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Abstract: This paper aims to model the dynamic behaviors of welding process that can be observed by humans 

and monitored by imaging sensors. This is fundamental in deciding if such dynamic behaviors can be used 

as raw data, that contains sufficient relevant information, to monitor what occurs underneath the workpiece 

determining the weld integrity. Challenges arise as featurization of these observations proves difficult, and 

the governing laws for the underlying process remain largely unknown. Leveraging the ability of Generative 

Adversarial Networks (GANs) to generate intricate phenomena from simple inputs by automatically 

approximating unknown underlying laws, we propose using a GAN to predict the dynamic behaviors of 

welding processes. In this framework, dynamic behaviors serve as the output, while the trained GAN 

functions as the model for the underlying process, generating the observed behaviors from the inputs. The 

success of predictions depends not only on the GAN's capability to approximate the process but also on the 

sufficiency of the inputs provided. With this consideration, we model an exceptionally complex process that 

correlates weld joint penetration with observed phenomena to determine if the underlying process involves 

critical inputs beyond penetration alone. Our findings reveal the necessity of welding currents for accurate 

predictions by the GAN model. This implies that the combined information from human-observed/imaged 

phenomena and welding currents provides a more comprehensive basis for monitoring weld penetration, 

contributing to the advancement of robotizing welding processes with the necessary intelligence.       
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1. Introduction 

 

Per the International Federation of Robotics, “50 percent of all the world’s robots are used for welding. 

Specifically, 33 percent are employed for spot welding, 16 percent are doing arc welding, and 1 percent are 

performing some other type of welding operation.” [1] Arc welding, as the most widely used welding process, 

is thus still far from being fully robotized. This is largely due to the lack of generalizable approaches for 

robots to adapt to the process, similarly to human welders, to assure the quality of the produced welds. 

Human welders produce quality welds through real-time adaptive adjustment of welding parameters per 

observed welding process dynamic behaviors while following the established welding procedure. The focus 

of their real-time adaptive adjustment is on the weld fusion/weld penetration which plays the most critical 

role in assuring the weld integrity.   Robotized welding process can follow the established welding procedure 

better than human welders and should outperform over human welders if effective adaptive adjustment can 

also be made to assure the weld penetration. However, monitoring weld penetration is a classical challenge 

as it occurs underneath the workpiece, making it not directly observable.  

Due to its crucial role in robotizing welding, this challenge has continuously attracted numerous 

researchers from around the world, testing various different ideas since the 1970s including pool oscillation 

[2, 3] that correlates the weld penetration to oscillation frequency, infrared sensing [4] that utilizes the 

difference in emissivity among solid and liquid to detect the weld pool boundary, and weld sag [5] that 



 

increases with the penetration. Image processing and other algorithms have been used to calculate features 

from sensed phenomena and advanced techniques including neural networks [6], neuro-fuzzy systems [7, 8, 

9], and support vector machines [12] have been used to map the calculated features to the penetration.  

The advancements in deep learning (DL) techniques provide a new opportunity. Previous efforts 

attempted to propose features, develop algorithms for extracting and correcting these features, and then relate 

them to penetration labels using models. They ranged from simpler regression models to more complex 

models, including neural networks, with the features as input and penetration as the output. They all involved 

representing high-dimensional data/images using lower-dimensional features, and these representations may 

not be adequate, often requiring iterative efforts for improvement. Each modification in the features 

necessitates the development of new algorithms for extraction, making the process time-consuming, and the 

success uncertain and generally not generalizable. DL, which offers the potential for automatically optimizing 

features without the need for extensive human iteration, provides an opportunity toward generalization. 

The authors [11] recently underscored the transformative impact of DL and elucidated the reasons behind 

its potential systematically. DL was first reported for monitoring weld penetration in 2019 [12], and the 

number of records in Web of Science has grown rapidly since. Regrettably, the new efforts still have 

continued to follow the past pattern centering on application specifics. The crucial aspects in taking 

transformative DL to desired generalizability, identified by the authors to be the sufficiency of the raw 

data/model inputs [11], have been largely overlooked.  

