arXiv:2302.10347v1 [cs.LG] 20 Feb 2023

Online Evolutionary Neural Architecture Search for
Multivariate Non-Stationary Time Series Forecasting

Zimeng Lyu*, Alexander Ororbia, Travis Desell
Rochester Institute of Technology, Rochester, NY, USA

Abstract

Time series forecasting (TSF) is one of the most important tasks in data
science given the fact that accurate time series (TS) predictive models play a
major role across a wide variety of domains including finance, transportation,
health care, and power systems. Real-world utilization of machine learning
(ML) typically involves (pre-)training models on collected, historical data
and then applying them to unseen data points. However, in real-world ap-
plications, time series data streams are usually non-stationary and trained
ML models usually, over time, face the problem of data or concept drift.

To address this issue, models must be periodically retrained or redesigned,
which takes significant human and computational resources. Additionally,

historical data may not even exist to re-train or re-design model with. As a

*This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Combustion Systems under Award Number #FE00031750
and #FE0031547. It is also supported by the Federal Aviation Administration and MITRE
Corporation under the National General Aviation Flight Information Database (NGAFID)
award. This work has been partially supported by the National Science Foundation under
Grant Number 2225354. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

*Corresponding author

Preprint submitted to Elsevier February 22, 2023

result, it is highly desirable that models are designed and trained in an online
fashion. This work presents the Online NeuroEvolution-based Neural Archi-
tecture Search (ONE-NAS) algorithm, which is a novel neural architecture
search method capable of automatically designing and dynamically train-
ing recurrent neural networks (RNNs) for online forecasting tasks. Without
any pre-training, ONE-NAS utilizes populations of RNNs that are continu-
ously updated with new network structures and weights in response to new
multivariate input data. ONE-NAS is tested on real-world, large-scale mul-
tivariate wind turbine data as well as the univariate Dow Jones Industrial
Average (DJIA) dataset. Results demonstrate that ONE-NAS outperforms
traditional statistical time series forecasting methods, including online lin-
ear regression, fixed long short-term memory (LSTM) and gated recurrent
unit (GRU) models trained online, as well as state-of-the-art, online ARIMA
strategies.

Keywords: Time Series Forecasting, Online Learning, Neural Architecture

Search, Recurrent Neural Networks, Neuroevolution

1. Introduction

Time series forecasting (TSF) is commonly used in many domains, such
as health care [1], transportation [2], finance [3], and power systems [4]. TSF
models are usually designed and trained offline with historical time series
data. However, offline model building and training for TSF applications is
based on the assumption that the target time series is stationary and that
the models are to be trained with stationary data. When these pre-trained

models are later applied to unseen temporal data, if the underlying data dis-

tribution of the data points change over time, these predictive systems begin
to break down [5] [6]. In real world TSF applications, time series data is
usually non-stationary and suffers from data drift. Some applications rely
on auxiliary methods to transform the data’s non-stationary distribution to
a stationary one by training the models in a batch manner (by periodically
updating the model with new data) to maintain expected prediction accu-
racy. Unfortunately, this in turn can make models susceptible to catastrophic
forgetting [7, 8] if the wrong historical data is removed in future training runs.
The increase in computational ability of personal computers and the ac-
cessibility of cloud computing makes it possible to do online TSF for various
domains, such as the internet of things [9], climate modeling [10], financial
decision making [11], and power and energy systems [12]. While traditional
batch training methods can struggle to keep up with the large scale of modern
streaming data, online TSF methods offer the potential of real-time model
updates. Additionally, it may not be computationally feasible to examine
model architecture changes when doing batch updates as it is not typically
possible to do transfer learning between different model architectures.
However, online TSF faces a lot of challenges. The first problem is catas-
trophic forgetting — when there is data drift in online TSF data, models tends
to forget historical information [13, 14]. Even though rehearsal techniques
can help to avoid catastrophic forgetting [8], they can increase model com-
plexity and reduce prediction efficiency. To ensure online methods can handle
real time data, tradeoffs need to be made between model complexity, learning
capability, and efficiency. Additionally, real-world time series data tends to

be multivariate, which adds more complexity due to a higher dimensionality,

as well as non-seasonal. This makes it challenging to effectively use classical
statistical methods such as the autoregressive moving average (ARMA) [15]
and autoregressive integrated moving average (ARIMA) [16] for online mul-
tivariate time series forecasting. Lastly, real-world, large-scale online data is
usually noisy, and sometimes has incomplete data (e.g., when sensors may
not be available), and TSF models need to be robust enough to deal with
incomplete data streams. Models in this domain should also be able to adapt
to multiple applications [13].

A major limitation for traditional and current online TSF models is that
they assume a single model or neural network architecture which remains
fixed, even as it is retrained on new batches of data or incoming online data.
Due to this, a model for online TSF will either need to be large enough to be
able to capture all possible aspects of concept drift, which is computation-
ally inefficient /intractable, or suffer from catastrophic forgetting when it is
trained on new data, limiting its ability to predict data similar to historical
observations. In order to overcome these limitations, based on our previous
work with time series forecasting on real-world TSF data with neuroevolution
(NE) [17, 18, 4], we have developed the Online NeuroEvolution-based Neu-
ral Architecture Search (ONE-NAS) algorithm. ONE-NAS, to the authors’
knowledge, is the first algorithm capable of training and evolving recurrent
neural networks (RNNs) architectures in an online manner for TSF. Models
architectures evolved through ONE-NAS can be quickly trained in response
to incoming data streams, which stands in contrast to alternative methods
that require significant offline training time using previously gathered sets of

training data. Furthermore, ONE-NAS dynamically adapts architectures to

keep computational costs minimal while being more robust to catastrophic

forgetting.

The novel contributions of our proposed ONE-NAS framework include:

it is the first online NE neural architecture search (NAS) algorithm for
TSF with RNNs,

it utilizes distributed islands that allow evolution in small niches,

it utilizes island repopulation to improve performance over traditional
methods,

it generates genomes (RNN architectures and weights) using a Lamar-
ckian weight initialization strategy that allows information retention
(significantly speeding up training),

it trains genomes on randomly selected historical data, such that im-
portant historical data is naturally preserved in the training process,
it performs well on univariate as well as multivariate datasets,

it is distributed and scalable, and,

it is robust to real-world, large scale, and noisy data.

Preliminary work [12] only offered a minimal presentation/sketch of the

ONE-NAS algorithm, and this work extends this by providing full treat-

ment of the algorithm, including detailed pseudocode. Preliminary, earlier

work further only compared the performance between ONE-NAS and classi-

cal naive, moving average, and exponential smoothing methods, focusing on

the performance between ONE-NAS and ONE-NAS utilizing a repopulation

method. This paper presents additional experiments comparing ONE-NAS

with a traditional statistical TSF methods for online linear regression, online

trained fixed architecture LSTM and GRU RNNs, as well as modern online

Online NeuroEvolution Neural Architecture Search (ONE-NAS)

Worker 1 | | | |
Worker 2 | | |

Worker 3 | |

Trained Offspring O,

Generate RNN
Crossover Mutate

Fitness Function
B ‘ B, e

t J Evaluate+Select

Elite Population £,

Island1E,_

Isnd2E_ | cqlact

Main Global Best Genome Online Prediction

<& New generated Offspring <> Trained Offspring <% Elite RNN @) Crossover operator

Figure 1: Depicted is one generation of the ONE-NAS online neuroevolutionary process.
The global best genome performs predictions concurrently with distributed genome gen-

eration and evaluation.

