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Abstract— Atmospheric pressure plasma jets (APPJs) hold
significant promise in biomedical applications, where safe and
efficient operation is critical. In this study, a new data-driven
robust control paradigm is proposed for APPJs in the Linear
Parameter-varying (LPV) framework. By leveraging Bayesian
Neural Networks (BNNs), a state space LPV model is identified
to capture the intricate nonlinear dynamics of APPJs while
providing statistical insights into the system’s behavior. This
approach allows for the adaptation of the uncertainty region
at each time step, enhancing closed-loop control adaptability,
and alleviating the conservativeness of the control design
compared to the conventional robust controllers. The proposed
robust Model Predictive Control (MPC) design method operates
through an online process, where an optimization problem,
formulated using Linear Matrix Inequalities (LMIs), computes
a time-varying feedback control law. Through extensive sim-
ulations, the LPV-based robust control’s efficacy in handling
modeling discrepancies and external disturbances is assessed.
Furthermore, a comparison is made with an alternative control
scheme employing MPC with a given LTI model, demonstrating
the superior robustness and tracking capabilities of the pro-
posed LPV-MPC-based approach. These findings underscore
the potential of the proposed technique to enhance APPJ control
across diverse practical scenarios.

I. INTRODUCTION

Atmospheric Pressure Plasma Jets (APPJs) represent a
class of cold plasma devices known for precise delivery of
localized physical and chemical effects onto intricate surfaces
[1]. Operating in a non-equilibrium regime with electron
temperatures typically ranging from 1 to 5 electron volts
(eV) while the background gas remains at around room
temperature [2], they offer significant promise for treating
heat- and pressure-sensitive surfaces in materials processing
[3], [4] and biomedical applications [5].

APPJs consist primarily of a dielectric capillary tube
through which noble gases like helium (He) or argon (Ar)
flow. An enclosed electrode system applies an electric field
to the gas flow, initiating plasma formation. The resulting
plasma plume, extending several centimeters from the tube’s
end or nozzle, acts as an active zone for surface treatment.
APPJs also draw in ambient gas as they emanate from the
nozzle, fostering a dynamic mixture of gases and facilitating
chemical reactions, generating various reactive species[6].

The intricate dynamics and modeling uncertainties intrin-
sic to these devices, along with their sensitive applications,
pose significant challenges for control design. Gidon et al.
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[7] proposed a lumped-parameter, physics-based model to
characterize APPJ dynamics and employ it for MPC design.
However, the inherent assumptions limit the incorporation
of intricate system dynamics, making the system and con-
troller vulnerable to uncertainties. Data-driven methods, like
subspace identification, offer an alternative for model iden-
tification. Yet, resulting linear time-invariant (LTI) models
often fall short in capturing the full nonlinear dynamics. In
response, Bao et al. [8] introduced Bayesian Neural Net-
works (BNNs) to address modeling mismatches, generating
uncertain scenarios for scenario-based MPC design.

The Linear Parameter-varying (LPV) modeling framework
provides flexibility in representing nonlinear dynamic sys-
tems, capturing dependencies on varying parameters called
scheduling variables. It enables the use of common linear
control synthesis tools and facilitates model-based controller
design for systems with nonlinear and time-varying behavior
[9]. In a recent study by Gidon et al. [1], a data-driven
LPV input-output (IO) representation of the APPJ was
developed and used in a supervisory MPC scheme to regulate
nonlinear thermal effects of plasma on a surface. Despite
the LPV framework’s modeling flexibility, uncertainties in
data, systems, and optimization processes often lead to plant-
model mismatch [10]. Hence, robust control strategies that
explicitly address uncertainties and modeling discrepancies
are crucial to ensure system stability and performance.

Robust control methods can address this challenge by
explicitly considering uncertainties in system dynamics.
They integrate a priori estimates of model uncertainty into
controller design, ensuring stability and performance across
all modeled uncertainties. However, traditional approaches
often maintain a static uncertainty estimate during operation,
potentially compromising overall controller performance by
optimizing objectives across all conceivable models within
the uncertainty specification [11].

This paper presents a data-driven robust MPC strategy
within the LPV framework to mitigate uncertainties in AP-
PJs. By utilizing BNNs for system identification, the method
captures intricate system dynamics and statistical properties,
offering insights into modeling uncertainty. Through robust
control design techniques, the approach optimizes controller
performance while ensuring stability under varying operat-
ing conditions and typical uncertainties in APPJs. Unlike
conventional robust control methods relying on worst-case
scenarios, this work dynamically calculates uncertainty at
each time instant, enhancing system performance and mit-
igating conservatism. This methodology shows promise for
enhancing APPJ control, providing heightened performance



and adaptability to the dynamic and uncertain nature of
plasma jet systems.

