From observational to actionable: Rethinking omics in biologics production
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Abstract: As the era of omics continues to expand with increasing ubiquity and success in both

academia and industry, omics-based experiments are becoming commonplace in industrial

biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line

III

development. Omic technologies provide particularly valuable “observational” insights for
discovery science, especially in academic research and industrial R&D; however,
biomanufacturing requires a different paradigm to unlock “actionable” insights from omics.
Here we argue the value of omic experiments in biotechnology can be maximized with
deliberate selection of omic approaches and forethought about analysis techniques. We
describe important considerations when designing and implementing omic-based experiments,

and discuss how systems biology analysis strategies can enhance efforts to obtain actionable

insights in mammalian-based biologics production.



Towards actionable omics

Biotechnology is an evolving research field that thrives off our ability to harness living
organisms to develop invaluable products and technologies. This interdisciplinary
manufacturing approach is employed across a range of industries including energy, material,
food, agriculture, cosmetics, and pharmaceuticals[1]. The biopharmaceutical industry in
particular has been successful in manufacturing life-saving recombinant biotherapeutics in
mammalian cells for over 40 years. While considerable advances have been made—with product
titers increasing from ~50 mg/L to >10 g/L for monoclonal antibodies, it is perhaps surprising to
see that the fundamental steps underpinning the cell line generation and bioprocess
development processes have remained nearly the same, perhaps differing only in scale (Box 1).

Chinese hamster ovary (CHO) cells—the primary host system used for the manufacturing
of biologics—are faced with challenges concerning the production of complex large molecules
that meet stringent product quality (PQ) requirements. To meet industrial demands, various
strategies have emerged to manipulate the physiological functions of cell factories at the gene
level (genetic engineering) and modify the culture environment for optimal growth and
production (bioprocess optimization). The rational design and optimization of such strategies
require a functional understanding of the molecular components driving bioproduction. Omic
technologies provide large-scale, systems-wide monitoring of a broad range of such molecular
components.

The sequencing of CHO and Chinese hamster genomes, the dramatic decrease in next-
generation sequencing (NGS) costs, the growing ease of generating diverse omic data, and the
development of mammalian genome editing tools provide a valuable toolbox for a new era of
rationally driven cell line generation and process development[2-5]. Indeed, decades of omics
research have yielded examples demonstrating the value of these data; however, while some
omics strategies are inherently actionable by providing targets directly linked to a phenotype of
interest (e.g., CRISPR screens[6—10]), many omic technologies can prove observational (i.e.,
merely providing a momentary snapshot of the molecular composition of the cells) when
analyzed using basic approaches. Thus, it can be challenging to deploy strategies to maximize

actionable value from the experiments. By actionable we mean the ability (1) to identify a
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minimal set of targets driving the phenotype of interest, (2) to direct a clear strategy for
engineering or optimization towards the phenotype of interest, and (3) to deploy the strategies
in a project-compatible timeframe. We argue the value of omic experiments can be maximized
with deliberate selection of omic approaches and forethought about analysis techniques. To
this end, we outline what we believe are important considerations when designing and
implementing omic-based experiments, and discuss how systems biology analysis strategies can

enhance efforts to obtain actionable insights in biomanufacturing.

Challenges to actionability in biopharmaceutical process development

The timeline and platform-driven nature of the biologics industry has shaped how omic
tools have been applied, and it is important to assess how it can be adapted to accommodate
actionable omics strategies. The long, resource-intensive nature of cell line generation nearly
necessitates that genetic engineering efforts be applied to the host cell—rather than
introduced into a producing clone—as genetic modifications require further verification of
clonality, cell line stability, and process optimization. Consequently, process optimization often
remains the intervention of choice in the biopharmaceutical industry.

While direct interventional studies such as media optimization design of experiments
(DoEs) are effective, they do not answer the ‘why’ or ‘how’ of success and thus provide limited
understanding for future work. In contrast, the measurement of molecular profiles of a given
clone in a given process with omics methods provides information about the cellular state tied
to a given phenotype. These omic based approaches can thus inform future cell line
engineering or process optimization efforts, but only when applied with careful forethought.

The difficulty, regardless of approach, lies in the complexity of the system being
engineered (Figure 1). The CHO genome is considerably larger than genomes of other industrial
lines (e.g., Escherichia coli, yeast, etc.) and most genes remain uncharacterized in the context of
protein production. Furthermore, the genomic plasticity exploited to generate highly
productive cell lines through high-throughput screening means that a new clone may not

respond as expected to a given bioprocess.