ARMTIA based methods — crucially highlighting its feasibility as an algorithm
that can both design and train RNNs for TSF in online scenarios.

Results were gathered using noisy, real-world multivariate time series data
extracted from wind turbine sensors as well as the univariate Dow Jones In-
dustrial Average (DJIA) dataset. Our empirical results demonstrate signif-
icant improvements in accuracy when using ONE-NAS over these methods.
Furthermore, ONE-NAS utilizes a distributed, scalable computational pro-
cessing scheme and is shown to operate efficiently, in real-time, over short
time scales. Furthermore, we show that, within ONE-NAS, utilizing multiple
islands that are periodically repopulated to prevent stagnation significantly

improves the performance of the underlying optimization process.

2. Related Work

Classical time series forecasting methods include naive prediction, mov-
ing average (MA) prediction [15], autoregression (AR) [19], and exponential
smoothing [20] (also called simple exponential smoothing), offering powerful
tools for time series forecasting; and traditional statistical methods such as
autoregressive moving average (ARMA) [15], autoregressive integrated mov-
ing average (ARIMA) models [15], triple exponential smoothing [21] (also
known as Holt Winter’s Exponential Smoothing) still play an important
role in time series forecasting and have been used in a variety of different
datasets [22] [23] [24].

Recent research has led to the development of online variants of classical
models allowing model parameters to adapt to incoming streams of data.

The online autoregressive integrated moving average (online ARIMA) has

been proposed for online time series forecasting [16], anomaly detection [25],
and unsupervised anomaly detection [26] [26]. The autoregressive moving
average (ARMA) [27] and the seasonal autoregressive integrated moving av-
erage (SARIMA) [28] have also been proposed as powerful models for time
series, with Anava et al.further proposing an AR model for TSF that can
handle missing data values [29].

With respect to the artificial neural network (ANN) based approaches for
online TSF, Guo et al. proposed an adaptive gradient learning method for
training recurrent neural networks (RNNs) capable of time series forecasting
notably in the presence of anomalies and change points [5]. Yang et al. use
RoAdam (Robust Adam) to train long short-term memory (LSTM) RNNs
for online time series prediction in the presence of outliers [30]. Wang et
al. design an online sequential extreme learning machine utilizing a kernel
(OS-ELMK) for non-stationary time series forecasting [31]. Other than clas-
sical or NN-based online algorithms, online neural architecture search (NAS)
and AutoML algorithms could also solve the drift problem. Some AutoML
frameworks are designed to automatically adapt to data drift problem for
online time series classification problems [32] [33] [34]. Yan et al. proposed a
privacy-preserving online AutoML for face detection that extracts the meta-
features of the input data with the goal of continuously improving the core
algorithm’s performance [35].

Neuroevolution (NE) itself has been widely used for time series prediction
and neural architecture search in offline scenarios [36] [18] [17]. However, on-
line neuroevolution has only been rarely investigated, with a few algorithms

designed for games or simulators that involve real-time interactions, such as

an online car racing simulator [37], online video games [38] [39], and robotic
controllers [40]. Crucially, these online NE NAS algorithms are based on the
venerable NeuroEvolution of Augmenting Topologies (NEAT) algorithm [41]
and start with minimal networks and evolve topologies and weights through
a simulated evolutionary process. Cardamone et al. developed an online
car racing simulator based on NEAT [41] and rtNEAT [39], combined with
four evaluation strategies (e-greedy [42], e-greedy-improved, softmax, and
interval-based). This algorithm evolves car drivers from scratch and can
outperform offline models. To our knowledge, none of the above online neu-
roevolution algorithms are capable of evolving recurrent networks nor have
any been developed to specifically conduct online time series forecasting,

notably making ONE-NAS the first of its kind.

3. Methodology

This work leverages components from the Evolutionary Exploration of
Augmenting Memory Models (EXAMM) algorithm [43] at its core. In partic-
ular; our algorithm leverage’s EXAMM’s mutation, crossover, and training
operations while maintaining the population in distinct islands. However,
the process by which it evolves artificial neural networks (ANNs) and the
operations it provides for utilizing them in online scenarios are novel. This
section first describes EXAMM and its leveraged components in detail be-

fore describing how they are incorporated into and extended/generalized in

ONE-NAS.

EXAMM Asynchronous Distributed Neuroevolution Strategy

Worker 1 | | | | i
Worker 2 | | |

l
Worker 3 | | | & ... Train @ |l

Generate Genome Insert Genome

A new genome is
generated by mutation, or
intra-island crossover, or

Inter-Island Crossover | Mutate | Intra-Island Crossover inter-island crossover. It

will be sent to a worker for
@ ® @ @ @ ® @ training and evaluation. Workers return trained
genomes and fitness to main.
A genome is inserted back to
its island if fitness is better

5 than the worst genome on
— Em
<> Genome 1*

<2 Genome 2

“» Genome 3 . SeReme
Genome 3
Genome ...

) <2 Genome ...
Island 4

Genome 1*

“» Genome 2 z .
Genome 3 y Ge""me; Genome1* Genome1*
Genome ... WSsnors > Genome 2 Genome 2
CEEmRg - Genome 3
 Genome ... Genome 3
Genome ... Genome ...
Main _ o o
One genome is generated for each island in a Round-robin fashion.

<> New generated genome % Trained genome @ Crossover operator (9] https://github.com/travisdesell/exact

* Genomes are sorted by fitness. Genome 1is the best genome on its island. In inter-island crossover, the best genome of a random island is the second parent.

Figure 2: EXAMM flowchart

3.1. EXAMM

Figure 2 provides a high-level flowchart for the EXAMM algorithm. EX-
AMM is an offline, distributed asynchronous neuro-evolutionary (NE) algo-
rithm that evolves progressively larger RNNs for large-scale, multivariate,
real-world TSF [44, 45]. EXAMM has n islands and each island has a ca-
pacity of m. Each island starts with a minimum seed genome that only has
input-to-output connections. One genome is generated for each island in a
round-robin fashion until the entire population reaches the total number of

the generated genomes. On each island, the new genome could be generated

10

by mutation, intra-island crossover, or inter-island crossover, in which islands
could exchange genes. The generated genome is sent to the next available
worker process for training. After training is completed, the trained genome
is sent back to the island where it was generated, potentially replacing the
worst genome if its fitness is higher than the (current) worst fitness value.

EXAMM evolves RNN architectures consisting of varying degrees of re-
current connections and memory cells through a series of mutation and
crossover (reproduction) operations. Memory cells are selected from a neural
library including A-RNN units [46], gated recurrent units (GRUs) [47], long
short-term memory cells (LSTMs) [48], minimal gated units (MGUs) [49],
and update-gate RNN cells (UGRNNs) [50]. ONE-NAS utilizes a similar
parallel asynchronous strategy which naturally loads balances itself and al-
lows for the decoupling of population size from the number of workers during
each generation [43]. Generated offspring inherit their weights from their par-
ents, which can significantly reduce the time needed for their training and
evaluation [17]. It has been shown that EXAMM can swiftly adapt RNNs in
transfer learning scenarios, even when the input and output data streams are
changed [44] [45]. This serves as a preliminary motivation and justification
for being able to adapt and evolve RNNs for online TSF.

