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Abstract. We present several expected properties of the holomorphic Floer
theory of a holomorphic symplectic manifold. In particular, we propose a

conjecture relating holomorphic Floer theory of Hitchin integrable systems
and Donaldson-Thomas invariants of non-compact Calabi-Yau 3-folds. More

generally, we conjecture that the BPS spectrum of a 4-dimensional N = 2
quantum field theory can be recovered from the holomorphic Floer theory of
the corresponding Seiberg-Witten integrable system.
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0. Introduction

The goal of this paper is to present an overview of the expected formal aspects
of holomorphic Floer theory of holomorphic symplectic manifolds and to propose
a conjectural relation between holomorphic Floer theory and Donaldson-Thomas
(DT) theory.

0.1. Holomorphic Floer theory. Holomorphic Floer theory is an example
of infinite-dimensional complex Morse theory. We first review the more familiar
case of Floer theory as an example of infinite-dimensional Morse theory.

0.1.1. Floer theory as Morse theory. Floer theory of a symplectic manifold
(M,ω) is formally the result of applying Morse theory to the infinite-dimensional
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manifold P of paths between pairs of Lagrangian submanifolds L1, L2 ⊂ M , en-
dowed with the action functional

f : P −→ R

p 7−→ −

∫

Dp

ω ,

where Dp is the surface in M formed by a one-parameter family of paths from
a reference path p0 to the path p [28]. Critical points of f are constant paths
located at the intersection points L1 ∩ L2. Moreover, the choice of a ω-compatible
almost complex structure J on M defines a Riemannian metric on P, and the
corresponding gradient flow lines of f are J-holomorphic disks in M with boundary
on L1 ∪ L2. Hence, the Morse complex of f is the Floer complex CF (L1, L2)
generated by the intersection points L1 ∩ L2 and whose differential is given by
counts of J-holomorphic disks. More generally, counting J-holomorphic disks with
boundary on finite unions of Lagrangian submanifolds leads to the definition of the
Fukaya category of (M,ω), whose objects are Lagrangian submanifolds and spaces
of morphisms are Floer homology groups [30].

0.1.2. Complex Morse theory. Whereas Morse theory deals with a real-valued
smooth function on a Riemannian manifold, complex Morse theory considers a
holomorphic function on a Kähler manifold. This includes the Picard-Lefschetz
theory of critical points and vanishing cycles of holomorphic functions, and also its
categorification given by the Fukaya-Seidel category [79, 80].

The original definition of the Fukaya-Seidel category is based on the geometry of
Lefschetz thimbles, but we will use a conjecturally equivalent alternative definition
due to Haydys [46] and Gaiotto-Moore-Witten [38]1. Given a Kähler manifold P
and a holomorphic Morse function

W : P −→ C ,

this definition is based on counts of gradient flow lines of the real Morse functions
Re(e−iθW ) connecting pairs of critical points, and on counts of solutions to a W -
perturbed holomorphic curve equation asymptotically approaching gradient flow
lines. In physics, a real-valued Morse function on a Riemannian manifold defines
a N = 2 supersymmetric quantum mechanics, whose space of vacua is Morse ho-
mology [86], whereas a holomorphic Morse function on a Kähler manifold defines a
Landau-Ginzburg 2-dimensional N = (2, 2) supersymmetric quantum field theory,
whose category of boundary conditions is the Fukaya-Seidel category [38].

0.1.3. Holomorphic Floer theory as complex Morse theory. The main advantage
of the construction of the Fukaya-Seidel category in terms of counts of gradient flow
lines and W -perturbed holomorphic curves is that it can be formally applied to
infinite dimensional set-ups [46]. Known examples reviewed in more details in §1.4
include the complex Chern-Simons theory for complex connections on a 3-manifold
[46, 87][60, §4.2] and the holomorphic Chern-Simons theory for ∂-connections on
Calabi-Yau 3-folds [25, 24, 46].

Holomorphic Floer theory is another example, obtained by taking for P the
space of paths between two holomorphic Lagrangian submanifolds L1 and L2 in a

1Haydys’s proposal for a definition of the Fukaya-Seidel category was made rigorous very
recently by Donghao Wang [84].
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holomorphic symplectic manifold (M,Ω) and for W the holomorphic action func-
tional

W : P −→ C

p 7−→ −

∫

Dp

Ω

obtained by integrating the holomorphic symplectic form Ω. In this case, criti-
cal points are intersection points of L1 and L2, gradient flow lines are holomorphic
curves in M for hyperkähler rotated complex structures and the W -perturbed holo-
morphic curve equation is a 3d Fueter equation for maps R

2 × [0, 1] → M , see §2
for details.

Applying formally the constructions of [38], one should be able to define:

(1) a vector space H(p, p′) for every pair of intersection points p, p′ ∈ L1∩L2,
obtained as the cohomology of a complex generated by holomorphic curves
and with differential given by counts of Fueter maps.

(2) aA∞-category C(L1, L2) obtained as the “Fukaya-Seidel category of (P,W )”.

The collection of all holomorphic Lagrangian submanifolds in (M,Ω) should form
a 2-category2 Ft(M,Ω), that we refer to as the Fueter 2-category of (M,Ω), with
the categories C(L1, L2) as Hom-categories:

C(L1, L2) = HomFt(M,Ω)(L1, L2) .

The holomorphic action functional is in general multivalued, and so considering
a cover of the space of paths P is necessary in general for the definition of the
vector spaces H(p, p′) and of the categories C(L1, L2). This point is essential in
the formulation of the relation with Donaldson-Thomas invariants in the following
section.

As reviewed in more details in §0.3, various aspects of holomorphic Floer theory
are also discussed by Doan-Rezchikov [23], Khan [60] and Kontsevich-Soibelman
[66]. The main contribution of the present paper is to formulate several expected
properties of holomorphic Floer theory, and in particular its conjectural relation
with DT theory.

0.2. DT theory and holomorphic Floer theory.

0.2.1. DT theory and complex Morse theory. DT invariants are counts of stable
objects in a 3-dimensional Calabi–Yau triangulated category, such as for example
the derived category of coherent sheaves or the Fukaya category of a Calabi-Yau
3-fold. As a function of the stability, DT invariants jump across real codimension
one loci in a way determined by a universal wall-crossing formula [51, 64].

Many of the algebraic structures underlying DT invariants and their wall-
crossing are formally similar to the ones appearing in complex Morse theory for a
holomorphic Morse function on a Kähler manifold. For example, the wall-crossing
formula can be viewed as an iso-Stokes condition [18, 50], and the DT invariants
naturally define Riemann-Hilbert problems and geometric structures formally sim-
ilar to Frobenius manifold structures [15, 16]. In this analogy, DT invariants play
the role of counts of gradient flow lines in complex Morse theory.

Whereas complex Morse theory of a holomorphic Morse function with n critical
points leads to algebraic structures based on the finite-dimensional Lie algebra gln

2More precisely a stable (∞, 2)-category.
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of n × n matrices, the algebraic structures coming from DT theory are based on
the infinite-dimensional Lie algebra gDT of vector fields preserving a holomorphic
symplectic form on a complex torus. Nevertheless, it is natural to ask if this relation
between DT theory and complex Morse theory theory is deeper than a mere analogy:

Question 0.1. Is DT theory actually an example of complex Morse theory?

Answering Question 0.1 means finding a Kähler manifold P with a holomorphic
function W : P → C such that a formal application of complex Morse theory to
(P,W ) reproduces DT theory. In this context, a natural puzzle is to understand
the origin of the Lie algebra gDT : as gDT 6= gln, a necessary condition is that W
has infinitely many critical points.

Question 0.1 admits a natural reformulation in terms of physics. DT invari-
ants can often be interpreted as counts of BPS states in 4-dimensional N = 2
supersymmetric quantum field theories or string theory compactifications. On the
other hand, a holomorphic Morse function on a Kähler manifold defines a Landau-
Ginzburg 2-dimensional N = (2, 2) quantum field theory. In this context, the
analogy [34] is that the wall-crossing formula for the BPS states of 4-dimensional
N = 2 theories is formally similar to the Cecotti-Vafa wall-crossing formula for
the BPS states in 2-dimensional N = (2, 2) theories [20]. Therefore, answering
Question 0.1 seems to require the construction of an appropriate 2-dimensional
N = (2, 2) theory from a 4-dimensional N = 2 theory.

0.2.2. DT invariants and holomorphic Floer theory of complex integrable sys-
tems. We will argue that holomorphic Floer theory gives a positive answer to Ques-
tion 0.1 in the particular case of DT invariants describing the BPS spectrum of a
4-dimensional N = 2 field theory (without dynamical gravity). This includes for
example string compactifications on non-compact Calabi-Yau 3-folds, but not string
compactifications on compact Calabi–Yau 3-folds.

Let T be a 4-dimensional N = 2 field theory. The low energy physics of T is
controlled by its Seiberg-Witten complex integrable system

π : M −→ B .

Here B is the Coulomb branch of T on R
4 and M is the Coulomb branch of T on

R
3 × S1. The space M is hyperkähler and the holomorphic symplectic form ΩI for

the complex structure I in which π is holomorphic. The fibers Fb := π−1(b) over
points b ∈ B in the complement of the discriminant locus ∆ of π are abelian varieties
and holomorphic Lagrangian submanifolds of (M,ΩI). The lattice of charges for
states in the vacuum b ∈ B \∆ is

Γb := π2(M,Fb)

and for every γ ∈ Γb, we have a space BPSb
γ of BPS states of charge γ [76, 77,

78, 34, 37].
In many cases, there is an associated 3-dimensional Calabi-Yau (CY3) triangu-

lated category C, the base B\∆maps to the space of Bridgeland stability conditions
on C [14], the central charge of the stability corresponding to a point b ∈ B \∆ is
given by

Zγ(b) =

∫

γ

ΩI ,

and the spaces of BPS states BPSb
γ are mathematically realized as a cohomological

DT invariants of C counting b-stable objects of class γ. A concrete example is
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provided by class S theories of type A1 defined by a Riemann surface C (possibly
with punctures)[34, 37]. In this case, M is a moduli space of SL(2,C) Higgs
bundles on C, B is a space of quadratic differentials on C, and π is the Hitchin
map. Moreover, C is a 3-dimensional Calabi-Yau triangulated category described
by a quiver with potential defined in terms of ideal triangulations of C [17], and
can also be viewed as the Fukaya category of a non-compact Calabi-Yau 3-fold
constructed from C [81].