What is particularly missing is in-depth understanding that human-observable phenomena, which serve as 

inputs to most deep learning models for predicting the weld penetration, exhibit dynamic relationships with 

the weld penetration. While application/process specifics as centered in existing studies are considered 

available, the lack of such in-depth knowledge/understanding critical to generalizability is not easily 

recognized! Authors’ recent study [13] has taken the first step in gaining an in-depth understanding of how 

the observations (𝚵) correlate with and are determined by the events occurring beneath the workpiece (𝑥) 

which represents the weld penetration. It revealed that the human-observed welding process dynamic 

behaviors are much better modeled by Ξ(𝑘) = 𝑃(𝑥(𝑘), 𝑥(𝑘 − 1), … ) than by Ξ(𝑘) = 𝑃(𝑥(𝑘)). This implies 

that adding the penetration history 𝑥(𝑘 − 1),…, into the model input improves the adequacy of the raw 

information. However, the human-observed phenomena are still not fully accurately predicted [13]. As such, 

the understanding of the human-observed behaviors is still not complete.    

In seeking for more complete understanding, we look at an illustrative example, the oscillation of the weld 

pool which represents the initial phenomena studied for weld penetration monitoring [2, 3]. The oscillation 

behavior observed is not solely determined by the geometry of the weld pool representing the penetration but 

also by the arc pressure 𝑢 stimulating the pool to oscillate. While this example serves as illustration, it has 

been undoubtedly demonstrated that the DL models of our concern generally must be based on Ξ(𝑘) =
𝑃(𝑥(𝑘), 𝑥(𝑘 − 1), … ; 𝑢(𝑘), 𝑢(𝑘 − 1), … ), encompassing the stimuli and dynamics.  

In this paper, we use a GAN to map the proposed inputs to the unprocessed/un-featurized observations 

from the gas tungsten arc welding process, the primary arc process used for precise joining where the 

penetration must be assured. We will reveal that adding welding currents into the inputs of the underlying 

model as approximated by the trained GAN significantly improved the prediction accuracy, thus the modeling 

of the underlying process. The result is fundamental in designing a generalizable deep learning model to 

predict the weld penetration from observed welding process phenomena.  
 
2. Underlying Process and Modeling Approach 

 
2.1 Underlying Process 

The underlying welding, i.e., gas tungsten arc welding (GTAW), process can be simply illustrated first by 

Fig. 1. The welding torch imposes the arc on the upper surface of the workpiece to process (heat and melt) 

the workpiece. This processing produces complex phenomena, and we use two cameras to view the relevant 

phenomena. Camera 1 views the phenomena Ξ human welders observe during welding by centering at the 



 

 

weld pool generated by the arc on the upper surface of the workpiece. The resultant image is referred to as 

the top image 𝐼𝑡 = 𝑓(Ξ) where the observed objects include the weld pool and its surrounding region, the 

tungsten electrode which emits the electrons that flow to the workpiece to form the arc current 𝐼, and the arc 

established between the tungsten and workpiece.  Camera 2 views the opposite area underneath the workpiece 

on the lower surface and the resultant image is referred to as the bottom image 𝐼𝑏. In the GTAW experiments 

conducted to generate the dataset, the welding speed is fixed at 2mm/s, and the current 𝐼 varies between 80 

A to 105 A randomly every 2 seconds, producing top and bottom images, and corresponding image pairs, of 

various types. The cameras capture 60 images per second, establishing a dataset with 16,200 data/image pairs 

after removing the arc ignition phases in each experiment. Fig. 2 shows a series of [𝐼(𝑘), 𝐼𝑏 (𝑘)] image pairs 

sampled from a 5-second period at 1 second per pair. As the variation that causes the various image pairs is 

due to the random change in the welding current, this series is representative of various types of images and 

image pairs.   

 
Figure 1: Illustration of Underlying Process. 

 

Figure 2: Five-second sequence of image pairs illustrating images of various types. 



 

The top image 𝐼𝑡 captures human observations Ξ based on which human welders adjust their operations. 

We have mentioned that their adjustment is to maintain the weld penetration 𝑥 at the desired state 𝑥∗. The 

weld penetration 𝑥 is either measured by the depth of the weld pool 𝑑𝑤 [11] (Fig. 1) if the workpiece is not 

completely melted in the thickness direction or the backside bead width of the weld pool 𝑤𝑏 [11] (Fig. 1) if 

the workpiece is completely penetrated through the entire thickness of the workpiece. The bottom image 𝐼𝑏 

can be used to determine 𝑤𝑏 directly. It can also provide the most direct measurement to estimate 𝑑𝑤 [11]. 

