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Editorial on the Research Topic
Recent advances in museomics: revolutionizing biodiversity research

Introduction

Museomics, a term coined by Drs. Stephan Schuster and Webb Miller in ~2009, refers to
“the large-scale analysis of the DNA content of museum collections” (http://mammoth.psu.
edu/museomics.html). Although such DNA studies existed before the term was first used,
“museomics” highlighted the importance of specimens in biological studies.

Specimens in natural history collections (NHCs) have been collected for hundreds of
years to document the spatial and temporal occurrences of species. It is estimated that NHCs
worldwide house 3 billion specimens (Soberon, 1999). These specimens preserve a wealth
of information, such as morphological and genetic data on the identity and phylogenetics
of species, biogeographic and ecological data, and even biographical information of the
collectors, and the contributions of NHCs extend well-beyond organismal biology research
to fields such as public health (Suarez and Tsutsui, 2004; Cook et al., 2020) and education
(Ellwood et al., 2020; Lendemer et al., 2020; National Academies of Sciences Engineering
and Medicine, 2020). NHCs are valuable resources with unknown future potential, and
there are countless examples of research made possible that was not the goal of the original
collector (Heberling et al., 2019; Miller et al., 2020). We provide three examples. First, Moritz
et al. (2008) compared modern specimens of small mammals to those collected ~100 years
prior to document how climate change caused the distributions of some species to shift in
elevation. Second, bird egg collections in museums were instrumental in showing the role of
DDT in causing egg-shell thinning that adversely affected raptor and pelican populations
(Ratcliffe, 1967; Hickey and Anderson, 1968). Lastly, Freelance et al. (2022) stress the
importance of properly designing captive breeding programs, since the sensory organs of
the endangered Lord Howe Island stick insect (Dryococelus australis) differed between wild
specimens (>100 years old) and individuals bred in captivity. Given the accelerated rate of
biodiversity loss, the role of NHCs will increase in prominence by being an archive of genetic
and phenotypic diversity across space and time for many species that have gone extinct or
where populations have vanished.
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Similarly in terms of unexpected potential, the advent
of DNA sequencing technology opened up new avenues for
specimen-based research. Modern specimen preparation now
includes special steps to preserve DNA/RNA in tissues (e.g.,
freezing or placing tissues in ethanol or other storage media)
for genetic studies, while previously there were no special
efforts to preserve the DNA. There are challenges working with
these materials, such as DNA naturally degrading over time
and the DNA of formalin-fixed specimens being cross-linked
with proteins and other DNA (Raxworthy and Smith, 2021).
Advances in laboratory methods and new sequencing technologies
(e.g., high throughput short-read sequencing) have facilitated
improvements in our ability to recover and sequence DNA from
museum specimens.

There are four primary sources of DNA that we discuss
here: ancient DNA (aDNA), historical DNA (hDNA), modern
DNA, and archival DNA (Raxworthy and Smith, 2021). DNA
extracted from samples that died under natural circumstances
and were later recovered from the field are referred to as
aDNA. Familiar examples of aDNA include samples obtained
from species such as mammoths and cave bears, which can be
quite old and are often >200 years in age. In contrast, DNA
extracted from formalin-fixed or ethanol-fixed specimens that
were preserved and stored in museum collections is referred
to as hDNA (these specimens are usually <200 years old).
DNA extracted from tissue samples specifically prepared with
genetic analysis in mind is referred to as modern DNA and
is usually <40 years old. Archival DNA refers to hDNA and
modern DNA stored in museum specimens. The first studies from
researchers using the word “museomics” sequenced mitochondrial
genomes from the aDNA in hair of the extinct Siberian
mammoth (Gilbert et al., 2008) and Tasmanian tiger (Miller et al.,
2009).

This Research Topic is a collection of studies highlighting
advances in museomics, both in demonstrating applications and
refining methodologies. Some applications demonstrated in this
Research Topic include using DNA barcoding of a degraded whale
sample to identify it to subspecies (Ren et al.), obtaining data
from a holotype to verify the existence of an undescribed rodent
genus (Castanieda-Rico et al.), obtaining DNA from hundreds
of herbarium specimens to elucidate the phylogeography of the
genus Dalbergia (Sotuyo et al.), and using target capture to
understand the phylogenetic placement of two rare shark species
(Agne, Naylor et al.). These studies are diverse in the DNA type
used (hDNA and modern DNA), taxa studied, objectives, and
approaches. A variety of factors have been identified that affect
the performance of sequencing DNA from specimens, and a major
goal of museomics is to develop a set of best practices to maximize
success (Raxworthy and Smith, 2021). Efforts are being made to
document and understand these factors (e.g., [restedt et al., 2022),
and this Research Topic was initiated to further this cause. As an
overview of this Research Topic, we identify several factors being
addressed across the articles (Figure 1). Following the terminology
of Roycroft et al, we organize these factors temporally in the
research process as pre-sequencing and post-sequencing (Figure 1).
This list of factors is not exhaustive, but rather highlights those
that are addressed in this Research Topic. We note that findings
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in different studies may contradict each other, highlighting the
dynamic state of the field and the need for more exhaustive research
on this topic.

Pre-sequencing

Pre-sequencing factors dealt with in these studies are either
related to the specimen or methodological advances to improve our
ability to obtain DNA from historical collections.

