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Abstract
The degree of a based graph is the number of essential

non-basepoint vertices after generic perturbation. Hatcher–
Vogtmann’s degree theorem states that the subcomplex of
Auter Space of graphs of degree at most d is (d− 1)-connected.
We extend the definition of degree to the simplicial closure of
Auter Space and prove a version of Hatcher–Vogtmann’s result
in this context.

Introduction

Auter Space, denoted An, is a version of Teichmüller space for automorphism
groups of free groups. Outer Space, the analogous construction for Outer automor-
phism groups, was introduced by Culler–Vogtmann [CV86]. Auter Space is a space
of connected based marked metric graphs. Metric means the edges are equipped with
a length (which sums to 1) and marked means we fix the data of an isomorphism
between the fundamental group of the graph and the free group on n letters. Vertices
of valence 1 or 2 are not allowed. This space has been instrumental for many calcula-
tions of the homology of Aut(Fn) and its subgroups (see e.g. [HV98c, CHKV16]).
To study homological stability properties of Aut(Fn), Hatcher–Vogtmann [HV98a]
proved a “degree theorem” for Auter Space. The degree of a based graph Γ ∈ An is
defined to be

deg(Γ) :=
∑
v ̸=v0

(valence(v)− 2)

where the sum is taken over all vertices of Γ other than the basepoint vertex v0.
Qualitatively, deg(Γ) is the number of non-basepoint vertices of a generic perturbation
of Γ fixing a neighborhood of the basepoint. Generic in this context implies the valence
of every non-basepoint vertex will be 3. For example, the graph in the center of
Figure 1 has degree 2 since a perturbation of it is the graph on the right of Figure 1
which has 2 non-basepoint vertices.

Let A⩽d
n denote the subcomplex of An of graphs of degree⩽ d. Hatcher–Vogtmann’s

degree theorem states that A⩽d
n is highly connected.

Theorem 0.1 (Hatcher–Vogtmann). A⩽d
n is (d− 1)-connected.
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Figure 1: Graphs of degree 2

Our main result is a version of this theorem for the simplicial closure of Auter
Space. In this introduction, we will describe a heuristic model of the simplicial clo-
sure of Auter Space as a space of graphs. However, in the body of the paper, we
will use a model for the simplicial closure of Auter Space in terms of a simplicial
complex of sphere systems in a certain 3-manifold (see Definition 1.3). The connec-
tion between spaces of graphs and complexes of sphere systems dates back to work
of Hatcher [Hat95, Appendix]. See Brück [Brü20, Section 4.7.1] for a discussion of
sphere system models of the simplicial closure of Outer Space.

Recall that each edge in a graph in An has a length, and the sum of the lengths
is required to be equal to 1. If the edge is not a loop, then the length of the edge
is allowed to converge to 0 and the associated edge in the graph is collapsed. The
simplicial closure of Auter Space, denoted An, is a partial compactification where
loops are allowed to collapse as well. Vertices are labeled with a natural number
(genus) indicating how many loops have been shrunk (as well as extra data relating
to the marking). For example, as the top loop in the middle graph in Figure 1 shrinks,
it converges to the labeled graph on the left in the simplicial closure. The genus of a
vertex should be though of as the number of infinitesimal loops based at the vertex.
Vertices of valence 1 or 2 are now allowed if they have positive genus.

We define the degree of a graph Γ in An to be

deg(Γ) :=
∑
v ̸=v0

(valence(v) + 2 · genus(v)− 2).

We can still think of deg(Γ) as the number of non-basepoint vertices of a generic
perturbation of Γ. For example, a perturbation of the graph on left of Figure 1 is the
graph on the right which has 2 non-basepoint vertices. The factor of 2 on the genus
term in the sum reflects the fact that loops contribute twice to the valence and the
genus of a vertex is viewed as the number of infinitesimal loops based at that vertex.

Analogously, we define A⩽d

n to be the subcomplex of An consisting of graphs with
degree ⩽ d. Our main result is the following which can be thought of as a “degree
theorem” for the simplicial closure of Auter Space.

Theorem 0.2. A⩽d

n is (n+ d− 2)-connected.

Work of Hatcher [Hat95] gives an alternative model of An as a complex of 2-sphere
systems in a certain 3-manifold. This 3-manifold perspective also gives a convenient

model for An. See Definition 1.9 for a rigorous definition of the spaces A⩽d

n . The d = 0
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case of Theorem 0.2 is due to Hatcher–Vogtmann [HV98b, Theorem 2.5] as A⩽0

n is
isomorphic to a complex of simplexwise non-separating sphere systems.