The paper is organized as follows: Section II introduces
the problem formulation, while Section IIl addresses the
data-driven system identification problem. Section IV fol-
lows by extracting the uncertain system model, leading into
Section V, which elaborates on the proposed robust control
methodology. Section VI presents simulation results and
discussions, and Section VII concludes the paper.

II. PROBLEM FORMULATION

A lumped-parameter, discrete-time nonlinear model of
APPJs can be expressed as

w(k+1) = f(z(k), u(k)),
y(k) = h(z(k), u(k)),

where x(k), u(k), and y(k) are the state, input, and output
vectors at time instant £ € N. Moreover, f : R" x R™*
R™ and h : R™ x R™ +— R™ represent the dynamic and
measurement models, respectively. The nonlinear dynamic
model, f(z(k),u(k)), can be represented by an LPV-state
space (LPV-SS) model structured as (2). This allows for the
adoption of a linear control framework while simultaneously
improving model precision across a wide range of operating
conditions. The LPV-SS model is written as,

2(k+1) = Ap(k)a(k) + Bp(k)uk),  Qa)
y(k) = C(p(k))z(k) + D(p(k) u(k), (2b)

where A : R = R"=X" B : R™ 3 R"%X% (' .
R" +— R™X" and D : R" — R"™ "™« denote state,
input, output, and feedforward matrices, which are functions
of time-varying scheduling variables p(k) € R"». In this
study, the state-space matrices are learned using Bayesian
neural networks, as elaborated in the subsequent section.

(1a)
(1b)

ITII. DATA-DRIVEN SYSTEM IDENTIFICATION

This section explores system identification/learning within
the LPV framework, employing Bayesian Neural Networks
(BNNs) to capture complex system dynamics probabilis-
tically, without strict reliance on explicit mathematical or
physical models. Unlike Artificial Neural Networks (ANNS),
which are prone to outliers and overfitting, BNNs excel in
capturing intricate behaviors while quantifying uncertainty
in model identification [12]. Integrating uncertainty into the
modeling process, the BNN-based LPV model learning offers
a superior approximation of underlying system dynamics
using experimental observations.

The uncertainty inherent in BNN model structure emerges
from treating the parameters of the neural network as random
variables and assigning prior distributions as a scaled mixture
of two Gaussian distributions as [13],

P(w;) = PN (W10, 07 1)+ (1= pum )N (w;]0,07 5), (3)

where the tuning parameter py, ; serves as the regulator for
the prior density of the parameters in the j-th layer of the
neural network, denoted as w;. Larger values of o, ; lead to
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heavier-tailed distributions, whereas smaller values of ;o
result in more concentrated ones. Utilizing cross-validation
enables finding these parameters [14].

Through training, the posterior distribution over network
parameters, given dataset D, is estimated using variational
inference (VI) techniques, which approximate complex prob-
ability distributions by selecting a member from a family
of densities that closely approximates the target distribution,
minimizing the Kullback-Leibler (KL) divergence between
the true posterior distribution and the approximation [15].
To approximate the posterior p(w,;|D), VI solves

i KL 400556, (5 12) ) (4a)

& KL (003 6,)11p() ) = Byt log (o D)
<~ Héln (Eq(Wj;ej) [log q(Wj; 9])} - ]Eq(wj-;aj) [logp(w])]

= Eyguy i logp(Dlw,)] ). (@)
where ¢(w;;0;) represents a family of densities parame-
terized by 60;. The evidence lower bound (ELBO) func-
tion, as defined in (4b), is optimized using Monte Carlo
(MC) methods and backpropagation [15]. The distribution
q(wj; 0;) is parameterized as w; = p; +0; (O e;, where (O
denotes element-wise multiplication, £; ~ N(0,1), and §; =
(i4,0;) (note that p and o denote the mean and standard
deviation, respectively, and A is the normal distribution).
Subsequently, the BNN is trained by solving the following
optimization problem over 6 using the dataset D

np

min 1 } “llog g(w; 0)—log p(w™)~log p(D[w))],
L =1
(5)

where w(®) represents the i-th sample generated by MC to
approximate the ELBO, and n; denotes the MC sample size
chosen to ensure convergence to a local optimum for (5).

