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Abstract: As the era of omics continues to expand with increasing ubiquity and success in both 

academia and industry, omics-based experiments are becoming commonplace in industrial 

biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line 

development. Omic technologies provide particularly valuable “observational” insights for 

discovery science, especially in academic research and industrial R&D; however, 

biomanufacturing requires a different paradigm to unlock  “actionable” insights from omics. 

Here we argue the value of omic experiments in biotechnology can be maximized with 

deliberate selection of omic approaches and forethought about analysis techniques. We 

describe important considerations when designing and implementing omic-based experiments, 

and discuss how systems biology analysis strategies can enhance efforts to obtain actionable 

insights in mammalian-based biologics production. 
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Towards actionable omics 

Biotechnology is an evolving research field that thrives off our ability to harness living 

organisms to develop invaluable products and technologies. This interdisciplinary 

manufacturing approach is employed across a range of industries including energy, material, 

food, agriculture, cosmetics, and pharmaceuticals[1]. The biopharmaceutical industry in 

particular has been successful in manufacturing life-saving recombinant biotherapeutics in 

mammalian cells for over 40 years. While considerable advances have been made–with product 

titers increasing from ~50 mg/L to >10 g/L for monoclonal antibodies, it is perhaps surprising to 

see that the fundamental steps underpinning the cell line generation and bioprocess 

development processes have remained nearly the same, perhaps differing only in scale (Box 1).   

Chinese hamster ovary (CHO) cells–the primary host system used for the manufacturing 

of biologics–are faced with challenges concerning the production of complex large molecules 

that meet stringent product quality (PQ) requirements. To meet industrial demands, various 

strategies have emerged to manipulate the physiological functions of cell factories at the gene 

level (genetic engineering) and modify the culture environment for optimal growth and 

production (bioprocess optimization). The rational design and optimization of such strategies 

require a functional understanding of the molecular components driving bioproduction. Omic 

technologies provide large-scale, systems-wide monitoring of a broad range of such molecular 

components.  

The sequencing of CHO and Chinese hamster genomes, the dramatic decrease in next-

generation sequencing (NGS) costs, the growing ease of generating diverse omic data, and the 

development of mammalian genome editing tools provide a valuable toolbox for a new era of 

rationally driven cell line generation and process development[2–5]. Indeed, decades of omics 

research have yielded examples demonstrating the value of these data; however, while some 

omics strategies are inherently actionable by providing targets directly linked to a phenotype of 

interest (e.g., CRISPR screens[6–10]), many omic technologies can prove observational (i.e., 

merely providing a momentary snapshot of the molecular composition of the cells) when 

analyzed using basic approaches. Thus, it can be challenging to deploy strategies to maximize 

actionable value from the experiments. By actionable we mean the ability (1) to identify a 

https://paperpile.com/c/Ap1OEk/q2lMA
https://paperpile.com/c/Ap1OEk/GdhRf+U1rmD+PUt7A+VrwKL
https://paperpile.com/c/Ap1OEk/lBQmQ+4M2ZF+RnAdE+2ETs2+tLsVG
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minimal set of targets driving the phenotype of interest, (2) to direct a clear strategy for 

engineering or optimization towards the phenotype of interest, and (3) to deploy the strategies 

in a project-compatible timeframe. We argue the value of omic experiments can be maximized 

with deliberate selection of omic approaches and forethought about analysis techniques. To 

this end, we outline what we believe are important considerations when designing and 

implementing omic-based experiments, and discuss how systems biology analysis strategies can 

enhance efforts to obtain actionable insights in biomanufacturing. 

 

Challenges to actionability in biopharmaceutical process development 

The timeline and platform-driven nature of the biologics industry has shaped how omic 

tools have been applied, and it is important to assess how it can be adapted to accommodate 

actionable omics strategies. The long, resource-intensive nature of cell line generation nearly 

necessitates that genetic engineering efforts be applied to the host cell—rather than 

introduced into a producing clone—as genetic modifications require further verification of 

clonality, cell line stability, and process optimization. Consequently, process optimization often 

remains the intervention of choice in the biopharmaceutical industry. 

While direct interventional studies such as media optimization design of experiments 

(DoEs) are effective, they do not answer the ‘why’ or ‘how’ of success and thus provide limited 

understanding for future work. In contrast, the measurement of  molecular profiles of a given 

clone in a given process with omics methods provides information about the cellular state tied 

to a given phenotype. These omic based approaches can thus inform future cell line 

engineering or process optimization efforts, but only when applied with careful forethought. 