Remark 0.3. Hatcher–Vogtman proved their degree theorem to study homological
stability properties of Aut(Fn) [HV98a]. We do not know of a direct application of
our degree theorem for the simplicial closure to homological stability. One possible

motivation for Theorem 0.2 is the following. The complex A⩽1

n is very similar to
a complex used by Himes, the second author, Nariman, and Putman [HMNP] to
study the first homology group of Aut(Fn) with coefficients in the top homology
of Hatcher–Vogtmann’s complex of free factors [HV98b] FCn. More specifically,
Himes, the second author, Nariman, and Putman used high connectivity of a variant

of A⩽1

n to show H1(Aut(Fn); H̃n−2(FCn)) ∼= 0 for n ⩾ 2. Possibly, high connectivity

of the complexes A⩽d

n could be used to show Hd(Aut(Fn); H̃n−2(FCn)) vanishes for
n sufficiently large compared with d.
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1. Background

In this section, we define certain complexes of sphere systems in 3-manifolds. We
also discuss known connectivity results.

1.1. Sphere complexes

We are interested in 2-spheres in the following type of 3-manifolds.

Definition 1.1. Let Mn,b be the manifold #nS
1 × S2 with b disjoint, open 3-balls

removed.

Without explicitly saying, we will often pick disjoint representatives of spheres and
no property in this paper depends on this choice. We will use the term genus of Mn,b

or a graph to mean the rank of its fundamental group. We will always take b ⩾ 1 and
fix a basepoint p0 ∈ ∂Mn,b.

Definition 1.2. Let S(Mn,b) be the simplicial complex whose vertices are isotopy
classes of embedded 2-spheres not isotopic to a boundary component or bounding a
3-ball. A collection of p+ 1 vertices {S0, . . . , Sp} forms a p-simplex [S0, . . . , Sp] if the
spheres can be isotoped to be disjoint.

The following subcomplex of S(Mn,b) imposes a simplexwise non-separating con-
dition.

Definition 1.3. Let Y (Mn,b) be the subcomplex of S(Mn,b) where [S0, . . . , Sp] is a
p-simplex of Y (Mn,b) if Mn,b\ ∪i Si is connected.
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Given a simplex σ = [S0, . . . , Sp] of S(Mn,b), Mn,b\ ∪i Si is a disjoint union of
connected manifolds which are interiors of manifolds with boundary. We will often
denote the associated manifold with boundary by M\σ.

Any simplex of S(Mn,b) has a corresponding dual graph.

Definition 1.4. Let σ = [S0, . . . , Sp] be a simplex of S(Mn,b). Define the dual graph
of σ, denoted Γ(σ), to be the graph with vertices connected components of Mn,b\σ
and edges {S0, . . . , Sp}. The edge Si is attached to the not necessarily distinct ver-
tices corresponding to connected components it is adjacent to in Mn,b\σ. We label
each vertex v with the genus of the associated connected component and denote this
number by genus(v).

See Figure 2 for examples of simplices of S(Mn,b) and their associated dual graphs.

Remark 1.5. The association of a simplex of S(Mn,1) to its dual graph gives a corre-
spondence between S(Mn,1) and the space An heuristically described in the introduc-
tion. The simplicial coordinates in S(Mn,1) giving edge lengths in An (see Hatcher
[Hat95, Appendix] and Brück [Brü20, Section 4.7.1]).

Note that if σ is a face of τ , then Γ(σ) is obtained from Γ(τ) by collapsing the
edges corresponding to the vertices of τ\σ.

An edge is called a self-loop if it is attached to a single vertex. Let τ = [S0, . . . , Sp]

and σ = [S0, . . . , Ŝi, . . . , Sp]. The edge Si in Γ(τ) corresponds to a self-loop if and
only if Mn,b\σ and Mn,b\τ have the same number of connected components.

A simplex σ of S(Mn,b) is a simplex of Y (Mn,b) if and only if Γ(σ) is a rose (a
graph with a single vertex).

Define the genus of Mn,b\σ to be the sum of the genera of all of the connected
components. The following appears in Hatcher–Vogtmann [HV98b, Proof of Theo-
rem 2.5].

Proposition 1.6. Given σ a simplex of S(Mn,b), if g is the genus of Mn,b\σ, then

g = n− rank(π1(Γ(σ))).

The valence of a vertex v in Γ(σ) is the number of half-edges out of v. For example,
non-self-loops contribute 1 to the valence of 2 vertices and self-loops contribute 2 to
the valence of 1 vertex.

We now will state the definition of degree in the context of sphere systems.

