vendor architectures, while
proprietary tools have teams of engineers to extract better
mapping (evident by Yosys’ limitations in Section 5.1). By
contrast, Lakeroad supports diverse architectures and is easy
to extend. Even if a user wants to target a completely new
architecture that Lakeroad does not support, architecture-
independent sketch templates allow reuse of previously im-
plemented mapping strategies, and the user is only required

428

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Lakeroad synthesis time on Xilinx

1
5 400 !
3z |
S 1
e :
E 200 !
e]
#* 1
1
0 T " 7 y T |
0 20 40 60 80 100 120
time (s)
Lakeroad synthesis time on Lattice
]
. 1
B 2001 !
S 1
a 1
£ 100 { i
e 1
#* i
1
0 T T T T r T }
0 5 10 15 20 25 30 35 40 45
time (s)
Lakeroad synthesis time on Intel
60 T
o i
] |
T 407 1
a 1
£ 1
S 204 1
#* i
1
0 T T |
0 5 10 15 20 25

time (s)

Figure 7. Histograms of Lakeroad program synthesis run-
time for all terminating (success or UNSAT) Lakeroad ex-
periments described in Section 5.1, with timeout thresholds
indicated with a vertical dotted red line.

Table 1. FPGA primitives imported automatically by
Lakeroad from vendor-provided Verilog models, with num-
ber of source lines of code (excluding comments and empty
lines) of the original Verilog models.

FPGA Primitive Verilog SLoC
Xilinx Ultrascale+ LUT6 88
CARRY8 23

DSP48E2 896

Lattice ECP5 LUT2 5
LUT4 7

CCcu2C 60

ALU54A 1642

MULT18X18C 795

Intel Cyclone 10 LP cyclone10lp_mac_mult 319
SOFA frac lut4 69

to provide a few lines of high-level configuration for each
primitive in the architecture description.

Table 1 further highlights Lakeroad’s expressiveness, i.e.,
its ability to support a diverse range of configurable prim-
itives by automatically extracting semantics from vendor-
provided HDL simulation models. Lakeroad can import the
semantics of large configurable primitives, such as the Ultra-
Scale+ DSP (896 lines of Verilog) or Lattice ECP5’s ALU and
multiplier units (1642 and 795 lines of Verilog, respectively).
It is difficult and error-prone to manually formalize the full
semantics for these primitives; partial support by ad hoc
search procedures that rely on syntactic pattern matching
leads to missing many mapping opportunities, as shown in
Section 5.1.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

6 Related Work

To the best of our knowledge, Lakeroad is the first work to
apply the technique of program synthesis to FPGA technol-
ogy mapping. Indeed, as noted by Sisco et al. [39], program
synthesis has seldom been applied in the domain of hardware
design although its underlying formal methods techniques
are frequently used for the formal verification of hardware
designs rather than compilation, as in Bluespec SystemVer-
ilog [34], Koika [12], and Kami [15]. Sisco et al. cite two
examples of works that use program synthesis for hardware
design, Verisketch [7] and Sketchilog [9], both of which ap-
ply program synthesis to produce HDL implementations
from high-level designs. Other works use program synthesis
to generate software that runs on low-powered hardware,
like Chlorophyll [35], which targets extremely memory-
constrained power-efficient processors, Chipmunk [22], which
targets programmable network switches, and Diospyros [48],°
which generates vectorized programs for standalone digi-
tal signal processors (more powerful and general-purpose
devices than the DSP units in FPGAs). These works demon-
strate the utility of program synthesis for generating code
that handles specific wrinkles in hardware designs, as does
the use of program synthesis in Lakeroad to harness the
programmability of FPGA DSPs.

Lakeroad is also related to past work in FPGA compilation
and techmapping, much of which does not entreaty to sup-
port programmable DSPs with as much generality. ODIN [26]
and ODIN-II [25] are used in hard-block synthesis for FPGAs,
which is the task of mapping portions of hardware designs to
specialized units (hard blocks) like multipliers. They operate
purely over syntax (e.g., mapping * to a multiplier) and so
are greatly limited in their ability to handle programmable
DSPs. The ABC [14] logic synthesis tool is used to lower
hardware designs into LUT and carry-chain configurations;
it is related to Lakeroad in that it also uses constraint solvers
to find configurations, though it is not general enough to
handle a wide variety of programmable DSPs, unlike the
program synthesis techniques used in Lakeroad. Note also
that the use of configuration files in Lakeroad to abstract
away details of the FPGA architecture was inspired by past
work in FPGA compilation, including OpenFPGA [42] and
the Verilog-to-Routing project (VTR) [38], both of which
use abstract architecture descriptions to facilitate portability
across designs, though these projects are limited in their sup-
port for DSPs. Library-Parameterized Models [3, 6] define
generic interfaces for common primitives and are also similar
to Lakeroad’s primitive interfaces, though they are limited
in their ability to represent configurable units like DSPs.