The difficulty, regardless of approach, lies in the complexity of the system being 

engineered (Figure 1). The CHO genome is considerably larger than genomes of other industrial 

lines (e.g., Escherichia coli, yeast, etc.) and most genes remain uncharacterized in the context of 

protein production. Furthermore, the genomic plasticity exploited to generate highly 

productive cell lines through high-throughput screening means that a new clone may not 

respond as expected to a given bioprocess. 
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Given these complexities, extracting actionable insights from classical observational 

omic experiments (e.g., high feature number, low sample number, high background variability–

present in an experiment looking at transcriptomic data from a high producer vs low producer 

clone) is challenging. When comparisons yield 100s to 1000s of potential targets (e.g., 

differentially expressed genes), it becomes difficult to decipher which gene(s) are actually 

driving the variation in phenotype, since many transcriptional differences may be superfluous 

for the phenotype of interest. Fortunately, depending on the desired objective, capabilities, and 

timelines, a range of different approaches may be suitable to extract actionable insights from 

omic experiments. Here we highlight types of analysis tools and strategies that can extract 

actionable insights from observational omics. Specifically, the integration of multi-omic 

approaches with systems biology computational models can help drive actionability. 

 

Extracting actionable value from omics 

To maximize actionability from omics, we recommend designing and executing stages of 

omic studies under the framework and considerations as described in Figure 2, Key figure. Prior 

to any data generation and analysis, one should define a clear implementation strategy by 

connecting analysis approaches to intervention objectives under known technical and logistical 

constraints. We emphasize that the implementation strategy should influence not only the 

selection of omic tools, but also the analysis methods employed and the prioritization of 

enriched targets. Athieniti et al. recently provided a comprehensive review of multi-omic data 

types and integration strategies which can be leveraged in the experimental design process 

[11]. To guide the systematic analysis of otherwise observational omic data, here we highlight 4 

approaches to extract actionable information from omic experiments, ranging from rational 

experimental design to computational models. Depending on timelines, desired objectives, 

budgets, and tool availability, some approaches may be more desirable or could be infeasible. 

We provide explanations and examples of successful applications for each approach below. 

 

https://paperpile.com/c/Ap1OEk/FkVT
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Rational experimental design 

When the research question of interest is clearly defined and the root cause can be 

narrowed down to a reasonable set of molecular entities (e.g., dozens or a few hundred genes), 

it can be possible to derive actionable conclusions from small, rationally designed studies. As an 

example, a targeted proteomic study on high and low aggregation cell lines identified molecular 

mechanisms underlying cell aggregation[12,13]. By looking solely at the ‘surfaceome’ (surface 

protein sub-proteome) as the molecular entity(s) underpinning aggregation, the authors found 

proteins with differential abundance between the two cell lines and were able to decrease 

aggregation by knockdown of a surface protein. Other studies quantified the CHO secretome 

using proteomics to identify host cell proteins for removal to improve product quality or cell 

performance[14,15]. However, it is critical to predefine and selectively study only the 

responsible entities (e.g., surface proteins or host cell proteins) when sample numbers are low. 

For example, in classic ‘high producer vs low producer’ studies, the lack of actionability stems 

from high numbers of differentially expressed targets without practical ways to reduce the 

target list to a manageable number of testable hypotheses; furthermore, it is often unclear 

which genes are directly connected to productivity, and which are irrelevant genes that happen 

to have altered expression for other reasons (e.g., sharing a transcription factor). Furthermore, 

when analyzing low numbers of clones, it is quite likely that differences between clones stem 

from clonal variability rather than being causally linked to the phenotype of interest. 

 

Knowledge-based parametric models 

Knowledge-based parametric models can link genotype to phenotype on a mechanistic 

level to elucidate biological causation from omic data[16–18]. These network models employ 

carefully curated biochemical, genetic, and genomic data into a knowledgebase of an 

organism’s molecular components and their interactions[19].  With the integration of omic 

data, these models can guide the rational design of systems-level engineering targets for 

bioproduction. Here we describe two such classes of models with promising applications in the 

biopharmaceutical industry: (1) genome scale models and (2) kinetic models (Box 2). 