EXAMM has also evolved RNNs for time series prediction for different
real-world applications [4, 45] and performance improvements through the
use of extinction and repopulation events/mechanisms, in real-world evolu-

tion [18], have been investigated.

11

3.2. The ONE-NAS Algorithm

Algorithms 1, and 2 present pseudo-code for the full ONE-NAS procedure
and Figure 1 presents a high-level overview of the asynchronous, distributed,
and online ONE-NAS process. ONE-NAS concurrently evolves and trains
new RNN candidate models while performing online time series data predic-
tion. Note that ONE-NAS is fully online and does not require pre-training
on any historical data before the online NE process begins.

Figure 3 presents an example of ONE-NAS online prediction performance
on multivariate wind turbine dataset. The plotted value is the expected and
predicted output parameter average active power with values normalized

between [0, 1]. We can see that the output values are non-seasonal.

12

Algorithm 1 ONE-NAS

1:
2:
3
4
o:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:

function ONE-NAS MAIN

for t in generations do

> Perform predictions concurrently in a new thread,
> which returns the next time subsequence when complete
Biext = global BestGenome.onlinePredict()
if islandRepopulation then
if t % extinctFreq == 0 then
worstlsland = rankIslands().last()

repopulate(worstisland, global BestGenome)

> Generate genomes in main process
0, = MPIMain.generateGenomes(E;)
> Process genomes asynchronously in parallel on worker processes
Byatidation = getValidationData(t, numV alidationSets)
for genome g in O; do
> Each worker randomly selects different training data
Birain = getTrainingData(t, numTrainingSets)
MPIWorker.trainGenomes(g, Byatidations Btrain)
MPI-Barrier()
> Fvaluate genomes for next generation
E, 1 = selectElite(Ey, Oy, Byalidation)
global BestGenome = getGlobalBestGenome()
wait(Brest)
> Get the latest subsequence of data and add it to the historical data
timeSeriesSets.append(Bhext)

Similarities between EXAMM and ONENAS:. ONE-NAS is also a NE NAS

algorithm, so the online learning process typically starts with a minimal

seed genome (a minimal seed genomes only has input to output connections

13

Algorithm 2 Data Selection Methods
1: function GETTRAININGDATA (%)

2: timeSeriesSets[0 : t — numV alidationSets].shuffle()

3: Byyqin = timeSeriesSets[0 : numTrainSets)

4: function GETVALIDATIONDATA (t, numV alidationSets)

5 By atidation = timeSeriesSets[t — numV alidationSets : t]

6: function GETONLINETESTDATA (¢, numV alidationSets)

7: Biext = timeSeriesSets[t + 1]

and contains no hidden layers). It is also possible to start with a previously
trained model or generated architecture as the seed genome to bootstrap this
process. Genomes are evolved with the same mutation and crossover meth-
ods in EXAMM. The population is maintained by distributed islands, which
allows islands to evolve in their own niche, with islands exchanging informa-
tion only by periodic inter-island crossover. Islands in both methods use a
repopulation strategy to periodically erase and repopulate the islands that
become stuck in local optima [18], and this work shows that this repopulation

is critical for achieving viable online performance in ONE-NAS.

Differences between EXAMM and ONE-NAS:. EXAMM is an offline algo-
rithm, where the evolutionary process happens offline with each generated
genome adapted to the entire offline dataset. In contrast, ONE-NAS collects
the online streaming data for online training and evaluation, selecting sub-
sets of historical data to be used for training and validation. In this work,

crucially, ONE-NAS operates entirely online without any pretraining®.

LONE-NAS can be seeded with a prior model or topology - however all results in this

work start with an untrained, minimal seed genome

14

At the end of the neuro-evolutionary process, EXAMM selects the global
best genome as the optimal solution. However, in ONE-NAS, the genome
generation, training, evaluation, and online prediction processes are all per-
formed online and concurrently. ONE-NAS uses the selected best genome
from its previously trained population to make online predictions at each
time ¢t while a new population of genomes is dynamically trained.

During the online evolutionary process, genomes are generated randomly
by crossover and mutation, and inevitably, new generations contain genomes
that perform worse than the average population. In the online setting, any
algorithm needs to produce on-the-fly predictions with an expected accuracy
at real-time, so it cannot afford to have too many poorly performing genomes
in the population pool, allowing them to be parents to future offspring. ONE-
NAS instead selects an elite population from the generated trained genomes
and uses the elite population as online predictor candidates and parents for
the next generation.

ONE-NAS’s online NE process starts with a minimal seed genome, which
serves as an initial genome. In ONE-NAS each island has two sub-populations,
generated and elite?.

At time t, ONE-NAS evolves genomes according to the following steps:

e Use the elite population F;_; to generate a set of m genomes through

mutation and crossover, defined as the generated population O;.

e Train the generated genomes O, using MPI?® workers for a specified

2EXAMM, on the other hand, operates in a steady-state manner so it does not have

explicit populations or elite populations.
3The Message Passing Interface [51], the most popular high performance computing

15

number of iterations/epochs with randomly selected historical data,
Birain-

e Evaluate all of the current generation’s genomes, F;_; and Oy, using

recent validation data, Bygidation, t0 calculate their fitness values.

e Select the next elite population, F;, from E;_; and O;.

e Selecting the global best genome from the elite populations, E;, from

all islands for online prediction.

e Retain the members of the elite population E; for the next generation.
Each generation lasts for a specified period p, measured in a number of dis-
crete time steps (in this work, p = 25), which allows for the processing of a
subsequence of the target time series. The best genome from the previous
generation performs online predictions of the new subsequence (Bje.) as it
arrives while, concurrently, the new generation of genomes is generated and
trained. At the end of a generation, this new subsequence of data is added
to ONE-NAS’s historical training data (memory). During a generation, the
generated genomes O, are trained on a randomly selected set of By.qi, sub-
sequences of historical data, after which the entire population (including the
elite F;) will be validated on the most recent Bygigation Subsequences. Each
genome’s fitness, calculated as the mean squared error loss over Byqiidation, 1S
then used to select the next elite population E;,;. The best genome in F; 4
is used for online prediction in the next generation.

Note that, while the genomes O, are trained using backpropagation on

batches sampled from the historical data, the RNNs in F; do not continue

message passing library.

16

to be trained. Since not all RNNs in F; will perform better than those
in Oy, “obsolete” RNNs will naturally die off over time while RNNs with
strong performance will remain/persist. Also note that one of EXAMM’s
mutation operations, crucially utilized by ONE-NAS, is a clone operation
which allows for a duplicate of an elite parent to be retained and trained in
the next generation (further re-using its parent’s weights due to EXAMM’s

Lamarckian weight inheritance strategy).

3.3. Learning Important Information

Online learning models generally suffer from catastrophic forgetting [13]
— this poses a significant problem since preserving important historical tem-
poral information is crucial for TSF problems. One way to counter forgetting
and data drift would be to train all of the offspring/genomes on every single
historical data point seen so far jointly with any new incoming data. How-
ever, this would quickly become inefficient, preventing an adaptive system
from operating in a fast and online fashion. In ONE-NAS, offspring are in-
stead trained with new incoming data and only on randomly selected sub-sets
of historical data. Historical information is preserved in the population by
retaining elite individuals as well as children inheriting weights from those
parents [17] in tandem with efficient training using only small amounts of
randomly selected /stored historical data. The fitness of the trained offspring
is evaluated via validation mean squared error (MSE) using the most recent
data. This process results in genomes that contain less important temporal

information that naturally die off across generations of evolution.