Definition 1.7. Let σ be a simplex of S(Mn,1). The degree of σ is

deg(σ) =
∑

v ̸=v0, v∈Γ(σ)

(valence(v) + 2 · genus(v)− 2)

where v0 denotes the vertex corresponding to the basepoint connected component.

Remark 1.8. We only define degree for simplices in S(Mn,b) for b = 1 as it is unclear
if our definition is the correct notion for a higher number of boundary components.
We will need the complexes S(Mn,b) and Y (Mn,b) for b > 1, but our main theorem
only concerns the case b = 1. The only time we use the assumption that b = 1 directly
is in Lemma 2.2, although this lemma is key for most of what follows.
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Definition 1.9. Let S⩽d(Mn,1) be the subcomplex of S(Mn,1) consisting of simplices
σ = [S0, . . . , Sp] of S(Mn,1) with deg(σ) ⩽ d.

Our model for the space A⩽d

n described in the introduction is S⩽d(Mn,1).
Corollary 2.3 verifies that S⩽d(Mn,1) is a simplicial complex as opposed to just

a collection of simplices. Note that S⩽0(Mn,1) is isomorphic to Y (Mn,1) as both
complexes consist entirely of sphere systems whose associated dual graphs have no
non-basepoint vertices (roses). This uses the fact that every non-basepoint vertex in a
dual graph must have valence at least 3 or be associated to a component with positive
genus.

1.2. Known connectivity results
We now review some connectivity results about sphere systems that will be used

to prove our main theorem.

Theorem 1.10 ([Hat95, Theorem 2.1]). S(Mn,b) is contractible for all n, b ⩾ 1.

Theorem 1.11 ([HV98b, Theorem 2.5]). Y (Mn,b) is (n− 2)-connected for all n ⩾ 0
and b ⩾ 1.

The following is Hatcher–Wahl [HW05, Theorem 3.1 (1)] in the case C = ∅ and
k = 0. Note that the complex Hatcher–Wahl consider involves spheres and disks, but
no disks are allowed when C = ∅.

Theorem 1.12 ([HW05, Theorem 3.1 (1)]). S(M0,b) is (b− 5)-connected for all
b⩾ 1.

In this paper, we denote the simplicial join by ⋆.

Proposition 1.13. Let A1, . . . , Aq be simplicial complexes. If each Ai is ni-connected,
then A1 ⋆ · · · ⋆ Aq is (n1 + · · ·+ nq + 2q − 2)-connected.

2. Properties of degree

In this section, we establish basic properties of degree. We begin by introducing
the notion of a pillar of a sphere system.

Definition 2.1. The pillar of a sphere system σ in S(Mn,b) is the face (or empty
simplex) consisting of vertices corresponding to edges in Γ(σ) that go between the
basepoint vertex and a non-basepoint vertex. We say that a sphere system is a pillar
if it equals its pillar.

Non-separating sphere systems have empty pillars while separating sphere systems
have non-empty pillars. The pillar of the simplex depicted in the top of Figure 2 is
depicted in the bottom of Figure 2.

Lemma 2.2. Let τ be a simplex of S(Mn,1) and let σ be the face of τ corresponding to
removing a vertex S. If S is part of the pillar of τ , then deg(σ) < deg(τ). Otherwise,
deg(σ) = deg(τ).
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Figure 2: Pillar of a sphere system and associated dual graphs

Proof. We first consider the case where S is part of the pillar. Then S corresponds
to an edge between v0 and some other vertex v. In this case, Γ(σ) is obtained from
Γ(τ) by collapsing an edge between v0 and v. Thus,

deg(τ)− deg(σ) = valence(v) + 2 · genus(v)− 2

since the terms coming from non-basepoint vertices other than v appear twice and
cancel.

Pick x and y such that the connected component of Mn,1\τ associated to v is iso-
morphic toMx,y. Then y = valence(v) since v is not the basepoint of Γ(τ) and S(Mn,1)
has no non-basepoint boundary components. We also have that x = genus(v). Differ-
ent spheres in sphere systems are not allowed to be isotopic so (x, y) ̸= (0, 2). Spheres
do not bound balls so (x, y) ̸= (0, 1). Thus either valence(v) ⩾ 3 or valence(v) ⩾ 1
and genus(v) ⩾ 1. Hence valence(v) + 2 · genus(v)− 2 > 0 and so deg(σ) < deg(τ) if
S is part of the pillar.

Now assume that S is not part of the pillar. There are 3 cases to consider.

1. S corresponds to a self-loop at v0:
In this case, Γ(σ) and Γ(τ) agree away from the basepoint. The sum defining
degree is only over non-basepoint vertices, and hence deg(σ) = deg(τ).