https://paperpile.com/c/Ap1OEk/QyHYw+n1o0W
https://paperpile.com/c/Ap1OEk/ydXpn+evXJQ
https://paperpile.com/c/Ap1OEk/QbsfD+vMlXP+UMTBH
https://paperpile.com/c/Ap1OEk/qpVhW
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Knowledgebases can help construct diverse biological networks, and success has been 

demonstrated with genome scale metabolic models (GeMs), thanks to decades of legacy 

biochemical research in metabolism[20]. The integration of omic data with GeMs to identify cell 

line engineering targets has been demonstrated. For example, multi-omics profiling in CHO has 

been integrated with GeM flux analysis to help identify metabolic bottlenecks and potential 

engineering targets in mAb-producing cells[21], and GeMs have been used to reveal cell-line 

specific variation to guide to the rational selection of hosts[22]. Other studies[23,24] 

successfully integrated omics with GeM simulations to design optimal bioprocessing conditions 

in mAb-producing CHO cells, resulting in an average titer increase of ~11.8% and approximate 

two-fold increase in total mAb expression respectively. Another study used omics data to 

obtain GeM simulations that guided media optimization to reduce growth inhibitory metabolite 

section[25]. These examples demonstrate how overlaying omics on a functional network 

contextualizes the data in terms of underlying biochemistry, and comparison of experimental 

data with model simulations can validate or refine hypotheses. Furthermore, omics data are 

often used to build and refine such models[26,27]. Importantly, the systems-level metabolic 

response and flux simulations permitted by these networks go beyond any type of analysis 

possible with generic metabolic pathway databases such as KEGG[28]. 

Over the years, GeMs have expanded to include additional cellular processes. A desire 

to model the biochemical reactions underlying gene expression (transcription and translation) 

resulted in genome-scale models of metabolism and macromolecular expression (ME-

models)[29,30]. Much like GeMs, ME-models can be platforms for the mechanistic integration 

of transcriptomic and proteomic data. In addition to expanding GeMs to include 

macromolecular expression networks, models can include core components of conventional 

protein secretion[31,32]. Many therapeutic proteins are clients of the secretory pathway, 

therefore a mechanistic understanding of pathway usage can provide novel insight into 

targeted engineering strategies. Furthermore, different biotherapeutics may utilize unique sets 

of secretory machinery exerting non-negligible metabolic demands on the host cell[14,31]. The 

resulting protein-specific models are able to calculate energetic costs and machinery demands 

for each secreted protein. Additional omic data can be integrated with the models and it was 

https://paperpile.com/c/Ap1OEk/pk5Zw
https://paperpile.com/c/Ap1OEk/Ceq2D
https://paperpile.com/c/Ap1OEk/gk0K
https://paperpile.com/c/Ap1OEk/YvAb6+JuKv3
https://paperpile.com/c/Ap1OEk/3Ve9C
https://paperpile.com/c/Ap1OEk/oDoI+hMEA
https://paperpile.com/c/Ap1OEk/8WClF
https://paperpile.com/c/Ap1OEk/j5NPs+JcWz4
https://paperpile.com/c/Ap1OEk/1KF5L+8CBjl
https://paperpile.com/c/Ap1OEk/1KF5L+ydXpn
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found that highly secretory cells have adapted to downregulate the expression and secretion of 

expensive native proteins[31]. Identification of costly native proteins that compete for cell 

resources present targeted engineering strategies for cell line engineering.  Furthermore, the 

models were used to successfully optimize the production of monoclonal antibodies[31] and 

feeding strategies[33].   

Complementary to the abovementioned constraint-based genome-scale stoichiometric 

models, kinetic models can effectively describe the dynamic character of mammalian cell 

culture and protein production[34,35]. These systems are non-stationary in nature, and depend 

on time and system history.  Kinetic models can mechanistically model this dynamic behavior 

using mathematical expressions for the biochemical reaction rates of the system. While 

computationally intensive, kinetic models can be used to understand, predict, and evaluate the 

effects of targeted bioprocess manipulations and support the design of enhanced bioprocessing 

systems. Recent kinetic models of eukaryotes have been developed and can aid in cell line 

optimization[34,36]. Mammalian N-linked glycosylation was integrated with a metabolic kinetic 

model [37] to rationally manipulate the glycoprofile of a secreted IgG in CHO[38].  Kinetic 

modeling was employed to predict cell culture performance and screen optimal temperature 

shift strategies[39] and predict the impact of select amino acids on cell growth, metabolism, 

and mAb production and optimization of fed-batch culture feeding in monoclonal antibody-

producing CHO cells[39,40].  