17

ONE-NAS Prediction Example

| il Expected
o8 il g ‘ predicted

0 1000 2000 3000 4000 5000 6000 7000
Samples

Figure 3: The average active power parameter from the wind dataset used in this work, as
well as an example of ONE-NAS’s predictions on this dataset. As the time series is very
long (over 59,000 datapoints), for visibility, this figure depicts a selection of 7,000 data
points from February to April 2017.

4. Experimental Design

4.1. Datasets

This work utilized two real-world datasets for predicting time series data
with RNNs. The first was wind turbine engine data collected and made avail-
able by ENGIE’s La Haute Borne open data windfarm®*, which was gathered
from 2017 to January 2018. This wind dataset is very long, multivariate (con-
taining 22 parameters/dimensions), non-seasonal, and the parameter record-
ings are not independent. The wind turbine data consists of readings every
10 minutes from 2017 to January 2018. Awverage Active Power was selected as
the output parameter to forecast for the wind turbine dataset. Figure 3 pro-
vides an example of the noisiness and complexity of the output parameter as
well as an example of the accuracy of ONE-NAS’s predictions. This entire
time series has around 59, 000 data points, with the above example showing
7000 data points from February to April 2017 as an example. Note that
ONE-NAS is trained online (with no pre-training) so this plot depicts on-

4https: //opendata-renewables.engie.com

18

line predictive performance as our system learns from scratch. The second
dataset is the daily index of the Dow Jones Industrial Average (DJIA) from
the years 1885-1962, which is univariate and contains 35, 701 samples. Both
of the datasets that we investigate contain raw and abnormal data points
that have not been cleaned — spikes and outliers have not been removed or

smoothed from either dataset.

4.2. Processing and Setup

Research has shown that using shorter subsequences of time series data
during training can improve an RNN’s convergence rate as well as its overall
performance [4]. For these experiments, the original datasets were divided
into subsequences of 25 timesteps each. During each simulated ONE-NAS
generation, each newly generated genome was trained on 600 randomly se-
lected subsequences from the historical data pool and then validated using
the most recent 100 subsequences of data. Fach genome utilizes a different
random selection of 600 subsequences. There is no overlap between training
and validation data (the most recent 100 subsequences are added into the
historical pool after being used for validation). All the experiments for the
wind dataset were run for 2000 generations, which represents one singular
pass over the full wind data time series.

In the ONE-NAS simulations®, during each generation, 50 elite genomes
from the previous generation were retained and the elite genomes were used
to generate 100 new genomes using a mutation rate of 0.4 and crossover

probability of 0.6. Each of the 100 non-elite genomes in the new generation

Shttps://github.com/travisdesell /exact

19

were trained in a worker process for 10 epochs of backprop (a local search),
with the first 5 epochs involving training on the original subsequence data.
Then, in each of the last 5 epochs, 10% Gaussian noise was added (using
the mean and standard deviation of the sliced data) as an augmentation
technique to prevent overfitting [52] [53]. ONE-NAS with island repopulation
utilized 10, 20, 30, or 40 islands, each having its own elite population of 5
genomes which generated an additional 10 genomes per generation. New
genomes were generated with a mutation rate of 0.3, inter-island crossover

rate of 0.4, and intra-island crossover rate of 0.3.

4.3. Results

Each experiment was repeated 10 times using Rochester Institute of Tech-
nology’s research computing systems. This system consists of 2304 Intel®)
Xeon®) Gold 6150 CPU 2.70GHz cores and 24 TB RAM, with compute nodes
running the RedHat Enterprise Linux 7 system. Each experiment utilized 16

cores.

4.8.1. Comparison with Classical TSF Methods

To test the performance of ONE-NAS, we first compared it to classical
TSF methods: naive prediction, moving average prediction, and simple ex-
ponential smoothing. While these are very simple univariate methods, they
do perform well in many real-world application scenarios, due to the fact that
the TSF data is very noisy and using previous observations to estimate the
expected value at next time step usually gives a reasonable prediction. No-
tably, these methods are capable of outperforming complex and sophisticated

methods across a wide variety of datasets [54].

20

Nave prediction (Naive) simply uses the data’s/parameter’s previous value,
x_1 as the predicted value, 1, for the next time step: y; = 2;_1. The mov-
ing average [15] predictor (MA) uses the average of the last n time steps as
the prediction of the next time step, where n is the moving average data
smoothing window (a hyperparameter): g, = 1/n % > 2;_,. The simple ex-
ponential smoothing (Holt linear) [20] predictor (EXP) computes a running
average of the previously seen parameters, where « is the smoothing factor,
and 0 <a<l:g=axxi 1+ (1 —a)*g_1.

We are aware that the choice of window size and « significantly affect the
prediction performance of the moving average and exponential smoothing
methods. Figure 4 shows the MA and EXP prediction mean squared error
(MSE) with different window sizes (n) and a values on the wind dataset. The
plot shows that the wind dataset is highly complex, where nave almost en-
tirely predicts better than MA or EXP (apart from a negligible improvement
with EXP for alpha values of 0.8 and 0.9).

Figure 5 shows a plot for the online prediction MSE of ONE-NAS. The
horizontal lines show each of the three classical time series forecasting meth-
ods. Note that these methods are not stochastic, so their performance is
always the same. Moving average (MA) predicts with a window size n = 3
and exponential smoothing uses a a« = 0.2. The difference between “One-
Nas” and “OneNas Repopulation” on the plots is that “OneNas” does not
use any islands, where the entire population is one island, and the “OneNas
Repopulation” uses multiple islands and the island repopulation strategies.
The ONE-NAS repopulation strategy shown in this plot used 20 islands (each

with 5 elite genomes and 10 other genomes per generation), with an extinc-

21

tion and repopulation frequency of 200 generations. While the ONE-NAS
online prediction without repopulation performs worse compared to all three
classical methods, the ONE-NAS method with repopulation not only signif-
icantly outperforms the baselines but exhibits better predictive performance
than the classical methods across all repeats except for one outlier.

We further investigated using linear regression for online learning. At
time ¢, the linear regression model is built using the last n observations
and is then used to make predictions for time ¢t 4+ 1. Figure 6 shows the
average linear regression online prediction mean squared error (MSE) using
different observation window sizes n on the wind dataset. The plot shows
that, for this dataset, the linear regressor makes better predictions when the
observation window n is smaller. The best results come from the window size
of 1, which is simply the nave prediction from before. The inability of these
methods to outperform nave prediction highlights the complexity of this
dataset — simpler prediction methodologies cannot capture the complexity
of forecasting this data. Due to this, we focus on using nave prediction
MSE to represent classical, baseline prediction performance in the following

sections/experiments.