Our main claim is that the DT theory of C for the stability u is equivalent to the
holomorphic Floer theory ofM for the pair of holomorphic Lagrangian submanifolds
given by the torus fiber Fb := π−1(b) and a section S of π. Physically, S ⊂ M is a
holomorphic Lagrangian section of π defined by putting T on a cigar geometry, see
§4.2 for details. For example, S is the Hitchin section when M is a moduli space of
Higgs bundles. In other words, our proposed answer to Question 0.1 is positive in
this setting and one should recover DT theory by applying complex Morse theory
to the infinite dimensional Kähler manifold P of paths between S and Fb, equipped
with the holomorphic action functional W : p 7→ −

∫
Dp

ΩI .

As S is a section of π and Fb is a fiber, the intersection S ∩ Fb consists of a
single point. However, P is not simply connected: as we will show in §4.2, we have

π1(P) ' π2(M,Fb) = Γb .

The holomorphic action functional W becomes a single-valued function on the uni-

versal cover P̃ of P, and has infinitely many critical points which form a torsor
under Γb. Fixing a reference critical point 0, we identify the set of critical points
with Γb. We can now state our main conjecture relating DT theory of the CY3 cat-
egory C and the holomorphic Floer theory of the Seiberg-Witten integrable system
(M,ΩI).

Conjecture 0.2. For every b ∈ B \ ∆ and γ ∈ Γb, the cohomological DT
invariant BPSb

γ is isomorphic to the vector space H(0, γ) attached by holomor-
phic Floer theory of the pair of holomorphic Lagrangian submanifolds S and Fb in
(M,ΩI) to the two critical points 0 and γ of the holomorphic action functional:

BPSb
γ ' H(0, γ) .

In §4.3, we give a physics argument in favor of Conjecture 0.2. In particular,
we will obtain an answer to the physics reformulation of Question 0.1: the relevant
2d N = (2, 2) theory is obtained by compactification of T on a cigar geometry with
appropriate boundary conditions. In §4.4, we present further conjectures involving
the A∞-category

C(S, Fb) = HomFt(M,ΩI)(S, Fb)

attached by holomorphic Floer theory to the pair of holomorphic Lagrangian sub-
manifolds S and Fb.

0.3. Related works. While thinking about Question 0.1 in 2017, the au-
thor stumbled upon the idea to consider the Fukaya-Seidel of the holomorphic
action functional and did the exercise to derive the corresponding Fueter equation.
Recently, Doan-Rezchikov [23] independently derived the 2-categorical picture of
holomorphic Floer theory. More importantly, they started the analysis of the com-
pactness properties of the Fueter equation. Any attempt to rigorously discuss the
conjectures of our paper should probably start with their work.
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In his thesis [60, §1.1.1] Khan also considered the holomorphic area functional
and derived the Fueter equation as the corresponding ζ-instanton equation. An-
other important part of this work is a systematical study of the 2d categorical
wall-crossing [61]] and of the 2d categorical wall-crossing with “twisted masses”
[60, §3], which applies in particular to multivalued Landau-Ginzburg potential. In
particular, formal aspects of the 4d wall-crossing appear in this context. From the
point of view of our Conjecture 0.2, this is not surprizing because we claim that
the 4d wall-crossing is an example of 2d wall-crossing for the multivalued holomor-
phic action functional. In particular, applying [60, §3] to the holomorphic area
functional should help to make more precise the algebraic structures involved in
Conjecture 0.2.

The 2-categories attached to holomorphic symplectic varieties conjecturally en-
ter in 3d mirror symmetry. In this context, the B-side is the Rozansky-Witten
2-category, based on the category of matrix factorizations. The A-side should be a
gauged version of the Fueter category, based on the Fukaya-Seidel category [39, 40]:
concrete examples of the A-side in the literature rely on explicit algebraic models
of the 2-category and it is an interesting problem to clarify the relation with the
geometric model given by the Fueter 2-category.

Finally, Kontsevich-Soibelman have an ongoing work on holomorphic Floer
theory [66], not focused on the 2-categorical aspects related to the Fueter equation,
but rather on the exploration of the 1-categorical level in many directions that we
do not touch upon, such as the relation with deformation quantization or a general
theory of resurgence, see §2.7.

0.4. Plan of the paper. After an introduction to finite-dimensional complex
Morse theory in §1, we introduce holomorphic Floer theory in §2. Conjectures re-
lating holomorphic Floer theory and the structure of 2d N = (2, 2) theories are
discussed in §3. Finally, the relation between holomorphic Floer theory and DT
invariants is the subject of §4. Whereas the conjectures in §2 are stated entirely
mathematically, conjectures in §3-§4 are stated in physical terms for maximal gen-
erality, even if they have mathematically well-formulated special cases.

0.5. Acknowledgment. I thank Tom Bridgeland and Richard Thomas for
discussions at an early stage in 2017. I also thank the organizers of the String
Math 2022 conference at the University of Warsaw, July 11-15, 2022, and of the
MSRI Workshop New Four-Dimensional Gauge Theories, October 24-28 2022, for
invitation to give talks where this work was presented. The research of Pierrick
Bousseau is partially supported by the NSF grant DMS-2302117.

1. Complex Morse theory

As announced in §0.1, holomorphic Floer theory should be viewed as an example
of infinite-dimensional complex Morse theory. In this section, we first briefly review
aspects of finite-dimensional complex Morse theory.

1.1. Solitons and instantons. Let X be a Kähler manifold, with complex
structure J and Kähler form ω, such that c1(X) = 0. Let W : X → C be a
holomorphic function which is Morse, that is with non-degenerate critical points,
and which has distinct critical values. In this section, we assume that ω = dλ is
exact and that the set of critical points of W is finite. We will have to eventually
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relax these assumptions for the infinite-dimensional set-up of holomorphic Floer
theory, see §2.5.

Following Haydys [46] and Gaiotto-Moore-Witten [38], complex Morse theory
for (X,W ) is based on the following two sets of equations, parametrized by a phase
ζ ∈ C, |ζ| = 1:

(1) for a path

u : R −→ X(1.1)

x 7−→ u(x) ,

the equation

(1.2) ∂xu+ grad
(
Re

(
ζ−1W (u)

))
= 0

is the gradient flow line equation for the Morse function Re(ζ−1W ), or
equivalently the Hamiltonian flow equation for Im(ζ−1W ).

(2) for a plane

u : R2 −→ X(1.3)

(t, x) 7−→ u(t, x) ,

the equation

(1.4) ∂tu+ J(u)
(
∂xu+ grad

(
Re

(
ζ−1W (u)

)))
= 0

is the holomorphic curve equation perturbed by the Hamiltonian Im(ζ−1W ).

Equations (1.2) and (1.4) are respectively the critical point equation and the
gradient flow line equation for the functional

u 7→

∫

R

(
u∗λ− Im(ζ−1W )dx

)

on the space of paths Maps(R, X) = {u : R → X}. In [38, §11.1], (1.2) and (1.4)
are respectively called the ζ-soliton equation and the ζ-instanton equation3 of the
2-dimensional N = (2, 2) massive Landau-Ginzburg theory defined by (X,W ).4

Following this terminology, we will use ζ-soliton for a solution of (1.2) and ζ-
instanton for a solution of (1.4).

1.2. 2d BPS states. Let V be the set of critical points of W . Complex Morse
theory attaches a vector space H(p, p′), referred to as the space of 2d BPS states,
to every pair p, p′ ∈ V of distinct critical points. The vector space H(p, p′) should
be defined as the cohomology of a complex (C(p, p′), d), where

(1) C(p, p′) is the vector space generated by paths

ui : R −→ X

x 7−→ ui(x) ,

considered up to R-translation, asymptotic to p and p′,

lim
x→−∞

ui(x) = p , lim
x→+∞

ui(x) = p′ ,

3Our convention for ζ agrees with [52], differs from [61] by a factor of −1, and differs from
[38] by a factor of i =

√−1.
4In the context of FJRW invariants, (1.4) is sometimes called the Witten equation [27].
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and which are ζp,p′ -solitons, that is solutions of the gradient flow line
equation (1.2) with

ζ := ζp,p′ :=
W (p)−W (p′)

|W (p)−W (p′)|
.

(2) d : C(p, p′) → C(p, p′) is the differential defined by

dui =
∑

j

nijuj ,

where nij is a signed count of planes

u : R2 −→ X

(t, x) 7−→ u(t, x) ,

asymptotic to ui and uj ,

lim
t→−∞

u(t, x) = ui(x) , lim
t→+∞

u(t, x) = uj(x) ,

and which are ζp,p′ -instantons, that is solutions of (1.4) with ζ = ζp,p′ , and
considered up to the action of R induced by translation of the t-variable,
see Figure 1.1.

In the terminology of [38], H(p, p′) is the space of 2d BPS states connecting the
vacua p and p′ of the 2-dimensional N = (2, 2) massive Landau-Ginzburg theory
defined by (X,W ).

Figure 1.1. Contribution to the differential of a ζp,p′ -instantons u
asymptotic to gradient flow lines ui and uj between critical points
p and p′.

1.3. Fukaya-Seidel category. Complex Morse theory also attaches a A∞-
category FS(X,W ) to (X,W ), which is conjecturally equivalent to the Fukaya-
Seidel category of (X,W ). We describe in a few words the web-based construction
of Gaiotto-Moore-Witten [38], reformulated in the dual language of polygons by
Kapranov-Kontsevich-Soibelman [52] (see also [54]). We denote by Cw the copy of
C where W takes its values. Let Cw ∪ S1

∞ be the compactification of Cw obtained
by adding a circle of oriented directions at infinity. We fix a phase ζ ∈ C, |ζ| = 1,
and we denote by w∞ ∈ S1

∞ the corresponding point at infinity. We think of w∞ as
being the limit R → +∞ of the point Rζ∞ ∈ Cw, with R > 0. Finally, we assume
that ζ 6= ζp,p′ for every p, p′ ∈ V.

For every pair p and p′ of distinct critical points, we define the complex

(1.5) Rp,p′ :=
⊕

Q∈Qp,p′

RQ ,
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where the direct sum is over the set Qp,p′ of all the convex polygons Q in Cw ∪
S1
∞ with vertices in clockwise order given by w∞,W (p),W (p1), . . . ,W (pk),W (p′),

where p1, . . . , pk ∈ V are distinct critical points, also distinct from p and p′, see
Figure 1.2, and where RQ is the complex

(1.6) RQ := C(p, p1)⊗ C(p1, p2)⊗ · · · ⊗ C(pk, p
′) .

