
Reinforcement Learning and Place Cell Replay in
Spatial Navigation

Chance J. Hamilton
Computer Science and Eng Dept

University of South Florida
Tampa, FL, USA

chamilton4@usf.edu

Pablo Scleidorovich
Computer Science and Eng Dept

University of South Florida
Tampa, FL, USA
pablos@usf.edu

Alfredo Weitzenfeld
Computer Science and Eng Dept

University of South Florida
Tampa, FL, USA

aweitzenfeld@usf.edu

Abstract—In the last decade, studies have demonstrated that
hippocampal place cells influence rats’ navigational learning abil-
ity. Moreover, researchers have observed that place cell sequences
associated with routes leading to a reward are reactivated during
rest periods. This phenomenon is known as Hippocampal Replay,
which is thought to aid navigational learning and memory consol-
idation. These findings in neuroscience have inspired new robot
navigation models that emulate the learning process of mammals.
This study presents a novel model that encodes path information
using place cell connections formed during online navigation.
Our model employs these connections to generate sequences of
state-action pairs to train our actor-critic reinforcement learning
model offline. Our results indicate that our method can accelerate
the learning process of solving an open-world navigational task.
Specifically, we demonstrate that our approach can learn optimal
paths through open-field mazes with obstacles.

Index Terms—Place Cells, Hippocampal Replay, Reinforce-
ment Learning, Actor-Critic, Latent Learning

I. INTRODUCTION

A. Reinforcement Learning and Traditional Replay

Reinforcement learning (RL) is a machine learning ap-
proach that leverages past experiences to learn a policy to
maximize a reward. RL has been successfully applied to
robotic navigational tasks [1]–[4]. However, the number of
trials required to learn a navigation task limits its applicability
in real-world applications.

One way researchers have attempted to reduce the learning
time of RL algorithms is to use experience replay. Experience
replay is an offline-learning technique that stores previously
experienced state-action sequences in a replay buffer and uses
them to train the model. In 2017, Bruce et al. developed a
model-free Deep-Q RL algorithm that uses experience replay
to speed up learning [5]. Later in 2020, Jiang et al. showed
that using experience replay, a Deep Q-learning algorithm can
significantly reduce the number of navigational trails needed
to learn optimal paths in unknown environments [6].

The traditional replay approach’s limitation is the replay
buffer’s size. To benefit from experience replay, the model
must store many previous experiences to see a decrease in the
model’s learning time. Furthermore, replay buffer models can
only train on the same recorded events. No new experiences
can be simulated using this method of replay.

*NSF IIS Robust Intelligence research collaboration grant #1703340

B. Hippocampal Place Cells

Research has shown hippocampal place cells play a vital
role in spatial cognition and navigation [7], [8]. It is theorized
that the activity of place cells encodes physical locations and
implements neural mechanisms that support navigation and
localization. Recently, place cells have provided a valuable
framework for robotic navigational models [9]–[12]. Sclei-
dorovich et al. [13] published a detailed analysis of how place
cell size and place cell placement correlate to the learning rate
of an Actor-Critic RL model. They showed that an appropriate
mix of small and large place fields could optimize the path
learned. However, their model did not utilize replay to speed
up learning, thus requiring thousands of training episodes to
learn an optimal path in an open maze.

C. Hippocampal Replay

Rodent experiments have shown that place cell sequences
reactivate during periods of inactivity in the same or reverse
order as experienced during a task. This phenomenon is
known as hippocampal replay. [14], [15]. In 1994, Wilson and
McNaughton conducted a study involving the reactivation of
place cells in the rodents’ hippocampus during sleep cycles
is the same sequence of place cells that activated while the
rodent occupied a specific spatial location. They theorized
that the information experienced during an awake period is
re-expressed in the hippocampus during a sleep cycle, which
modifies the behaviors exhibited when the rodent is awake
[16]. In 1996, Skaggs et al. showed that the reactivation of
place cells during periods of rest act as a mechanism for long-
term learning of spatial information [17].