Given these complexities, extracting actionable insights from classical observational
omic experiments (e.g., high feature number, low sample number, high background variability—
present in an experiment looking at transcriptomic data from a high producer vs low producer
clone) is challenging. When comparisons yield 100s to 1000s of potential targets (e.g.,
differentially expressed genes), it becomes difficult to decipher which gene(s) are actually
driving the variation in phenotype, since many transcriptional differences may be superfluous
for the phenotype of interest. Fortunately, depending on the desired objective, capabilities, and
timelines, a range of different approaches may be suitable to extract actionable insights from
omic experiments. Here we highlight types of analysis tools and strategies that can extract
actionable insights from observational omics. Specifically, the integration of multi-omic

approaches with systems biology computational models can help drive actionability.

Extracting actionable value from omics

To maximize actionability from omics, we recommend designing and executing stages of
omic studies under the framework and considerations as described in Figure 2, Key figure. Prior
to any data generation and analysis, one should define a clear implementation strategy by
connecting analysis approaches to intervention objectives under known technical and logistical
constraints. We emphasize that the implementation strategy should influence not only the
selection of omic tools, but also the analysis methods employed and the prioritization of
enriched targets. Athieniti et al. recently provided a comprehensive review of multi-omic data
types and integration strategies which can be leveraged in the experimental design process
[11]. To guide the systematic analysis of otherwise observational omic data, here we highlight 4
approaches to extract actionable information from omic experiments, ranging from rational
experimental design to computational models. Depending on timelines, desired objectives,
budgets, and tool availability, some approaches may be more desirable or could be infeasible.

We provide explanations and examples of successful applications for each approach below.
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Rational experimental design

When the research question of interest is clearly defined and the root cause can be
narrowed down to a reasonable set of molecular entities (e.g., dozens or a few hundred genes),
it can be possible to derive actionable conclusions from small, rationally designed studies. As an
example, a targeted proteomic study on high and low aggregation cell lines identified molecular
mechanisms underlying cell aggregation[12,13]. By looking solely at the ‘surfaceome’ (surface
protein sub-proteome) as the molecular entity(s) underpinning aggregation, the authors found
proteins with differential abundance between the two cell lines and were able to decrease
aggregation by knockdown of a surface protein. Other studies quantified the CHO secretome
using proteomics to identify host cell proteins for removal to improve product quality or cell
performance[14,15]. However, it is critical to predefine and selectively study only the
responsible entities (e.g., surface proteins or host cell proteins) when sample numbers are low.
For example, in classic ‘high producer vs low producer’ studies, the lack of actionability stems
from high numbers of differentially expressed targets without practical ways to reduce the
target list to a manageable number of testable hypotheses; furthermore, it is often unclear
which genes are directly connected to productivity, and which are irrelevant genes that happen
to have altered expression for other reasons (e.g., sharing a transcription factor). Furthermore,
when analyzing low numbers of clones, it is quite likely that differences between clones stem

from clonal variability rather than being causally linked to the phenotype of interest.

Knowledge-based parametric models

Knowledge-based parametric models can link genotype to phenotype on a mechanistic
level to elucidate biological causation from omic data[16—18]. These network models employ
carefully curated biochemical, genetic, and genomic data into a knowledgebase of an
organism’s molecular components and their interactions[19]. With the integration of omic
data, these models can guide the rational design of systems-level engineering targets for
bioproduction. Here we describe two such classes of models with promising applications in the

biopharmaceutical industry: (1) genome scale models and (2) kinetic models (Box 2).
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Knowledgebases can help construct diverse biological networks, and success has been
demonstrated with genome scale metabolic models (GeMs), thanks to decades of legacy
biochemical research in metabolism[20]. The integration of omic data with GeMs to identify cell
line engineering targets has been demonstrated. For example, multi-omics profiling in CHO has
been integrated with GeM flux analysis to help identify metabolic bottlenecks and potential
engineering targets in mAb-producing cells[21], and GeMs have been used to reveal cell-line
specific variation to guide to the rational selection of hosts[22]. Other studies[23,24]
successfully integrated omics with GeM simulations to design optimal bioprocessing conditions
in mAb-producing CHO cells, resulting in an average titer increase of ~11.8% and approximate
two-fold increase in total mAb expression respectively. Another study used omics data to
obtain GeM simulations that guided media optimization to reduce growth inhibitory metabolite
section[25]. These examples demonstrate how overlaying omics on a functional network
contextualizes the data in terms of underlying biochemistry, and comparison of experimental
data with model simulations can validate or refine hypotheses. Furthermore, omics data are
often used to build and refine such models[26,27]. Importantly, the systems-level metabolic
response and flux simulations permitted by these networks go beyond any type of analysis
possible with generic metabolic pathway databases such as KEGG[28].