Moreover, for every critical point p, we set Rp,p = C with trivial differential.

Figure 1.2. A polygon Q ∈ Qp,p′ with ζ = 1.

Let R be the dg-category with objects Tp(ζ) indexed by the critical points p,
Hom complexes given by

HomR(Tp(ζ), Tp′(ζ)) = Rp,p′ ,

and where the composition maps

Rp,p′ ⊗Rp′,p′′ −→ Rp,p′′

a⊗ b 7−→ ab

are defined as follows: for Q ∈ Qp,p′ , Q′ ∈ Qp′,p′′ , a ∈ RQ and b ∈ RQ′ , ab ∈ RQ∪Q′

is the natural concatenation of a and b if the polygon Q ∪ Q′ obtained by gluing
Q and Q′ along their common edge [p′, w∞] is convex, and ab = 0 otherwise. In
what follows, we view the dg-category R as an example of A∞-category with trivial
higher operations (mk)k≥3. By construction, HomR(Tp(ζ), T

′
p(ζ)) = Rp,p′ = 0 if

the triangle with ordered vertices w∞,W (p),W (p′) is oriented counterclockwise,
and so R is an example of directed A∞-category.

To obtain a A∞-category with non-trivial higher operations, one considers the
following counting problems. Let P be the set of convex polygons P in Cw with
vertices in clockwise order given by W (p1), . . . ,W (pk), where p1, . . . , pk ∈ V are
distinct critical points. Given such a polygon P , we define a map

µP : C(p1, p2)⊗ · · · ⊗ C(pk−1, pk) −→ Z

as follows: given ζpi,pi+1 -solitons generators αi of C(pi, pi+1) for 1 ≤ i ≤ k − 1,

µP (α1, . . . , αk−1)

is a count of ζ-instantons
u : C −→ X

such that the restriction of u to a direction perpendicular to R≥0(W (pi+1)−W (pi))
asymptotically approaches the ζpi+1,pi

-soliton αi rotated by a phase ζζ−1
pi,pi+1

.

The main result of [38] is that
∑

P∈P
µP naturally defines a Maurer-Cartan

element for R, and so one can construct a new A∞-algebra R̃ by deforming R by
this Maurer-Cartan element. Explicitly, higher A∞-operations of R̃ are defined
by deforming the naive concatenation of polygons Q ∈ Qp,p′ by terms indexed by
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regular polyhedral decompositions of the concatenated polygons, and where each
finite piece P of a polyhedral decomposition contributes a factor µP . Passing to the
category of twisted complexes of R̃-modules, we obtain a triangulated A∞-category
FS(X,W ) which is the model of [38, 52] for the Fukaya-Seidel of (X,W ).

The categories R and R̃ depend on the choice of the phase ζ, but the trian-
gulated category FS(X,W ) is independent of these choices. By construction, for
a fixed choice of ζ, we have objects (Tp(ζ))p∈V which form an exceptional collec-
tion of FS(X,W ) when ordered according to the values of Im(ζ−1W (p)). When ζ
crosses a value ζp,p′ , this exceptional collection changes by a mutation. Comparing
with the original construction of the Fukaya-Seidel category, Tp(ζ) corresponds to
the Lefschetz thimble emanating from p, which consists of the gradient flow lines
starting at p and going to Re(ζ−1W ) = −∞, and whose image by W is the half-line
W (p)− R≥0ζ in Cw.

Following the terminology of [54], the above construction of the Fukaya-Seidel
category of [38, 52] follows a rectilinear approach, based on ζp,p′ -solitons whose
images by W are the straight line segments [W (p),W (p′)]. In [46], a curvilinear
approach is presented instead, based on a system of possibly curvy lines connecting
the critical values W (p) to a given base point −Rζ with R >> 0. This approach is
in a way more direct, as it avoids the non-trivial web/convex geometry of [38, 52],
but is also less explicit because it relies on versions of ζ-solitons and ζ-instanton
equations where ζ is x or (t, x)-dependent. Intuitively, one goes from the curvilinear
approach of [46] to the rectilinear approach of [38, 52] by starting with a possi-
bly curvy line connecting W (p), W (p′) passing through −Rζ, and then trying to
straighten it while relaxing the condition to pass through −Rζ: the convex polyg-
onal lines connecting W (p), W (p′) appear upon hitting critical values, see Figure
1.3.

Figure 1.3. Comparison of the curvilinear and rectilinear ap-
proaches to complex Morse theory.

1.4. Infinite-dimensional examples. Complex Morse theory can be for-
mally applied to pairs (X,W ) where X is infinite-dimensional. For example, one
can take for X the space of GC-connections on a 3-manifold M , where GC is a
complex reductive group, and for W the complex-valued Chern-Simons functional
[46, 87][60, §4.2]. In this case,

(1) critical points of W are flat GC-connections on M ,
(2) the ζ-soliton equation (1.2) is the Kapustin-Witten equation in 4-dimensional

gauge theory on M × R,
(3) the ζ-instanton equation (1.4) is the Haydys-Witten equation in 5-dimensional

gauge theory on M × R
2.
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Another example is obtained by taking for X the space of (0, 1)-connections on a
vector bundle V on a Calabi-Yau 3-fold and for W the holomorphic Chern-Simons
functional [25, 24, 46]. In this case,

(1) critical points of W are holomorphic structures on V ,
(2) the ζ-soliton equation (1.2) is the equation forG2-instantons in 7-dimensional

gauge theory on M × R,
(3) the ζ-instanton equation (1.4) is the equation for Spin7-instantons in 8-

dimensional gauge theory on X × R
2.

As explained in the following section §2, holomorphic Floer theory is another ex-
ample obtained when X is the space of paths stretched between two holomorphic
Lagrangian submanifolds L1 and L2 of a holomorphic symplectic manifold (M,Ω),
and W is the holomorphic action functional. In this case,

(1) critical points of W are intersection points of L1 and L2,
(2) the ζ-soliton equation (1.2) is the equation for holomorphic curves R ×

[0, 1] → M with respect to hyperkähler rotated complex structures (see
Lemma 2.1),

(3) the ζ-instanton equation (1.4) is the 3d Fueter equation for maps R
2 ×

[0, 1] → M (see Lemma 2.2).

2. Holomorphic Floer theory

In this section, we introduce holomorphic Floer theory as an example of infinite
dimensional complex Morse theory applied to the holomorphic action functional
on the space of paths connecting two holomorphic Lagrangian submanifolds in a
holomorphic symplectic variety. We only describe a conjectural picture ignoring
all analytic difficulties. We refer to the work of Doan-Rezchikov [23] for first steps
towards solving these analytic problems.

2.1. Holomorphic symplectic geometry. Let M be a holomorphic sym-
plectic manifold, with complex structure I and holomorphic symplectic form ΩI .
We fix a compatible hyperkähler structure on M , that is a Riemannian metric g
and complex structures J and K such that:

(1) I, J , K form a quaternionic triple, that is IJK = −1.
(2) g is Kähler with respect to I, J , K. We denote by

ωI := g(I−,−) , ωJ := g(J−,−) , ωK := g(K−,−)

the corresponding Kähler forms.
(3) ΩI = ωJ + iωK .

Given a hyperkähler structure as above, the metric g is Kähler with respect to
any complex structure in the twistor sphere spanned by I, J , K, that is any complex
structure of the form aI + bJ + cK with a, b, c ∈ R such that a2 + b2 + c2 = 1. For
any phase ζ ∈ C, |ζ| = 1, we denote

Jζ := (Re ζ)J + (Im ζ)K .

If I and −I are viewed as respectively the North and South poles of the twistor
sphere, then the complex structures of the form Jζ with |ζ| = 1 are exactly the
complex structures on the Equator of the twistor sphere. The Kähler form of the
metric g for the complex structure Jζ is

(2.1) ωζ := Re(ζ−1ΩI) = (Re ζ)ωJ + (Im ζ)ωK .
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2.2. The holomorphic action functional. Let L1 and L2 be two con-
nected holomorphic Lagrangian submanifolds of (M, I,ΩI), that is L1 and L2 are
I-holomorphic half-dimensional submanifolds of M and ΩI |L1 = ΩI |L2 = 0. As-
sume that the intersection L1 ∩L2 consists of finitely many transverse intersection
points.

Let P be the infinite-dimensional manifold of smooth paths stretched between
L1 and L2:

P := {p : [0, 1] −→ M | p(0) ∈ L1 , p(1) ∈ L2} .

It is naturally an infinite-dimensional Kähler manifold, with Riemannian metric

(2.2) gP(δp1, δp2) :=

∫ 1

0

g(δp1(y), δp2(y))dy ,

complex structure

(2.3) (IP(p)(δp))(y) := I(p(y))(δp(y)) ,

and Kähler form

(2.4) ωI,P(δp1, δp2) :=

∫ 1

0

ω(δp1(y), δp2(y))dy .

For every intersection point p ∈ L1∩L2, we still denote by p the corresponding
point of P given by the constant path sitting at p0. As L1 and L2 are connected,
there exists a unique connected component P0 of P containing all these constant
paths sitting at the intersection points of L1 and L2. For every p, p′ ∈ L1 ∩ L2, we
denote by π1(p, q) the set of homotopy classes of paths in P0 from p to p′.

We fix an intersection point p0 ∈ L1 ∩ L2. For every p ∈ P0 and w a path in
P0 connecting p0 to p, that is a map

w : [0, 1] −→ P0

x 7−→ wx

such that w0 = p0 and w1 = p, one views w as a map

w : [0, 1]× [0, 1] −→ M

(x, y) 7−→ wx(y) .

and one defines

(2.5) W (p, w) := −

∫

[0,1]×[0,1]

w∗ΩI .