2. S corresponds to a self-loop at v and v ̸= v0:
Collapsing the edge corresponding to S in Γ(τ) decreases the valence of v by 2
but increases the genus by 1, leaving degree unchanged.

3. S corresponds to an edge between v1 and v2 and v0, v1, v2 are all distinct:
Let v denote the vertex of Γ(σ) corresponding to the collapsed edge associated
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to S. We have that

deg(τ)− deg(σ) =(
valence(v) + 2 · genus(v)− 2

)
−

(
valence(v1) + 2 · genus(v1)− 2

)
−
(
valence(v2) + 2 · genus(v2)− 2

)
since the graphs only differ at v, v1, and v2 and hence the other terms cancel in
the sums. This quantity vanishes since

valence(v) = valence(v1) + valence(v2)− 2

and

genus(v) = genus(v1) + genus(v2).

Thus, deg(σ) = deg(τ).

Lemma 2.2 gives the following immediately.

Corollary 2.3. If σ is a face of τ in S(Mn,1), then deg(σ) ⩽ deg(τ). In particular,
S⩽d(Mn,1) is a well-defined simplicial complex.

We now conclude that the degree of a sphere system only depends on its pillar.

Corollary 2.4. Let c be the pillar of a sphere system τ . Then deg(c) = deg(τ).

Proof. This follows from applying Lemma 2.2 to every vertex of τ that is not a vertex
of c.

3. New connectivity results

In this section, we prove S⩽d(Mn,1) is (n+ d− 2)-connected (Theorem 3.5).
Given a simplex σ of S(Mn,b), we denote the basepoint connected component of

Mn,b\σ by Oσ and denote the other connected components by Nσ
1 , . . . , N

σ
k .

If c is a pillar, all spheres have Oc on one side and some N c
i on the other side.

There is a natural inclusion

S(Oσ) ⋆ S(Nσ
1 ) . . . ⋆ S(N

σ
k ) ↪→ S(Mn,b).

We will often conflate elements of the domain of this inclusion with their image.

Lemma 3.1. Let X be a simplicial complex, f : X → S(Mn,1) a simplicial map, c a
pillar in the image of f , and τ ⊂ X some simplex of maximal dimension subject to
the condition that f(τ) = c. Assume for all ω in X that deg(f(ω)) ⩽ deg(c). Then

f(LinkX(τ)) ⊂ Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k).

Proof. Let c and τ be as above. By the disjointness condition defining S(Mn,b), it
follows that

f(LinkX(τ)) ⊂ S(Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k).

Suppose for the purposes of contradiction that there is a simplex θ in LinkX(τ) such
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that f(θ) is not a simplex of

Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k).

Assume θ has minimal dimension among such simplices. Necessarily, f(θ) is a simplex
of S(Oc) since otherwise it would not be minimal dimensional if some of its vertices
mapped to other connected components. We must have that f(∂θ) ⊂ Y (Oc), or oth-
erwise we could replace θ by one of its faces and find a smaller dimensional simplex
with the desired properties. Let x be a vertex of θ and let θ′ be the face opposite
from x. Since f(x) corresponds to an edge between the basepoint and another vertex
in Γ(f(θ) ⋆ c), Lemma 2.2 implies

deg(f(θ′) ⋆ c) < deg(f(θ) ⋆ c).

Since f(θ′) ⊂ Y (Oc), f(θ′) ⋆ c has c as its pillar. Corollary 2.4 implies

deg(f(θ′) ⋆ c) = deg(c).

Thus, deg(f(θ) ⋆ c)>deg(c) which contradicts our assumption that deg(f(ω))⩽deg(c)
for all simplices ω of X.

Similarly, for any pillar c, every simplex in Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k) ⋆ ∂c must
have lower degree than c.

Lemma 3.2. If c is a pillar, then deg(c) > deg(σ) for all

σ ⊂ Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k) ⋆ ∂c.

Proof. Suppose σ ⊂ Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k) ⋆ ∂c and let cσ denote the pillar
of σ. Let σ′ be the simplex obtained from σ by adding in all of the vertices of c.
Since σ′ has pillar equal to c, Corollary 2.4 implies that deg(σ′) = deg(c). Since σ′ is
obtained from σ by adding vertices corresponding to edges between the basepoint and
another connected component in Γ(σ′), Lemma 2.2 implies deg(σ′) > deg(σ).

We also have a useful result about the connectivity of Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k).

Lemma 3.3. Let c be a simplex of S(Mn,1) which is a pillar. Then

Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k)

is (n+ deg(c)− dim(c)− 3)-connected.