Over the years, GeMs have expanded to include additional cellular processes. A desire
to model the biochemical reactions underlying gene expression (transcription and translation)
resulted in genome-scale models of metabolism and macromolecular expression (ME-
models)[29,30]. Much like GeMs, ME-models can be platforms for the mechanistic integration
of transcriptomic and proteomic data. In addition to expanding GeMs to include
macromolecular expression networks, models can include core components of conventional
protein secretion[31,32]. Many therapeutic proteins are clients of the secretory pathway,
therefore a mechanistic understanding of pathway usage can provide novel insight into
targeted engineering strategies. Furthermore, different biotherapeutics may utilize unique sets
of secretory machinery exerting non-negligible metabolic demands on the host cell[14,31]. The
resulting protein-specific models are able to calculate energetic costs and machinery demands

for each secreted protein. Additional omic data can be integrated with the models and it was
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found that highly secretory cells have adapted to downregulate the expression and secretion of
expensive native proteins[31]. Identification of costly native proteins that compete for cell
resources present targeted engineering strategies for cell line engineering. Furthermore, the
models were used to successfully optimize the production of monoclonal antibodies[31] and
feeding strategies[33].

Complementary to the abovementioned constraint-based genome-scale stoichiometric
models, kinetic models can effectively describe the dynamic character of mammalian cell
culture and protein production[34,35]. These systems are non-stationary in nature, and depend
on time and system history. Kinetic models can mechanistically model this dynamic behavior
using mathematical expressions for the biochemical reaction rates of the system. While
computationally intensive, kinetic models can be used to understand, predict, and evaluate the
effects of targeted bioprocess manipulations and support the design of enhanced bioprocessing
systems. Recent kinetic models of eukaryotes have been developed and can aid in cell line
optimization[34,36]. Mammalian N-linked glycosylation was integrated with a metabolic kinetic
model [37] to rationally manipulate the glycoprofile of a secreted IgG in CHO[38]. Kinetic
modeling was employed to predict cell culture performance and screen optimal temperature
shift strategies[39] and predict the impact of select amino acids on cell growth, metabolism,
and mAb production and optimization of fed-batch culture feeding in monoclonal antibody-

producing CHO cells[39,40].

Data-driven inference models

Knowledge-based parametric models offer insightful contextualization to omic data, but
they can be computationally intensive and require technical expertise. If these models are not
accessible or not compatible with the omic data type(s), we suggest the use of data-driven
inference models. Data-driven models for omic analyses are built upon statistical methods to
interpret and extract useful information from high-dimensional data[41-43]. To increase
specificity, some models have evolved to integrate biological assumptions and context. These
methods are valuable when the studied problem contains many unknowns and/or the number

of samples capturing the expected biological variability is present. We provide an overview of
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the following classes of data-driven models, ranging from biology-independent to biology-
dependent methodologies, and how they are applied for omic data analysis: (1) unsupervised
and supervised, (2) correlation networks, and (3) empirical-based, interactome inference
models.