4.3.2. Preserving Population Variety with Islands

As shown in Figure 5, using islands to maintain the population can sig-
nificantly improve/boost the online forecasting performance, allowing ONE-
NAS to outperform the classical methods. It is crucial to preserve variety in
an online setting, because: 1) ONE-NAS generates more genomes than EX-
AMM (for the same dataset and experimental set up, only 8k genomes were

generated using EXAMM, but 200k generated in total using ONE-NAS), 2)

22

[
[o¥)
[

[
)
]

0.007 _
."-r’.
-
.
-
, _
0.006 .
.o-""’"
II:Il"IJ _.-ﬂ"f.
= 0.005 Pt
_
i
N -==- Naive
- :
D.004 - = = MA
- T S EXP
T | g .
2 3 4 5 B 7 8 9 10

Figure 4: Classical TSF methods with varying window sizes and alpha values.

genomes generated online are trained and evaluated with significantly less
data (only a subset of the historical data), and, 3) the elite population is
evaluated using the most recent data, so there is some data drift present
in each generation, meaning that preserving variety can preserve important
historical information while preventing overfitting.

Given the above result that it is possible to effectively evolve and train
RNNs in an online setting, we found that two hyperparameters significantly
affect online prediction performance in ONE-NAS: the island size and the
extinction and repopulation frequency. Figure 7 shows a box plot of the
online prediction MSE using island sizes of 20, 30, and 40 in 10 repeated
experiments/trials with varying repopulation frequencies. As the number of
islands increases, the prediction performance improves. This could be due to

the fact that more islands allow for more speciation and a greater ability to

23

One-MAS vs. One-NAS Repopulation

=== Naive
0.014 — MA
""" EXP

0012 T

2010 4
A
E O
0008 4
0006
I e el it e e
............................... - DY
OneMas OneMAS Repopulation

Figure 5: Online prediction MSE of ONE-NAS and three classical TSF methods.

escape local optima. Additional species also provide more robustness to noise
and overfitting of the data. Given the same number of islands, more frequent
extinction and repopulation events yield better performance on average. This
is most likely due to the fact that these events prevent islands from stagnating

with poor(er) species.

4.8.83. Online Predictions over Time

The previous plots show the overall performance of ONE-NAS against
classical methods for the entire wind time series, which gives an advantage
to classical methods since they do not require any training and thus have
a significant advantage for earlier time steps when ONE-NAS has not had
much opportunity to train/evolve RNNs. In order to investigate how much
the RNNs evolved by ONE-NAS were improving as they processed more

data in an online fashion, we measured how many time steps (for each gen-

24

L0 Linear Regression Model Online MSE

08 1

06 1

COnline MSE

04 -

02 1

00

0 2 4 & 8 10 12 14 16 18
Window Size

Figure 6: Linear regression window size vs. MSE.

eration) exhibited a better predictive performance between the nave method
and ONE-NAS. Figure 8 shows the percentage of predictions of each method
that were accurate as the simulation progressed, with the red line represent-
ing 50%. This plot shows that, while ONE-NAS does not outperform the
nave strategy within the first 500 generations, the performance of ONE-NAS
continues to increase as the evolution continues, which means that ONE-
NAS does not only train and predict values online, it also gets progressively
better throughout the evolutionary process, which is what we would expect
from an online algorithm. Also note that it would be beneficial to combine
a classical method with ONE-NAS — it could prove fruitful to use a naive
predictor until ONE-NAS has had enough evolution time to produce more

accurate predictions.

25

One-NAS repopulation

=== Maive
00033 1

0.0032 -
0.0031 - ‘i‘ .i‘
0.0030 - i
0.0029 - o %
= O

MSE

0.0028 A

T T T T T T T
0 o 0 0y £y oy O
QQ 6.# 6.49 Qﬁ e;{"ﬁ 6.@ 6.#
& <& <& <& <& & &
& & & & & & &
& & & & & S S
o o o o o o o
o o o o o o o
CHN GO N ¥
&° & N & &° &° &°

Figure 7: ONE-NAS MSE with varying island sizes and extinction rates.

4.3.4. Online Prediction Time Efficiency

Another key concern for the evaluation of online algorithms, apart from
predictive accuracy, is time efficiency. If an online algorithm cannot provide
predictions at a rate less than the arrival rate of new data to be predicted,
then it is not usable/viable. ONE-NAS resolves this issue by utilizing the
previous best genome to provide predictions while concurrently training the
next generation.

Note that for this study, each generation was generated and trained over
a single subsequence of 25 time steps. For the wind dataset, each time
step was gathered at a 10 minute interval, so this provides a significant

buffer. However, for many time series datasets, time step frequency can be

26

08 40 Islands Extinct Freq 100

N OnehAs
071 mE Naive

Percentage %

(-500 500-1000 1000-1500 1500-2000
Generation Range

Figure 8: ONE-NAS percentage of better prediction generations versus classical methods.

per minute, per second, or even faster - making time efficiency a serious
concern. Table 1 presents the average and longest time required to evolve
and train one generation of the ONE-NAS Repopulation experiments for the
varying numbers of islands. Note that population size was tied to island size,
with 5 elite genomes and 10 other genomes per island, which is why the 40
island genomes took approximately twice the time. In the worst case, for 40
islands, the longest time per generation was a bit above 3 minutes, which is
far below the 250 minute generation time for the wind data.

It should also be noted that the workers training the genomes for each
generation were distributed across 16 processors and that performance will
scale linearly upwards until the number of available processors is equal to the
population size (i.e., all generated genomes can be independently trained in

parallel without reduction in performance apart from a fixed communication

27

Num Avg Longest

Islands | Time (s) | Time (s)
20 35.67 109.20
30 41.72 127.44
40 69.96 189.72

Table 1: The average and longest measured times, in seconds (s), needed to evolve each

generation for the wind dataset.

and genome generation overhead cost). This particular scalability of ONE-
NAS makes it well-suited to online learning. For example, if we scaled up to
200 processors over the 16 used for the 20 island experiments, we can estimate
approximately 2.85 seconds per generation (i.e., training the 200 non-elite
genomes at once, instead of 16 at a time), plus some additional communi-
cation and generation overhead. With a generation time of 25 time steps,
this would allow for incoming data to be processed at almost 10 readings per
second. Given some flexibility in determining subsequence/generation time,
ONE-NAS demonstrates the potential to operate for very high frequency

time series given enough computing power.

4.3.5. ONE-NAS vs LSTM & GRU RNNs

LSTM and GRU RNNs have been widely used in TSF problems [55] [56].
Fixed one-layer and two-layer LSTM and GRU networks were trained online
to compare with ONE-NAS, where one-layer indicates that an LSTM/GRU
only contained one fixed hidden layer or neurons while two-layer indicates
that the RNN contained two fixed hidden layers. The size of each hidden

layer was set to be equal to the size of the input layer and each node/unit

28

LSTM Online RMSE

—— ONENAS
LSTM_One_layer
— LSTM_Two_layer

07 1
06 -
05 1

0.4 1 Wk_“—

03 1

RMSE

02 -

01 1

0 5000 10000 15000 20000 0 25000 30000
Number of Samples

Figure 9: ONE-NAS versus one and two layer online LSTM RNNs.

in the hidden layer was set to be an LSTM or GRU cell (whereas the input
and output layer nodes consisted of simple neurons). Note that each layer
is fully connected to the next. The LSTM and GRU networks were initial-
ized with uniform random U (—0.5, 0.5) weights and weight updates/gradients
were applied using Nesterov’s accelerated gradient with a momentum value
of pn=0.9.