D. Reinforcement Learning and Hippocampal Replay

Reinforcement learning algorithms require experiencing
sequences of state-action pairs to learn. Mechanisms that
synthesize these sequences have been exploited to speed
up learning [18]. In 2005, Johnson and Redish developed
such a mechanism. Specifically, a sparse matrix that stores
connections between place cells. In theory, the stronger the
relationship between two place cells, the more agent traversed
the path between those place cells. Since the matrix encodes
information about the paths traveled by an agent, we refer
to it as a path matrix. Johnson and Redish showed their

model could find paths through a simple T-maze environment.
However, their model was limited to solving the simple T-maze
problem, not the more realistic open-world environment with
obstacles. Additionally, they failed to show how their model
would adapt to an environment with obstacles [19].

In 2020, Alabi et al. developed a one-shot RL Model that
utilized replay to solve the Morris water maze task [11]. In
their work, Alabi et al. uses reward cells to back-propagate
replay from the latest activated place cell along its strongest
synapses. Their model was able to solve the Morris Task
in a one-shot manner. However, their model was unable to
generalize to open environments with obstacles.

In this paper, we propose an extension of Johnson and
Redish’s replay model by enabling the path matrix to account
for obstacles by inhibiting connections between place cells
with an obstacle between them. We also present a novel
stochastic method for generating state-action pairs that will
be used for offline learning. Our model can find optimal paths
for the Morris maze after one naive episode [20], even from
unseen starting locations. We will further show our model’s
ability to adapt to open-field mazes with obstacles. The rest of
this paper will proceed as follows; In Section II, we present
our place cell replay model. In Section III, we outline the
experiments we performed to evaluate our model. In Section
IV, we summarize our model’s results.

II. PLACE CELL REPLAY MODEL

This section will present our actor-critic RL algorithm with
place cell replay. In Section II-A, we provide an overview of
our computational representation of place cells and how they
are utilized to represent the state space. Section II-B discusses
our implementation of an Actor-Critic RL model and how it
is used for the navigational task. Section II-C overviews our
path matrix and its role in offline learning. Figure 1 shows the
Actor-Critic RL with Place Cell Replay model architecture.

Fig. 1: Illustration of the architecture of our Actor-Critic RL with
Place Cell Replay model.

A. Place Cells

We represent our state space using place cells. We model our
place cells using a normalized Gaussian radial basis function
defined by their center x⃗i and their radius ri [4], [21]. We
assume the activation outside of a place cell’s receptive field
is zero and inside the radius is derived by a Gaussian kernel
normalized by the activation of all place cells. The activation
of a place cell is formally defined by Equations 1 and 2. Figure
2 shows a three-dimensional plot of a place cell’s field and
how the activation is calculated from the robot’s position and
place cell’s center. For our experiments, we use a uniform
distribution of 560 place cells with a radius of 16 cm that
ensures the entire map is covered by place cell fields.

P ′
it =

0 dit < ri

e
− d2it

r2
i

ln(α)
otherwise

(1)

Pit =
P ′
it∑

i P
′
it

(2)

Where P ′
it refers to the calculated activation of place cell i at

time t, while Pit is the normalized activation of place cell i at
time t. The Euclidean distance between the center of place cell
i (denoted as x⃗i) and the robot’s position at time t (denoted as
x⃗r) is represented as dit = ||x⃗r− x⃗i||. We use ri to denote the
radius of place cell i. The constant α is utilized to specify the
activation at the boundary of a place cell field, which happens
when dit = ri. In this work, we set α to 0.001.

(a) (b)

Fig. 2: 2a Illustration of the place cell field based on the position of
the robot x⃗r , its distance Di from the center of place cell i x⃗i with
a radius of activation ri.2b Plot of place cell activation field relative
to the center of place cell i.

B. Actor-Critic Model

We extend the actor-critic model implemented by Sclei-
dorovich et al. in 2020 [22]. Our model is trained in two
modalities online and offline learning. The online learning
algorithm takes the robot’s position and returns an action to
perform. Details regarding action selection and online learning
can be found in Sections II-B2 and II-B1, respectively.