The bottom image 𝐼𝑏 thus corresponds to the weld penetration 𝑥, i.e., 𝐼𝑏 = 𝑔(𝑥), the human welder tries to 

maintain during their operation. In this study, we use the bottom image 𝐼𝑏 as the full label of weld penetration, 

while 𝑑𝑤 or 𝑤𝑏 can be considered simplified measures. Our fundamental question is whether the human-

observed behavior (top image 𝐼𝑡) is purely decided by the weld penetration (bottom image 𝐼𝑏). If not, the 

foundation for using the top image 𝐼𝑡 to estimate the penetration 𝐼𝑏would not be perfectly solid, or the raw 

information is not sufficient [11].    

The above question defines a “virtual underlying process” that produces the top image 𝐼𝑡 = 𝑓(Ξ) from the 

bottom image 𝐼𝑏 = 𝑔(𝑥). This is an extremely complex process that has not been studied. The complexity is 

due to the complexity of the actual physical processes involved. To elaborate, the arc imposes both heat flux 

(complex distribution) and forces, including surface forces (arc pressure, surface tension) and body forces 

(electromagnetic force, convection), on the workpiece surface and underneath. The forces coupled with the 

welding conditions dominate how the heat imposed by the arc are transported within the workpiece to melt 

it and form the penetration which can be observed on the lower surface. After the weld pool and weld 

penetration change, the behaviors observed on the upper surface must also alter accordingly. In this way, the 

complete process is from the upper to the lower and then from the lower to the upper and our focus in this 

study is from the lower to the upper.    

As such, the behaviors Ξ observed on the upper surface in the top image 𝐼𝑡 are determined by the arc (input 

of the welding process) and the penetration (result of the welding process). The bottom image 𝐼𝑏  (weld 

penetration 𝑥) itself should be insufficient in determining the top image 𝐼𝑡. It is the coupling of the arc and 

penetration that determines the behaviors of the phenomena Ξ  observed in the top image 𝐼𝑡. A model that 

can accurately produce the top image 𝐼𝑡 requires input raw information from the arc and penetration. This is 

a fundamental improvement in our understanding as it extends our foundation from 𝑓(𝐼𝑡, 𝐼𝑏) = 0  to 

𝑓(𝐼𝑡, 𝐼𝑏 , 𝑎) = 0 where 𝐼𝑡, 𝐼𝑏 , 𝑎 stand for the top image, bottom image and arc. As a key in the deep learning 

is to assure that the sufficient raw information has been provided to the deep learning model, this extension 

promises for a next level of deep learning-based monitoring of weld penetration which is critical in robotizing 

welding processes.   

We note that most of the deep learning-based monitoring techniques for weld penetration are based on 

𝑓(𝐼𝑡, 𝐼𝑏) = 0 [11]. There are a few studies that include the inputs from the welding process [14, 15]. However, 

the addition is not justified per discussion of the underlying physical process, similarly as in many studies 

that use multiple information sources.     

In our above discussion, we have not mentioned the dynamics of the underlying process which is equally 

important. That is, is the current top image 𝐼𝑡(𝑘) determined by the current bottom image 𝐼𝑏(𝑘) or by its 

history 𝐼𝑏(𝑘), 𝐼𝑏(𝑘 − 1), … ? This is another fundamental question if the behaviors observed by human are 

dynamic. In our previous study [13], we have used a GAN to generate 𝐼𝑡(𝑘) from 𝐼𝑏(𝑘) and from 𝐼𝑏(𝑘), 

𝐼𝑏(𝑘 − 1), … to see if the use of the history improves the sufficiency of the raw information. We found that 

the sufficiency was significantly improved. However, large errors in the prediction of the top images were 

still observed. As will be shown in this paper, introducing the welding current, denoted as 𝑢, to present the 

input of the welding process in general, eliminates all errors human may observe.  

 

2.2 Generative Modeling  
We note that the majority of studies on deep-learning based monitoring of weld penetration use observable 
complex phenomena Ξ  (high-dimensional data) as inputs to predict low-dimensional labels. High-
dimensional data contains relevant and irrelevant features that may both be extracted to fit the labels. 