The BNN-based LPV-SS model identification problem
involves learning matrices A(px) and B(pg) from a training
dataset D = {(p(4), z(i), u(i)), (z(i + 1))} 5", Using the
trained BNNs, the density of the matrix functions at a given
scheduling variable is assessed by drawing na;c samples
from the posteriors of weights, leading to the calculation
of potential matrices with each set of sampled weights.
Rather than directly estimating the density from samples,
the statistics such as the mean and standard deviation of
each matrix element is calculated. This approach proves to
be both efficient and adequate for constructing a confidence
interval of state-space matrices.

Assuming that all states are measurable, the C' matrix will
be constant and the nominal value of matrices A and B, and
their corresponding standard deviations are calculated as

nmc nmc

1 1 i >, 1 i
A(k):%ZA(), B(k):%ZB() (6)
i=1 i=1



o (k) = % Z (A6 — )T(AD —A(K))  (Ta)
oB(k) = EQE:B”— )T(B® — B(k)) (7b)

IV. SYSTEM DESCRIPTION IN POLYTOPIC FORM

The LPV-SS model obtained in the previous section can
be presented in the following polytopic or multi-model form

z(k+1) = A(p(k))z(k) + B(p(k))u(k),
y(k) = Cz(k),
[A(p(k)) B(p(k))] € Q(k).
The set {2 is a polytope defined by,

k) Bi(k)],....[An(k) B.(k)]} 9

where Co{.} indicates that the set Q(k) is a convex hull.
This implies that for some non-negative \;’s, > ;_; A\; = 1,
the following holds

(8a)
(8b)

Q(k) = Co{[Ax

[A(p(k)) B(k)] =Y Ni[Ai(k) Bi(k)]. (10)
i=1

To form (k) at each time step, the combinations of

the boundaries of the confidence interval for A(p(k)) and

B(p(k)) are chosen as

Q = Co{[A(k) + 8™ (k) B(k) + Bo” (k)]

A (k)+5ff (k) B(k) = Ba®(k),
[A(k) = Bo? (k) B(k) + B (k)],
(A ()—ﬂa() B(k) = Ba®(k)]}, (1)

where ( is a tuning parameter that determines the width of
the confidence interval.

V. LMI-BASED ROBUST CONTROL DESIGN

METHOD

In this section, we present the development of an LMI-
based robust control law tailored to address the reference
tracking challenges inherent in complex dynamic systems
including APPJs.

Assumption 1: The dynamics of the reference trajectory
can be described by [16]

zr(k+1) = A (k)z.(k), (12a)
This form of the reference trajectory has the capability to
generate a diverse set of command trajectories, encompassing
useful patterns such as step, sinusoidal waveforms, ramp, and
various other patterns [17].
Utilizing the system dynamics given by (8) and the refer-
ence dynamics (12), we formulate an augmented state-space
model for the system as
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X+ 1) = A X (R) + Bp(k)Au(k) (13)
y=CX(k) (13b)
A(p(k)) 0 B(p(k)) B(p(k))
A= 0 am® o |, B=| 0o |,
0 0 I I
=[C 0 0], [A(p(k)) B(p(k))] €
Q = Cof{[Ai(k) Bi(k)], [A2(k) Ba(K)],- ., [A.(k) B,(K)]}
where the augmented state, denoted as X (k) =
[zT(k) 2T (k) uT(k—1)]T, encompasses the original states

and their reference counterparts at time k, as well as the
control inputs at the previous time step, k£ — 1. Additionally,
[A;(k) Bi(k)], i € {1,...,r} denotes the i™ vertex of the
polytopic uncertainty inherent in the augmented system, and
I denotes the identity matrix.

Given the ¢-step-ahead prediction of augmented state vec-
tor at time instant k, the tracking error can be estimated as

e(k + k) = CoX (k + i|k), (14)
C, = [C —C, 0] .
Therefore, the error dynamics can be written as
e(k+ i+ 1|k) = C.A(p(k)) X (k + i|k)+
C.B(p(k))Au(k +1ilk). (15)

Our primary control objective is to optimize system per-
formance while ensuring robustness against uncertainties.
This objective is formulated using the following optimization
problem as described in [18], tailored for tracking task.

min max Joo (k) (16a)
u(k+ilk),i=0,1,...m [A(k) B(k)]eQ
Took) = 3 (llelk + k)13, + I Autk +ilk)|%).
=0
(16b)

Here, )1 = 0 and R > 0 represent penalty weights,
while Au(k+i|k) denotes predicted control input variations
at time k£ + ¢ based on measurements at time k. Solving
the min-max optimization problem described above presents
computational challenges. Therefore, following the approach
outlined in [18], we initially establish an upper bound v on
the robust performance objective, J (k) < 7.