1) Online Reinforcement Learning: Our model utilizes an
Actor-Critic Reinforcement Learning algorithm coupled with
linear function approximations to simulate learning [4], [21].
During online learning, our model takes the robot’s position
and outputs one of eight allocentric actions denoted as at were
at ∈ A = {0, ..., 7}. The action j ∈ A represents the robot
moving one step (8 cm) in the direction θj =

π
4 j.

Given the robot’s position, we calculate all place cell’s
activation using Equations 1 and 2. The activation of all place
cells is then used to calculate the value for the current state
and the preference for each action in the given state. Which
is modeled as the linear function approximators Vt and Qjt,
respectively. The linear approximators Vt and Qjt are defined
by Equations 3 and 4, respectively.

Vt =
∑
i

PitVit (3)

Qjt =
∑
i

PitQijt (4)

We represent the state value at time t as Vt, and Vit as the
state value corresponding to place cell i at time t. Similarly,
Qjt represents the preference for action j at time t, and Qijt

is the preference corresponding to place cell i for action j at
time t.

2) Action Selection: The expected output of our model
is one of eight allocentric actions, which is acquired by
sampling the policy learned by the Actor-Critic model. Our
model derives the policy for each action from the preferences
obtained from Equation 4. We derive the policy for each
action by applying a modified softmax function such that
any action obstructed by obstacles has a zero probability, see
Equation 5. The zero probabilities for actions resulting in
obstacle collisions are to avoid damage to a physical robot.
Our model performs action selection by randomly sampling
the probability distribution produced by Equation 5.

πjt =
bjte

Qjt∑
i bite

Qit
(5)

We denote the probability of selecting action j at time t based
on the actor’s policy as πjt. The Boolean variable bjt accounts
for actions that result in obstacle collision. In particular, if the
action j at time t would lead to a collision, bjt is set to 1.
Otherwise, it is set to 0.

3) Bootstrap Error and Learning Rules: Our model uses a
semi-gradient descent with a one-step bootstrap error as the
learning rule for both the actor and critic [21]. We define the
one-step bootstrap in Equation 6, the reinforcement error in
Equation 7, and the rules for updating the actor and critic in
Equations 8 and 9 respectively.

V ′
t =

{
rt + γ

∑
i PitVi,t−1 if not at terminal state

rt otherwise
(6)

δt = V ′
t − Vt−1 (7)

Vit = Vi,t−1 + αV δt (8)

Qijt = Vij,t−1 + αQδt (9)

Where V ′
t represents the one-step return bootstrap. We use

rt to indicate the reward obtained at time t, which will be 1
if the agent reaches the goal’s location and 0 otherwise. The
discount factor, γ, is fixed at 0.95. The value associated with
place cell i, calculated at time t − 1, is denoted by Vi,t−1.
The reinforcement learning error at time t is given by δt, and
Vt−1 represents the state value computed at time t − 1. For
our purpose, the learning rates for both αV and αQ are set to
0.4.

C. Place Cell Replay

To simulate state-action pairs to perform offline learning, we
extend the path matrix presented by Johnson and Redish by
introducing an inhibitor coefficient to prevent forming place
cell connections across obstacles. We outline the details of our
path matrix in Section II-C2. We also present a novel method
for generating state-action pairs by creating a probabilistic
distribution from the place cell connections, see Section II-C3.
This differs from the work presented by Scleidorovich et al. in
2020, where only maximum place cell connections were used
for state-action pair generation [22].

