Modeling Imaged Welding Process Dynamic Behaviors Using
Generative Adversarial Network (GAN) for a New Foundation to Monitor Weld
Penetration Using Deep Learning

Edison Mucllari', Yue Cao? Qiang Ye', YuMing Zhang?*

1: Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
2: Department of Electrical and Computer Engineering and Institute for Sustainable Manufacturing, University of
Kentucky, Lexington, KY 40506, USA
* yuming.zhang@uky.edu

Abstract: This paper aims to model the dynamic behaviors of welding process that can be observed by humans
and monitored by imaging sensors. This is fundamental in deciding if such dynamic behaviors can be used
as raw data, that contains sufficient relevant information, to monitor what occurs underneath the workpiece
determining the weld integrity. Challenges arise as featurization of these observations proves difficult, and
the governing laws for the underlying process remain largely unknown. Leveraging the ability of Generative
Adversarial Networks (GANs) to generate intricate phenomena from simple inputs by automatically
approximating unknown underlying laws, we propose using a GAN to predict the dynamic behaviors of
welding processes. In this framework, dynamic behaviors serve as the output, while the trained GAN
functions as the model for the underlying process, generating the observed behaviors from the inputs. The
success of predictions depends not only on the GAN's capability to approximate the process but also on the
sufficiency of the inputs provided. With this consideration, we model an exceptionally complex process that
correlates weld joint penetration with observed phenomena to determine if the underlying process involves
critical inputs beyond penetration alone. Our findings reveal the necessity of welding currents for accurate
predictions by the GAN model. This implies that the combined information from human-observed/imaged
phenomena and welding currents provides a more comprehensive basis for monitoring weld penetration,
contributing to the advancement of robotizing welding processes with the necessary intelligence.
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1. Introduction

Per the International Federation of Robotics, “50 percent of all the world’s robots are used for welding.
Specifically, 33 percent are employed for spot welding, 16 percent are doing arc welding, and 1 percent are
performing some other type of welding operation.” [1] Arc welding, as the most widely used welding process,
is thus still far from being fully robotized. This is largely due to the lack of generalizable approaches for
robots to adapt to the process, similarly to human welders, to assure the quality of the produced welds.

Human welders produce quality welds through real-time adaptive adjustment of welding parameters per
observed welding process dynamic behaviors while following the established welding procedure. The focus
of their real-time adaptive adjustment is on the weld fusion/weld penetration which plays the most critical
role in assuring the weld integrity. Robotized welding process can follow the established welding procedure
better than human welders and should outperform over human welders if effective adaptive adjustment can
also be made to assure the weld penetration. However, monitoring weld penetration is a classical challenge
as it occurs underneath the workpiece, making it not directly observable.

Due to its crucial role in robotizing welding, this challenge has continuously attracted numerous
researchers from around the world, testing various different ideas since the 1970s including pool oscillation
[2, 3] that correlates the weld penetration to oscillation frequency, infrared sensing [4] that utilizes the
difference in emissivity among solid and liquid to detect the weld pool boundary, and weld sag [5] that



increases with the penetration. Image processing and other algorithms have been used to calculate features
from sensed phenomena and advanced techniques including neural networks [6], neuro-fuzzy systems [7, 8,
9], and support vector machines [12] have been used to map the calculated features to the penetration.

The advancements in deep learning (DL) techniques provide a new opportunity. Previous efforts
attempted to propose features, develop algorithms for extracting and correcting these features, and then relate
them to penetration labels using models. They ranged from simpler regression models to more complex
models, including neural networks, with the features as input and penetration as the output. They all involved
representing high-dimensional data/images using lower-dimensional features, and these representations may
not be adequate, often requiring iterative efforts for improvement. Each modification in the features
necessitates the development of new algorithms for extraction, making the process time-consuming, and the
success uncertain and generally not generalizable. DL, which offers the potential for automatically optimizing
features without the need for extensive human iteration, provides an opportunity toward generalization.