Proof. If at least one N c
i has nonzero genus, then Theorem 1.10 implies

Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k)

is contractible because the simplicial join of a contractible complex with any other
complex is contractible. Thus, it remains to address the case that each N c

i has genus
zero. Let bi denote the number of boundary components of N c

i and let g denote the
genus of Oc. By Theorem 1.11, Theorem 1.12, and Proposition 1.13,

Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k)

is ((g − 2) + (b1 − 5) + · · ·+ (bk − 5) + 2(k + 1)− 2)-connected. Because
∑k

i=1 bi =
dim(c) + 1, after simplification, we see that the join is (g + dim(c) + 1− 3k − 2)-
connected.
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Since each N c
i has genus 0, we have that

deg(c) =
∑
v ̸=v0

(valence(v)− 2) = dim(c) + 1− 2k.

By Proposition 1.6, g = n− rank(π1(Γ(c))). Using that the Euler characteristic can
be computed using ranks of homology or number of cells, we see that the rank of the
fundamental group of a connected graph is 1 more than the number of edges minus
the number of vertices. Thus,

rank(π1(Γ(c))) = dim(c) + 1− k.

Substituting all of this in yields the result.

Definition 3.4. Any simplicial complex structure on a 0-dimensional manifold is
called combinatorial. A simplicial complex structure on a d-manifold is called combi-
natorial if links of p-simplices are combinatorial (d− p− 1)-spheres.

Combinatorial simplicial complex structures on manifolds with boundary are
defined analogously. We are now ready to prove the degree theorem for S(Mn,1).

Theorem 3.5. S⩽d(Mn,1) is (n+ d− 2)-connected.

Proof. Fix i ⩽ n+ d− 2. By the simplicial approximation theorem, it is sufficient to
show that any map f : Si → S⩽d(Mn,1) which is simplicial with respect to some com-
binatorial simplicial structure on Si can be extended to a map Di+1 → S⩽d(Mn,1).

Note that S(Mn,1) is contractible, so we can extend f to f̂ : Di+1 → S(Mn,1) for some
combinatorial simplicial structure on Di+1. The fact that we require the simplicial
structure on Di+1 to be combinatorial ensures that the links of interior simplices will
be homeomorphic to spheres of the appropriate dimension.

Let x be the maximum degree of a simplex in the image of f̂ and let y be the
maximal dimension of a simplex of Di+1 whose image is a pillar of degree x. Corol-
lary 2.4 states that the degree of a simplex agrees with the degree of its pillar. If
x ⩽ d, then we are done as this would mean that f̂ factors through S⩽d(Mn,1), and
hence that f : Si → S⩽d(Mn,1) is null homotopic. We may therefore assume x > d.

Fix ω a simplex of Di+1 of dimension y with f̂(ω) = c and deg(c) = x. We will modify
the simplicial structure on Di+1 in the interior of StarDi+1(c) so that we remove the

simplex ω and all new simplices υ that we introduce have the property that if f̂(υ) is

a pillar, then either deg(f̂(υ)) < x or deg(f̂(υ)) = x and dim υ < y. By Lemma 3.1,
LinkDi+1(ω) maps to

Y (Oc) ⋆ S(N c
1 ) ⋆ · · · ⋆ S(N c

k).

By Lemma 3.3, this simplicial join is (n+ x− dim(c)− 3)-connected and as a conse-
quence is (n+ x− y − 3)-connected. Since the simplicial structure is combinatorial,
LinkDi+1(ω) ∼= Si−y. Since i ⩽ n+ d− 2 and d < x, we have that

i− y ⩽ n+ x− y − 3.

Thus, we can extend f̂ |LinkDi+1 (ω) to a map

g : Cone
(
LinkDi+1(ω)

)
→ Y (Oc) ⋆ S(N c

1 ) ⋆ · · · ⋆ S(N c
k).



198 JULIET AYGUN and JEREMY MILLER

Modify the simplicial structure on Di+1 by replacing StarDi+1(ω) with

Cone(LinkDi+1(ω)) ⋆ ∂ω

and change the definition of f̂ so that it agrees with g on the new vertices. If
dim c = dimω = y, then Lemma 3.2 implies that simplices in Cone(LinkDi+1(ω)) ⋆ ∂w
will map to simplices of degree < x. If dim c < dimω = y, then all simplices in
Cone(LinkDi+1(ω)) that map to pillars will have dimensions < y.

In other words, we have lowered the degree or made the map more injective on
pillars. Since dimensions cannot be negative, iterating this procedure will modify the
map f̂ so that its image has no pillars of degree ⩾ x. We continue this process until
the image of f̂ lies in S⩽d(Mn,1).

We view Theorem 3.5 as the rigorous version of Theorem 0.2.
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