The LSTM and GRU networks were trained on the wind data with a
fixed moving window size. The gradients for the fixed-layer RNNS were
all computed online using truncated backpropagation through time [57] [58]
(where the networks were unrolled over the length of the window in order
to compute the full gradients). Figure 9 and 10 show online testing RMSE
using the best-found window size and best-found learning rate over 10 runs.

A window size of 30 and a learning rate of le™® was used for both one-

29

GRU Online RMSE

—— ONEMNAS
GRU_One_layer
— GRU_Two_layer

07 1

06 -

05 1

04 A

RMSE

03 1

02 -

01 1

0 5000 10000 15000 20000 0 25000 30000
Number of Samples

Figure 10: ONE-NAS versus one and two layer online GRU RNNs.

layer LSTM and GRU networks, a window size of 20 and learning rate of
le~3 was used for for the two-layer LSTM network, and a window size of 20
and learning rate of 2e~2 was used for the two-layer GRU network. These
configurations were selected from experiments with different fixed window
size of n = 10, 20, 30, 40, 50, and a variety of potential learning rates ranging
from 5e73 to le~*. The results show that ONE-NAS significantly outperforms
tuned, fixed one-layer and two-layer LSTM and GRU networks.

4.8.6. ONE-NAS vs Online ARIMA

While there is a significant lack of methods for online multivariate TSF,
recent work by Liu et al. [16] has led to the development of an online ARIMA
method for univariate TSF. To compare ONE-NAS with a state-of-the-art

method as opposed to only the classical methods investigated earlier, we

30

Wind Prediction Online RMSE

0.5 1 —— ONEMAS
ARIMA-ONS
—— ARIMA-OGD
04 A
w 03 A
L
=
[=
0.2 1
. kw

0 10000 20000 30000 40000 50000
Number of Samples

Figure 11: Online ARIMA versus ONE-NAS predictions on the wind dataset.

investigate ONE-NAS performance alongside this powerful, online ARIMA
model. To reproduce the results from Liu et al., we first performed experi-
ments using the Dow Jones Industrial Dataset (DJIA), which was used for
evaluation in their work. Figure 12 presents results for their ARIMA-ONS
(Arima Online Newton Step) and ARIMA-OGD (ARIMA Online Gradient
descent) variants, which were the best performing variants examined in the
original study. These were compared to the ONE-NAS Repopulation method
with 10 islands and extinction frequency of 200, and over a similar genera-
tion and subsequence length of 25. For both ONE-NAS and online ARIMA,
the plots show that the online root mean squared error (RMSE) over time,
averaged over 10 repeated experiments. The online RMSE over time is calcu-
lated as the average RSME of all previous predictions. For this DJIA data,

we show that, although the online ARIMA predictor mirrors/reproduces the

31

500 DJIA Prediction Online RMSE

—— ONENAS
1751 ARIMA-ONS

—— ARIMA-OGD
150 1

125

100 4

RMSE

075 -

050 1

025

000 -

o 5000 10000 15000 20000 25000 30000 35000
Mumber of Samples

Figure 12: Online ARIMA versus ONE-NAS predictions on the DIJA dataset.

results from the original study, ONE-NAS clearly outperforms this method
by multiple orders of magnitude.

We finally compared ONE-NAS with online ARIMA on the wind datasets,
the results of which are presented in Figure 11. Similarly, the results de-
pict the average performance over 10 repeated experiments. For online
ARIMA, we performed a hyper-parameter sweep using a grid search for
the online ARIMA methods on its learning rates and e and report the best
found hyper-parameters. For ARIMA-ONS, the learning rate was set to
e and € = 3.16e7%. For ARIMA-OGD, learning rate was set to e®, and
€ = e %5 ONE-NAS used the best hyper-parameters from our earlier pre-
vious results/experiments in this study (40 islands and extinction frequency

of 100). Similarly, we find that ONE-NAS also significantly outperforms the
online ARIMA methods on the wind dataset.

32

4.4. ONE-NAS FEvolved RNNs

Figure 13 presents an example RNN evolved by ONE-NAS. In compari-
son to commonly used layer-based (hierarchical) neural networks, networks
evolved by ONE-NAS are “unlayered” but exhibit highly complex connec-
tivity structures. Nodes in the network show their selected memory cell type
(or simple, if a basic neuron was chosen), and edges with positive weights
are shown in blue, and edges with negative weights are shown in red. Feed
forward connections are in solid lines, and recurrent connections are shown
in dotted lines.

While this network may seem complex, in comparison to a standard layer
based GRU or LSTM network (which ONE-NAS was shown to outperform
in Section 4.3.5), the evolved network only has 21 neurons (of varying types).
Whereas the GRU and LSTM networks have hidden layers of size 22 (the
same size as the input layer). Furthermore, the nodes in the evolved network
are not fully connected and, as a result, actually contains significantly less
synaptic edges. This example shows how ONE-NAS not evolves well per-
forming architectures online but also ones that are sparser (with respect to

synaptic connectivity) and computationally more efficient.

5. Conclusion

This work presents the Online NeuroEvolution-based Neural Architecture
Search (ONE-NAS) meta-heuristic optimization algorithm and applies it to
the problem of non-stationary time series forecasting (T'SF) on challenging
real-world tasks. To the author’s knowledge, ONE-NAS is the first neu-

ral architecture search algorithm capable of designing and training recurrent

33

‘SYN-ANO £q 9UI[uO poAJoAs sem jey) NNY sururrojrod 9saq rejdurexs uy g1 oInsig

£65L66 0 Ykp 8126690 1 /

| Thizs 3pou afduns | f ra & n_sn nin

196180 WP

HoEtEo e |
& 2pou o_?__ml_ ‘

i PO INLST

|| s 03:

\

, , ,,
T8990 ud=p | | Zp080€0 UNap PHLPLLO Yep

SHBITE 300U NKHDN || I 3pouvp || / | Lagre2pou noiK ¢ |

— |

LN | |

: J SO up i <P 0 ep |.
: A e | 811 2pou IS |
/ L o
7 : B
/ N Y
. . 7 /!

34

/ |/ |
couuap 00110 42p \ T6989°0 1P
S9L8# 2POU JALST | B8R PR PLII# 2PN NO [+] | O\
,,, / /.// /
\ N\
/ . o / ¢
[eomtrow ! asnﬁ.o__k&_; couep) Toisoydep |\ L8900 Yep
€616 APOURIRD . FE8LEAPOUNDIN | { 1092# 3pou NNJON cchu zpougdus | 1924 2pou 3dus
e - | e =8 . 4 . 5 i /3 a/r/ §
, /.//./ e
) . N RN s
A T T NN \,’ RSN ! / J 4 4 I \
Sy m,a || By | Seo || Sy m,:s ,m: i Saeey | Eaes0n Swno | Swign | EwOpqp || Saisq Swigqq | wiqq Swdsoy | Sws | Swg Swrw) || Swspg | Swy || Saeeg
0WRp | 0wkp || oyp || oudp 0ykp | oyeep 0yukp oudp | ouep 0ydp | oydep | oudp | oy oukp | gudp oykp | owkp oudp pydsp | oudp | oydep || pyekp
Tomdm | pp mduy || gy mdw || pindor g wdur | g wndug 91 muy Lomda | gy indur pode | gndu | g ndu pmdu g emdu | gmdw | ppndoygpndar | ppindur || g indan oz