The authors [11] recently underscored the transformative impact of DL and elucidated the reasons behind
its potential systematically. DL was first reported for monitoring weld penetration in 2019 [12], and the
number of records in Web of Science has grown rapidly since. Regrettably, the new efforts still have
continued to follow the past pattern centering on application specifics. The crucial aspects in taking
transformative DL to desired generalizability, identified by the authors to be the sufficiency of the raw
data/model inputs [11], have been largely overlooked.

What is particularly missing is in-depth understanding that human-observable phenomena, which serve as
inputs to most deep learning models for predicting the weld penetration, exhibit dynamic relationships with
the weld penetration. While application/process specifics as centered in existing studies are considered
available, the lack of such in-depth knowledge/understanding critical to generalizability is not easily
recognized! Authors’ recent study [13] has taken the first step in gaining an in-depth understanding of how
the observations (Z) correlate with and are determined by the events occurring beneath the workpiece (x)
which represents the weld penetration. It revealed that the human-observed welding process dynamic
behaviors are much better modeled by Z(k) = P(x(k),x(k — 1), ...) than by Z(k) = P(x(k)). This implies
that adding the penetration history x(k — 1),..., into the model input improves the adequacy of the raw
information. However, the human-observed phenomena are still not fully accurately predicted [13]. As such,
the understanding of the human-observed behaviors is still not complete.

In seeking for more complete understanding, we look at an illustrative example, the oscillation of the weld
pool which represents the initial phenomena studied for weld penetration monitoring [2, 3]. The oscillation
behavior observed is not solely determined by the geometry of the weld pool representing the penetration but
also by the arc pressure u stimulating the pool to oscillate. While this example serves as illustration, it has
been undoubtedly demonstrated that the DL models of our concern generally must be based on E(k) =
P(x(k),x(k —1),...;u(k),u(k — 1), ...), encompassing the stimuli and dynamics.

In this paper, we use a GAN to map the proposed inputs to the unprocessed/un-featurized observations
from the gas tungsten arc welding process, the primary arc process used for precise joining where the
penetration must be assured. We will reveal that adding welding currents into the inputs of the underlying
model as approximated by the trained GAN significantly improved the prediction accuracy, thus the modeling
of the underlying process. The result is fundamental in designing a generalizable deep learning model to
predict the weld penetration from observed welding process phenomena.

2. Underlying Process and Modeling Approach

2.1 Underlying Process

The underlying welding, i.e., gas tungsten arc welding (GTAW), process can be simply illustrated first by
Fig. 1. The welding torch imposes the arc on the upper surface of the workpiece to process (heat and melt)
the workpiece. This processing produces complex phenomena, and we use two cameras to view the relevant
phenomena. Camera 1 views the phenomena Z human welders observe during welding by centering at the




weld pool generated by the arc on the upper surface of the workpiece. The resultant image is referred to as
the top image I, = f(Z) where the observed objects include the weld pool and its surrounding region, the
tungsten electrode which emits the electrons that flow to the workpiece to form the arc current I, and the arc
established between the tungsten and workpiece. Camera 2 views the opposite area underneath the workpiece
on the lower surface and the resultant image is referred to as the bottom image I;,. In the GTAW experiments
conducted to generate the dataset, the welding speed is fixed at 2mm/s, and the current I varies between 80
A to 105 A randomly every 2 seconds, producing top and bottom images, and corresponding image pairs, of
various types. The cameras capture 60 images per second, establishing a dataset with 16,200 data/image pairs
after removing the arc ignition phases in each experiment. Fig. 2 shows a series of [I(k), I, (k)] image pairs
sampled from a 5-second period at 1 second per pair. As the variation that causes the various image pairs is
due to the random change in the welding current, this series is representative of various types of images and
image pairs.
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Figure 1: Illustration of Underlying Process.

Figure 2: Five-second sequence of image pairs illustrating images of various types.