 

Data-driven inference models 

Knowledge-based parametric models offer insightful contextualization to omic data, but 

they can be computationally intensive and require technical expertise. If these models are not 

accessible or not compatible with the omic data type(s), we suggest the use of data-driven 

inference models. Data-driven models for omic analyses are built upon statistical methods to 

interpret and extract useful information from high-dimensional data[41–43]. To increase 

specificity, some models have evolved to integrate biological assumptions and context. These 

methods are valuable when the studied problem contains many unknowns and/or the number 

of samples capturing the expected biological variability is present. We provide an overview of 

https://paperpile.com/c/Ap1OEk/1KF5L
https://paperpile.com/c/Ap1OEk/1KF5L
https://paperpile.com/c/Ap1OEk/LfTfZ
https://paperpile.com/c/Ap1OEk/HrDNI+q9yVu
https://paperpile.com/c/Ap1OEk/cGYmZ+HrDNI
https://paperpile.com/c/Ap1OEk/1Gb0C
https://paperpile.com/c/Ap1OEk/GqDa3
https://paperpile.com/c/Ap1OEk/ngOYL
https://paperpile.com/c/Ap1OEk/b5Sjv+ngOYL
https://paperpile.com/c/Ap1OEk/aWauA+mecdx+zf5kR
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the following classes of data-driven models, ranging from biology-independent to biology-

dependent methodologies, and how they are applied for omic data analysis: (1) unsupervised 

and supervised, (2) correlation networks, and (3) empirical-based, interactome inference 

models. 

Unsupervised and supervised techniques are built upon statistical algorithms lacking 

mechanistic or biological considerations, but can enrich meaningful patterns in omic data. 

Unsupervised techniques are useful in the validation of sample profiles, identification of 

subpopulations, detection of biological patterns, and integration of multi-omic data (Box 3). 

Principal component analysis (PCA) is commonly applied as quality control to validate sample 

similarities and to detect obvious technical factors such as batch effects[44–50], while k-means 

or hierarchical clustering can facilitate the identification of subject subpopulations or feature 

groups that exhibit similar behaviors[47,50,51]. Independent component analysis (ICA) and 

Markov clustering can identify biologically meaningful interactions between molecular species 

as demonstrated in E.coli [52] and human [53] omic data. Meanwhile, supervised techniques 

leverage high-dimensional data to predict continuous phenotypes like endpoint titer or cell 

density (regression; Box 3) or to predict whether a cell line will be high- or low-producing 

(classification; Box 3). End-point titer was predicted by partial least squares regression (PLS) 

models trained with time-series metabolomic data[45] and process data[46]. Other 

studies[44,54,55] obtained strong correlations between key metabolite concentrations and 

performance attributes to identify targets for potential cell line screening and media 

optimization. Similar to clinical case studies predicting patient phenotypes[56,57], supervised 

learning across multiple omic levels—such as copy number, mutation data, transcriptomics, and 

metabolomics–can predict cell line phenotypes. A combined approach using both unsupervised 

and supervised methods on longitudinal multi-omics data helped identify the impact of culture 

pH on culture performance, product titer, and product quality[58]. While these statistical 

methods can deliver accurate predictions or global insight on groups of features, low 

interpretability of latent variables and the lack of biological context can hinder actionability 

when the studies aim to identify engineering targets or elucidate mechanisms causing the 

phenotype of interest, and thus such analyses will often require further mechanistic study.  

https://paperpile.com/c/Ap1OEk/OU3A6+sdO4u+Vknko+NYKzT+xo8DJ+WFDs8+yn8zC
https://paperpile.com/c/Ap1OEk/yn8zC+TSeOn+NYKzT
https://paperpile.com/c/Ap1OEk/cazf2
https://paperpile.com/c/Ap1OEk/JWJAB
https://paperpile.com/c/Ap1OEk/sdO4u
https://paperpile.com/c/Ap1OEk/Vknko
https://paperpile.com/c/Ap1OEk/a832t+Xd3hY+OU3A6
https://paperpile.com/c/Ap1OEk/ohMA3+hjHEe
https://paperpile.com/c/Ap1OEk/VKfV
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Correlation networks combine unsupervised and supervised techniques with  

mechanistic considerations to infer association of network-based target groups with phenotype 

(Box 3). Weighted gene co-expression network analysis (WGCNA) can validate or discover co-

expressed biological networks. For example, WGCNA has been used on scRNA-Seq data to 

resolve gene modules associated with an ER-stressed condition and to confirm biological 

pathways enriched in respective subpopulations [59]. Meanwhile, gene regulatory network 

(GRN) inference algorithms, such as SCENIC [60] and scGRNom [61] for single-cell RNA-seq and 

ChEA3[62] for bulk RNA-seq, assume  association, or co-expression, of gene targets with 

transcription factors to predict gene network regulons and assess regulon enrichment. While 

correlation network techniques can reduce thousands of targets to dozens or hundreds of 

grouped targets, they also inevitably output false positive and indirect targets. These 

limitations, however, can be addressed with the integration of additional omic layers to 

correlate dynamics across hierarchical scales. 