 

 

Validation data may also contain the same irrelevant features and using the validation result to measure the 
model quality is a compromise as there are no other better measures. However, in generative modeling, low-
dimensional data is used to predict complex high-dimensional data. If successfully modeled, the fundamental 
role of the simple input in determining the complex output can be better assured. In this extent, we propose 
to study through generative modeling and use a GAN to generate complex top image 𝐼𝑡from simple bottom 
image 𝐼𝑏 and welding process input 𝑢. 

Generative Adversarial Networks (GANs) [16] were first introduced in 2014. There has been a remarkable 
progress in further improving the GAN [16] architecture as well as successfully integrating the model in various 
applications. The GAN framework incorporates a minimax game between a generative model (generator) 
and a discriminator model (discriminator). In a nutshell, GANs [16] are generative models that learn the data 
distribution by generating data samples. For conditional generation tasks, conditional GANs [17] are usually 
employed where the condition inputs are built into GAN’s generator and discriminator. 

Deep Convolutional Generative Adversarial Networks (DCGANs) [6] incorporate convolutions into the 
GANs [16] architecture to work with image data. They provide important and helpful information to ensure a 
more stable training while using only convolution layers (no linear layers). They have been shown to be 
capable of generating high quality images. 

 
3. GRU-GAN Model 

 
GANs can be trained to generate complex distributions from simple distributions. This implies that GAN are 
capable of modeling unknown complex mappings. In the training process, the discriminator does not try to 
discriminate/match between a generative image from/with a particular real image but distinguish all 
generated images from real images. Our work is based on conditional GANs [17]. The conditional part of 
our GANs [16] corresponds to the bottom images 𝐼𝑏(𝑘)′𝑠 and the welding current waveform 𝑢(𝑘)′𝑠. For 

each real top image 𝐼𝑡(𝑘), the conditional GAN tries to generate a similar one  𝐼𝑡̂(𝑘) using specific conditions 
as presented by the corresponding bottom images and welding currents. The conditional GAN matches 
between real and generated top images. 

The conditional GAN we develop predicts the top image 𝐼𝑡(𝑘) from the bottom images 𝐼𝑏(𝑘 − 𝑗)’s and the 
welding current 𝑢(𝑘 − 𝑗)’s as shown in Fig. 3. We follow a similar approach in [13] that generates 𝐼𝑡(𝑘) from 
𝐼𝑏(𝑘 − 𝑗)’s where a GRU model is combined with a GAN model. The main novelty is to incorporate the 
current information as a condition input which reflects an improvement in understanding of the fundamentals 
of the underlying process analyzed above. To generate 𝐼𝑡(𝑘) , we use 𝑛  bottom images 𝐼𝑏(𝑘 + 1 − 𝑗) 
(𝑗 = 1, … , 𝑛), denoted as 𝑰𝒃(𝑘) ; and for each 𝐼𝑏(𝑘 + 1 − 𝑗)  used, 𝑚  welding currents  𝑢(𝑘 + 1 − 𝑗 +
(1 − 𝑝) )(𝑝 = 1, … , 𝑚) forming a current waveform are added. The currents added form a 𝑚 × 𝑛 matrix filled 
with 𝑢(𝑙) (𝑙 = 𝑘, … , 𝑘 + 2 − 𝑛 − 𝑚), denoted as 𝑼(𝑘).   

 
Figure 3: Proposed conditional GRU-GAN. 

 
3.1 GRU-GAN Discriminator  



 

Illustrated in Fig. 4 is the architecture of the discriminator. It receives an input tensor of dimensions 
64x64x(n+1), formed by concatenating 𝑛 consecutive bottom images 𝑰𝒃(𝑘) and 𝐼𝑡(𝑘), representing either the 

real image 𝐼𝑡(𝑘) or the generated image 𝐼𝑡(𝑘). The discriminator architecture consists of four successive 
convolution layers with channel configurations of 16, 32, 64, and 128, respectively. The convolution layers 
utilize a kernel size of 4, a stride of 2, and zero padding, except for the final layer. Batch normalization [19] 
and leaky ReLU with a coefficient of 0.2 are applied between convolution layers. The last layer of the 
discriminator employs the sigmoid activation function. Refer to Figure 4 for an illustration of this 
architecture.  