The top image I; captures human observations = based on which human welders adjust their operations.
We have mentioned that their adjustment is to maintain the weld penetration x at the desired state x*. The
weld penetration x is either measured by the depth of the weld pool d,, [11] (Fig. 1) if the workpiece is not
completely melted in the thickness direction or the backside bead width of the weld pool w, [11] (Fig. 1) if
the workpiece is completely penetrated through the entire thickness of the workpiece. The bottom image I,
can be used to determine wy, directly. It can also provide the most direct measurement to estimate d,, [11].
The bottom image I, thus corresponds to the weld penetration x, i.e., I, = g(x), the human welder tries to
maintain during their operation. In this study, we use the bottom image I;, as the full label of weld penetration,
while d,, or wy, can be considered simplified measures. Our fundamental question is whether the human-
observed behavior (top image I;) is purely decided by the weld penetration (bottom image I;)). If not, the
foundation for using the top image I; to estimate the penetration I would not be perfectly solid, or the raw
information is not sufficient [11].

The above question defines a “virtual underlying process” that produces the top image I; = f(£) from the
bottom image I;, = g(x). This is an extremely complex process that has not been studied. The complexity is
due to the complexity of the actual physical processes involved. To elaborate, the arc imposes both heat flux
(complex distribution) and forces, including surface forces (arc pressure, surface tension) and body forces
(electromagnetic force, convection), on the workpiece surface and underneath. The forces coupled with the
welding conditions dominate how the heat imposed by the arc are transported within the workpiece to melt
it and form the penetration which can be observed on the lower surface. After the weld pool and weld
penetration change, the behaviors observed on the upper surface must also alter accordingly. In this way, the
complete process is from the upper to the lower and then from the lower to the upper and our focus in this
study is from the lower to the upper.

As such, the behaviors Z observed on the upper surface in the top image I, are determined by the arc (input
of the welding process) and the penetration (result of the welding process). The bottom image I, (weld
penetration x) itself should be insufficient in determining the top image ;. It is the coupling of the arc and
penetration that determines the behaviors of the phenomena Z observed in the top image I;. A model that
can accurately produce the top image I, requires input raw information from the arc and penetration. This is
a fundamental improvement in our understanding as it extends our foundation from f(I,I,) = 0 to
f (1, Iy, a) = 0 where I, I}, a stand for the top image, bottom image and arc. As a key in the deep learning
is to assure that the sufficient raw information has been provided to the deep learning model, this extension
promises for a next level of deep learning-based monitoring of weld penetration which is critical in robotizing
welding processes.

We note that most of the deep learning-based monitoring techniques for weld penetration are based on
f(, I,) = 0[11]. There are a few studies that include the inputs from the welding process [14, 15]. However,
the addition 1s not justified per discussion of the underlying physical process, similarly as in many studies
that use multiple information sources.

In our above discussion, we have not mentioned the dynamics of the underlying process which is equally
important. That is, is the current top image I;(k) determined by the current bottom image I, (k) or by its
history I, (k), I,(k — 1), ...? This is another fundamental question if the behaviors observed by human are
dynamic. In our previous study [13], we have used a GAN to generate I, (k) from I, (k) and from I, (k),
I,(k — 1), ... to see if the use of the history improves the sufficiency of the raw information. We found that
the sufficiency was significantly improved. However, large errors in the prediction of the top images were
still observed. As will be shown in this paper, introducing the welding current, denoted as u, to present the
input of the welding process in general, eliminates all errors human may observe.

2.2 Generative Modeling
We note that the majority of studies on deep-learning based monitoring of weld penetration use observable

complex phenomena Z (high-dimensional data) as inputs to predict low-dimensional labels. High-
dimensional data contains relevant and irrelevant features that may both be extracted to fit the labels.




Validation data may also contain the same irrelevant features and using the validation result to measure the
model quality is a compromise as there are no other better measures. However, in generative modeling, low-
dimensional data is used to predict complex high-dimensional data. If successfully modeled, the fundamental
role of the simple input in determining the complex output can be better assured. In this extent, we propose
to study through generative modeling and use a GAN to generate complex top image I from simple bottom
image [}, and welding process input u.

Generative Adversarial Networks (GANs) [16] were first introduced in 2014. There has been a remarkable
progress in further improving the GAN [16] architecture as well as successfully integrating the model in various
applications. The GAN framework incorporates a minimax game between a generative model (generator)
and a discriminator model (discriminator). In a nutshell, GANs [16] are generative models that learn the data
distribution by generating data samples. For conditional generation tasks, conditional GANs [17] are usually
employed where the condition inputs are built into GAN’s generator and discriminator.