The integration of empirical and interaction context has produced network-based data-

inference tools leaning on the biology-dependent end of the spectrum. Ingenuity Pathway 

Analysis (IPA)[63] and protein-protein Interaction (PPI) databases [64–66] are accessible tools in 

this realm (Box 3). IPA can be a hypothesis generation tool by estimating pathway activity, and 

as a targeted tool by identifying testable regulator targets and downstream effects within 

pathways of interest. IPA was leveraged to identify and knock-out two repressors to improve 

viral resistance in CHO cells[67]. Meanwhile, overlaying omic data on PPI networks—such as 

PCNet[65], STRING[64], or self-constructed networks[68]—enhances mechanistic 

understanding and target identification through contextualizing experimentally identified or 

computationally inferred biological interactions. Transcriptome data were supplemented with 

PPI networks to quantify secretory fitness variation across tissues and elucidate the role of 

perturbed secretory machinery in human amyloidogenesis[68]. Similar methods can provide 

mechanistic insight on secretory fitness in CHO and unravel key regulators. 

 

https://paperpile.com/c/Ap1OEk/zSyUw
https://paperpile.com/c/Ap1OEk/dNrYA
https://paperpile.com/c/Ap1OEk/JB6r5
https://paperpile.com/c/Ap1OEk/81L2N
https://paperpile.com/c/Ap1OEk/cN0ls
https://paperpile.com/c/Ap1OEk/Ry3Pa+8Gv37+gAZrZ
https://paperpile.com/c/Ap1OEk/tOFrL
https://paperpile.com/c/Ap1OEk/8Gv37
https://paperpile.com/c/Ap1OEk/Ry3Pa
https://paperpile.com/c/Ap1OEk/eRU36
https://paperpile.com/c/Ap1OEk/eRU36
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Hybrid models 

There are challenges that accompany mechanistic models. GeMs are exceptional at 

describing cellular mechanisms based on reaction stoichiometry and also cover all metabolic 

pathways; however, they can suffer from their steady-state assumption and miss cellular 

dynamics.  On the other hand, kinetic models capture mechanistic details of dynamic cellular 

processes, but suffer from the computational burden associated with parameter estimation, 

which limits full genomic coverage. Recent applications have combined machine learning and 

parametric mechanistic modeling frameworks to overcome some of these inherent challenges. 

Machine learning (ML) can help restructure and modify mechanistic models, or it can facilitate 

and tune model parameterization. For example, ML methods can estimate model parameters 

from experimental omic data[69–72]. Alternatively, flux solutions obtained from constraint-

based models can provide an additional “omic layer” and be integrated into ML approaches to 

predict growth conditions[73], pathway engineering for optimized tryptophan production[74], 

and even drug side-effects[75]. Similar approaches are being applied towards creating digital 

twins of bioreactors[35,76,77] to enable in silico bioprocess optimization–aiming to decrease 

the number of iterations needed for process optimization. Recently a hybrid kinetic/artificial 

neural network (ANN) glycosylation model successfully predicted the glycoform distribution in 

monoclonal antibodies[78].  The hybrid model consists of two kinetic modules describing CHO 

cell metabolism and nucleotide sugar donor synthesis, feeding into a novel ANN model of 

glycosylation[79]. These types of synergistic approaches allow incorporation of key mechanistic 

information in otherwise biologically agnostic learning processes[80]. 

 

Concluding remarks and future perspectives 

There is a need to clearly define where, when, and how omics can be used to effectively 

improve cell line development and optimize bioprocesses. Many factors contribute to the 

actionability of omics approaches, but we find systems biology modeling strategies are 

particularly poised to enable biotechnology researchers to enrich omic experiments with 

interpretable results. Importantly, they can make results from omics studies more actionable to 

enhance cell factory design. However, while we endorse the implementation of inherently 

https://paperpile.com/c/Ap1OEk/sXVLs+LV5AY+8uuKI+djPnf
https://paperpile.com/c/Ap1OEk/zFSKe
https://paperpile.com/c/Ap1OEk/ZJEfZ
https://paperpile.com/c/Ap1OEk/Et563
https://paperpile.com/c/Ap1OEk/e83kN+q9yVu+8v8CW
https://paperpile.com/c/Ap1OEk/hmQMS
https://paperpile.com/c/Ap1OEk/v25MF
https://paperpile.com/c/Ap1OEk/1v8Fi
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more mechanistic models such as GeMs, we recognize that these and emerging tools need to 

improve accessibility, ease of execution, and accuracy for more widespread integration[81,82]. 