 
Figure 4: Discriminator. 

3.2 CNN Embedding 

As anticipated, the arrangement of the bottom images holds significance in determining the corresponding 
top image. To address this, we treat the input as a sequence and incorporate Gated Recurrent Units (GRU) 
[20]—a type of recurrent neural network—into the generator. Other notable recurrent models include LSTM 
[21], NC-GRU [22], GORU [23], among others. In our proposed conditional GAN (conditional GRU-GAN), 
the conditioning part comprises the bottom images 𝑰𝒃(𝑘) and the welding current matrix 𝑼(𝑘). Additionally, 
we conducted experiments with the NC-GRU [22] architecture. Given that the condition input sequence 
involves images, we integrate a CNN embedding into our main architecture, where each bottom image 
undergoes convolutional neural network (CNN) embedding to extract essential features before being fed into 
the GRU. The CNN Embedding layer comprises three convolution layers with channel configurations set to 
4, 8, and 16, respectively. All convolution layers use a kernel size of 4, a stride of 2, and a zero-padding size 
of 1. Batch normalization is applied between each convolution layer, and the output is reshaped into a 1024-
dimensional vector at the final layer. Refer to Figure 5 for a more detailed visual representation of the CNN 
Embedding. 

 
Figure 5: CNN Embedding 

3.3 GRU-GAN Generator with Welding Current 

As mentioned before, a substantial difference from the work of [13] is the welding current information we 
incorporate as part of the input of the GRU generator. F i g u r e  6  s h o w s  t h e  G R U  g en e r a t o r  t o  



 

 

p r o d u ce  𝐼𝑡(𝑘). Every GRU cell thus takes 𝑰𝒃(𝑘) but the welding current as well. Since there is only one 
current value for each bottom image 𝐼𝑏 and the current demonstrates the effect through waveform, we form 
a current vector using 𝑚  most recent current values 𝑢(𝑘 − 𝑗), … , 𝑢(𝑘 − 𝑗 − 𝑚 + 1) . Thus, due to the 
incorporation of the current information, during the first iteration of the training process, we first predict 
𝐼𝑡(𝑘) at 𝑘 = 𝑛 + 𝑚. When 𝑛 = 60 and 𝑚 = 30, the first generated image will be 𝐼𝑡(90).   

The current vector passes through two layers of 1D convolutions (CNN 1D). The kernel size for both layers 
is set to 3 and the numbers of channels are 3 and 6, respectively. The initial hidden state of the GRU is 
initialized using a Gaussian random vector and is considered as the 𝑧  vector referenced in the GAN 
architecture, where the Generative Adversarial Network is trained to approximate the distribution of the top 
images that we need to generate. The dimension of the 𝑧 vector is set to 256. The GRU output (i.e. the last 
hidden state ℎ(𝑘)) is then reshaped into 16×16×1 and this image is passed through two deconvolution layers 
to obtain an image of dimension 64×64×1. This image is the generated image of our model. 

 

Figure 6: Generator. 

To train the model, the GRU loss function is based on the Wasserstein loss [24]: 

ℒ𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧
[𝐷(𝐺(𝑧))]                                            (1) 

To ensure the model is generating a top image 𝐼𝑡(𝑘) matching with 𝐼𝑡(𝑘), we add the Structural Similarity 
Index Measure (SSIM) [25] to the loss. The Structure Similarity Index Measure (SSIM) is defined as 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+ 𝐶1)(𝜎𝑥
2+𝜎𝑦

2 + 𝐶2)
                                                    (2) 

where, 𝜇𝑥 , 𝜇𝑦 , 𝜎𝑥 , 𝜎𝑦  denote the mean and standard deviation of both images 𝑥: = 𝐼𝑡  and 𝑦 ≔ 𝐼𝑡 , 𝐶1 =
(𝐾1𝐿)2 and 𝐶2 = (𝐾2𝐿)2 with 𝐾1, 𝐾2 ≪ 1 and L = max value. In order to avoid instability when  𝜇𝑥

2 +  𝜇𝑦
2 

and 𝜎𝑥
2 + 𝜎𝑦

2 are very close to zero, we employ 𝐶1 and 𝐶2, which are constants. SSIM was first introduced 

in [25] to measure the difference between two images by considering the luminance, contrast and the structure. 