Deep Convolutional Generative Adversarial Networks (DCGANSs) [6] incorporate convolutions into the
GANSs [16] architecture to work with image data. They provide important and helpful information to ensure a
more stable training while using only convolution layers (no linear layers). They have been shown to be
capable of generating high quality images.

3. GRU-GAN Model

GANSs can be trained to generate complex distributions from simple distributions. This implies that GAN are
capable of modeling unknown complex mappings. In the training process, the discriminator does not try to
discriminate/match between a generative image from/with a particular real image but distinguish all
generated images from real images. Our work is based on conditional GANs [17]. The conditional part of
our GANSs [16] corresponds to the bottom images I, (k)'s and the welding current waveform u(k)'s. For
each real top image I, (k), the conditional GAN tries to generate a similar one T, (k) using specific conditions
as presented by the corresponding bottom images and welding currents. The conditional GAN matches
between real and generated top images.

The conditional GAN we develop predicts the top image I; (k) from the bottom images I, (k — j)’s and the
welding current u(k — j)’s as shown in Fig. 3. We follow a similar approach in [13] that generates I, (k) from
I, (k — j)’s where a GRU model is combined with a GAN model. The main novelty is to incorporate the
current information as a condition input which reflects an improvement in understanding of the fundamentals
of the underlying process analyzed above. To generate I;(k), we use n bottom images I,(k + 1 — j)
(j=1,..,n), denoted as I,(k); and for each I,(k + 1 —j) used, m welding currents u(k+1—j+
(1-p))( =1,...,m) forming a current waveform are added. The currents added form a m X n matrix filled
withu(l) (I =k, ...,k + 2 —n —m), denoted as U (k).

Ed/
Real g,
Image
1
644 64
m o
] Generator o =_. M - ' Discriminator — Loss
n n+l
Current 1
Generated

mage

Figure 3: Proposed conditional GRU-GAN.

3.1 GRU-GAN Discriminator




[llustrated in Fig. 4 is the architecture of the discriminator. It receives an input tensor of dimensions
64x64x(n+1), formed by concatenating n consecutive bottom images I, (k) and I (k), representing either the
real image I, (k) or the generated image [, (k). The discriminator architecture consists of four successive
convolution layers with channel configurations of 16, 32, 64, and 128, respectively. The convolution layers
utilize a kernel size of 4, a stride of 2, and zero padding, except for the final layer. Batch normalization [19]
and leaky ReLU with a coefficient of 0.2 are applied between convolution layers. The last layer of the
discriminator employs the sigmoid activation function. Refer to Figure 4 for an illustration of this
architecture.
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Figure 4: Discriminator.
3.2 CNN Embedding

As anticipated, the arrangement of the bottom images holds significance in determining the corresponding
top image. To address this, we treat the input as a sequence and incorporate Gated Recurrent Units (GRU)
[20]—a type of recurrent neural network—into the generator. Other notable recurrent models include LSTM
[21], NC-GRU [22], GORU [23], among others. In our proposed conditional GAN (conditional GRU-GAN),
the conditioning part comprises the bottom images I, (k) and the welding current matrix U (k). Additionally,
we conducted experiments with the NC-GRU [22] architecture. Given that the condition input sequence
involves images, we integrate a CNN embedding into our main architecture, where each bottom image
undergoes convolutional neural network (CNN) embedding to extract essential features before being fed into
the GRU. The CNN Embedding layer comprises three convolution layers with channel configurations set to
4, 8, and 16, respectively. All convolution layers use a kernel size of 4, a stride of 2, and a zero-padding size
of 1. Batch normalization is applied between each convolution layer, and the output is reshaped into a 1024-
dimensional vector at the final layer. Refer to Figure 5 for a more detailed visual representation of the CNN
Embedding.