Unsupervised and supervised techniques are built upon statistical algorithms lacking
mechanistic or biological considerations, but can enrich meaningful patterns in omic data.
Unsupervised techniques are useful in the validation of sample profiles, identification of
subpopulations, detection of biological patterns, and integration of multi-omic data (Box 3).
Principal component analysis (PCA) is commonly applied as quality control to validate sample
similarities and to detect obvious technical factors such as batch effects[44-50], while k-means
or hierarchical clustering can facilitate the identification of subject subpopulations or feature
groups that exhibit similar behaviors[47,50,51]. Independent component analysis (ICA) and
Markov clustering can identify biologically meaningful interactions between molecular species
as demonstrated in E.coli [52] and human [53] omic data. Meanwhile, supervised techniques
leverage high-dimensional data to predict continuous phenotypes like endpoint titer or cell
density (regression; Box 3) or to predict whether a cell line will be high- or low-producing
(classification; Box 3). End-point titer was predicted by partial least squares regression (PLS)
models trained with time-series metabolomic data[45] and process data[46]. Other
studies[44,54,55] obtained strong correlations between key metabolite concentrations and
performance attributes to identify targets for potential cell line screening and media
optimization. Similar to clinical case studies predicting patient phenotypes[56,57], supervised
learning across multiple omic levels—such as copy number, mutation data, transcriptomics, and
metabolomics—can predict cell line phenotypes. A combined approach using both unsupervised
and supervised methods on longitudinal multi-omics data helped identify the impact of culture
pH on culture performance, product titer, and product quality[58]. While these statistical
methods can deliver accurate predictions or global insight on groups of features, low
interpretability of latent variables and the lack of biological context can hinder actionability
when the studies aim to identify engineering targets or elucidate mechanisms causing the

phenotype of interest, and thus such analyses will often require further mechanistic study.
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Correlation networks combine unsupervised and supervised techniques with
mechanistic considerations to infer association of network-based target groups with phenotype
(Box 3). Weighted gene co-expression network analysis (WGCNA) can validate or discover co-
expressed biological networks. For example, WGCNA has been used on scRNA-Seq data to
resolve gene modules associated with an ER-stressed condition and to confirm biological
pathways enriched in respective subpopulations [59]. Meanwhile, gene regulatory network
(GRN) inference algorithms, such as SCENIC [60] and scGRNom [61] for single-cell RNA-seq and
ChEA3[62] for bulk RNA-seq, assume association, or co-expression, of gene targets with
transcription factors to predict gene network regulons and assess regulon enrichment. While
correlation network techniques can reduce thousands of targets to dozens or hundreds of
grouped targets, they also inevitably output false positive and indirect targets. These
limitations, however, can be addressed with the integration of additional omic layers to
correlate dynamics across hierarchical scales.

The integration of empirical and interaction context has produced network-based data-
inference tools leaning on the biology-dependent end of the spectrum. Ingenuity Pathway
Analysis (IPA)[63] and protein-protein Interaction (PPI) databases [64—66] are accessible tools in
this realm (Box 3). IPA can be a hypothesis generation tool by estimating pathway activity, and
as a targeted tool by identifying testable regulator targets and downstream effects within
pathways of interest. IPA was leveraged to identify and knock-out two repressors to improve
viral resistance in CHO cells[67]. Meanwhile, overlaying omic data on PPl networks—such as
PCNet[65], STRING[64], or self-constructed networks[68]—enhances mechanistic
understanding and target identification through contextualizing experimentally identified or
computationally inferred biological interactions. Transcriptome data were supplemented with
PPI networks to quantify secretory fitness variation across tissues and elucidate the role of
perturbed secretory machinery in human amyloidogenesis[68]. Similar methods can provide

mechanistic insight on secretory fitness in CHO and unravel key regulators.
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Hybrid models

There are challenges that accompany mechanistic models. GeMs are exceptional at
describing cellular mechanisms based on reaction stoichiometry and also cover all metabolic
pathways; however, they can suffer from their steady-state assumption and miss cellular
dynamics. On the other hand, kinetic models capture mechanistic details of dynamic cellular
processes, but suffer from the computational burden associated with parameter estimation,
which limits full genomic coverage. Recent applications have combined machine learning and
parametric mechanistic modeling frameworks to overcome some of these inherent challenges.
Machine learning (ML) can help restructure and modify mechanistic models, or it can facilitate
and tune model parameterization. For example, ML methods can estimate model parameters
from experimental omic data[69—72]. Alternatively, flux solutions obtained from constraint-
based models can provide an additional “omic layer” and be integrated into ML approaches to
predict growth conditions[73], pathway engineering for optimized tryptophan production[74],
and even drug side-effects[75]. Similar approaches are being applied towards creating digital
twins of bioreactors[35,76,77] to enable in silico bioprocess optimization—aiming to decrease
the number of iterations needed for process optimization. Recently a hybrid kinetic/artificial
neural network (ANN) glycosylation model successfully predicted the glycoform distribution in
monoclonal antibodies[78]. The hybrid model consists of two kinetic modules describing CHO
cell metabolism and nucleotide sugar donor synthesis, feeding into a novel ANN model of
glycosylation[79]. These types of synergistic approaches allow incorporation of key mechanistic

information in otherwise biologically agnostic learning processes[80].