AVIN %T890L T Ssaull awouag

neural networks (RNNs) in real-time as data arrives in an online fashion.
ONE-NAS is a dynamic/online, distributed, scalable, real-time algorithm
that works on univariate and multivariate real-world TSF datasets. ONE-
NAS starts evolution from a minimal seed genome, which potentially reduces
optimal model complexity [41], and then generates, trains, evaluates genomes
online/incrementally, while concurrently performing online forecasting with
the best previously found model. New streaming data is collected into a
historical data pool and new generated genomes are trained on randomly
selected sub-sets of the historical data. Generated genomes retain knowledge
from parental weights using a Lamarckian inheritance process [17], reducing
the amount of training required. By training new genomes with randomly
selected historical data and evaluating these on recently collected data, data
drift can be managed and catastrophic forgetting can be avoided. Maintain-
ing genomes in populations also acts as a method to retain previously gained
knowledge on historical data to further safeguard against forgetting.

An important feature of the ONE-NAS algorithm is that it utilizes islands
to maintain the population diversity and prevent over-fitting during the on-
line learning process. Further, periodically repopulating poorly performing
islands was shown to be critical in allowing ONE-NAS to outperform other
strategies. Our empirical results show that ONE-NAS repopulation out-
performs classical TSF methods, linear regression models, LSTM and GRU
networks trained online, and a powerful online ARIMA method. Our results
also demonstrate that using more islands with more frequent repopulation is
strongly correlated with increasing/improved performance. Finally, our sta-

tistical results indicate that our algorithm can achieve real-time performance

35

in real-world scenarios. As a result, this study shows that online neuroevolu-

tion or neural architecture search is feasible in online scenarios, which holds

great promise for addressing important challenges in time series forecasting.

References

1]

N. Zinouri, K. M. Taaffe, D. M. Neyens, Modelling and forecasting daily
surgical case volume using time series analysis, Health Systems 7 (2)

(2018) 111-119.

T. Wu, K. Xie, D. Xinpin, G. Song, A online boosting approach for traffic
flow forecasting under abnormal conditions, in: 2012 9th International
Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2012,
pp. 2555-2559.

J. Cao, Z. Li, J. Li, Financial time series forecasting model based on

ceemdan and Istm, Physica A: Statistical Mechanics and its Applications

519 (2019) 127-139.

Z. Lyu, S. Patwardhan, D. Stadem, J. Langfeld, S. Benson, S. Thoelke,
T. Desell, Neuroevolution of recurrent neural networks for time series
forecasting of coal-fired power plant operating parameters, in: Proceed-
ings of the Genetic and Evolutionary Computation Conference Compan-

ion, 2021, pp. 1735-1743.

T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, K. Funaya, Robust on-
line time series prediction with recurrent neural networks, in: 2016
IEEE International Conference on Data Science and Advanced Ana-

lytics (DSAA), leee, 2016, pp. 816-825.

36

[6]

[10]

[11]

[12]

T. Fields, G. Hsieh, J. Chenou, Mitigating drift in time series data with
noise augmentation, in: 2019 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), IEEE, 2019, pp.
227-230.

M. McCloskey, N. J. Cohen, Catastrophic interference in connectionist
networks: The sequential learning problem, in: Psychology of learning

and motivation, Vol. 24, Elsevier, 1989, pp. 109-165.

R. M. French, Catastrophic forgetting in connectionist networks, Trends

in cognitive sciences 3 (4) (1999) 128-135.

M. P. Raju, A. J. Laxmi, Iot based online load forecasting using machine

learning algorithms, Procedia Computer Science 171 (2020) 551-560.

S. Partee, M. Ellis, A. Rigazzi, A. E. Shao, S. Bachman, G. Marques,
B. Robbins, Using machine learning at scale in numerical simulations

with smartsim: An application to ocean climate modeling, Journal of

Computational Science 62 (2022) 101707.

J. A. R. Gonzalez, J. F. Solis, H. J. F. Huacuja, J. J. G. Barbosa,
R. A. P. Rangel, Fuzzy ga-svr for mexican stock exchange’s financial
time series forecast with online parameter tuning, International Journal
of Combinatorial Optimization Problems and Informatics 10 (1) (2019)
40.

Z. Lyu, T. Desell, One-nas: An online neuroevolution based neu-
ral architecture search for time series forecasting, arXiv preprint

arXiv:2202.13471.

37

[13]

[14]

[15]

[16]

[17]

[18]

S. C. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive
survey, Neurocomputing 459 (2021) 249-289.

L. Yu, S. Wang, K. K. Lai, An online learning algorithm with adaptive
forgetting factors for feedforward neural networks in financial time series

forecasting, Nonlinear dynamics and systems theory 7 (1) (2007) 51-66.
J. D. Cryer, Time series analysis, Vol. 286, Springer, 1986.

C. Liu, S. C. Hoi, P. Zhao, J. Sun, Online arima algorithms for time series

prediction, in: Thirtieth AAAT conference on artificial intelligence, 2016.

Z. Lyu, A. ElSaid, J. Karns, M. Mkaouer, T. Desell, An experimental
study of weight initialization and lamarckian inheritance on neuroevo-
lution, The 24th International Conference on the Applications of Evo-

lutionary Computation (EvoStar: EvoApps).

Z. Lyu, J. Karnas, A. ElSaid, M. Mkaouer, T. Desell, Improving dis-
tributed neuroevolution using island extinction and repopulation, The
24th International Conference on the Applications of Evolutionary Com-

putation (EvoStar: EvoApps).

R. A. Stine, Estimating properties of autoregressive forecasts, Journal

of the American statistical association 82 (400) (1987) 1072-1078.

E. S. Gardner Jr, Exponential smoothing: The state of the art, Journal
of forecasting 4 (1) (1985) 1-28.

J. I. Hansen, Triple exponential smoothing; a tool for common stock

price prediction.

38

22]

[25]

[26]

[27]

28]

B. Siregar, I. Butar-Butar, R. Rahmat, U. Andayani, F. Fahmi, Com-
parison of exponential smoothing methods in forecasting palm oil real

production, in: Journal of Physics: Conference Series, Vol. 801, IOP
Publishing, 2017, p. 012004.

Z. Chen, Q. Xue, R. Xiao, Y. Liu, J. Shen, State of health estimation for
lithium-ion batteries based on fusion of autoregressive moving average

model and elman neural network, IEEE access 7 (2019) 102662-102678.

D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, M. Ciccozzi,
Application of the arima model on the covid-2019 epidemic dataset,

Data in brief 29 (2020) 105340.

V. Kozitsin, 1. Katser, D. Lakontsev, Online forecasting and anomaly
detection based on the arima model, Applied Sciences 11 (7) (2021)
3194.

F. Schmidt, F. Suri-Payer, A. Gulenko, M. Wallschldager, A. Acker,
O. Kao, Unsupervised anomaly event detection for cloud monitoring
using online arima, in: 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion), IEEE,
2018, pp. 71-76.

O. Anava, E. Hazan, S. Mannor, O. Shamir, Online learning for time
series prediction, in: Conference on learning theory, PMLR, 2013, pp.
172-184.