Thus. the loss function for training the generator is the following weighted loss: 

ℒ𝑜𝑠𝑠𝐺 = 0.8 ∗ 𝑊𝑎𝑠𝑠𝐺 + 0.2 ∗ 𝑆𝑆𝐼𝑀(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒, 𝑅𝑒𝑎𝑙 𝑇𝑜𝑝 𝐼𝑚𝑎𝑔𝑒)           (3) 

In our training, the learning rate is 3 ∗ 10−4 and the model is trained for 100 epochs. An exponential learning 
rate decay is also applied every 10 epochs with coefficient 0.9. 

 



 

4. Results and Discussion  

 

The size of our total dataset is 18,567 and we split it into training and testing subsets, with 80% for training 
and the remaining 20% for testing. We have conducted comparative experiments to see how the ability of the 

GAN in generating 𝐼𝑡 similar or identical to 𝐼𝑡, as measured by the SSIM score, changes with the condition as 
shown in Table 1. Assuming each GAN is well trained, the score reflects the sufficiency of the raw information, 
used as the condition of the GAN, in predicting the top image.  

Table 1: SSIM scores  

Model # GAN condition SSIM score 
1 𝑛 = 1, 𝑚 = 0 [13] 0.837 
2 𝑛 = 8, 𝑚 = 0 [13] 0.925 
3 𝑛 = 15, 𝑚 = 0 0.92 
4 𝑛 = 30, 𝑚 = 0 0.867 
5 𝑛 = 60, 𝑚 = 0 0.847 
6 𝑛 = 8, 𝑚 = 8 0.932 
7 𝑛 = 8, 𝑚 = 30 0.934 
8 𝑛 = 60, 𝑚 = 30 0.938 

As can be seen from Table 1, we first increase the dynamic dependence time (𝑛) from 𝑛 = 1 (model #1 
in Table 1, no dynamics introduced) to 𝑛 = 8 (model #2 in Table 1). This introduction of the dynamic time 
was effective in improving the sufficiency of the raw information (the sufficiency of the input of the 
underlying process) as can also be seen from Fig. 7 for their visual comparison. However, the improvement 
does not continue when 𝑛 further increases (from model #2 through to #5) as shown in Table 1 and in Figs. 
8 and 9. Instead, we see decreases in accuracy.  

 

Figure 7: Result from model #1 (𝑛 = 1, 𝑚 = 0) and #2 (𝑛 = 8, 𝑚 = 0) showing the effect of introducing 
dynamics. Left: generated using (𝑛 = 1, 𝑚 = 0); middle: real top images; right: generated using (𝑛 = 8, 𝑚 =
0) [13]. The comparison of the left and right with the middle shows the effect of dynamics in improving the 
sufficiency of the model input of the underlying process.  



 

 

 
Figure 8 Result from Model #4 in Table 1 (𝑛 = 30, 𝑚 = 0). Left: 𝐼𝑡; right: 𝐼𝑡. 

 

 
Figure 9 Result from Model #5 in Table 1 (𝑛 = 60, 𝑚 = 0). Left: 𝐼𝑡; right: 𝐼𝑡. 

  
Theoretically, the SSIM score should not decrease as the model complexity (𝑛) increases. Practically, to 

train a more complex model, more data is needed. The training also tends to be more challenging. The 
decrease in the SSIM score reflects those possible benefits from increasing the model complexity (model #4, 
#5 from #2) are less significant in comparison with the adverse effect in increases in data needed and in 
training difficulty. As such, the modeling accuracy of the human-observed behaviors is first drastically 
increased by introducing dynamic dependence (from model #1 to #2), but such improvement does not 
continue indefinitely.  

 

 
                                                (a) Real image 𝐼𝑡       (b) Generated image 𝐼𝑡 



 

Figure 10: Result from this study showing the effect of introducing welding current waveform. Model #6 
with (𝑛 = 8, 𝑚 = 8).   
 

  
                                                (a) Real image 𝐼𝑡          (b) Generated image 𝐼𝑡 

Figure 11: Result from this study showing the coupling effect from the dynamic dependence on the 
penetration with the welding current waveform. Model #8 with (𝑛 = 60, 𝑚 = 30).   