1) Path Matrix: During an online navigation episode, our
model constructs a path matrix as a sparse matrix of size
N × N where N = 560 is the number of place cells
used to cover the environment. Each element in the path
matrix, denoted as cij , represents the connection strength
between place cell i to place cell j. After each time step, the
connections between place cells are updated using Equation
10. We would like to point out that due to the relatively small
size of the place cells (compared to the overall maze size) and
the finite distance traveled during a single action, Equation 10
results in a single place cell forming only a few connections
to other place cells that are relatively close to the start and
endpoints of an action. For example, let us consider when the
agent starts in a location at the bottom right of the maze and
takes a single action forwards. Then only place cells located in
the bottom right become active, and the remaining place cell
activations are zero. Thus, no connections form between these
nonactivated cells, resulting in a sparse path matrix. Although
we derive equation 10 from Johnson and Redish’s equations,
our model averages the place cell’s activation at times t and
t + 1, rather than just the activation at time t + 1. In short,
the more frequently the path traversed passes through place
cell i to place cell j, the stronger the connection cij becomes.
Thus, the trajectory frequently traversed by the robot will be
encoded in the path matrix. Furthermore, the original equation
generalizes to environments with obstacles intersecting place
cell fields. Thus the inhibitor coefficient Oij .

ct+1
ij = Oij

(
ctij + tan−1

(
P ′

i,t+1+P ′
i,t

2 · (P ′
j,t+1 − P ′

j,t)
))

(10)

The equation above involves three variables. The variable cij
denotes the connection strength from place cell i to place cell

j. The variable Oij is a Boolean value inhibiting connections
between place cells i and j if an obstacle exists between their
centers. In other words, if the connection between place cells
i and j intersects with an obstacle, Oij is set to 0; otherwise,
it is set to 1. Finally, P ′

it represents the activity of place cell
i at time t, as described in Equation 1.

2) Replay Events and Sequences: Our model uses the path
matrix between each online episode to generate state-action
sequences for performing offline learning. To better understand
how we simulate state-action sequences, we will first describe
a single replay event that produces a single state-action pair.
Then we will discuss how multiple replay events are strung
together to form state-action sequences.

To define a replay event, let us first consider the place
cell i; we can construct a set of place cells Ci such that
Ci = {j : cij |j > T and i ̸= j}. Where T is a place cell
connection threshold set to 0.0001. Specifically, the set Ci

represents all place cells (excluding place cell i) connected
to place cell i greater than the threshold T . Next, we apply
a softmax function to all connections cij found in set Ci.
This produces a probability distribution for all positively
connected place cells; see Equation 11. We randomly sample
the distribution of place cell connections to find the next
place cell. By randomly sampling the distribution, we can
inject stochasticity into the generated state-action pairs, which
ensures different state-action pairs are generated each time
place cell i is considered. We parameterize the number of
replay events that can be performed between each online
episode, which we refer to as the replay budget.

πij =
ecij∑
Ci

ecij
(11)

The variables used in the above equation are as follows: πij

denotes the probability of selecting the connection between
place cells i and j, cij represents the connection weight from
place cell i to place cell j, and Ci is the set of all place cells j
where the connection weight is greater than or equal to 0.0001,
and i ̸= j.

Each replay event considers the starting place cell PCt

and produces the place cell PCt+1 with centers p⃗t and p⃗t+1

respectively. We define the state as p⃗t. To generate the action,
we must select one of the eight allocentric actions which
closely matches the transition from p⃗t to p⃗t+1. Actions are
derived from the angle between p⃗t and p⃗t+1 and selecting the
action closest to the angle. Formally, Equations 12 and 13
defines how offline action selection is performed.

θt = cos−1

(
p⃗t+1 · p⃗t
|p⃗t+1||p⃗t

)
(12)

at =

(⌊
θt
π
4

⌉
mod 8

)
(13)

The variable pt represents the center of the current place cell,
while pt+1 represents the center of the next place cell. The
variable θt is the angle between the two place cells, and at

denotes the action closely aligned with the vector from pt to
pt+1.

Now that we have discussed how a single replay event gen-
erates a state-action pair, we can discuss how we form state-
action sequences for offline learning. To create a sequence of
state-action pairs, we randomly select a place cell to start from,
then perform a replay event to generate the first state-action
pair and the next place cell. The next place cell produced
by the replay event is used for the next replay event. This
continues until one of the following conditions is met.