Specimen-related factors

Four specimen-related factors are addressed: taxa, tissue type,
age, and preservation history. A diversity of taxa was targeted across
studies (mammals, insects, gastropods, bony fish, cartilaginous
fish, reptiles, sponges, polychaetes, crustaceans, amphibians, plants,
arachnids, birds), with mammals being the most frequent focal
group (six studies). Agne, Preick et al. included samples from
nine classes of animals and found lower success with crustaceans,
insects, and cartilaginous fish, and higher success with sponges,
gastropods, polychaetes, and amphibians. Another study on
gastropods (Clewing et al.) noted that mollusks can be difficult to
work with because their tissues are high in mucopolysaccharides,
which can hinder DNA extraction.

Several studies compared the performance of different tissue
types. In a study of wolf specimens comparing tissue types (jaw
bone, nasal bone, skin), skin had the best performance and should
be preferred because it is less destructive to the specimen (Pacheco
et al.). In contrast, Roycroft et al. found in their mammal study
that DNA extraction from toe pad and bone tissue performed better
than with skin.

The importance of the age of specimens was commonly
explored in these studies, with both types of archival DNA (hDNA
and modern DNA) investigated across studies. The oldest specimen
included was 192 years old (Agne, Preick et al.). Some studies
found a negative correlation between age and DNA yield (Bernstein
and Ruane; Hawkins et al;; Roycroft et al.), while others found no
relationship (Nunes et al;; Pacheco et al; Pavlek et al.).

Preservation history is an important factor that can be difficult
to evaluate because the entire preservation process is usually
not fully documented. Frozen tissue, as expected, preserves DNA
better than other methods (Speer et al). Agne, Preick et al.
found that dry specimens performed better than wet across a
variety of taxa, while Nunes et al. found the opposite for insects
where ethanol-preserved specimens performed better than dry
papered and pinned specimens. Variation within preservation
types, obscuring trends, is potentially confounded by the time
between euthanization and preservation (Speer et al.).

Lab work-related factors

Three lab work-related factors are target loci, DNA extraction
protocol, and method of library preparation.
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research process: pre-sequencing and post-sequencing.

Factors that influence the data-quality and success of museomic studies, addressed in this Research Topic. Factors are organized temporally in the
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For target loci, four major approaches were used—target
capture, barcoding, shotgun sequencing, and cDNA sequencing.
The approach used was largely determined by the objective of the
study. One common theme is that the loci targeted are short in
length, due to the tendency of DNA to fragment over time in
historical and ancient tissues.

For DNA extraction, Hawkins et al
methods (spin column, spin column with aDNA modifications,

compared four

magnetic beads, and phenol chloroform) and found that the
spin column and phenol chloroform methods outperformed
magnetic beads. The spin column with aDNA modifications
retained smaller fragments but took more time and was
into
they

more
cost,
column method.

expensive. Taking consideration performance,

time, and toxicity, recommended the spin

For library preparation, Roycroft et al. compared the
performance of single and dual barcoded library indexing
strategies. They found that sequencing performance was better
with dual barcoded libraries, having more reads and lower
heterozygosity (=less cross contamination) compared to single
barcoded libraries.

Post-sequencing

Post-sequencing factors addressed in these studies are related
to the bioinformatic approaches.

Frontiersin Ecology and Evolution

Bioinformatic approaches

Two bioinformatic approaches were addressed in these studies:
database and mapping approach.

Databases are important in genetic studies, especially when
identifying an unknown sample or determining its evolutionary
relationship with other taxa. Existing data in a database may affect
the resolution of genetic analyses. Nakazato and Jinbo compared
two commonly used DNA databases (GenBank and BOLD) and
found that data for barcode loci are not the same in each database,
despite each database importing from each other. This finding
highlights the need of researchers to cross reference databases for
relevant data.

To identify the genetic location of sequence reads and compare
homologous loci, a mapping approach can be used. Erroneous read
mapping can impact the results of a population genetics study, such
as estimation of selection or genetic parameters. Roycroft et al.
compared the effect of two different mapping approaches (sample-
specific historical de novo assembly vs. high-quality “closest sister”
de novo assembly) and found that data quality was better when
mapping to a high-quality “closest sister” de novo assembly.

Other specimen-based research

Lastly, we note one study that in the strict sense may not
qualify as “museomics”, since it is not a genetic study. Balmalki et al.
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studied plant-pollinator relationships by preparing pollen slides,
taking photographs, and using an artificial neural network to help
in identification. This approach, compared to metabarcoding, had
greater resolution when identifying plant species. We include this
study in the Research Topic because it exemplifies the spirit of
developing novel research uses of specimens.

Conclusion

In the early 1900s, natural history museums were recognized
as an “indispensable feature of modern civilization” due to the
growing public interest in nature, their recognition of evolutionary
trends in nature, and concerns regarding disappearing biodiversity
(Farrington, 1915). Despite their popularity and importance
(Allmon, 19945 Suarez and Tsutsui, 2004), NHCs are currently
facing a survival crisis of their own due to shrinking budgets
(Dalton, 2003; Gropp, 2004; Pennisi, 2020). To survive, NHCs need
to find creative ways to publicize and acknowledge the usefulness
of specimens and their data (Schindel and Coolk, 2018; Miller et al.,
2020; National Academies of Sciences Engineering and Medicine,
2020). Some ideas proposed are to develop an “extended specimen
network” digitizing and linking all associated data to a specimen
(Lendemer et al,, 2020) and to recognize NHCs as coauthors on
research articles (Rouhan et al, 2017). We are heartened to see
museomics helping to expand interest in specimen-based research
while showcasing the importance of natural history collections, and
we look forward to seeing how newly developed technologies are
used to study existing specimens.
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