Subsequently, we minimize this upper bound using a
feedback control law Au(k + i|k) = Ke(k + i|k). To do
s0, we choose a quadratic Lyapunov function as

V(e(klk))

with e(oolk) = 0, and V'(0) = 0. To guarantee the decreasing
nature of ~, the following inequality must be satisfied

= el (k|k)Pe(k|k), P>~ 0 (17)

Vie(k+i+1lk)) — V(e(k +ilk)) <
— le(k +ilk)" Qre(k + i|k)+

Au(k 4 ilk)T RAu(k +ilk)].  (18)



Summing (18) over ¢ = {0,1,...,00} results in
—V(e(klk)) < —Joo(k), (19)
which implies that
(k) < V(e(klk)) <. (20)

max J
[A(k) B(k)e

Therefore, it can be concluded that the Lyapunov function
(17) serves as an upper bound for the robust objective
function (16b).

Theorem 1: [16] Suppose that the uncertainty set €2 is
defined by a polytope as described in (13). In this scenario,
the feedback control law Au(k +i|k) = Ke(k+ilk), 1 > 0,
with the feedback gain K = Y Q! minimize the upper
bound of the objective function in (17), if there exist a scalar
~(k) > 0, symmetric positive-definite matrices () and P, and
a matrix Y of appropriate dimension, satisfying the following
convex optimization problem

iy @
subject to .
1 e(klk)

L(kzuc) Q } =0 22)

Q * k%
C.A(R)CIQ + CB(p(k)Y Q@ + * 0

120 0 ~I =*
RY?Y 0 0 ~I

(23)

where (x) represents the symmetric expressions in the matrix.

Proof. The problem of minimizing the upper bound of the
robust objective function can be expressed as ming, p) Y
subject to el (k|k)Pe(k|k) < ~. By defining Q = yP~1,
and applying the Schur complement, this inequality can be
transformed into the LMI in (22). To ensure the robust per-
formance, the feedback control law Au(k +i|k) = Ke(k|k)
must satisfy (18). Subsequently, plugging this control input,
along with Lyapunov function (17) and error dynamics (14),
into the stability constraint (18) yields

X (k +ilk)T{[CcA(p(k)) + CeB(p(k) KC.]"
P[CeA(p(k)) + CB(p(k))KCe] — CZ PCe
+CTQC, + CTKTRKC X (k +ilk) <0 (24)

This inequality holds for every ¢ > 0, if

[CoA(p(k)) + CeB(p(k)) KCe]"
P[C.A(p(k)) + CeB(p(k)) K Ce]
—cTpc, + CTQ,C, + CTKTRKC, <0 (25)

Pre- and post-multiplying the above inequality by the Moore-
Penrose pseudoinverse of matrix C., denoted by C{, gives

[CeA(p(k)C + CeB(p(k)) K"
P[C.A(p(k))CI + C.B(p(k))K]

—P+Q+KTRK <0. (26)
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Next, substituting P = vQ~! and Y = K(Q, and pre- and
post-multiplying by @ results in the LMI (23), which is
affine in [A(p(k)) B(p(k))]. Therefore, it is satisfied for
all [A(p(k)) B(p(k))] €  if and only if there exist @ > 0,
Y = K@ and +y such that

Q * ok ok
CeA;(p(k)CIQ + CB;(p(k)Y Q * %
1/2 = 0.
7Q 0 I «
RY2y 0 0 oI
27

VI. SIMULATION RESULTS

This section focuses on closed-loop simulation results of
using the proposed robust MPC on an RF-excited APPJ in
Argon using a validated physics-based model [7]. The states
and inputs of the system are as follows
(28)

) i

v=[T T,]", u=[p "
where T, and T, denote the surface and gas temperature,
while p and q represent the applied electric power and gas
flow rate, respectively. In this study, the primary control
objective is to ensure that the surface temperature closely
follows a desired trajectory. Consequently, the control output
is selected as y = T,. Moreover, it is desirable for the states

and the inputs to lie in the regions defined by [19]

25 °C T 42.5 °C

fod=l) =[] o
1.5W P 8.0W

[1.0 slm] < {q] < {6.0 slm} ' (29b)

Our simulation results clearly demonstrated that selecting
the system states as scheduling variables effectively captures
the system’s nonlinear behavior. This choice empowers the
control algorithm to dynamically adjust to the system dy-
namics and complex nature, thereby enhancing its accuracy
and responsiveness to changes in operating conditions.

The LPV-SS model was trained using BNNs. To generate
the dataset D {(p(d), 2 (i), u(d)), (x(i + 1))}, for
system identification, open-loop simulations were conducted
on a dynamic model consisting of a differential-algebraic
system of equations [7]. In these simulations, the variables
of interest, namely p and ¢, were manipulated as depicted in
Fig. 1a, and the resulting states were recorded as illustrated
in Fig. 1b. A partition of 65% of the dataset was designated
as the training set, while the remaining portion was allocated
to the testing set.