• The current place cell field contains the goal location.
• The next place cell to be considered already exists in the

state-action sequence (i.e., a loop is formed).
• The replay sequence exceeds 1000 replay events.
Algorithm 1 outlines the method for generating the state-

action sequences. Figure 3 illustrates the process for state-
action sequence generation.

Algorithm 1 State-Action Generation
Randomly select PCt

State Action = [] ▷ Array to store state-action pairs
while Not in a terminal state do

PCt+1, at = Replay Event from PCt

append (p⃗t, at) to State Action
PCt = PCt+1

end while

Fig. 3: Offline replay learning. The robot traverses a path during
an online episode using the RL algorithm and updates the path
matrix. After the online episode, the path matrix simulates replay
events converted into a state action pair sequence for training the RL
algorithm.

3) Offline Reinforcement Learning: Each state-action se-
quence simulated is used to train the actor-critic RL model
using the same semi-gradient decent with a one-step bootstrap
error leaning rule outlined in Section II-B3.

III. EXPERIMENTS

To evaluate the performance of the model, we devised two
experiments. Section III-A presents the evaluation metric used
to gauge the effectiveness of place cell replay for offline learn-
ing. In Section III-B, we construct an experiment to highlight

the capabilities of the path matrix. Our next experiment is
designed to show how our model can rapidly learn optimal
paths in an open environment, even from unseen starting
locations; see Section III-C.

A. Evaluation Metric

To evaluate the model, we consider how optimal is the path
learned by the model. We quantify a path’s optimality using
the extra step ratio (also referred to as path indirectness)
[12], [13], [23]. This metric takes the number of additional
steps needed to reach the goal from a starting location and
normalizes it with the number of steps required by the opti-
mal path. Equation 14 formally defines the extra step ratio.
We normalize the number of extra steps to ensure they are
independent of the shortest path’s length. We can therefore
think of the extra step ratio as the number of extra steps taken
per required step.

Consequently, the ideal extra step ratio is 0, which implies
that the robot learned a path with the same number of steps as
the shortest path. However, we consider any extra step ratio<
1 optimal for our purposes. That is to say, the robot only
performed at most one extra step for every required step. We
would like to point out that the extra step ratios should always
be greater or equal to 0. However, a negative extra step ratio
may be produced due to our approximation of the shortest
path. We discretize the space into a 1 mm square grid and
derive the shortest path using the A* algorithm [24]. This may
produce an extra step ratio less than 0 implying that model
found a better solution than the A* algorithm.

eT =
AT −M

M
(14)

The variable eT corresponds to the extra step ratio for a
specific robot in trial T , whereas AT indicates the total
number of actions the robot takes in the same trial. Finally, M
represents the minimum number of actions required to reach
the goal in the respective maze.

B. Properties of the Path Matrix

As stated in Section II-C2, by averaging the place cell’s
activation at time t and t + 1 we ensure that the path matrix
strengthens connections between place cells the more fre-
quently a trajectory traverses through the respective fields. Fur-
thermore, a desirable property emerges due to the P ′

j,t+1−P ′
j,t

term in Equation 10. Specifically, suppose a trajectory contains
detours, such as loops and deviations from the optimal path.
The place cell connections tend to maintain strong connections
along the optimal path.

To demonstrate this property, we program the robot to
follow two paths, each with a detour somewhere along the
trajectory. Despite the detours, both paths ensure the robot
traverses the optimal path at least once. Using the methods
outlined in Section II-C2, we create a path matrix that encodes
the experiences of both paths. We then plot the path matrix
by showing each place cell’s strongest connection. Figure 4
illustrates this property while considering two types of detours.

Fig. 4: Figure on the left shows the two paths traversed by the robot;
each path contains a detour. The middle image shows the strongest
place cell connections recorded in the path matrix. The figures on
the right illustrate how the place cell connections at the beginning of
the detours still remain aligned along the optimal path.

By observing the strongest connections shown on the right,
we can see that the place cells closest to the beginning of the
detour maintain the strongest connection along the optimal
path despite the detours.