Concluding remarks and future perspectives

There is a need to clearly define where, when, and how omics can be used to effectively
improve cell line development and optimize bioprocesses. Many factors contribute to the
actionability of omics approaches, but we find systems biology modeling strategies are
particularly poised to enable biotechnology researchers to enrich omic experiments with
interpretable results. Importantly, they can make results from omics studies more actionable to

enhance cell factory design. However, while we endorse the implementation of inherently
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more mechanistic models such as GeMs, we recognize that these and emerging tools need to
improve accessibility, ease of execution, and accuracy for more widespread integration[81,82].

We focused on selecting downstream analysis tools for integration and interpretation of
omic data; however, it is important to establish implementation strategies prior to
experimentation. Researchers should clearly identify the biological questions they wish to
interrogate and choose relevant experimental design and omic approaches accordingly. The
experimental design should consider the number of features output by the omic tool(s) and
subsequent analysis method when deciding on sample size and conditions. Accordingly, we
strongly suggest that feature rich datasets be analyzed via mechanistic models if large sample
numbers are not available to enable purely data-driven inference based approaches.
Meanwhile, the omic approaches employed should be prioritized based on the ability to allow
for the earliest, fastest, and most likely to succeed interventions.

Finally, we see a need to develop new resources in the industrial community to increase
the size and diversity of omic datasets (see Outstanding questions). In particular, single-cell,
epigenome, and interactome data are largely underutilized in biopharma studies. Such omic
methods can provide orthogonal value to the omnipresent genomic, metabolomic,
transcriptomic, and proteomic profiling [13,83]. Compared to disease and academic research,
the CHO space lacks dedicated species-specific open-source databases such as TCGA[84],
ICGC[85], ENCODE[86,87], etc., along with phenotypic databases[88], to facilitate benchmarking
and transparency in analytical best practices. Public data resources such as these also increase
statistical power in resolving biological patterns and targets. Reticence around data sharing is
understandable as data from industrial cell lines contain proprietary molecule sequences and
information supporting competitive advantages. However, the industry could significantly
accelerate the progress towards actionable omics with freedom to access a lot more data
relevant to the cell system, in addition to harnessing a more cohesive omics industrial

community, and integrating omic approaches with appropriate analytical tools.
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Box 1. Overview of the biopharmaceutical protein production process

Several steps are taken in the development of a production cell line. A few common steps are
as follows:
1) The sequence coding for the protein of interest (e.g. monoclonal antibody) is introduced

to the cell along with a selectable marker (e.g. dihydrofolate reductase or glutamine
synthetase) and integrated into the genome.

2) The resulting pool of cells is highly heterogeneous: some cells have integrated multiple
copies of the antibody gene and are producing appreciable quantities, while others may
be producing little to no product. Due to this and regulatory requirements, 100s to
1000s of single cells are isolated, grown, and evaluated to find the ‘winners’ which
produce high quantities and quality of the desired product.

3) The winners are subjected to bespoke, intensified process development to maximize the
amount of biotherapeutic generated. Owing to clonal variability and the plasticity of the
CHO genome, the optimal process will almost certainly differ for each cell line.

4) Additional care must be taken—either via process modification or clone selection—to
ensure that critical quality attributes (CQAs) such as glycosylation or aggregation are
maintained at appropriate levels.

This process can take upwards of a year and is repeated for every biotherapeutic protein in a
company's pipeline that aims to progress into clinical trials. Many steps of this process are
critical path activities, thus delays must be avoided and innovations that shorten timelines are

highly valuable.
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Box 2. Mechanistic modeling approaches

Genome-scale metabolic models (GeMs)

GeM reconstructions are mathematical representations of an organism's stoichiometry-based
mass-balanced metabolic reactions using gene-protein-reaction (GPR) associations that have
been formulated based on carefully curated genome annotations and experimental data[89—
91]. Since the first GeM of Haemophilus influenzae RD was reported in 1999[92], numerous
other GeMs have been published for a variety of organisms including industrially relevant
Escherichia coli[93], Saccharomyces cerevisiae[94], Bacillus subtilis[95,96], Pichia pastoris[97],
human[98], and CHO[99], most of which are accessible via the BiGG Models database[100].