The matrices A and B were modeled using three fully-
connected DenseVariational layers, each comprising 4 hid-
den units. The hidden layers utilized the linear activation
function, while no activation function was applied to the
output layers. The tuning parameters were set as p,, = 0.5,
o1 = 1.5, and o9 = 1. Additionally, the ADAM optimizer
with exponential decay, featuring a decay rate of 0.9, was
utilized. In assessing the accuracy of the LPV-SS model,
the Best Fit Rate (BFR) was computed as BFR(6)
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Fig. 1: Dataset used for LPV-SS model learning.

TABLE I: BFR accuracy criterion for the trained LPV-SS
model.

Dataset T Ty
Training set || 95.49% || 87.61%
Testing set 94.75% 86.31%

_ zer1=2k41(0)]l2
100%. maxy, (1 o, 0

ing results presented in Table L.

A comparison between the actual training and testing
states and their predicted mean values, along with their
confidence intervals spanning [(1z —50z, pz +50z] across 500
samples are illustrated in Fig. 2. Additionally, the percentage
of datasets falling within the confidence interval is given in
Table II.

Furthermore, at each time step, we randomly sample
Nye = 50 models to evaluate the mean and standard
deviation of A(-) and B(+). Fig. 3 demonstrates the evolution
of the entries of these LPV-SS matrices across 500 sampling
instants, along with their corresponding uncertainty range.

The primary control objective is to ensure precise tracking
of the surface temperature along a desired trajectory. To
evaluate the performance of the LPV-based robust controller,
we conducted an additional simulation, comparing it with an
alternative control scheme. The alternative was a baseline
MPC controller that used an LTI model of the APPJ system
obtained with subspace identification in [20].

For the MPC controller, both the prediction horizon and
control horizon were set to n, = n. = 5, utilizing a quadratic

) with the correspond-

TABLE II: Percentage of data within the confidence interval.

Dataset Ts Ty
Training set || 98.72% 93.08%
Testing set 97.19% || 92.55 %
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Fig. 2: Actual states vs. the mean value of the predicted states
within the confidence interval.
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Fig. 3: Some entries of A and B matrices and their corre-
sponding confidence intervals.

cost function as J(k) = Y17, (||e(k + k)5, + lAu(k +

z|k)||§%) To illustrate the robustness of the control strategies
against disturbances, the tip-to-surface distance of the APPJ
was intentionally increased to 6 [mm] at ¢ = 25 [sec], before
reverting to its initial value of 4 [mm] at ¢ = 35 [sec]. Closed-
loop simulation results depicted in Fig. 4 indicate that the
robust MPC controller in the LPV framework effectively
tracks the desired trajectory with high precision. Conversely,
the MPC controller utilizing the LTI model exhibits a faster
transient response; however, it suffers from persistent offset
errors attributed to modeling discrepancies. Furthermore,
during disturbance occurrences, the robust controller adeptly
mitigates the effects, whereas the performance of the MPC
controller significantly deteriorates.

The comparison of control inputs between the two
controllers is illustrated in Fig. 5. Evidently, both con-
trollers maintain control inputs within the admissible
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Fig. 4: Tracking performance of the proposed robust LPV
controller compared to the baseline MPC.
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Fig. 5: Control efforts of the proposed robust LPV controller
compared to the baseline MPC.

range. Nonetheless, the robust-LPV control scheme demands
greater electric power and gas flow rate resulting in a superior
tracking performance albeit at the expense of heightened
control efforts.

VII. CONCLUSIONS

This work proposed a robust control design approach in
the LPV framework for atmospheric pressure plasma jets
(APPIJs). A state-space LPV model of the system was learned
using Bayesian neural networks, which allowed capturing
the complex and nonlinear dynamics of the APPJs while
also providing statistical information about the uncertainty
in the learned LPV model. The LPV-SS model and the
associated uncertainty set were then utilized for the ro-
bust control design, which involved solving an optimization
problem with LMI constraints that aimed at minimizing the
upper limit on the robust performance objective. Simulation
results illustrated that the developed data-driven LPV model
accurately described the APPJs dynamics. Additionally, the
robust predictive controller effectively addressed the effects
of modeling mismatch arising from the learned LPV-SS
model, as well as external disturbances. Comparative as-
sessments with an alternative control scheme, which also
was a model predictive controller, highlighted the superior
robustness and tracking performance achieved by the LPV-
based design approach.
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