C. Rapid Learning of Optimal Paths

Out next set of experiments showcase the rapid learning of
optimal paths, even from unseen starting locations. For this
experiment, we consider three open maze configurations, one
with no obstacles (similar to the Morris water maze [20]),
one with ten obstacles randomly placed in the environment,
and another with 20 obstacles. Each maze consists of four
starting locations and one static goal location. Figure 5 shows
the aforementioned maze configurations.

For each maze, we allow the robot to run four online
episodes, each time starting from a new starting location. The
first online episode is considered naive, as the robot has no
prior knowledge of the maze. During the naive episode, a path
matrix is created. A set amount of replay events are simulated
between the subsequent online episodes. The generated state-
action sequences are used to train our actor-critic model. We
compare how the model performs when no replay is performed
and when 16 million replay events are simulated between the
episodes. We repeat the experiment 50 times for each maze
and each replay budget allotment.

IV. RESULTS

We provide quantitative and qualitative analysis for the
experiment outlined in Section III-B. In Section IV-A we
compare the performance of our model when place cell replay
is utilized vs when it is not. In Section IV-B, we analyze the
quality of the paths learned during each online episode.

(a) Maze: M000 (b) Maze: M104 (c) Maze: M204

Fig. 5: (a), (b), and (c) shows illustrations of the mazes with 0
obstacles, ten obstacles, and 20 obstacles, respectively. We represent
the four starting locations as green dots and the static goal location
as red dots. The blue trajectories show the shortest paths obtained
using an A* algorithm.

A. Quantitative Analysis

To gauge the effectiveness of place cell replay we consider
two allotments for the replay budget for each of our open-
world mazes: no replay events and 16 million. We ran each
replay budget and maze configuration 50 times in simulation
and recorded the extra step ratio when the robot started from
each of the starting locations. We display the recorded extra
step ratio from each starting location as a box plot and observe
the improvement after the first episode when place cell replay
is performed. Figure 6 shows a box plot of the extra step
ratios distribution for all 50 simulated experiments during each
episode. The left column shows the model’s performance when
no replay was performed after the first episode for each of the
three mazes we considered. Similarly, the right column shows
the model’s performance with a 16 million replay events replay
budget. We would like to mention that we experimented with
various amounts for the replay budget and found that a replay
budget of 16 million ensures that the model learns optimal
paths even after the first episode.

When observing the plots 6a and 6b, we see that place cell
replay produces a drastic improvement in the extra step ratio.
In both 6a and 6b, we see that episode 0 performs similarly.
However, after place cell replay is used for offline learning
(i.e., after the first episode), a significantly more optimal path
is traversed despite starting from a new location. Furthermore,
plot 6b shows that for episodes 1, 2, and 3 (which start
from different locations), the model produces optimal paths
when place cell replay is performed. Similar observations are
seen when comparing the performance of mazes M104 and
M204. We note that in the more complicated mazes M104 and
M204 (mazes with obstacles), there is slightly more variance
in the extra step ratio of the paths recorded for episode 3. We
attribute this to the relative distance from the starting location
to the goal location. The episode corresponds to the starting
location in the upper right of each maze, which has the shortest
optimal path derived from the A* algorithm. When the path
matrix is first constructed, the region containing the shortest
path from the last starting location is typically unexplored.
Thus, when place cell replay is performed, the expected reward

(a) (b)

(c) (d)

(e) (f)

Fig. 6: The plots in (a), (c), and (e) show the models performance (in
terms of the extra step ratio) when the replay budget is 0 for mazes
M000, M104, and M204, respectively. Similarly, (b), (d), and (f)
show the model’s performance when the replay budget is 16 million.

in those states is significantly smaller than in other states
(towards the other starting locations). This leads the model
to believe that states further left are more rewarding than up
and to the left, which causes the robot to move further left
than required. An example of this is shown in Section IV-B.