We focused on selecting downstream analysis tools for integration and interpretation of 

omic data; however, it is important to establish implementation strategies prior to 

experimentation.  Researchers should clearly identify the biological questions they wish to 

interrogate and choose relevant experimental design and omic approaches accordingly. The 

experimental design should consider the number of features output by the omic tool(s) and 

subsequent analysis method when deciding on sample size and conditions. Accordingly, we 

strongly suggest that feature rich datasets be analyzed via mechanistic models if large sample 

numbers are not available to enable purely data-driven inference based approaches. 

Meanwhile, the omic approaches employed should be prioritized based on the ability to allow 

for the earliest, fastest, and most likely to succeed interventions.   

Finally, we see a need to develop new resources in the industrial community to increase 

the size and diversity of omic datasets (see Outstanding questions). In particular, single-cell, 

epigenome, and interactome data are largely underutilized in biopharma studies. Such omic 

methods can provide orthogonal value to the omnipresent genomic, metabolomic, 

transcriptomic, and proteomic profiling [13,83]. Compared to disease and academic research, 

the CHO space lacks dedicated species-specific open-source databases such as TCGA[84], 

ICGC[85], ENCODE[86,87], etc., along with phenotypic databases[88], to facilitate benchmarking 

and transparency in analytical best practices. Public data resources such as these also increase 

statistical power in resolving biological patterns and targets. Reticence around data sharing is 

understandable as data from industrial cell lines contain proprietary molecule sequences and 

information supporting competitive advantages. However, the industry could significantly 

accelerate the progress towards actionable omics with freedom to access a lot more data 

relevant to the cell system, in addition to harnessing a more cohesive omics industrial 

community, and integrating omic approaches with appropriate analytical tools. 

 

https://paperpile.com/c/Ap1OEk/iNxQJ+qFGDv
https://paperpile.com/c/Ap1OEk/n1o0W+cQKG
https://paperpile.com/c/Ap1OEk/ugUT2
https://paperpile.com/c/Ap1OEk/3WTpE
https://paperpile.com/c/Ap1OEk/b35iT+wa06J
https://paperpile.com/c/Ap1OEk/uViqp
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Box 1. Overview of the biopharmaceutical protein production process 

Several steps are taken in the development of a production cell line. A few common steps are 

as follows: 

1) The sequence coding for the protein of interest (e.g. monoclonal antibody) is introduced 

to the cell along with a selectable marker (e.g. dihydrofolate reductase or glutamine 

synthetase) and integrated into the genome. 

2) The resulting pool of cells is highly heterogeneous: some cells have integrated multiple 

copies of the antibody gene and are producing appreciable quantities, while others may 

be producing little to no product. Due to this and regulatory requirements, 100s to 

1000s of single cells are isolated, grown, and evaluated to find the ‘winners’ which 

produce high quantities and quality of the desired product. 

3) The winners are subjected to bespoke, intensified process development to maximize the 

amount of biotherapeutic generated. Owing to clonal variability and the plasticity of the 

CHO genome, the optimal process will almost certainly differ for each cell line. 

4) Additional care must be taken–either via process modification or clone selection–to 

ensure that critical quality attributes (CQAs) such as glycosylation or aggregation are 

maintained at appropriate levels.  

This process can take upwards of a year and is repeated for every biotherapeutic protein in a 

company's pipeline that aims to progress into clinical trials. Many steps of this process are 

critical path activities, thus delays must be avoided and innovations that shorten timelines are 

highly valuable.  
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Box 2. Mechanistic modeling approaches 

Genome-scale metabolic models (GeMs) 

GeM reconstructions are mathematical representations of an organism's stoichiometry-based, 

mass-balanced metabolic reactions using gene-protein-reaction (GPR) associations that have 

been formulated based on carefully curated genome annotations and experimental data[89–

91].  Since the first GeM of Haemophilus influenzae RD was reported in 1999[92], numerous 

other GeMs have been published for a variety of organisms including industrially relevant 

Escherichia coli[93], Saccharomyces cerevisiae[94], Bacillus subtilis[95,96], Pichia pastoris[97],  

human[98], and CHO[99], most of which are accessible via the BiGG Models database[100].   

 

ME models 

Genome-scale models of metabolism and macromolecular expression (ME-models) integrate 

Metabolism and Expression on a genome scale, permitting calculation of the cellular cost of 

enzyme synthesis, in addition to stoichiometric balancing of the reaction(s) they catalyze[101].  

These computational ME models provide a framework to determine a cell’s most protein-cost-

effective way of carrying out its required biological functions. Due to challenges regarding 

computational resources and model development, ME models have only been constructed for 3 

organisms thus far: Thermotoga maritima, Escherichia coli, and Clostridium ljungdahlii. 