As ΩI is closed and L1, L2 are I-holomorphic Lagrangian submanifolds (ΩI |L1
=

ΩI |L2
= 0), the value W (p, w) only depends on the homotopy class [w] ∈ π1(p0, p)

of w, and so we obtain a well-defined function on the universal cover P̃0 of P0:

W : P̃0 −→ C

(p, [w]) 7−→ W (p, [w]) := −

∫

[0,1]×[0,1]

w∗ΩI ,

called the holomorphic action functional. As ΩI is a I-holomorphic 2-form onM , W

is a holomorphic function on the infinite-dimensional Kähler manifold P̃0 endowed
with the complex structure IP .
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2.3. Infinite-dimensional complex Morse theory. The holomorphic ac-
tion functional W is a holomorphic function on the infinite-dimensional Kähler

manifold P̃0. The critical points of W are of the form (p, γ), where p ∈ L1 ∩ L2 is
an intersection point, and where γ ∈ π1(p0, p) is a homotopy class of paths from p0
to p in P0. These critical points are non-degenerate under the assumption that L1

and L2 intersect transversally. Hence, we can apply formally complex Morse theory

to (P̃0,W ).

Lemma 2.1. For every ζ ∈ C with |ζ| = 1, a map

u : R −→ P̃0

x 7−→ (y 7→ u(x, y))

is a solution of the ζ-soliton equation for (P̃0,W ) if and only if

u : R× [0, 1] −→ M

(x, y) 7−→ u(x, y)

is a solution of the Jζ-holomorphic curve equation

(2.6) ∂xu+ Jζ(u)∂yu = 0 .

Proof. The ζ-soliton equation (1.2) for (P̃0,W ) is the gradient flow line equa-
tion of the functional Re(ζ−1W ). Using (2.1) and (2.5), one finds that Re(ζ−1W ) is
the action functional for the symplectic form ωζ , and so its gradient flow line equa-
tion is the Jζ-holomorphic curve equation in M . This latter result is the well-known
starting point of Floer theory [28, (1.9-1.10)], but we briefly review its derivation for
convenience. Using (2.5), the differential of W at the point u(x,−) := (y 7→ u(x, y))
evaluated on the tangent vector field ξ = (y 7→ ξ(y)) is given by

dWu(x,−)(ξ) = −

∫ 1

0

ωζ(ξ(y), ∂yu(x, y)) .

As ωζ(−,−) = −g(−, Jζ−), it follows from the definition (2.2) of the metric on P̃0

that
(gradu(x,−)W )(y) = Jζ(u(x, y))∂yu(x, y) ,

and so the gradient flow line equation (1.2) indeed reduces to the Jζ-holomorphic
curve equation (2.6). �

Lemma 2.2. For every ζ ∈ C with |ζ| = 1, a map

u : R2 −→ P̃0

(t, x) 7−→ (y 7→ u(t, x, y))

is a solution of the ζ-instanton equation for (P̃0,W ) if and only if

u : R2 × [0, 1] −→ M

(t, x, y) 7−→ u(t, x, y)

is a solution of the 3d ζ-Fueter equation

(2.7) ∂tu+ I(u)(∂xu+ Jζ(u)∂yu) = 0 .

Proof. The result follows using the definition (1.4) of the ζ-instanton equa-

tion, definition (2.3) of the complex structure on P̃0, and Lemma 2.1 computing
the ζ-soliton equation. �
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2.4. Vector spaces from pairs of intersection points. For every pair of
intersection points p, p′ ∈ L1 ∩L2 and homotopy classes of paths γ ∈ π1(p0, p) and
γ′ ∈ π1(p0, p

′) in P0, one should be able by formally applying §1.2 to define a vector
space

H((p, γ), (p′, γ′))

of 2d BPS states for (P̃0,W ). Explicitly, H((p, γ), (p′, γ′)) is defined as the coho-
mology of the complex (C(p, γ), (p′, γ′)), d), where

(1) C((p, γ), (p′, γ′)) is the vector space generated by Jζ-holomorphic curves

ui : R× [0, 1] −→ M

(x, y) 7−→ ui(x, y) ,

considered up to R-translation of x, such that

ui(., 0) ∈ L1 , ui(0, .) ∈ L2 , lim
x→−∞

ui(x, .) = p , lim
x→+∞

ui(x, .) = p′ ,

[ui] = [γ′ ◦ γ−1] ,

where ui is viewed as a path from p to p′ in P̃0 and γ−1 is the path
obtained from γ by reversing the orientation, and

(2.8) ζ = ζ(p,γ),(p′,γ′) :=

∫
γ′◦γ−1 ΩI

|
∫
γ′◦γ−1 ΩI |

,

where the class γ′ ◦ γ−1 ∈ π1(p, p
′) is viewed as defining an element in the

relative homology group H2(M,L1 ∪ L2,Z).
(2) d : C((p, γ), (p′, γ′)) → C((p, γ), (q, γ′)) is the differential defined by

(2.9) dui =
∑

j

nijuj ,

where nij is a signed count of maps

u : R2 × [0, 1] −→ M

(t, x, y) 7−→ ui(t, x, y) ,

such that

u(t, x, 0) ∈ L1 , u(t, x, .) ∈ L2 , lim
x→−∞

u(., x, .) = p , lim
x→+∞

u(., x, .) = p′ ,

asymptotic to ui and uj ,

lim
t→−∞

u(t, x, y) = ui(x, y) , lim
t→+∞

u(t, x) = uj(x, y) ,

which are solutions of the 3d ζp,p′ -Fueter equation

∂tu+ I(u)(∂xu+ Jζ(u)∂yu) = 0 ,

and considered up to R-translation of t.

Remark 2.3. As L1 and L2 are holomorphic Lagrangian submanifolds of
(M,ΩI), they are in particular Lagrangian submanifolds of (M,ωζ) for every ζ ∈ C,
|ζ| = 1, and so define natural boundary conditions for Jζ-holomorphic curves.

Remark 2.4. We are making the simplifying assumption that the sum (2.9) is
finite and we are suppressing the discussion of Novikov coefficients which would be
required in general.
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2.5. Categories from pairs of holomorphic Lagrangian submanifolds.

Applying formally §1.3, one should be able to define a A∞-category

FS(P̃0,W )

as the Fukaya-Seidel category of (P̃0,W ). Objects are pairs

(p, γ)

where p ∈ L1 ∩ L2 and γ is a homotopy class of paths from p0 to p in P̃0,
spaces of morphisms have bases consisting of formal tensor products of Jζ(p,γ),(p′,γ′)

-

holomorphic curves with boundary on L1 ∪ L2, and A∞-morphisms are given
by counts of solutions of the 3d ζ-Fueter equation asymptotic to sequences of
Jζ(p,γ),(p′,γ′)

-holomorphic curves.

To make sense of this construction, one needs to deal with the issue that the
set of critical points (p, γ) of W might be infinite if the fundamental group π1(P0)
is infinite, whereas we assumed in our review of complex Morse theory in §1 the
finiteness of the set of critical points. We address this issue below by considering a
categorical version of the Novikov coefficients of Floer theory.

First remark that by construction the chain complexes C((p, γ), (p′, γ′)) only
depend on the class γ′◦γ−1 ∈ π1(p, p

′). For every α ∈ π1(p, p
′), we denote C(p, p′, α)

for C((p, γ), (p′, γ′)) with γ′ ◦γ−1 = α. For every intersection points p, p′ ∈ L1∩L2,
we denote by

r : π1(p, p
′) → H2(M,L0 ∪ L1,Z)

the natural projection. By construction, C(p, p′, α) 6= 0 if and only if there exists
Jζα -holomorphic curves of class α, where

(2.10) ζα =

∫
r(α)

ΩI

|
∫
r(α)

ΩI |
.

Lemma 2.5. Fix p, p′ ∈ L1 ∩ L2 and α ∈ π1(p, p
′). If C is a Jζα-holomorphic

curve of class α, then the area of C is |
∫
r(α)

ΩI |.

Proof. As C is a Jζα -holomorphic curve of class α, its area is
∫
r(α)

ωζ . Using

(2.1), this can be rewritten as
∫
r(α)

Re(ζ−1
α ΩI) = Re(ζ−1

α

∫
r(α)

ΩI). By (2.10), this

is equal to Re(|
∫
r(α)

ΩI |) = |
∫
r(α)

ΩI |. �

Lemma 2.6. Fix a norm ||−|| on H2(M,L1∪L2,Z)⊗R. There exists a constant
A > 0 such that for every p, p′ ∈ L1 ∩ L2 and α ∈ π1(p, p

′) with C(p, p′, α) 6= 0, we
have

||r(α)|| ≤ A |

∫

r(α)

ΩI | .

Proof. Let (hi) be a basis of harmonic 2-forms on M relative to L1 ∩L2 [75].
It is enough to bound |

∫
r(α)

hi| for every i. Let Ai be the supremum of |hi| over

all of M , which is finite if M is bounded or appropriately convex at infinity. If
C(p, p′, α) 6= 0, there exists a Jζα -holomorphic curve C of class α, and so |

∫
r(α)

hi|

is bounded by Ai times the area of C, which is equal to |
∫
r(α)

ΩI | by Lemma 2.5. �

Remark 2.7. The inequality of Lemma 2.6 is formally similar to the support
property in DT theory [64] and its proof is parallel to the argument given in [64,
§1.2, Remark 1] for the validity of the support property in the context of special
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Lagrangian submanifolds. Under the correspondence between holomorphic Floer
theory and DT theory described in §4, the inequality of Lemma 2.6 will exactly
match with the support property in DT theory.

Lemma 2.8. Fix p, p′ ∈ L1 ∩L2 and β ∈ H2(M,L1 ∪L2,Z). Then, there exists
finitely many α ∈ π1(p, p

′) such that C(p, p′, α) 6= 0 and r(α) = β.

Proof. The complex structure ζα and the area of Jζα -holomorphic curves
given by Lemma 2.5 only depend on r(α). Hence, we are considering a set of
holomorphic curves with respect to a fixed complex structure and with fixed area,
and so the result follows by Gromov’s compactness for holomorphic curves. �

Let (p, γ) and (p′, γ′) be two critical points of W . We describe how to define a

completed version R̂(p,γ),(p′,γ′) of the Hom complex (1.5) used in the case of finitely
many critical points. Fix N > 0. For every Q as in (1.6), corresponding to a
sequence (p, γ), (p1, γ1), . . . , (pk, γk) of critical points, we say that Q < N if

∑

j

|

∫

r(γj+1)−r(γj)

ΩI | < N .

It follows from Lemmas 2.6-2.8 that there are finitely many Q such that Q < N
and

RQ := C((p, γ), (p1, γ1))⊗ C((p1, γ1), (p2, γ2))⊗ · · · ⊗ C((pk, γk), (p
′, γ′)) 6= 0 .