ME models
Genome-scale models of metabolism and macromolecular expression (ME-models) integrate

Metabolism and Expression on a genome scale, permitting calculation of the cellular cost of

’

enzyme synthesis, in addition to stoichiometric balancing of the reaction(s) they catalyze[101].

These computational ME models provide a framework to determine a cell’s most protein-cost

effective way of carrying out its required biological functions. Due to challenges regarding

computational resources and model development, ME models have only been constructed for 3

organisms thus far: Thermotoga maritima, Escherichia coli, and Clostridium ljungdahlii.

Genome scale models of protein secretion

These computational models represent genome-scale stoichiometric reconstructions of
metabolism coupled to protein secretion. In 2013, the first genome-scale model for yeast
secretory machinery was constructed[32]. Following these efforts, models of mammalian
metabolism coupled to protein secretion were developed for human, mouse, and CHO
cells[31]. These models implement a protein-specific information matrix (PSIM) which
guantifies select protein attributes (e.g: disulfide bonds, N-linked and O-linked glycans,
transmembrane domains, protein length) for proteins of the secretome, enabling the
construction of protein-specific secretory models using the template reactions in the

reconstruction.
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Kinetic models

Kinetic models use mathematical expressions of biochemical reaction rates, which form mass
balance equations to capture the temporal behavior of the system. Unlike stoichiometric
models that only require stoichiometry and directionality constraints, kinetic models require a
considerable upfront investment for parameterization. Typically, enzyme characterization
experiments must be performed to experimentally determine these parameters. Various kinetic
parameterization approaches exist to determine the “best-fit” model that most closely
emulates experimental data. With the emergence of simulation-based methods of parameter
fitting such as Monte Carlo, the modeling community has advocated the use of multi-omic data

sets to precisely fit these coarse-grained models[102].

Text Box 3. Data inference modeling approaches

Unsupervised learning

Unsupervised techniques are statistical methods that reduce the feature (e.g. genes or other
molecular species) dimensions and to resolve patterns in unlabeled data that can correlate with
a phenotype of interest. Matrix factorization (e.g. PCA, independent component analysis (ICA),
non-negative matrix factorization (NMF)), clustering (e.g. k-means, hierarchical), and
autoencoders (ANN) identify sources of variation or separation in data. These approaches have
been broadly applied and underpin many machine learning tools. More recently, methods like
canonical correlation analysis (CCA) have been leveraged to integrate multi-omic data through

the conservation of complex data patterns across layers of high-dimensional data.

Supervised learning

Supervised techniques generally adapt the same statistical foundation as unsupervised
techniques and incorporate known data labels to consider association with dependent
variables. Also comprising the basis of many machine-learning predictive models, these
techniques fall under regression (e.g. PLS, gradient descent) and classification (e.g. support

vector machine (SVM), k-nearest neighbor (k-NN)). Supervised techniques range in
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transparency and explainability—tools like PLS and Random Forest can provide feature
importance metrics while neural networks and other black box approaches offer lower
transparency and explainability of the input features but capture non-linear or complex

relationships.

Correlation Networks

Correlation networks combine unsupervised and supervised techniques with mechanistic
considerations to infer association of network-based target groups with phenotype. Tools like
Weighted Gene Co-expression Network Analysis (WGCNA) and gene regulatory network (GRN)
inference implement dimension reduction techniques under biological topology based
assumptions. WGCNA can be used to find groups of co-expressed genes aggregated into
“eigengenes” with loadings that can be quantitatively correlated with phenotype metrics. GRN
methods assume association, or co-expression, of genes with transcription factors to predict
gene network regulons. GRN methods range from leveraging single-omic data (e.g. SCENIC built
for scRNA-seq data[60]), to multi-omic data (e.g. scGRNom[61]) where integration of

epigenomics provides an additional layer of mechanistic context to increase inference accuracy.

Empirical-based, interactome models

Empirically supported databases and protein-protein interaction networks offer mechanistic
contextualization over conventional statistical analysis. Ingenuity pathway analysis (IPA) is a
user-friendly platform and rich database that infers causal relationships and regulators, adding
mechanistic and directional context over standard overrepresentation pathway analysis and
GSEA against GO or KEGG. Protein-protein interaction (PPI) networks are experimentally
identified, or statistically inferred physical or functional interactions between proteins and can
be visualized or created using mass transfer dictated network propagation or user-friendly tools

such as Cytoscape[103].