CNN Embedding

6 ST -
| 8
4 200 6— T g —1 =
) 4 8 16
1 I
Bottom Image 1024

Figure 5: CNN Embedding

3.3 GRU-GAN Generator with Welding Current

As mentioned before, a substantial difference from the work of [13] is the welding current information we
incorporate as part of the input of the GRU generator. Figure 6 shows the GRU generator to




produce I;(k).Every GRU cell thus takes Ij, (k) but the welding current as well. Since there is only one
current value for each bottom image [, and the current demonstrates the effect through waveform, we form
a current vector using m most recent current values u(k —j),...,u(k —j—m+1). Thus, due to the
incorporation of the current information, during the first iteration of the training process, we first predict
I;(k) at k = n + m. When n = 60 and m = 30, the first generated image will be 1,(90).

The current vector passes through two layers of 1D convolutions (CNN 1D). The kernel size for both layers
is set to 3 and the numbers of channels are 3 and 6, respectively. The initial hidden state of the GRU is
initialized using a Gaussian random vector and is considered as the z vector referenced in the GAN
architecture, where the Generative Adversarial Network is trained to approximate the distribution of the top
images that we need to generate. The dimension of the z vector is set to 256. The GRU output (i.e. the last
hidden state h(k)) is then reshaped into 16X16X 1 and this image is passed through two deconvolution layers
to obtain an image of dimension 64X64X1. This image is the generated image of our model.
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Figure 6: Generator.
To train the model, the GRU loss function is based on the Wasserstein loss [24]:
LD = Ex“'pdata(x) [D(X)] - EZNPZ [D(G(Z))] (1)

To ensure the model is generating a top image [, (k) matching with I, (k), we add the Structural Similarity
Index Measure (SSIM) [25] to the loss. The Structure Similarity Index Measure (SSIM) is defined as

(2uxpy+C1)(20xy + C2) (2)
(UF+u5+ C1)(0F+05 + C2)

SSIM(x,y) =

where, pi,, 1y, 0y, 0, denote the mean and standard deviation of both images x:=I; and y = I, C, =
(K1L)? and C, = (K,L)? with K, K, < 1 and L = max value. In order to avoid instability when p,* +
and 0,2 + ayz are very close to zero, we employ C; and C,, which are constants. SSIM was first introduced
in [25] to measure the difference between two images by considering the luminance, contrast and the structure.

Thus. the loss function for training the generator is the following weighted loss:

Loss; = 0.8 * Wass; + 0.2 * SSIM(Generated Image, Real Top Image) 3)

In our training, the learning rate is 3 * 10~ and the model is trained for 100 epochs. An exponential learning
rate decay is also applied every 10 epochs with coefficient 0.9.



4. Results and Discussion

The size of our total dataset is 18,567 and we split it into training and testing subsets, with 80% for training
and the remaining 20% for testing. We have conducted comparative experiments to see how the ability of the
GAN in generating [, similar or identical to I,, as measured by the SSIM score, changes with the condition as
shown in Table 1. Assuming each GAN is well trained, the score reflects the sufficiency of the raw information,
used as the condition of the GAN, in predicting the top image.

Table 1: SSIM scores

Model # | GAN condition SSIM score
1 n=1m=0][13] | 0.837

n=8m=0[13] | 0.925

n=15m=20 0.92

n=300m=0 0.867

n=600m=0 0.847

n=8m=28 0.932

n=8m=30 0.934

8 n=60m=30 0.938

N OV U o[

As can be seen from Table 1, we first increase the dynamic dependence time (n) from n = 1 (model #1
in Table 1, no dynamics introduced) to n = 8 (model #2 in Table 1). This introduction of the dynamic time
was effective in improving the sufficiency of the raw information (the sufficiency of the input of the
underlying process) as can also be seen from Fig. 7 for their visual comparison. However, the improvement
does not continue when n further increases (from model #2 through to #5) as shown in Table 1 and in Figs.
8 and 9. Instead, we see decreases in accuracy.

Figure 7: Result from model #1 (n = 1,m = 0) and #2 (n = 8, m = 0) showing the effect of introducing
dynamics. Left: generated using (n = 1, m = 0); middle: real top images; right: generated using (n = 8, m =
0) [13]. The comparison of the left and right with the middle shows the effect of dynamics in improving the
sufficiency of the model input of the underlying process.