Table I reports the median extra step ratios for each starting
position and maze. Our results show that the median extra
step ratio obtained when the model performs place cell replay
always obtains a lower medial extra step ratio when compared
to the model when no place cell replay is utilized. Furthermore,
for mazes M000 and M104, the model using place cell replay
generally finds optimal paths by the third starting location.

B. Qualitative Analysis

To visualize the effects of place cell replay on the paths
produced by our model, we plot the paths from each of
the starting locations that the robot traverses in the most
complicated maze, M204. Figure 7 illustrates the path tra-
versed by an agent during a single trial. Figure 7a traces the
four paths traversed during each episode of the trial when
no place cell replay was performed. Similarly, Figure 7b
traces the paths traversed during each episode when place cell

(a)

(b)

Fig. 7: (a) Displays the paths performed by the robot when no place cell replay is performed in maze M204. Similarly, (b) shows the paths
with place cell replay is performed.

Median Extra Step Ratios
Maze and Starting Locations RB = 0 RB = 16e6

M000: 1 11.750 11.765
M000: 2 10.338 1.054
M000: 3 13.174 0.609
M000: 4 27.577 0.308
M104: 1 10.906 11.656
M104: 2 8.297 1.698
M104: 3 13.609 0.913
M104: 4 22.308 0.885
M204: 1 17.406 10.719
M204: 2 15.189 3.257
M204: 3 17.957 1.652
M204: 4 29.154 1.461

TABLE I: Summery of median extra step ratios for each starting
point in each maze when the replay buffer is 0 and 16 million.

replay was performed. We can see that the paths exhibit a
significant tendency toward exploration when no place cell
replay is performed. This is intuitively understandable, as the
model has minimal training experience and still needs more
exploration to learn a path to the goal. On the other hand, when
place cell replay is performed, we see a significant decrease
in exploration and a considerable increase in navigation by
the second episode. Again, this is understandable since the
model is exposed to several magnitudes of more simulated
experiences. As mentioned in Section IV-A, Figure 7 shows
how the previous experiences force the trajectory towards the
left of the maze. Specifically, when the robot departs from
starting location 3, it heads towards the left, as most of the
past experiences happened on the left side of the maze.

V. DISCUSSION

We have developed a novel approach to performing replay
for an Actor-Critic RL algorithm. Our model uses place cells

to represent the state space and uses navigational experiences
to form and strengthen place cell connections. The place
cell connections are stored in a path matrix that encodes
path information experienced during online navigation. Unlike
previous works, our path matrix can account for environmental
obstacles using the obstacle inhibitor coefficient presented
in Equation 10. Furthermore, we have presented a novel
algorithm for generating state-action sequences from the path
matrix that ensures more of the state space is explored during
offline learning. We have shown that using place cell replay
can rapidly and significantly improve the optimality of paths
learned by our actor-critic RL model. The place cell replay
proposed in work directly applies to robot navigation, enabling
robots to rapidly learn paths through an unknown cluttered
environment.

In the future, we plan to transfer our model to a physical
robot and investigate if place cell replay can provide a viable
mechanism for rapid exploration and navigation of unknown
environments. In future work, we plan to include a visual
SLAM algorithm to activate place cells as the robot navigates
a new environment.

ACKNOWLEDGMENT

This work was funded by NSF IIS Robust Intelligence
research collaboration Grant No. #1703225 at the University
of South Florida and Grant No. #1703440 at the University of
Arizona, entitled “Experimental and Robotics Investigations
of Multi-Scale Spatial Memory Consolidation in Complex
Environments.”

REFERENCES

[1] X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile robot navigation based
on deep reinforcement learning,” in 2019 Chinese control and decision
conference (CCDC). IEEE, 2019, pp. 6174–6178.

[2] N. ALTUNTAŞ, E. Imal, N. Emanet, and C. N. Öztürk, “Reinforcement
learning-based mobile robot navigation,” Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 24, no. 3, pp. 1747–1767,
2016.

[3] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 31–36.

[4] V. R. Konda and J. N. Tsitsiklis, “[NIPS 2000] Actor-critic algorithms,”
Advances in Neural Information Processing Systems, 2000.