 
Model #2 with (𝑛 = 8, 𝑚 = 0) can be considered a milestone improvement but, from Figure 7, its 

accuracy in generating 𝐼𝑡 is still far from being sufficient. Per our analysis of the underlying process, adding 
the current waveform may introduce a novel way to improve the sufficiency of the input of the underlying 
process. As can be seen in Table 1, we improved the SSIM score from 0.925 (model #2 with (𝑛 = 8, 𝑚 =
0)) to 0.932 (model #6 with (𝑛 = 𝑛, 𝑚 = 8)  simply by adding a current waveform and continued the 
improvement by increasing the model complexity in both 𝑛 and 𝑚 directions. The improvements are clearly 
visualized by comparing Fig. 7 with Fig. 10 and with Fig. 11.  

One may note that the improvement in the SSIM score appears to be small. Model #8 with (𝑛 = 60, 𝑚 =
30) demonstrates a perfect set of generated images with SSIM=0.938. However, the improvement over model 
#2 with (𝑛 = 8, 𝑚 = 0) in the SSIM is only 0.013. This provides us a sense of the sensitivity of modeling 
accuracy with the SSIM score. With this in mind, we below discuss how the accuracy changes with 𝑛 and 𝑚 
after introducing the current waveform whose length is measured by 𝑚.  

First, introducing the current waveform, from model #2 (𝑛 = 8, 𝑚 = 0) to model #6 (𝑛 = 8, 𝑚 = 8) 
increases the accuracy/SSIM score from 0.925 to 0.932. The increase in the SSIM score is 0.007. Although 
0.007 increase appears to be very small, from the sensitivity of the modeling accuracy with the SSIM score, 
we can appreciate that this improvement in the accuracy is quite significant. As such, introducing the current 
waveform is fundamental in modeling the underlying process in understanding human-observed dynamic 
behaviors.  

Next when we further increase the length of the current waveform from 𝑚 = 8 to 𝑚 = 30 (from model 
#6 (𝑛 = 8, 𝑚 = 8)  to model #7 (𝑛 = 8, 𝑚 = 30) ), there demonstrated further improvement. Then we 
increase the number of the bottom images to 60 (corresponding to 1 second) (model #8), we see further 
improvements in the modeling accuracy rather than decrease.  

We have discussed the relationship between the significance in increasing the model sufficiency and the 
resultant increase in the model complexity when the training data is given. If the model complexity increase 
does not improve the model sufficiency, the trained model may not improve the modeling accuracy or may 
even reduce the accuracy. After introducing the welding current waveform, the modeling accuracy keeps 
improving even when increasing the number of the bottom images.  

It is interesting to note that increasing the bottom images reduces accuracy but improves the accuracy after 
introducing the current waveform. This probably implies that it is the coupling between the current (welding 
process input) and penetration (welding process output) that has longer dynamic effect on the observed 
dynamic behaviors rather than the input and output of the welding process alone separately. This makes sense 
as there is a dynamic process from the welding parameters to change the penetration and the changed 
penetration (changed weld pool) to come back to influence the observed behaviors. Of course, such an 



 

 

explanation is highly hypothetical and is subject to systematic study to test which exceeds the scope of this 
present study.  

 

 

Figure 12: An experimental discriminator. 

 
5. Additional Efforts 

 
We have made additional efforts to see if the results in Table 1 reasonably reflect the best possible modeling 
accuracy based on which we analyzed how the sufficiency changes with the information sources. One effort 
is to use another discriminator shown in Figure 12 where different kinds of information are separated 
processed first to form the features to see if it may improve the generative capability.  