Hence, the direct sum

R<N
(p,γ),(p′,γ′) :=

⊕

Q<N

RQ

contains only finitely many non-zero summands and all the categorical construc-
tions described in §1.3 in the case of finitely many critical points make sense

with R<N
(p,γ),(p′,γ′) and we obtain a truncated Fukaya-Seidel category FS<N (P̃0,W )

with Hom-complexes R<N
(p,γ),(p′,γ′). Finally, we define the Fukaya-Seidel category

FS(P̃0,W ) by taking the categorical limit C → +∞, with Hom complexes

R̂(p,γ),(p′,γ′) = lim
N→+∞

R<N
(p,γ),(p′,γ′) .

2.6. 2-categories from holomorphic symplectic manifold. In the same
way that Floer homology groups of pairs of Lagrangian submanifolds of a symplec-
tic manifold can be realized as Hom spaces of the Fukaya category, it is natural to

expect that the categories FS(P̃0,W ) attached to pairs of holomorphic Lagrangian
submanifolds of a holomorphic symplectic manifold can be realized as Hom cate-
gories of a 2-category.

Conjecture 2.9. Let M be a holomorphic symplectic manifold, with complex
structure I and holomorphic symplectic form ΩI . The I-holomorphic Lagrangian
submanifolds of M should form a linear 2-category, such that the category of mor-
phisms Hom(L1, L2) between two objects L1 and L2 is the Fukaya-Seidel category of
the holomorphic action functional on the infinite-dimensional space of paths between
L1 and L2.

We refer to the 2-category whose existence is asserted by Conjecture 2.9 as
the Fueter 2-category of M , and we denote it by Ft(M), or Ft(M,ΩI) when we
wish to make clear the complex structure and holomorphic symplectic form that
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are considered. We expect the Fueter 2-category to be independent on the choice
of the auxiliary complex structures J and K (or to have only dependence on their
asymptotic behaviour if M is non-compact), in the same way that the Fukaya
category is a symplectic invariant and independent on auxiliary choices of almost-
complex structures. If M is non-compact, one should also have a wrapped version
of the Fueter 2-category, parallel to the wrapped Fukaya category [1].

For the simplest examples of holomorphic symplectic manifolds given as cotan-
gent bundles T ∗L of complex manifolds L, one expects the Hom category between
the zero-section L and the graph L′ of a holomorphic Morse function W on L to re-
produce the Fukaya-Seidel category of (L,W ), similarly to the way that the Floer
homology between the zero-section and a perturbation of the zero-section in the
cotangent bundle of a manifold reproduces Morse homology [29, 32].

Conjecture 2.10. Let L be an exact Kähler manifold, W a holomorphic
Morse function on L, and L′ the graph of dW in T ∗L. Then the Hom-category
HomFt(T∗L)(L,L

′) in the Fueter 2-category of T ∗L coincides with the Fukaya-Seidel
category of (L,W ).

Conjectures 2.9 and 2.10 were independently formulated by Doan-Rezchikov
[23]. In [23], Doan-Rezchikov introduce a flexible notion of hyperkähler geometry
and start the analytic study of the compactness properties of solutions of the 3d
Fueter equation. As an application, they obtain a first step towards Conjecture
2.10 by proving an isomorphism between moduli spaces of solutions of the 3d Fueter
equation in T ∗L and moduli spaces of pseudo-holomorphic curves in L.

Remark 2.11. A “hyperkähler Floer theory” has been developed by Hohloch-
Noetzel-Salamon [47], which is also based on a version of the Fueter equation.
However, the proposal of [47] and Conjecture 2.9 are different: whereas the three
complex structures I, J , K play symmetric roles in [47], it is not the case in
Conjecture 2.9.

2.7. The Fueter 2-category and the Rozansky-Witten 2-category. As
reviewed in §1, given a pair (X,W ) where X is a Kähler manifold with c1(X) = 0
and W : X → C is a holomorphic Morse function, one can define the Fukaya-Seidel
category FS(X,W ). It is a Z-graded category which is not Calabi-Yau in general
(the Serre functor is induced by the global monodromy around the critical points
in the W -plane). Physically, FS(X,W ) is the category of boundary conditions in
the A-model twist of the 2-dimensional N = (2, 2) Landau-Ginzburg theory de-
fined by (X,W ). Another category naturally attached to (X,W ) is the category
of matrix factorizations MF (X,W ), which is Z/2Z-graded, Calabi-Yau, and phys-
ically obtained as the category of boundary conditions in the B-model twist of
the Landau-Ginzburg theory defined by (X,W ). When (X,W ) is the mirror of a
Fano manifold Y , the Fukaya-Seidel category of (X,W ) is the derived category of
coherent sheaves on Y :

FS(X,W ) = DbCoh(Y ) ,

and the category of matrix factorizations of (X,W ) is the Fukaya category of Y :

MF (X,W ) = F (Y ) .
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By construction, the Hom categories HomFt(M,ΩI)(L1, L2) in the Fueter 2-
category Ft(M,ΩI) of a holomorphic symplectic manifold (M,ΩI) are the Fukaya-
Seidel categories of the holomorphic action functional on the spaces of paths be-
tween I-holomorphic Lagrangian submanifolds L1 and L2. If one replaces in this
construction the Fukaya-Seidel category of the holomorphic action functional by the
category of matrix factorizations of the holomorphic action functional, one obtains
a 2-category RW (M,ΩI). The proposal for such a 2-category attached to a holo-
morphic symplectic manifold was first formulated by Kapustin-Rozansky-Saulina
[57, 56], who also argued that RW (M,ΩI) should be the 2-category of boundary
condition of the 3-dimensional Rozansky-Witten topological quantum field theory
(TQFT) [74]. In general, a 2-category which is Calabi-Yau, as RW (M,ΩI), is
always the category of boundary conditions of a 3d TQFT [69]5. By contrast,
a 2-category which is not Calabi-Yau, as the Fueter 2-category, defines at best a
framed 3d TQFT, which is only defined on framed manifolds of dimension ≤ 3
[69]. This is a 3d version of the maybe more familiar fact that the B-model (resp.
A-model) of a holomorphic Morse function (X,W ) (resp. of a Fano manifold Y )
is a 2d TQFT whereas the A-model of (X,W ) (resp. the B-model of Y ) is only a
framed 2d TQFT.

One expects that most of the structures existing for the categories FS(X,W )
and MF (X,W ) of a finite-dimensional Landau-Ginzburg model (X,W ) have an
analogue for the 2-categories Ft(M,ΩI) and RW (M,ΩI) attached to a holomorphic
symplectic manifold. For example, one can construct from MF (X,W ) a non-
commutative Hodge structure [59], with Dolbeault data

H
∗(X, (Ω∗

X , dW ∧ −)) ,

de Rham data given by the C((u))-module

H
∗(X, (Ω∗

X , ud+ dW ∧ −))

and Betti data H∗(X,X−∞,Z) where X−∞ = {ReW << 0}. The Riemann-Hilbert
type isomorphism between de Rham and complexified Betti data is given by the
exponential periods

∫
γ
eWα, where γ ∈ H∗(X,X−∞,Z) are naturally classes of

objects in FS(X,W ). Moreover, the Hodge filtration is encoded by a connection
on the Rham data, with second order pole at u = 0, and space of flat sections
given by the Betti data. Finally, the Stokes data of the irregular singularity of
the connection at u = 0, controlling the jump of the asymptotic expansion of the
periods

∫
γ
eW/uα obtained by expressing γ as a linear combination of Lefschetz

thimbles for Re(W/u), is determined by the counts of 2d BPS states of (X,W )
(which are equal to Euler characteristics of the spaces of 2d BPS states reviewed
in §1.2 for the construction of FS(X,W )).

It is conjectured in [59] that there is more generally an entirely categorical way
to produce a non-commutative Hodge structure from a smooth proper dg-category
C. For example, the Dolbeault data should be the Hochschild homology HH(C)
and the de Rham data should be the periodic cyclic homology HC(C). We propose
that this construction should have a 2-categorical analogue. For example, if C is
a Calabi-Yau 2-category, as RW (M,ΩI), one can define its Hochschild homology
HH(C) as the category obtained by evaluating the corresponding 3d TQFT on the

5We are neglecting here smoothness and compactness issues which could make the TQFT
only partially defined.
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circle S1, and similarly its periodic cyclic homology HC(C) as the category over
C((u)) obtained by S1-equivariant compactification of the 3d TQFT over S1.

Conjecture 2.12. Let (M,ΩI) be a holomorphic symplectic manifold. Then,

(i) the Hochschild homology of the 2-category RW (M,ΩI) is the derived cat-
egory of coherent sheaves on (M, I):

HH(RW (M,ΩI)) = DbCoh(M, I) .

(ii) the periodic cyclic homology of the 2-category RW (M,ΩI) is the category
of DQ-modules [62, 58] obtained by deformation quantization of (M,ΩI):

HP (RW (M,ΩI)) = DQ(M,ΩI) .

Conjecture 2.12(i) is the known expectation that the Rozansky-Witten theory
compactified on S1 is the B-model [57, 56], whereas the formulation of Conjecture
2.12(ii) might be new.

Finally, we describe how holomorphic Floer theory should be related to the
Betti data of the hypothetical categorical non-commutative Hodge structure at-
tached to RW (ΩI ,W ). For every u ∈ C

∗, ωu = Re(u−1ΩI) is a symplectic form
on M , and so one can consider the Fukaya category of the symplectic manifold
(M,ωu). The Fukaya category is generally defined over a Novikov ring whose vari-
able keeps track of the area of Ju-holomorphic curves. From now on, assume that
for u > 0 small enough, the Fukaya category converges when we replace the Novikov
parameter qβ by

e−
∫
β
(ωu+iBu) = e−

1
u

∫
β
ΩI ,

where Bu := Im(u−1ΩI), and we denote by F (M,ωu, Bu) the corresponding cate-
gory. Viewed as a family over the formal punctured disk C((u)), we obtain a cate-
gory F (M,ωu, Bu)⊗ C((u)) over C((u)) where the contributions of Ju-holomorphic

curves disappear because proportional to e−
1
u

∫
β
ΩI , which has zero Taylor expan-

sion in u. Note that Ju-holomorphic disks only exist when the argument of u is
in the complement of the countable set of arguments of complex numbers

∫
β
ΩI

indexed by relative homology classes β ∈ H2(M,L1 ∪ L2,Z) between holomorphic
Lagrangian submanifolds L1 and L2. The following conjecture is motivated by the
known finite-dimensional story for FS(X,W ) and MF (X,W ).