[5] J. Bruce, N. Sünderhauf, P. Mirowski, R. Hadsell, and M. Milford, “One-
shot reinforcement learning for robot navigation with interactive replay,”
arXiv preprint arXiv:1711.10137, 2017.

[6] L. Jiang, H. Huang, and Z. Ding, “Path planning for intelligent robots
based on deep q-learning with experience replay and heuristic knowl-
edge,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 1179–
1189, 2019.

[7] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map:
Preliminary evidence from unit activity in the freely-moving rat.” Brain
research, 1971.

[8] R. G. Morris, P. Garrud, J. a. Rawlins, and J. O’Keefe, “Place navigation
impaired in rats with hippocampal lesions,” Nature, vol. 297, no. 5868,
pp. 681–683, 1982.

[9] M. L. Alonso, Multi-Scale Spatial Cognition Models and Bio-Inspired
Robot Navigation. University of South Florida, 2017.

[10] M. Llofriu, G. Tejera, M. Contreras, T. Pelc, J. M. Fellous, and
A. Weitzenfeld, “Goal-oriented robot navigation learning using a multi-
scale space representation,” Neural Networks, vol. 72, pp. 62–74, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.neunet.2015.09.006

[11] A. Alabi, A. A. Minai, and D. Vanderelst, “One Shot Spatial Learning
through Replay in a Hippocampus-Inspired Reinforcement Learning
Model,” pp. 1–8, 2020.

[12] A. Alabi, D. Vanderelst, and A. Minai, “Rapid Learning of Spatial
Representations for Goal-Directed Navigation Based on a Novel Model
of Hippocampal Place Fields,” pp. 1–27, 2022. [Online]. Available:
http://arxiv.org/abs/2206.02249

[13] P. Scleidorovich, M. Llofriu, J. M. Fellous, and A. Weitzenfeld, “A
computational model for spatial cognition combining dorsal and ven-
tral hippocampal place field maps: multiscale navigation,” Biological
Cybernetics, vol. 114, no. 2, pp. 187–207, apr 2020.

[14] C. Pavlides and J. Winson, “Influences of hippocampal place cell firing
in the awake state on the activity of these cells during subsequent sleep
episodes,” Journal of neuroscience, vol. 9, no. 8, pp. 2907–2918, 1989.

[15] G. R. Sutherland and B. McNaughton, “Memory trace reactivation in
hippocampal and neocortical neuronal ensembles,” Current opinion in
neurobiology, vol. 10, no. 2, pp. 180–186, 2000.

[16] M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal
ensemble memories during sleep,” Science, vol. 265, no. 5172, pp. 676–
679, 1994.

[17] W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes,
“Theta phase precession in hippocampal neuronal populations and the
compression of temporal sequences,” Hippocampus, vol. 6, no. 2, pp.
149–172, 1996.

[18] B. Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, and S.-Y. Su, “Deep dyna-
q: Integrating planning for task-completion dialogue policy learning,”
arXiv preprint arXiv:1801.06176, 2018.

[19] A. Johnson and A. D. Redish, “Hippocampal replay contributes to within
session learning in a temporal difference reinforcement learning model,”
Neural Networks, vol. 18, no. 9, pp. 1163–1171, 2005.

[20] R. G. Morris, “Spatial localization does not require the presence of local
cues,” Learning and motivation, vol. 12, no. 2, pp. 239–260, 1981.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[22] P. Scleidorovich, M. Llofriu, J. M. Fellous, and A. Weitzenfeld, “A Com-
putational Model for Latent Learning based on Hippocampal Replay,”
Proceedings of the International Joint Conference on Neural Networks,
2020.

[23] P. Scleidorovich, J.-M. Fellous, and A. Weitzenfeld, “Adapting hip-
pocampus multi-scale place field distributions in cluttered environments
optimizes spatial navigation and learning,” Frontiers in Computational
Neuroscience, vol. 16, pp. 1 039 822–1 039 822, 2022.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, 1968.