Diospyros uses symbolic evaluation, which is related to program synthesis,
to lift imperative programs for digital signal processors into a high-level
mathematical representation that can then be used with the technique of
equality saturation [44] to generate optimized code for the target devices.
This is also distinct from the program synthesis techniques referenced
elsewhere in this paper.

429

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

Virtual FPGA overlays [13, 27, 28] are another approach
to improving the mapping of hardware designs to hardware.
Overlays present a “virtual” FPGA architecture; each ac-
tual architecture must then define a mapping from virtual
to actual primitives. This required translation is similar to
Lakeroad’s requirement on users to implement primitive in-
terfaces in an architecture description, though it requires
more user effort. The translation from virtual to actual archi-
tecture often comes with a steep resource and performance
overhead.

7 Conclusion

This paper presents Lakeroad, a novel approach to FPGA
technology mapping that leverages program synthesis tech-
niques to provide stronger correctness and completeness
guarantees than state-of-the-art tools. Because program syn-
thesis tools can efficiently explore large search spaces, Lakeroad
can find mappings of hardware designs to FPGA DSPs in
more cases than state-of-the-art tools, often finding more
efficient implementations in the process. With our tech-
niques of semantics extraction from HDL and architecture-
independent sketch templates, users must expend little man-
ual effort to apply Lakeroad to a given FPGA architecture
and extend it to handle further primitives. Moreover, our
formalization of Lakeroad fosters greater confidence in its
correctness. Lakeroad hence enables the extensible, efficient,
and correct lowering of hardware designs to FPGAs, high-
lighting the effectiveness of program synthesis for FPGA
technology mapping.

Acknowledgements

This work was funded by generous grants and awards from
Intel, the U.S. Department of Energy (award number DE-
SC0022081), and the NSF (grant numbers 1836724 and 1749570).

We would like to thank our anonymous reviewers for their
constructive feedback. Thank you to Jonathan Balkind for
serving as our shepherd. Thank you to those who contributed
code to early versions of Lakeroad, including David Cao
and Zihao Ye. Thank you to Jin Yang and his team at Intel.
Thank you to Daniel Petrisko, Scott Davidson, Rachit Nigam,
and Adrian Sampson for sharing their deep knowledge of
the hardware design workflow. Thank you to Chandrakana
Nandi for her enthusiasm and unwavering support. Thank
you to Claire Xenia Wolf, Nina Engelhardt, Jannis Harder,
and the YosysHQ team. Finally, thank you to the entire PLSE
lab for their support and camaraderie.

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

A Artifact Appendix
A.1 Abstract

Our artifact consists of a zipfile containing the code for our
evaluation. Running the evaluation code will reproduce all
of the figures present in this paper, which artifact evaluators
can validate against our published data. The evaluation code
is comprised largely of the following files: documentation in
a README, a Dockerfile to automatically set up the evalua-
tion environment, the Lakeroad codebase, and the evaluation
scripts themselves (a mix of Python and shell scripts). The
evaluation should be run on an x86 machine running Linux
(ideally Ubuntu). The evaluation benefits from many CPU
cores. The evaluation requires at least 300GB of free space,
mostly for installing proprietary hardware toolchains.

A.2 Artifact check-list (meta-information)

o Algorithm: Program synthesis via Rosette. Hardware syn-
thesis via traditional hardware toolchains.

e Program: Lakeroad, the Rosette-based hardware synthesis

tool presented in this paper, plus Yosys, Xilinx Vivado, Lattice

Diamond, and Intel Quartus, the baseline hardware synthesis

tools we compare against.

Run-time environment: Linux, ideally Ubuntu.

e Hardware: x86 CPU, ideally with many cores.

e Output: Images and CSV files representing this paper’s
figures and tables.

o Experiments: Each experiment is a single run of a hardware
synthesis tool (either Lakeroad or one of our baseline tools).
The entire experiment consists of thousands of these tool
runs.

o How much disk space required (approximately)?: 300GB.

How much time is needed to prepare workflow (ap-
proximately)?: 4 hours: 3 hours to set up proprietary hard-
ware tools, 1 hour to build Docker image.

e How much time is needed to complete experiments
(approximately)?: 2 to 10+ hours, depending on the num-
ber of cores. On our 64-core machine, the evaluation takes
about 4 hours.