Conjecture 2.13. The Betti data for the non-commutative Hodge theory of
RW (M,ΩI) is induced by a Riemann-Hilbert type isomorphism

(2.11) DQ(M,ΩI) ' F (M,ωu, Bu)⊗ C((u)) .

Moreover, the Stokes data is induced by the holomorphic dependence of F (M,ωu, Bu)
in u and is determined by the counts of Ju-holomorphic curves entering the defini-
tion of the spaces of 2d BPS states of the holomorphic action functional described
in §2.4 for the construction of Ft(M,ΩI).

A relation between deformation quantization and the Fukaya category is pre-
dicted from physics arguments by Kapustin in [55], and related works include
[8, 13, 70, 72, 82]. Moreover, such a relation combined with the Stokes data
interpretation of Ju-holomorphic curves is one of the main points of the work of
Kontsevich-Soibelman [66] on non-perturbative quantization of (M,ΩI) and the
topic of resurgence. Conjecture 2.13 suggests a formulation of this relation in terms
of non-commutative Hodge theory for RW (M,ΩI).
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2.8. Complex and holomorphic Atiyah-Floer conjectures. Holomor-
phic Floer theory is an example of infinite-dimensional complex Morse theory. In
this section, we describe conjectural relations between holomorphic Floer theory and
the two other examples of infinite-dimensional Morse theory briefly reviewed in §1.4
and given by complex-valued Chern-Simons theory and holomorphic Chern-Simons
theory. These conjectures are respectively complex and holomorphic analogues of
the Atiyah-Floer conjecture relating the two examples of infinite-dimensional Morse
theory given by Lagrangian Floer theory and Chern-Simons theory (Floer homology
for 3-manifolds) [5].

Let X be a compact 3-manifold with a choice of Heegaard splitting X =
X1 ∪ΣX2 along a compact surface Σ. Let GC be the complexification of a compact
Lie group. The character variety MΣ,GC

parametrizing flat GC-connections on Σ
is naturally a holomorphic symplectic manifold, and the locus LX1 (resp. LX2) of
GC flat connections on Σ extending to X1 (resp. X2) is a holomorphic Lagrangian
submanifold of MΣ,GC

. Holomorphic Floer theory applied to the pair of holomor-
phic Lagrangian submanifolds L1 and L2 conjecturally produces a Hom category
HomFt(MΣ,GC

)(LX1
, LX2

) in the Fueter 2-category of MΣ,GC
. On the other hand,

complex-valued Chern-Simons theory conjecturally attaches to the 3-manifold X
a category CS(X) constructed from counts of flat GC-connections on X, and of
solutions to the Kapustin-Witten and Haydys-Witten equations on X × R and
X × R

2.

Conjecture 2.14. Let X be a compact 3-manifold with a choice of Heegaard
splitting X = X1 ∪Σ X2 along a compact surface Σ, and let GC be the complexifi-
cation of a compact Lie group. Then, there exists an equivalence of categories

HomFt(MΣ,GC
)(LX1 , LX2) ' CS(X) .

Let X be a compact Calabi-Yau 3-fold degenerating to the union X1 ∪Σ X2

of two Fano 3-folds transversally glued along a common anticanonical K3 surface
Σ. The moduli space MΣ,γ of stable holomorphic vector bundles on Σ with Chern
classes γ is naturally a holomorphic symplectic manifold, and the locus LX1

(resp.
LX2

) of holomorphic vector bundles on Σ extending to X1 (resp. X2) is a holomor-
phic Lagrangian submanifold of MΣ,γ . Holomorphic Floer theory applied to the
pair of holomorphic Lagrangian submanifolds L1 and L2 conjecturally produces
a Hom category HomFt(MΣ,γ)(LX1 , LX2) in the Fueter 2-category of MΣ,γ . On
the other hand, holomorphic Chern-Simons theory conjecturally attaches to the
Calabi-Yau 3-fold X and to the Chern classes γ a category HCS(X, γ) constructed
from counts of stable holomorphic vector bundles on X, and of G2-instantons and
Spin(7)-instantons on X × R and X × R

2.

Conjecture 2.15. 6 Let X be a compact Calabi-Yau 3-fold degenerating to
the union X1 ∪Σ X2 of two Fano 3-folds transversally glued along a common anti-
canonical K3 surface Σ. Then, there exists an equivalence of categories

HomFt(MΣ,γ)(LX1
, LX2

) ' HCS(X, γ) .

6Conjecture 2.15 was suggested to the author by Richard Thomas. The uncategorified state-
ment relating counts of holomorphic vector bundles and Lagrangian intersection numbers is dis-
cussed in [25, §4].
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Remark 2.16. As for the usual Atiyah-Floer conjecture, one expects Conjec-
tures 2.14 and 2.15 to follow from an adiabatic dimensional reduction of the higher
dimensional gauge theoretic equations.

3. 2d N = (2, 2) theories and holomorphic Floer theory

In §2, we introduced holomorphic Floer theory as a Landau-Ginzburg model
with an infinite dimensional target space. In this section, we explain that holo-
morphic Floer theory is actually relevant to the study of usual 2d N = (2, 2) field
theories such as Landau-Ginzburg models with finite dimensional target spaces.
The conjectures that we formulate here will motivate our conjectures on the rela-
tion between holomorphic Floer theory and DT invariants in §4 (see Remark 4.7).

3.1. General 2d N = (2, 2) theories. Let T be a massive 2-dimensionalN =
(2, 2) field theory with n vacua. We denote by Br(T ) its A∞-category of boundary
conditions (or branes) as considered in [38]. When T is the Landau-Ginzburg model
defined by a holomorphic function W : X → C on a Kähler manifold X, then Br(T )
is the Fukaya-Seidel category of (X,W ). The goal of this section is to argue that
for general T , the category of boundary conditions Br(T ) can be extracted from a
Fueter 2-category constructed from the moduli space of deformations of T .

Let NT be the generically semi-simple Frobenius manifold parametrizing de-
formations of T [20, 26]. In particular, the tangent bundle TNT has a structure
of sheaf of commutative algebras over NT , coming from the identification of the
deformations of T with the the chiral ring. The natural quotient map

Sym(TNT ) → TNT

induces an inclusion

L = Spec(TNT ) ↪−→ T ∗NT = Spec(Sym(TNT )) .

The assumption that T is massive with n vacua implies that the spectral cover
L → NT is generically of degree n. Furthermore, the inclusion L ⊂ T ∗NT naturally
realizes L as a holomorphic Lagrangian submanifold of the holomorphic symplectic
variety T ∗NT by [6, Corollary 1.9]. On the other hand, let FT ⊂ T ∗NT be the
holomorphic Lagrangian submanifold given by the cotangent fiber over the point
of NT corresponding to T . The intersection FT ∩ L consists of n points in natural
correspondence with the n vacua of T , see Figure 3.1.

Figure 3.1. The spectral cover L and the cotangent fiber FT .
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Conjecture 3.1. The A∞-category of boundary conditions Br(T ) of a massive
2-dimensional N = (2, 2) field theory T is equivalent to the Hom-category in the
Fueter 2-category Ft(T ∗NT ) of between the spectral cover L and the cotangent fiber
FT :

(3.1) Br(T ) ' HomFt(T∗NT )(L, FT ) .

Remark 3.2. Moving the point T in NT , that is moving the cotangent fiber
FT , the A∞-categories in (3.1) should form a “perverse sheaf of categories” over
NT , and so fit in the theory of perverse schobers [53, 54].

3.2. Surface defects and spectral networks. We also formulate below a
version of Conjecture 3.1 in the context of theories of class S. Let C be a Riemann
surface (possibly with punctures), and B the base of the Hitchin fibration on the
moduli space of SLn(C) Higgs bundles on C. For every point b ∈ B, we have
the corresponding spectral curve Σb ⊂ T ∗C. When Σb is smooth, the projection
Σb → C is a ramified cover of degree n.

In physics language, Σb parametrizes 2-dimensional N = (2, 2) field theories
describing the “canonical surface defect” probing the vacuum b ∈ B of the 4-
dimensional N = 2 of class S obtained by compactifying the 6-dimensional N =
(2, 0) superconformal field theory of type An−1 on C [35, §7]. For every x ∈ Σb,
we denote by Tx,b the corresponding 2-dimensional N = (2, 2) field theory and by
Fx the cotangent fiber of T ∗C over x.

Conjecture 3.3. For every b ∈ B and x ∈ C, the A∞-category of boundary
conditions Br(Tx,b) of the canonical surface defect 2-dimensional N = (2, 2) field
theory Tx,b is equivalent to the Hom-category in the Fueter 2-category Ft(T ∗C) of
T ∗C between the spectral curve Σb and the cotangent fiber Fx:

(3.2) Br(Tx,b) ' HomFt(T∗C)(Σb, Fx) .

Remark 3.4. Conjectures 3.1 and 3.3 are of a similar nature. The only dif-
ference is that in Conjecture 3.3, C is a space of particular deformations of Tx,b,
whereas in Conjecture 3.1, NT is the universal space of deformations of T .

A non-trivial evidence for Conjecture 3.3 is provided by the M-theory realiza-
tion of the BPS states of Tx,b and their description by spectral networks. Indeed,
the M-theory realization of the BPS states of Tx,b is by BPS M2-branes with bound-
ary on Fx ∪ Σb, projecting onto spectral networks on C ending at x [35, §7]. BPS
M2-branes are holomorphic disks with respect to a hyperkähler rotated complex
structure prescribed by the phase of the central charge, and so are exactly the
objects involved in the first step of the construction of HomFt(T∗C)(Fx,Σb). The
second step involving solutions of the Fueter equations seems to be unexplored. It
is an interesting question to find out what is the corresponding generalization in
the description by spectral networks.