Figure 9 Result from Model #5 in Table 1 (n = 60, m = 0). Left: I,; right: [.

Theoretically, the SSIM score should not decrease as the model complexity (n) increases. Practically, to
train a more complex model, more data is needed. The training also tends to be more challenging. The
decrease in the SSIM score reflects those possible benefits from increasing the model complexity (model #4,
#5 from #2) are less significant in comparison with the adverse effect in increases in data needed and in
training difficulty. As such, the modeling accuracy of the human-observed behaviors is first drastically
increased by introducing dynamic dependence (from model #1 to #2), but such improvement does not
continue indefinitely.

(a) Real image I; (b) Generated image I,



Figure 10: Result from this study showing the effect of introducing welding current waveform. Model #6
with (n = 8, m = 8).

(a) Real image I, (b) Generated image I,
Figure 11: Result from this study showing the coupling effect from the dynamic dependence on the
penetration with the welding current waveform. Model #8 with (n = 60, m = 30).

Model #2 with (n = 8,m = 0) can be considered a milestone improvement but, from Figure 7, its
accuracy in generating I, is still far from being sufficient. Per our analysis of the underlying process, adding
the current waveform may introduce a novel way to improve the sufficiency of the input of the underlying
process. As can be seen in Table 1, we improved the SSIM score from 0.925 (model #2 with (n = 8,m =
0)) to 0.932 (model #6 with (n = n,m = 8) simply by adding a current waveform and continued the
improvement by increasing the model complexity in both n and m directions. The improvements are clearly
visualized by comparing Fig. 7 with Fig. 10 and with Fig. 11.

One may note that the improvement in the SSIM score appears to be small. Model #8 with (n = 60,m =
30) demonstrates a perfect set of generated images with SSIM=0.938. However, the improvement over model
#2 with (n = 8, m = 0) in the SSIM is only 0.013. This provides us a sense of the sensitivity of modeling
accuracy with the SSIM score. With this in mind, we below discuss how the accuracy changes with n and m
after introducing the current waveform whose length is measured by m.

First, introducing the current waveform, from model #2 (n = 8, m = 0) to model #6 (n = 8, m = 8)
increases the accuracy/SSIM score from 0.925 to 0.932. The increase in the SSIM score is 0.007. Although
0.007 increase appears to be very small, from the sensitivity of the modeling accuracy with the SSIM score,
we can appreciate that this improvement in the accuracy is quite significant. As such, introducing the current
waveform is fundamental in modeling the underlying process in understanding human-observed dynamic
behaviors.

Next when we further increase the length of the current waveform from m = 8 to m = 30 (from model
#6 (n = 8, m = 8) to model #7 (n = 8, m = 30)), there demonstrated further improvement. Then we
increase the number of the bottom images to 60 (corresponding to 1 second) (model #8), we see further
improvements in the modeling accuracy rather than decrease.

We have discussed the relationship between the significance in increasing the model sufficiency and the
resultant increase in the model complexity when the training data is given. If the model complexity increase
does not improve the model sufficiency, the trained model may not improve the modeling accuracy or may
even reduce the accuracy. After introducing the welding current waveform, the modeling accuracy keeps
improving even when increasing the number of the bottom images.

It is interesting to note that increasing the bottom images reduces accuracy but improves the accuracy after
introducing the current waveform. This probably implies that it is the coupling between the current (welding
process input) and penetration (welding process output) that has longer dynamic effect on the observed
dynamic behaviors rather than the input and output of the welding process alone separately. This makes sense
as there is a dynamic process from the welding parameters to change the penetration and the changed
penetration (changed weld pool) to come back to influence the observed behaviors. Of course, such an



explanation is highly hypothetical and is subject to systematic study to test which exceeds the scope of this
present study.
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Figure 12: An experimental discriminator.

5. Additional Efforts

We have made additional efforts to see if the results in Table 1 reasonably reflect the best possible modeling
accuracy based on which we analyzed how the sufficiency changes with the information sources. One effort
is to use another discriminator shown in Figure 12 where different kinds of information are separated
processed first to form the features to see if it may improve the generative capability.