Publicly available?: Yes, at https://github.com/uwsampl/
lakeroad-evaluation and archived publicly on Zenodo, see
DOI link below.

o Code licenses (if publicly available)?: MIT.

o Workflow framework used?: Python Dolt.

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
10515833

A3

A.3.1 How to access. We recommend downloading the
zipped code repository from the DOI link above. The code
can also be cloned from the GitHub repository linked above.

Description

A.3.2 Hardware dependencies. x86 CPU, preferably with
many cores.

A.3.3 Software dependencies. Linux-based OS, ideally
Ubuntu.

430

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

A.4 Installation

Please refer to the README in the artifact. A more read-
able version of the README can be viewed on the GitHub
repository, or by converting the README using a tool like
Pandoc.

A.5 Experiment workflow
Please refer to the README in the artifact.

A.6 Evaluation and expected results
Please refer to the README in the artifact.

A.7 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-

badging
e http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

References

[1] Can not correctly infer "A*B+C" to DSP48E2. https:
//support.xilinx.com/s/question/0D54U00006AqPXFSA3/can-
not-correctly-infer-abc-to-dsp48e2?language=en_US. Accessed:

—r—
oW
et

—_ r——
~N oy G
—

(10]

(11]

(12]

(13]

(14]

[15]

(16

—

(17]

(18]

(19]

2023-12-07.

DSP48E2 inference for convolution/multiplication of 8-bit operands.
https://support.xilinx.com/s/question/0D52E00006hpnGVSAY/
dsp48e2-inference-for-convolutionmultiplication-of-8bit-
operands?language=en_US. Accessed: 2023-12-07.

Eia-is-103 : Library of parameterized modules (lpm).

Inferring SIMD accumulator with Xilinx DSP48e2.
//old.reddit.com/r/FPGA/comments/tr9vzn/inferring_simd_
accumulator_with_xilinx_dsp48e2/. Accessed: 2023-12-07.

The simple theorem prover.

Altera. Lpm quick reference guide.

Armaiti Ardeshiricham, Yoshiki Takashima, Sicun Gao, and Ryan Kast-
ner. Verisketch: Synthesizing secure hardware designs with timing-
sensitive information flow properties. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS '19,
page 1623-1638, New York, NY, USA, 2019. Association for Computing
Machinery.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cve5: A Versatile
and Industrial-Strength SMT Solver, pages 415-442. 01 2022.

Andrew Becker, David Novo, and Paolo Ienne. Sketchilog: Sketching
combinational circuits. In 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1-4, 2014.

Gilbert Louis Bernstein and Jonathan Ragan-Kelley. What are the se-
mantics of hardware? In Workshop on Languages, Tools, and Techniques
for Accelerator Design (LATTE), 2021.

James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. SIGPLAN Not., 52(6):467-481,
jun 2017.

Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. The
essence of bluespec: a core language for rule-based hardware design.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 243-257, 2020.
Alexander Brant and Guy GF Lemieux. Zuma: An open fpga over-
lay architecture. In 2012 IEEE 20th international symposium on field-
programmable custom computing machines, pages 93-96. IEEE, 2012.
Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In International Conference on Computer
Aided Verification, pages 24-40. Springer, 2010.

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. Kami: A platform for high-level paramet-
ric hardware specification and its modular verification. Proc. ACM
Program. Lang., 1(ICFP), August 2017.

Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, Nes-
tan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanra-
han. Synthesizing instruction selection rewrite rules from rtl using
smt. In CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN-FMCAD 2022, page 139, 2022.

Leonardo Mendonca de Moura and Nikolaj Bjerner. Z3: An efficient
smt solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Proceedings
of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2008), volume 4963 of
Lecture Notes in Computer Science, pages 337-340, Berlin, Heidelberg,
2008. Springer.

Bruno Dutertre. Yices 2.2. In International Conference on Computer
Aided Verification, pages 737-744. Springer, 2014.

Bruno Dutertre and Leonardo De Moura. The yices smt solver.

https:

431

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Gus Henry Smith, BK, VC, AC, SL, SP, R}, GLB, and ZT

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. A
programmable programming language. Communications of the ACM,
61(3):62-71, March 2018.

Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-
2010-1, PLT Design Inc., 2010.

Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman,
and Srinivas Narayana. Autogenerating fast packet-processing code
using program synthesis. In Proceedings of the 18th ACM Workshop
on Hot Topics in Networks, HotNets "19, page 150-160, New York, NY,
USA, 2019. Association for Computing Machinery.

Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis,
volume 4. NOW, August 2017.

Yann Herklotz and John Wickerson. Finding and understanding bugs
in fpga synthesis tools. In Proceedings of the 2020 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pages 277-287,
2020.