Figure 1. Complexity of biotherapeutic protein production.

15


https://paperpile.com/c/Ap1OEk/dNrYA
https://paperpile.com/c/Ap1OEk/JB6r5
https://paperpile.com/c/Ap1OEk/cGxR

In biomanufacturing, there are multiple parameters and sources of complexity that must be
managed and optimized for a given cell culture process for a given process development project
(top). The end goal (bottom) for any process development effort is to generate large amounts
of high quality product. Changes can be made to either the cell line or to the cell culture
process, however these changes ultimately have to be evaluated based on their effect on titer,
product quality, and growth. While it is tempting to view each point of implementation as
independent, the effect of modifying either cell line or process cannot be understood in a
vacuum-—their interconnectedness represents the ultimate complexity in trying to assess,
understand, and engineer this system. Since the responsiveness of a clone to a given process
will vary depending on the underlying genotype, and the optimal process may vary considerably
from clone to clone, it is critical to consider this complexity when designing and interpreting
omic experiments. [HCPs: host cell proteins, DO: dissolved oxygen]

Figure 2. Key figure. Industrial application of actionable omics and key considerations.

To design and implement effective cell line and bioprocess based omic studies, there are
multiple considerations to maximize actionability. The outer arrow sequence represents the
general lifecycle of omic study conceptualization, experimentation, and implementation;
iterations of this process may be required to narrow down and validate biological targets. In
addition to these considerations, we note through the inner green arrow that the
implementation objectives guide all stages in the lifecycle and that stage interdependency can
constrain the methods toolbox and expected outcomes. For example, the implementation
strategy can inform both the expected target species to be intervened through cell line
engineering or process optimization—which informs the omic type(s)--but also the respective
analysis methods that can account for such biological scales or systems dynamics.

Glossary

ANN: Artificial neural networks constitute a variety of deep learning technology inspired by the
biological neural networks of the human brain. These networks consist of an input layer, one or
more hidden node layers, and an output layer. Each node (artificial neuron) has an associated
weight and threshold, and if the output of any individual node is above the given threshold
then that node is activated and sends data to the next layer in the network.

CQA: Critical quality attributes are physical, chemical, or biological properties or characteristics
that must be within an appropriate limit, range, or distribution to ensure the desired product
quality. A Quality-by-design framework is generally implemented to identify and define CQAs

per molecule program’s Quality Target Product Profile (QTPP).

16



DoE: Design of experiment is a structured data collection and analysis method used to study
the relationship between various factors hypothesized to affect key output variables.

GeM: Genome-scale metabolic models are mathematical network representations of the
metabolism formulated based on carefully curated genome annotations and experimental data.
GO: The Gene Ontology is a major bioinformatics initiative to unify the annotation of gene and
gene product attributes across species.

GRN: Gene regulatory networks are groups of genes identified or inferred to interact with each
other and possibly other molecular species to control cellular functions.

GSEA: Gene set enrichment analysis is a computational method to identify classes of genes that
show significant, concordant differences between two biological states (e.g., phenotypes).
Matrix Factorization: Methods such as Principal Component Analysis (PCA) Independent
Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) can extract latent
variables that represent biologically meaningful patterns to allow data interpretation or
visualization of high-dimensional data.

KEGG: Kyoto Encyclopedia of Genes and Genomes consists of a collection of databases related
to genomes, biological pathways, diseases, drugs, and chemical substances. According to the
developer, KEGG is a “computer representation” of the biological system integrating genetic
building blocks (genes/proteins), chemical building blocks (small molecules and reactions), and
wiring diagrams of molecular interaction and reaction networks.

NGS: Next-generation sequencing offers ultra-high throughput sequencing technology that has
revolutionized genomic research.

PLS: Partial least squares is a supervised regression method that decomposes data into principal
components as in PCA, except that the components maximize correlation with the dependent
variable. PLS and its variations are widely used in predictive machine learning models and can
be easily implemented for multivariate omic data.

PQ: Product quality refers to physical and chemical molecule attributes that may affect the
identity, efficacy, safety, or purity of the molecule and are closely monitored during cell line and

bioprocess experimentation. Examples of product quality attributes typically quantified are
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glycan species, molecular size variants (such as high, medium, low molecular weight species),

charged-base variants.
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