M. Han, S. Zhang, M. Xu, T. Qiu, N. Wang, Multivariate chaotic time

39

[29]

[30]

[35]

series online prediction based on improved kernel recursive least squares

algorithm, IEEE transactions on cybernetics 49 (4) (2018) 1160-1172.

O. Anava, E. Hazan, A. Zeevi, Online time series prediction with missing
data, in: International Conference on Machine Learning, PMLR, 2015,

pp. 2191-2199.

H. Yang, Z. Pan, Q. Tao, Robust and adaptive online time series pre-
diction with long short-term memory, Computational intelligence and

neuroscience 2017.

X. Wang, M. Han, Online sequential extreme learning machine with

kernels for nonstationary time series prediction, Neurocomputing 145

(2014) 90-97.

B. Celik, P. Singh, J. Vanschoren, Online automl: An adaptive automl

framework for online learning, arXiv preprint arXiv:2201.09750.

B. Celik, J. Vanschoren, Adaptation strategies for automated machine
learning on evolving data, IEEE Transactions on Pattern Analysis and

Machine Intelligence 43 (9) (2021) 3067-3078.

J. G. Madrid, H. J. Escalante, E. F. Morales, W.-W. Tu, Y. Yu, L. Sun-
Hosoya, I. Guyon, M. Sebag, Towards automl in the presence of drift:
first results, arXiv preprint arXiv:1907.10772.

C. Yan, Y. Zhang, Q. Zhang, Y. Yang, X. Jiang, Y. Yang, B. Wang,
Privacy-preserving online automl for domain-specific face detection,

arXiv preprint arXiv:2203.08399.

40

[36]

[37]

[40]

I. Ororbia, G. Alexander, F. Linder, J. Snoke, Using neural generative
models to release synthetic twitter corpora with reduced stylometric

identifiability of users, arXiv preprint arXiv:1606.01151.

L. Cardamone, D. Loiacono, P. L. Lanzi, Learning to drive in the open
racing car simulator using online neuroevolution, IEEE Transactions on

Computational Intelligence and Al in Games 2 (3) (2010) 176-190.

A. Agogino, K. Stanley, R. Miikkulainen, Online interactive neuro-

evolution, Neural Processing Letters 11 (1) (2000) 29-38.

K. O. Stanley, B. D. Bryant, R. Miikkulainen, Real-time neuroevolution
in the nero video game, IEEE transactions on evolutionary computation

9 (6) (2005) 653-668.

M. Galassi, N. Capodieci, G. Cabri, L. Leonardi, Evolutionary strate-
gies for novelty-based online neuroevolution in swarm robotics, in:
2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, 2016, pp. 002026-002032.

K. Stanley, R. Miikkulainen, Evolving neural networks through aug-
menting topologies, Evolutionary computation 10 (2) (2002) 99-127.

R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,

MIT press, 2018.

A. Ororbia, A. ElSaid, T. Desell, Investigating recurrent neural network
memory structures using neuro-evolution, in: Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO 19, ACM, New

41

http://doi.acm.org/10.1145/3321707.3321795
http://doi.acm.org/10.1145/3321707.3321795

[45]

[46]

[47]

York, NY, USA, 2019, pp. 446-455. doi:10.1145/3321707.3321795.
URL http://doi.acm.org/10.1145/3321707.3321795

A. ElSaid, J. Karns, Z. Lyu, D. Krutz, A. Ororbia, T. Desell, Improving
neuroevolutionary transfer learning of deep recurrent neural networks
through network-aware adaptation, in: Proceedings of the 2020 Genetic

and Evolutionary Computation Conference, 2020, pp. 315-323.

A. ElSaid, J. Karnas, Z. Lyu, D. Krutz, A. G. Ororbia, T. Desell, Neuro-
evolutionary transfer learning through structural adaptation, in: Inter-
national Conference on the Applications of Evolutionary Computation

(Part of EvoStar), Springer, 2020, pp. 610-625.

A. G. Ororbia II, T. Mikolov, D. Reitter, Learning simpler language
models with the differential state framework, Neural Computation 0 (0)
(2017) 1-26, pMID: 28957029. arXiv:https://doi.org/10.1162/
neco_a_01017, doi:10.1162/neco_a_01017.

URL https://doi.org/10.1162/neco_a_01017

J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of
gated recurrent neural networks on sequence modeling, arXiv preprint

arXiv:1412.3555.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Com-

putation 9 (8) (1997) 1735-1780.

G.-B. Zhou, J. Wu, C.-L. Zhang, Z.-H. Zhou, Minimal gated unit for re-
current neural networks, International Journal of Automation and Com-

puting 13 (3) (2016) 226-234.

42

http://dx.doi.org/10.1145/3321707.3321795
http://doi.acm.org/10.1145/3321707.3321795
https://doi.org/10.1162/neco_a_01017
https://doi.org/10.1162/neco_a_01017
http://arxiv.org/abs/https://doi.org/10.1162/neco_a_01017
http://arxiv.org/abs/https://doi.org/10.1162/neco_a_01017
http://dx.doi.org/10.1162/neco_a_01017
https://doi.org/10.1162/neco_a_01017

[50]

[51]

[55]

[57]

J. Collins, J. Sohl-Dickstein, D. Sussillo, Capacity and trainability in

recurrent neural networks, arXiv preprint arXiv:1611.09913.

B. Barker, Message passing interface (mpi), in: Workshop: high perfor-
mance computing on stampede, Vol. 262, Cornell University Publisher

Houston, TX, USA, 2015.

C. M. Bishop, Training with noise is equivalent to tikhonov regulariza-

tion, Neural computation 7 (1) (1995) 108-116.

C. M. Bishop, et al., Neural networks for pattern recognition, Oxford

university press, 1995.

S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine
learning forecasting methods: Concerns and ways forward, PloS one

13 (3) (2018) €0194889.

V. K. R. Chimmula, L. Zhang, Time series forecasting of covid-19 trans-
mission in canada using lstm networks, Chaos, Solitons & Fractals 135

(2020) 109864.

R. Fu, Z. Zhang, L. Li, Using Istm and gru neural network methods for
traffic flow prediction, in: 2016 31st Youth Academic Annual Conference
of Chinese Association of Automation (YAC), IEEE, 2016, pp. 324-328.

O. Marschall, K. Cho, C. Savin, A unified framework of online learning
algorithms for training recurrent neural networks, Journal of machine

learning research.

43

58] F. A. Gers, D. Eck, J. Schmidhuber, Applying Istm to time series
predictable through time-window approaches, in: Neural Nets WIRN
Vietri-01, Springer, 2002, pp. 193-200.

44

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 EXAMM
	3.2 The ONE-NAS Algorithm
	3.3 Learning Important Information

	4 Experimental Design
	4.1 Datasets
	4.2 Processing and Setup
	4.3 Results
	4.3.1 Comparison with Classical TSF Methods
	4.3.2 Preserving Population Variety with Islands
	4.3.3 Online Predictions over Time
	4.3.4 Online Prediction Time Efficiency
	4.3.5 ONE-NAS vs LSTM & GRU RNNs
	4.3.6 ONE-NAS vs Online ARIMA

	4.4 ONE-NAS Evolved RNNs

	5 Conclusion