4. DT invariants from holomorphic Floer theory

After an overview of the geometry of Seiberg-Witten integrable systems in §4.1,
we formulate in §4.2 our main conjecture relating holomorphic Floer theory and
DT invariants occuring as BPS invariants of 4-dimensional N = 2 field theories.
We present a heuristic derivation of this conjecture in §4.3. Finally, we formulate
further conjectures involving categories of line operators in §4.4.
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4.1. Seiberg-Witten integrable systems. The low energy physics of a rank
r 4-dimensional N = 2 field theory (without dynamical gravity) T is controlled by
its Seiberg-Witten complex integrable system

π : M −→ B ,

where B is the Coulomb branch of T on R
4 and M is the Coulomb branch of

T on R
3 × S1. While B is a complex manifold of dimension r, the space M is

a hyperkähler manifold of complex dimension 2r [78]. The low-energy effective
theory of T on R

3 × S1 is the 3d N = 4 sigma-model with target M .
We denote by I the complex structure on M in which π is holomorphic and by

ΩI the corresponding I-holomorphic symplectic form. As in §2.1, we denote by J
andK the complex structures such that ΩI = ωJ+iωK , and for every ζ ∈ C, |ζ| = 1,
we set Jζ := (Re ζ)J + (Im ζ)K. The fibers Fb := π−1(b) over points b ∈ B in the
complement of the discriminant locus ∆ of π are r-dimensional abelian varieties and
I-holomorphic Lagrangian submanifolds of (M,ΩI), see Figure 4.1. The lattice of
charges for states in the vacuum b ∈ B \∆ is

Γb := π2(M,Fb)

and for every γ ∈ Γb, we have a space BPSb
γ of BPS states of charge γ in the

vacuum b [76, 77, 78, 34, 37].

Figure 4.1. A rank 1 Seiberg-Witten integrable system π : M →
B, with discriminant locus ∆.

In the vacuum b ∈ B\∆, the low-energy effective theory is a U(1)r gauge theory
with electromagnetic charge lattice H1(Fb,Z). The natural map Γb → H1(Fb,Z)
is the projection of the lattice of charges on the lattice of electromagnetic charges
and its kernel is the lattice of flavour charges. As already mentioned in §0.2.2, in
many cases, there is an associated 3-dimensional Calabi-Yau (CY3) triangulated
category C, the base B \∆ maps to the space of Bridgeland stability conditions on
C, the central charge at a point b ∈ B \∆ is given by

Zγ(b) =

∫

γ

ΩI ,

and BPSb
γ is mathematically realized as a cohomological DT invariant of C counting

b-stable objects of class γ.

Example 4.1. When T is a class S theory, obtained by compactifying the 6-
dimensional N = (2, 0) superconformal field theory of ADE type G on a Riemann
surface C (possibly with punctures), the corresponding Seiberg-Witten complex in-
tegrable system is closely related to the Hitchin integrable system on the moduli
space of G-Higgs bundles on C. Typically, the Seiberg-Witten integrable system is
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a self-dual fiberwise finite quotient of an Hitchin integrable system [22, 34, 37]. In
particular, the base B is isomorphic to C

r as a complex manifold.

Example 4.2. By considering a 4-dimensional N = 2 theory obtained by an
appropriate compactification of a six-dimensional little string theory on T 2, one can
obtain an elliptic K3 surface as Seiberg-Witten integrable system [49]. In this case,
the base B is a complex projective line.

From now on, we assume that B is simply-connected. This assumption covers
in particular the cases of Hitchin systems and K3 surfaces that we just described.

4.2. DT invariants and holomorphic Floer theory. Let D be a cigar
geometry: D is the closed unit disk with polar coordinates r ∈ [0, 1], θ ∈ R/2πZ
and a metric of the form ds2 = dr2 + f(r)dθ2 for a function f(r) such that there
exists 0 < ε << 1 such that f(r) ∼ r2 for r << ε and f(r) is equal to a constant
ρ for ε ≤ r ≤ 1. The map r : D → [0, 1] is a S1-bundle for r 6= 0 and the S1-fiber
shrinks to a point at r = 0, see Figure 4.2.

Figure 4.2. The cigar D.

We consider the 4d N = 2 theory T on R
2×D with a topological twist along D

preserving half of the supersymmetries [71, §3.1]. In the limit where the radius of
the circle S1 in D shrinks to zero, the low energy description is the 3d sigma model
on R

2× [0, 1] with target M and a boundary condition at r = 0 defined by the tip of
the cigar. It is argued by Nekrasov-Witten [71, §3.1] that this boundary condition
is defined by a I-holomorphic Lagrangian section S of π : M → B. For example,
for b ∈ B \∆, the fiber Fb = π−1(b) is parametrized by a complexification of the
holonomy around S1 of the 4d low energy U(1)r gauge field, and the shrinking of
S1 at the tip of the cigar forces this holonomy to vanish. When T is a class S
theory, M is a moduli space of Higgs bundles and S is the Hitchin section of the
Hitchin fibration [71, §4.6].

In Conjecture 4.4 below, we propose that the BPS spectrum of T at a point
b ∈ B \∆ can be recovered from holomorphic Floer theory of (M,ΩI) for the pair
of I-holomorphic Lagrangian submanifolds S and Fb. To formulate this proposal,
we first need some preliminary results on the space of paths P between S ad Fb.
As S is a section of π and Fb is a fiber, the intersection S ∩ Fb consists of a single
point p, see Figure 4.3:

S ∩ Fb = {p} .

As in §2.2, we denote by P0 the connected component of P containing the constant
path p.

Lemma 4.3. The fundamental group π1(P0) is naturally isomorphic to the
charge lattice Γb = π2(M,Fb).
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Figure 4.3. A path with endpoints on the section S and on the
fiber Fb.

Proof. Let w be a loop in P0 based at p:

w :[0, 1] −→ P0

x 7→ (wx : y ∈ [0, 1] 7→ wx(y)) ,

and w0(y) = w0(y) for all y ∈ [0, 1], wx(0) ∈ S and wx(1) ∈ Fb for all x ∈ [0, 1].
As S ' B is assumed to be simply-connected, one can continuously deform w to
contract the loop x 7→ wx(0) in S, and so assume from now on without loss of
generality that wx(0) = p for all x ∈ [0, 1].

The map y 7→ (x 7→ wx(y)) is a one parameter family of loops in M , starting
at y = 0 with the constant loop at p, and ending with the loop x 7→ wx(1) in Fb.
In particular, we obtain a map from a disk to M with boundary mapping to Fb,
see Figure 4.4. The loop w is homotopically trivial in P0 if and only if this disk is
homotopically trivial in M relatively to Fb. �

Figure 4.4. The one-parameter family of paths x 7→ (y 7→ wx(y)),
and the one-parameter family of loops y 7→ (x 7→ wx(y)), forming
a disk with boundary on Fb.

Let P̃0 → P0 be the universal cover of P0. As the intersection S∩Fb consists of
a single point p, the critical points of the holomorphic action functional on P̃0 form
a π1(P0)-torsor by §2.3. By Lemma 4.3, π1(P0) = Γb, and so we have a Γb-torsor of
critical points. Fixing a reference critical point, we identify the set of critical points
with Γb, and we denote by (p, γ) the critical point corresponding to γ ∈ Γb. By §2.4,
holomorphic Floer theory attaches to any pair of critical points (p, γ) and (p, γ′) a
vector space H((p, γ), (p, γ′)) of 2d BPS states, see Figure 4.5. By Γb-equivariance
of the holomorphic action functional on P0, the space H((p, γ), (p, γ′)) only depend
on the difference γ′ − γ. By definition, H((p, 0), (p, γ)) is the cohomology of a
complex generated by Jζ-holomorphic curves in M with boundary on S ∪ Fb, and
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with differential given by counts of solutions to the 3d ζ-Fueter equation asymptotic
to these holomorphic curves, where

ζ =

∫
γ
ΩI

|
∫
γ
ΩI |

.

Figure 4.5. The lattice of critical points of W on P̃0.

We can now state our main conjecture relating the BPS states of the 4d N = 2
theory T and the 2d BPS states of the holomorphic action functional.

Conjecture 4.4. Let T be a 4d-dimensional N = 2 field theory. For every
point b ∈ B \ ∆ in the complement of the discriminant locus ∆ of the Coulomb
branch B of T , and for every charge γ ∈ Γb, the space BPSb

γ of BPS states of
T of charge γ in the vacuum b is isomorphic to the space H((p, 0), (p, γ)) of 2d
BPS states of the holomorphic action functional on the space of paths between the
holomorphic Lagrangian section S and the holomorphic Lagrangian fiber Fb of the
Seiberg-Witten integrable system (M,ΩI) of T :

BPSb
γ ' H((p, 0), (p, γ)) .

When the 4d N = 2 theory T can be geometrically engineered by compacti-
fication of Type II string theory on a Calabi-Yau 3-fold, then the spaces of BPS
states BPSb

γ have a geometric realization as DT invariants, and so in this case
Conjecture 4.4 predicts a relation between the DT theory of a Calabi-Yau 3-fold
and the holomorphic Floer theory of the complex integrable system π : M → B.

Remark 4.5. In the decategorified limit, Conjecture 4.4 predicts a relation
between BPS indices, or DT invariants, and counts of Jζ-holomorphic curves in M
with boundary on S∪Fb. In fact, it follows from the proof of Lemma 4.3 that these
Jζ-holomorphic curves can be naturally viewed as Jζ-holomorphic disks in M with
boundary on the fiber Fb.

The counts of these disks are exactly the “quantum corrections” appearing
in mirror symmetry: for every ζ ∈ C, |ζ| = 1, the map π : M → B is a torus
fibration in special Lagrangian on (M,ωζ , Jζ), and so the Strominger–Yau–Zaslow
picture of mirror symmetry [83] predicts that the mirror of (M,ωζ , Jζ) is obtained
by dualizing the torus fibration away from the singular fibers, and using counts of
Jζ-holomorphic disks with boundary on the torus fibers Fb to extend the complex
structure of the mirror across the singular fibers [31, 43, 63]. For a general Calabi-
Yau manifold M , the wall-crossing behaviour of these counts of disks as a function
of b is based on the Lie algebra of vector fields preserving a holomorphic volume
form on a complex torus [63]. Geometrically, the wall-crossing formula guarantees
the consistency of the gluing procedure producing the mirror M .
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The wall-crossing formula for DT invariants as a function of the stability is
formally identical to the wall-crossing formula for counts of holomorphic disks when
M is holomorphic symplectic: in this case, the wall-crossing transformations are
symplectic and not just volume preserving as in the general Calabi-Yau situation
[65, 67, 68]. This suggests a correspondence between DT invariants and counts of
Jζ-holomorphic disks in complex integrable system [65]. Another reason to expect
this correspondence is the work of Gaiotto-Moore-Neitzke [34, 37] in which the
hyperkähler metric on the Seiberg-Witten integrable system M is reconstructed
from “quantum corrections” determined by the BPS spectrum. As M is self-mirror
[22], compatibility between the SYZ mirror construction and the Gaiotto-Moore-
Neitzke description of the hyperkähler metric requires a matching between counts
of BPS states and counts of Jζ-holomorphic curves. Conjecture 4.4 provides a
categorification of this correspondence and is formulated in a way leading to a
natural physics derivation presented in the next section. It would be very interesting
to find more direct mathematical evidence for it.