This another discriminator has three CNNs: (1): CNN 2D (Inp) with the real/generated image as the input. 
It has two convolution layers with a batch norm applied in between. The kernel sizes are 4 and 3, respectively 
with stride 2 and zero padding set to 1 for both convolution layers. The number of channels besides the input 
image is set to 8 and 16 for the two convolution layers. (2) CNN 2D (Bott) with 𝑛 bottom images as the input. 
It also has two convolution layers, with numbers of channels 16 and 4, and kernel size 4, stride 2 and zero 
padding 1 for both layers and batch norm in between layers; (3) CNN 1D with the welding current 𝑚 × 𝑛 
matrix as the input. It has two 1D convolution layers with kernel size 3, numbers of channels 16 and 4. Then 
the outputs from all three CNNs are reshaped as [batch size × dim] (where based on the given hyperparameters 
dim for CNN 2D (Inp) is 4096, the dim for CNN 2D (Bott) is 1024 and 104 for CNN 1D (Curr). We 
incorporate two Fully - Connected layers (size 1000 and 100) and then obtain the output (one number that 
shows if the image is from the real data or the generated images). Leaky ReLU with coefficient 0.2 is the 
activation function applied in between layers besides the last layer, where sigmoid activation function is 
employed. 

The (𝑛 = 60, 𝑚 = 30) conditional GAN using this discriminator generates SSIM=0.936. As such, the 
GAN with the concatenated input for the discriminator (Fig. 4) which gives SSIM=0.938 reasonably 
effectively utilized the input information. The scores given in Table 1 thus reasonably measure the sufficiency 
of the various raw information as the input of the underlying process governing the human-observed dynamic 
behaviors.     

 
Table 2: SSIM scores from experiments using NC-GRU  

GAN condition SSIM score 
𝑛 = 8, 𝑚 = 8 0.932 
𝑛 = 8, 𝑚 = 30 0.933 
𝑛 = 60, 𝑚 = 30 0.935 

 



 

Another effort we have taken is to experiment using NC-GRU in place of GRU. The NC-GRU uses a 
Neumann series-based Scaled Cayley transformation to train orthogonal matrices in GRU and a previous 
study has shown that NC-GRU significantly outperforms GRU as well as several other RNNs [22]. Table 2 
documents the results trying different models (𝑛, 𝑚). The results are very close to those in Table 1 which is 
believed to reasonably measure the sufficiency of the various raw information as the input of the underlying 
process governing the human-observed dynamic behaviors.     

The last additional effort we wish to report is that we have also tried the RMSE loss in Table 3, which is 

the average of all images (test data), pixel to pixel differences between all 𝐼𝑡̂′𝑠 and their respective 𝐼𝑡′𝑠. In 
this case, the model accuracy increases as the RMSE reduces. As can be seen, the results related to how the 
accuracy is related to model structure (n, m) are similar as in Table 1. Table 4 is the results using NC-GRU 
and REMS loss. Again, the results are similar to those in Table 1.  

Table 3: REMS Losses  

GAN condition REMS 
𝑛 = 1, 𝑚 = 0 [13] 0.108 
𝑛 = 8, 𝑚 = 0 [13] 0.079 
𝑛 = 15, 𝑚 = 0 0.079 
𝑛 = 30, 𝑚 = 0 0.100 
𝑛 = 60, 𝑚 = 0 0.104 
𝑛 = 8, 𝑚 = 8 0.073 
𝑛 = 8, 𝑚 = 30 0.0707 
𝑛 = 60, 𝑚 = 30 0.0700 

 
Table 4: REME loss from experiments using NC-GRU  

GAN condition SSIM score 
𝑛 = 8, 𝑚 = 8 0.072 
𝑛 = 8, 𝑚 = 30 0.071 
𝑛 = 60, 𝑚 = 30 0.0703 

 
As such, we have taken reasonable efforts to study the sufficiency of the various raw information as the 

input of the underlying process governing the human-observed dynamic behaviors and are confident that we 
are able to conclude on the correlation between the modeling capability, for the underlying process governing 
the human-observed dynamic behaviors, and model inputs.        

 
6. Conclusions  

 
We have developed a conditional GAN to model the dynamics during gas tungsten arc welding. With the 
right input information as the condition of the GAN, the dynamic process can be accurately modeled with no 
prior knowledge of the welding process dynamics.  

The welding process behaviors human welders observe during gas tungsten arc welding process are 
dynamically determined by the weld penetration and welding current which are the output and input of the 
welding process. Without the welding current waveform, the human-observed process dynamic behaviors 
are unable to be fully modeled. This challenges the current popular practices that use the welding process 
observations to derive the weld penetration. To accurately monitor the weld penetration to robotize the 
welding process, the welding parameter waveform may be needed. This calls for a new foundation to monitor 
weld penetration. 
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