 

Genome scale models of protein secretion 

These computational models represent genome-scale stoichiometric reconstructions of 

metabolism coupled to protein secretion. In 2013, the first genome-scale model for yeast 

secretory machinery was constructed[32]. Following these efforts, models of mammalian 

metabolism coupled to protein secretion were developed for human, mouse, and CHO 

cells[31]. These models implement a protein-specific information matrix (PSIM) which 

quantifies select protein attributes (e.g: disulfide bonds, N-linked and O-linked glycans, 

transmembrane domains, protein length) for proteins of the secretome, enabling the 

construction of protein-specific secretory models using the template reactions in the 

reconstruction. 

https://paperpile.com/c/Ap1OEk/cpou3+95SK1+agqSy
https://paperpile.com/c/Ap1OEk/cpou3+95SK1+agqSy
https://paperpile.com/c/Ap1OEk/sxzah
https://paperpile.com/c/Ap1OEk/yYDF1
https://paperpile.com/c/Ap1OEk/FLiQF
https://paperpile.com/c/Ap1OEk/UpjU4+qiq4Q
https://paperpile.com/c/Ap1OEk/Rp2iF
https://paperpile.com/c/Ap1OEk/Z1NPH
https://paperpile.com/c/Ap1OEk/UAN2u
https://paperpile.com/c/Ap1OEk/1mzDF
https://paperpile.com/c/Ap1OEk/zxouR
https://paperpile.com/c/Ap1OEk/8CBjl
https://paperpile.com/c/Ap1OEk/1KF5L
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Kinetic models 

Kinetic models use mathematical expressions of biochemical reaction rates, which form mass 

balance equations to capture the temporal behavior of the system. Unlike stoichiometric 

models that only require stoichiometry and directionality constraints, kinetic models require a 

considerable upfront investment for parameterization. Typically, enzyme characterization 

experiments must be performed to experimentally determine these parameters. Various kinetic 

parameterization approaches exist to determine the “best-fit” model that most closely 

emulates experimental data. With the emergence of simulation-based methods of parameter 

fitting such as Monte Carlo, the modeling community has advocated the use of multi-omic data 

sets to precisely fit these coarse-grained models[102].  

 

Text Box 3. Data inference modeling approaches 

Unsupervised learning 

Unsupervised techniques are statistical methods that reduce the feature (e.g. genes or other 

molecular species) dimensions and to resolve patterns in unlabeled data that can correlate with 

a phenotype of interest. Matrix factorization (e.g. PCA, independent component analysis (ICA), 

non-negative matrix factorization (NMF)), clustering (e.g. k-means, hierarchical), and 

autoencoders (ANN) identify sources of variation or separation in data. These approaches have 

been broadly applied and underpin many machine learning tools. More recently, methods like 

canonical correlation analysis (CCA) have been leveraged to integrate multi-omic data through 

the conservation of complex data patterns across layers of high-dimensional data.  

  

Supervised learning 

Supervised techniques generally adapt the same statistical foundation as unsupervised 

techniques and incorporate known data labels to consider association with dependent 

variables. Also comprising the basis of many machine-learning predictive models, these 

techniques fall under regression (e.g. PLS, gradient descent) and classification (e.g. support 

vector machine (SVM), k-nearest neighbor (k-NN)). Supervised techniques range in 

https://paperpile.com/c/Ap1OEk/u9bMr
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transparency and explainability–tools like PLS and Random Forest can provide feature 

importance metrics while neural networks and other black box approaches offer lower 

transparency and explainability of the input features but capture non-linear or complex 

relationships. 

 

Correlation Networks 

Correlation networks combine unsupervised and supervised techniques with mechanistic 

considerations to infer association of network-based target groups with phenotype. Tools like 

Weighted Gene Co-expression Network Analysis (WGCNA) and gene regulatory network (GRN) 

inference implement dimension reduction techniques under biological topology based 

assumptions. WGCNA can be used to find groups of co-expressed genes aggregated into 

“eigengenes” with loadings that can be quantitatively correlated with phenotype metrics. GRN 

methods assume association, or co-expression, of genes with transcription factors to predict 

gene network regulons. GRN methods range from leveraging single-omic data (e.g. SCENIC built 

for scRNA-seq data[60]), to multi-omic data (e.g. scGRNom[61]) where integration of 

epigenomics provides an additional layer of mechanistic context to increase inference accuracy. 

 

Empirical-based, interactome models 

Empirically supported databases and protein-protein interaction networks offer mechanistic 

contextualization over conventional statistical analysis. Ingenuity pathway analysis (IPA) is a 

user-friendly platform and rich database that infers causal relationships and regulators, adding 

mechanistic and directional context over standard overrepresentation pathway analysis and 

GSEA against GO or KEGG. Protein-protein interaction (PPI) networks are experimentally 

identified, or statistically inferred physical or functional interactions between proteins and can 

be visualized or created using mass transfer dictated network propagation or user-friendly tools 

such as Cytoscape[103]. 