Peter Jamieson, Kenneth B Kent, Farnaz Gharibian, and Lesley Shan-
non. Odin ii-an open-source verilog hdl synthesis tool for cad re-
search. In 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 149-156. IEEE,
2010.

Peter Jamieson and Jonathan Rose. A verilog rtl synthesis tool for het-
erogeneous fpgas. In International Conference on Field Programmable
Logic and Applications, 2005., pages 305-310. IEEE, 2005.

Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and
Eric Schkufza. Compiler-driven fpga virtualization with synergy. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
818-831, 2021.

Roman L Lysecky, Kris Miller, Frank Vahid, and Kees A Vissers. Firm-
core virtual fpga for just-in-time fpga compilation. In FPGA, page 271,
2005.

Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust.
The MIT Press, 09 2001.

Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. Improve-
ments to technology mapping for lut-based fpgas. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 26(2):240—
253, 2007.

Aina Niemetz and Mathias Preiner. Bitwuzla at the smt-comp 2020.
arXiv preprint arXiv:2006.01621, 2020.

Aina Niemetz and Mathias Preiner. Bitwuzla. In Constantin Enea and
Akash Lal, editors, Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II, volume 13965 of Lecture Notes in Computer Science, pages 3-17.
Springer, 2023.

Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2
, btormc and boolector 3.0. In CAV (1), volume 10981 of Lecture Notes
in Computer Science, pages 587-595. Springer, 2018.

Rishiyur Nikhil. Bluespec system verilog: Efficient, correct rtl from
high level specifications. In Proceedings of the Second ACM/IEEE In-
ternational Conference on Formal Methods and Models for Co-Design,
MEMOCODE ’04, page 69-70, USA, 2004. IEEE Computer Society.
Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant
Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-
aided compiler for low-power spatial architectures. ACM SIGPLAN
Notices, 49(6):396-407, 2014.

Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak.
A formal foundation for symbolic evaluation with merging. Proc. ACM
Program. Lang., 6(POPL), January 2022.

Berkeley Logic Synthesis and Verification Group. ABC: A system for
sequential synthesis and verification, 2005. http://www.eecs.berkeley.
edu/~alanmi/abc.

FPGA Technology Mapping Using Sketch-Guided Program Synthesis

[38] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goed-
ers, Andrew Somerville, Kenneth B Kent, Peter Jamieson, and Jason
Anderson. The vtr project: architecture and cad for fpgas from verilog
to routing. In Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, pages 77-86, 2012.

[39] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben
Hardekopf. A position on program synthesis for processor develop-
ment. In Workshop on Languages, Tools, and Techniques for Accelerator
Design—-LATTE 2022, 2022.

[40] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben
Hardekopf. Loop rerolling for hardware decompilation. Proc. ACM
Program. Lang., 7(PLDI), jun 2023.

[41] Armando Solar-Lezama. Program synthesis by sketching. University of
California, Berkeley, 2008.

[42] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere,

and Pierre-Emmanuel Gaillardon. Openfpga: An opensource frame-

work enabling rapid prototyping of customizable fpgas. In 2019 29th

International Conference on Field Programmable Logic and Applications

(FPL), pages 367-374. IEEE, 2019.

Xifan Tang, Ganesh Gore, Grant Brown, and Pierre-Emmanuel Gaillar-

don. Taping out an fpga in 24 hours with openfpga: The sofa project.

In 2021 31st International Conference on Field-Programmable Logic and

Applications (FPL), pages 400-400. IEEE, 2021.

[44] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality
saturation: A new approach to optimization. In Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL *09, page 264-276, New York, NY, USA, 2009.
Association for Computing Machinery.

[45] Emina Torlak and Rastislav Bodik. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM international symposium on
New ideas, new paradigms, and reflections on programming & software,
pages 135-152, 2013.

[46] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual
machine for solver-aided host languages. ACM SIGPLAN Notices,
49(6):530-541, 2014.

[47] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak.
Synthesizing jit compilers for in-kernel dsls. In Computer Aided Verifi-
cation: 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part II, page 564586, Berlin, Heidelberg,
2020. Springer-Verlag.

[48] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and
Adrian Sampson. Vectorization for digital signal processors via equal-
ity saturation. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 874-886, 2021.

[49] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and
Luis Ceze. Reticle: a virtual machine for programming modern fpgas.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 756-771,
2021.

[50] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free ver-
ilog synthesis suite. In Proceedings of the 21st Austrian Workshop on
Microelectronics (Austrochip), 2013.

[51] Xilinx. Ultrascale architecture DSP slice user guide, 2021. https:
//docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp.

[43

—

432

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