This another discriminator has three CNNs: (1): CNN 2D (Inp) with the real/generated image as the input.
It has two convolution layers with a batch norm applied in between. The kernel sizes are 4 and 3, respectively
with stride 2 and zero padding set to 1 for both convolution layers. The number of channels besides the input
image is set to 8 and 16 for the two convolution layers. (2) CNN 2D (Bott) with n bottom images as the input.
It also has two convolution layers, with numbers of channels 16 and 4, and kernel size 4, stride 2 and zero
padding 1 for both layers and batch norm in between layers; (3) CNN 1D with the welding current m X n
matrix as the input. It has two 1D convolution layers with kernel size 3, numbers of channels 16 and 4. Then
the outputs from all three CNNSs are reshaped as [batch size X dim] (where based on the given hyperparameters
dim for CNN 2D (Inp) is 4096, the dim for CNN 2D (Bott) is 1024 and 104 for CNN 1D (Curr). We
incorporate two Fully - Connected layers (size 1000 and 100) and then obtain the output (one number that
shows if the image is from the real data or the generated images). Leaky ReLU with coefficient 0.2 is the
activation function applied in between layers besides the last layer, where sigmoid activation function is
employed.

The (n = 60, m = 30) conditional GAN using this discriminator generates SSIM=0.936. As such, the
GAN with the concatenated input for the discriminator (Fig. 4) which gives SSIM=0.938 reasonably
effectively utilized the input information. The scores given in Table 1 thus reasonably measure the sufficiency
of the various raw information as the input of the underlying process governing the human-observed dynamic
behaviors.

Table 2: SSIM scores from experiments using NC-GRU
GAN condition | SSIM score
n=8m=28 0.932
n=8m=30 |0.933
n=60,m= 30| 0.935




Another effort we have taken is to experiment using NC-GRU in place of GRU. The NC-GRU uses a
Neumann series-based Scaled Cayley transformation to train orthogonal matrices in GRU and a previous
study has shown that NC-GRU significantly outperforms GRU as well as several other RNNs [22]. Table 2
documents the results trying different models (n, m). The results are very close to those in Table 1 which is
believed to reasonably measure the sufficiency of the various raw information as the input of the underlying
process governing the human-observed dynamic behaviors.

The last additional effort we wish to report is that we have also tried the RMSE loss in Table 3, which is
the average of all images (test data), pixel to pixel differences between all I;’s and their respective I,’s. In
this case, the model accuracy increases as the RMSE reduces. As can be seen, the results related to how the
accuracy is related to model structure (n, m) are similar as in Table 1. Table 4 is the results using NC-GRU
and REMS loss. Again, the results are similar to those in Table 1.

Table 3: REMS Losses

GAN condition REMS
n=1m=0/[13] | 0.108
n=8m=07([13] | 0.079
n=15m=0 0.079
n=300m=20 0.100
n=60m=20 0.104
n=8m=28 0.073
n=8m=30 0.0707
n=60m=230 0.0700

Table 4: REME loss from experiments using NC-GRU
GAN condition | SSIM score
n=8m=28 0.072
n=8m=30 |0.071

n =60,m = 30| 0.0703

As such, we have taken reasonable efforts to study the sufficiency of the various raw information as the
input of the underlying process governing the human-observed dynamic behaviors and are confident that we
are able to conclude on the correlation between the modeling capability, for the underlying process governing
the human-observed dynamic behaviors, and model inputs.

6. Conclusions

We have developed a conditional GAN to model the dynamics during gas tungsten arc welding. With the
right input information as the condition of the GAN, the dynamic process can be accurately modeled with no
prior knowledge of the welding process dynamics.

The welding process behaviors human welders observe during gas tungsten arc welding process are
dynamically determined by the weld penetration and welding current which are the output and input of the
welding process. Without the welding current waveform, the human-observed process dynamic behaviors
are unable to be fully modeled. This challenges the current popular practices that use the welding process
observations to derive the weld penetration. To accurately monitor the weld penetration to robotize the
welding process, the welding parameter waveform may be needed. This calls for a new foundation to monitor
weld penetration.
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