  

 

Figure 1. Complexity of biotherapeutic protein production. 

https://paperpile.com/c/Ap1OEk/dNrYA
https://paperpile.com/c/Ap1OEk/JB6r5
https://paperpile.com/c/Ap1OEk/cGxR
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In biomanufacturing, there are multiple parameters and sources of complexity that must be 

managed and optimized for a given cell culture process for a given process development project 

(top). The end goal (bottom) for any process development effort is to generate large amounts 

of high quality product. Changes can be made to either the cell line or to the cell culture 

process, however these changes ultimately have to be evaluated based on their effect on titer, 

product quality, and growth. While it is tempting to view each point of implementation as 

independent, the effect of modifying either cell line or process cannot be understood in a 

vacuum–their interconnectedness represents the ultimate complexity in trying to assess, 

understand, and engineer this system. Since the responsiveness of a clone to a given process 

will vary depending on the underlying genotype, and the optimal process may vary considerably 

from clone to clone, it is critical to consider this complexity when designing and interpreting 

omic experiments. [HCPs: host cell proteins, DO: dissolved oxygen] 

 

Figure 2. Key figure. Industrial application of actionable omics and key considerations. 

To design and implement effective cell line and bioprocess based omic studies, there are 

multiple considerations to maximize actionability. The outer arrow sequence represents the 

general lifecycle of omic study conceptualization, experimentation, and implementation; 

iterations of this process may be required to narrow down and validate biological targets. In 

addition to these considerations, we note through the inner green arrow that the 

implementation objectives guide all stages in the lifecycle and that stage interdependency can 

constrain the methods toolbox and expected outcomes. For example, the implementation 

strategy can inform both the expected target species to be intervened through cell line 

engineering or process optimization–which informs the omic type(s)--but also the respective 

analysis methods that can account for such biological scales or systems dynamics. 

 

Glossary 

ANN: Artificial neural networks constitute a variety of deep learning technology inspired by the 

biological neural networks of the human brain. These networks consist of an input layer, one or 

more hidden node layers, and an output layer.  Each node (artificial neuron) has an associated 

weight and threshold, and if the output of any individual node is above the given threshold 

then that node is activated and sends data to the next layer in the network. 

CQA: Critical quality attributes are physical, chemical, or biological properties or characteristics 

that must be within an appropriate limit, range, or distribution to ensure the desired product 

quality. A Quality-by-design framework is generally implemented to identify and define CQAs 

per molecule program’s Quality Target Product Profile (QTPP). 
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DoE:  Design of experiment is a structured data collection and analysis method used to study 

the relationship between various factors hypothesized to affect key output variables. 

GeM: Genome-scale metabolic models are mathematical network representations of the 

metabolism formulated based on carefully curated genome annotations and experimental data. 

GO: The Gene Ontology is a major bioinformatics initiative to unify the annotation of gene and 

gene product attributes across species. 

GRN: Gene regulatory networks are groups of genes identified or inferred to interact with each 

other and possibly other molecular species to control cellular functions. 

GSEA: Gene set enrichment analysis is a computational method to identify classes of genes that 

show significant, concordant differences between two biological states (e.g.,  phenotypes). 

Matrix Factorization: Methods such as Principal Component Analysis (PCA) Independent 

Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) can extract latent 

variables that represent biologically meaningful patterns to allow data interpretation or 

visualization of high-dimensional data.  

KEGG: Kyoto Encyclopedia of Genes and Genomes consists of a collection of databases related 

to genomes, biological pathways, diseases, drugs, and chemical substances.  According to the 

developer, KEGG is a “computer representation” of the biological system integrating genetic 

building blocks (genes/proteins), chemical building blocks (small molecules and reactions), and 

wiring diagrams of molecular interaction and reaction networks.  

NGS: Next-generation sequencing offers ultra-high throughput sequencing technology that has 

revolutionized genomic research. 

PLS: Partial least squares is a supervised regression method that decomposes data into principal 

components as in PCA, except that the components maximize correlation with the dependent 

variable. PLS and its variations are widely used in predictive machine learning models and can 

be easily implemented for multivariate omic data. 

PQ:  Product quality refers to physical and chemical molecule attributes that may affect the 

identity, efficacy, safety, or purity of the molecule and are closely monitored during cell line and 

bioprocess experimentation. Examples of product quality attributes typically quantified are 
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glycan species, molecular size variants (such as high, medium, low molecular weight species), 

charged-base variants. 
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