Mathematically rigorous examples of correspondences between DT invariants
and algebro-geometric versions of counts of holomorphic disks given by punctured
Gromov–Witten invariants [2, 4, 44, 45] have been obtained for quiver DT invari-
ants [3, 10, 42, 41, 73] and for DT invariants of local P2 [9, 11, 12]. In such
correspondences, tropicalizations in B of holomorphic disks in M are interpreted
as “attractor flow trees” in the space of stability conditions for DT invariants, see
Figure 4.6 [65, 85]. We view these results as evidence for Conjecture 4.4.

Figure 4.6. Attractor flow trees as tropicalization of holomorphic
disks with boundary on Fb.

Remark 4.6. The complex structure I, the holomorphic symplectic form ΩI ,
and the I-holomorphic map π : M → B on M are canonically attached to the 4d
N = 2 theory T . By contrast, the hyperkähler metric depends on the radius R of
the circle S1 on which one compactifies T to obtain a 3d N = 4 sigma model. The
fibers of π have size of order 1/R. In the limit R → +∞, fibers collapse to the base:
indeed, in this limit, the circle decompactifies, and the Coulomb branch M of T on
R

3 × S1 reduces to the Coulomb branch of T on R
4. While one may expect that

holomorphic Floer theory only depends on the I-holomorphic symplectic structure
and not on the precise hyperkähler metric, it will be probably easier to define and
study it in the collapsing limit R → +∞.

Remark 4.7. There is a formal 2d-4d analogy between Conjecture 3.1 and
Conjecture 4.4. In both cases, we have a space of parameters (the space NT of 2d
N = (2, 2) theories or the Coulomb branch of vacua of the 4d N = 2 theory), a
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holomorphic symplectic manifold fibered over the space of parameters (the cotan-
gent bundle T ∗NT → NT or the Hitchin integrable system π : M → B), and the
space of (2d or 4d) BPS states at a given point of the parameter space is given
by the holomorphic Floer theory of the holomorphic symplectic manifold for two
holomorphic Lagrangian submanifolds given by the fiber of the fibration over this
point and a section or multi-section (the spectral cover L or the Hitchin section S).

4.3. A physics derivation. In this section, we give a heuristic derivation
of Conjecture 4.4 by compactification on a cigar geometry. We start with the 4d
N = 2 theory T on R

2×D, where D is a cigar geometry reviewed at the beginning
of §4.2. As boundary condition at the end of the cigar, one imposes to the theory
to approach the vacuum b ∈ B \∆. Finally, we restrict this system to the sector of
charge γ ∈ Γb and we look for the space V of half-supersymmetric states of lowest
energy. As we assume that the system is in the vacuum u at the end of the cigar,
non-trivial excitations should be localized near the tip of the cigar. But near the
tip of the cigar, R2 × D looks like R

4. By definition, BPS states of charge γ are
the lowest energy half-supersymmetric states of the theory on R

4 in the sector of
charge γ, and so one concludes that V ' BPSb

γ . In this picture, the BPS particles
are just sitting at the tip of the cigar.

Now we take the limit where the circle S1 in the cigar becomes very small.
In this limit, the cigar D reduces to the interval [0, 1]. The low-energy effective
description of T compactified on a circle is the 3-dimensional N = 4 sigma-model
with target M . Therefore, our previous system reduces to a 3d N = 4 sigma model
of target M on R

2×[0, 1] with appropriate boundary conditions at the ends of [0, 1].
At r = 0, the boundary condition defined by the tip of the cigar is the section S,
as reviewed in 4.2. On the other hand, at r = 1, the condition to be in the vacuum
b translates into the boundary condition imposed by the fiber Fb.

In the limit where the interval [0, 1] also becomes very small, we obtain a 2d
N = (2, 2) sigma model on R

2 with target the infinite-dimensional Kähler manifold
P of paths [0, 1] → M stretched between S and Fb. The central charge

Zγ(b) =

∫

γ

ΩI

in the original 4d N = 2 supersymmetry algebra induces a holomorphic superpo-
tential on P which is exactly the holomorphic action functional W . Therefore, we
obtain as low energy effective theory on R

2 the 2d N = (2, 2) Landau-Ginzburg
model (P,W ). Moreover, the sector of charge γ is obtained by considering only a
pair of critical point of W differing by γ. By definition of holomorphic Floer theory,
the space V of lowest energy supersymmetric states of this system is exactly the
space H((p, 0), (p, γ)).

In conclusion, Conjecture 4.4 follows from comparing the 4d N = 2 theory T
on R

2 ×D with the 2d N = (2, 2) effective low energy on R
2 describing the theory

in the limit where the cigar D is small, see Figure 4.7

Remark 4.8. It is clear from this argument that the assumption that T is a
theory without dynamical theory is necessary. Indeed, a 4d N = 2 supergravity
theory, such as a Type II string compactification on a compact Calabi-Yau 3-fold,
contains BPS black holes, and it is not possible to place a black hole at the tip of
the cigar without destroying the local geometry.
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Figure 4.7. Dimensional reduction of the cigar to an interval.

Remark 4.9. In the literature, compactification on a cigar geometry is often
done in combination with a 1

2Ω-deformation along the S1-rotations of the cigar [71].

It is essential for our purposes that the 1
2Ω-deformation parameter ε1 is set to 0. For

ε1 = 0, the possible supersymmetric boundary conditions at the boundary of the
cigar are described by I-holomorphic Lagrangian submanifolds ((B,A,A)-branes) of
M , and so we can take the fiber Fb as boundary condition. By contrast, for ε1 6= 0,
possible supersymmetric boundary conditions are J-holomorphic Lagrangian sub-
manifolds ((A,B,A)-brane) and so the fiber Fb cannot be used (correspondingly, the
boundary condition corresponding to the tip of the cigar deforms the (B,A,A)-brane
given by the section S to a (A,B,A)-brane given by the locus of opers for class S
theories [71]). On a related note, it would be interesting to understand precisely
the relation with the limit ε1 → 0 of the twistorial topological string of Cecotti-
Neitzke-Vafa which is defined using ε1 6= 0 [19]. Finally, Balasubramanian-Teschner
consider in [7, §7.3] a family of (A,B,A)-branes which in the limit ε1 → 0 reduce to
the (B,A,A)-branes given by the fibers Fb and so it would also be interesting to see
if this could be used to give a continuous deformation of our set-up (see also [48,
Eq 5.6] and references there for further generalizations of these (A,B,A) branes in
terms of Fenchel-Nielsen type spectral coordinates).

4.4. Holomorphic Floer theory and categories of line operators. In
this section, we formulate conjectures about the categories attached by holomorphic
Floer theory to the pairs of holomorphic Lagrangian submanifolds (S, Fb) and (S, S)
in the Seiberg-Witten integrable system M . It follows from the definition in §2.5
of the Hom categories in the Fueter 2-category that the category

C(S, Fb) := HomFt(M,ΩI)(S, Fb)

admits for every ζ ∈ C
∗, |ζ| = 1, an exceptional collections (Xγ(ζ))γ∈Γb

indexed by
charges γ ∈ Γb. In other words, C(S, Fb) is a deformation of the derived category of
coherent sheaves DbCoh(BT ) on the classifying stack of the torus T = SpecC[Γb] '
(C∗)n. The Hom spaces in C(F, Sb) are constructed as in §2.5 from the complexes
of BPS states C((p, γ), (p, γ′)).

Formally, Xγ(ζ) is the Lefschetz thimble of gradient flow lines of Re(ζ−1W )
emanating from the critical point (p, γ) of the holomorphic action functional W on

the space of paths P̃0. The object Xγ(ζ) should be viewed as the ζ-supersymmetric
IR line defect of charge γ in the vacuum b [36, 21]. Moreover, the expectation
value 〈Xγ(ζ)〉 of the IR line operator in the “conformal limit” in the sense of [33]
should be formally given by the corresponding infinite-dimensional period integral:

〈Xγ(ζ)〉 =

∫

Xγ(ζ)

eRe(ζ−1W )vol ,
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where vol is “the volume form” on P̃0. When ζ varies, the (infinite) exceptional col-
lection (Xγ(ζ)) changes by mutations determined by the complexes of BPS states.
In particular, the infinite-dimensional period integrals 〈Xγ(ζ)〉 are solutions of the
Riemann-Hilbert problems formulated in terms of BPS/DT invariants in [15, 33].

Working with an appropriate wrapped version of the Fueter 2-category, one
should be able to make sense of the category

C(S, S) := HomFt(M,ΩI)(S, S) .

Similarly to what happens in the usual wrapped Fukaya category, one expects
C(S, S) to have for every ζ ∈ C, |ζ| = 1, an exceptional collection (Lm(ζ))m indexed
by the infinite set of intersection points between S and a wrapped perturbation of S.
Moreover, the composition of Hom categories in the Fueter 2-category should define
a structure of monoidal category on C(S, S), and a structure of module category
over C(S, S) on C(S, Fb). Acting with C(S, S) on the object X0(ζ) of C(S, Fb)
obtained for γ = 0 induces a functor RGb(ζ) : C(S, S) −→ C(S, Fb).

Conjecture 4.10. The monoidal category C(S, S) is the category of super-
symmetric UV line operators of the 4d N = 2 theory T as in [21, 36].

When T is a class S theory, M is a moduli space of Higgs bundles. Let MB

be the corresponding character variety: MB is an affine algebraic variety, which
as a complex manifold is isomorphic to M with complex structure J . In this case,
Conjecture 4.10 predicts that C(S, S) is a monoidal categorification of the algebra of
regular functions C[MB ] of MB . Moreover, the objects Lm(ζ) should be categorical
lifts of the canonical basis of theta functions predicted by mirror symmetry [44, 45].

Conjecture 4.11. The functor RGb(ζ) : C(S, S) −→ C(S, Fb) is a categori-
fication of the map in [21, 36] expanding UV line operators in terms of IR line
operators.

In other words, Conjecture 4.11 predicts that RGb(ζ) should be a categorifica-
tion of the map expressing theta functions in terms of the cluster-like coordinates
〈Xγ(ζ)〉.
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