
m3: Accurate Flow-Level Performance Estimation
using Machine Learning

Chenning Li⇤4, Arash Nasr-Esfahany⇤4, Kevin Zhao⌦, Kimia Noorbakhsh4
Prateesh Goyal⇤, Mohammad Alizadeh4, Thomas Anderson⌦
4MIT CSAIL, ⌦University of Washington, ⇤Microsoft Research

ABSTRACT
Data center network operators often need accurate estimates of
aggregate network performance. Unfortunately, existing methods
for estimating aggregate network statistics are either inaccurate or
too slow to be practical at the data center scale.

In this paper, we develop and evaluate a scale-free, fast, and
accurate model for estimating data center network tail latency
performance for a given workload, topology, and network con�g-
uration. First, we show that path-level simulations— simulations
of tra�c that intersects a given path—produce almost the same
aggregate statistics as full network-wide packet-level simulations.
We use a simple and fast �ow-level �uid simulation in a novel way
to capture and summarize essential elements of the path work-
load, including the e�ect of cross-tra�c on �ows on that path. We
use this coarse simulation as input to a machine-learning model
to predict path-level behavior, and run it on a sample of paths to
produce accurate network-wide estimates. Our model generalizes
over the choice of congestion control (CC) protocol, CC protocol
parameters, and routing. Relative to Parsimon, a state-of-the-art
system for rapidly estimating aggregate network tail latency, our
approach is signi�cantly faster (5.7⇥), more accurate (45.9% less
error), and more robust.
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1 INTRODUCTION
Network simulation is widely used in the design, planning, and
operation of networks. Prominent simulators, e.g., ns-3 [46], OP-
NET [30], OMNET++ [51], and htsim [22], are packet-level discrete-
event simulators. They take every event at each network component
(e.g., packet arrival, timer expiration, etc.), serialize them in a single
event queue, and process them one by one. As a result, they are in-
herently slow and cannot keep upwith the size and speed of modern
networks. Recent work proposes new machine learning techniques
(e.g., MimicNet [54], DeepQueueNet [53]) and parallelization strate-
gies (e.g., Parsimon [55], DONS [19]) to accelerate and improve the
scalability of traditional simulators. However, these proposals still
operate at the packet level. As network speeds continue to increase,
packet-level models inevitably become too slow. For example, a
single data center switch chip can forward 25 billion packets per
second [52], making even the most e�cient packet-level simulator
much slower than real-time for even a single switch.

Our goal is to design a performance model that overcomes the
limitations of packet-level simulation without sacri�cing �delity.
Most network simulations are not used to inspect the behavior of
individual packets or even individual �ows. In many use cases, a
network designer is interested in certain performance metrics (e.g.,
network throughput, tail latency, �ow completion time) and how
they are a�ected by changes in network conditions (e.g., workload
characteristics) and various design choices (e.g., congestion control
parameters, routing policies, job placement). Rather than simulate
every packet interaction, can we learn a model that predicts these
performance metrics using a higher level of abstraction?

We propose m3, a system that uses machine learning to predict
the �ow-level performance of a data center network. m3 is trained
using ground-truth data from a packet-level simulator such as ns-
3.1 Given a network topology, a workload— speci�ed as a sequence
of �ows and their network paths— and optionally a set of design
parameters (e.g., congestion control knobs), m3 can predict the �ow
completion time (FCT) distribution for a class of tra�c, such as the
�ows in a certain size range, �ows sent from certain endpoints,
�ows traversing certain paths, and so forth.

To understand m3’s design, let us consider a packet-level sim-
ulator like ns-3 as implementing a function that maps an input
workload and a network topology to some performance statistics
(Figure 1(a)). Our goal is to learn a fast and accurate approximation
of this function from training examples derived from packet-level
simulations. Conceptually, this is a supervised learning problem.
However, two key challenges make it di�cult.

*Equal contribution
1The techniques we develop can in theory be used to learn a performance model based
on a real network, but we leave this to future work.
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Figure 1: m3’s high-level architecture

First, the space of possible workloads and network topologies
is vast, and we cannot collect training data for every scenario. We
could perhaps consider only certain workloads or topologies during
training, but ideally, we want the model to generalize. Retraining for
each new scenario may end up being slower than using a packet-
level simulator. Moreover, there is a limit to the network scale
we can simulate to collect training data. Beyond a few hundred
nodes, packet-level simulators take hours to days for each second of
simulation time [55]. Training a complex model can easily require
hundreds of thousands to millions of examples, so it is impractical
for large-scale networks.

Second, it is not clear how to represent the inputs to the model
e�ciently. The network topology is an arbitrary graph and the
workload is an arbitrary sequence of �ows (with their arrival times,
sizes, and paths). Existing approaches such as using graph neural
networks to process network topology information [15, 16, 49] face
signi�cant scalability and generalization challenges [12, 20] (a data
center network can have hundreds of thousands of nodes and links).
Similarly, processing millions of �ows using standard sequence
models such as Transformers [50] is prohibitively expensive. Sim-
ple features such as the tra�c load, �ow size, and inter-arrival
time distributions, cannot capture complex workloads such as non-
stationary or correlated tra�c patterns (e.g., small �ows occurr in
bursts, large �ows are spread out).

m3 addresses these challenges using two key ideas. First, it de-
composes a large-scale network simulation into a set of path-level
simulations. Each path-level simulation consists of only those �ows
that traverse at least one link on a speci�c path. The �ows travers-
ing the entire path are referred to as the foreground tra�c, and the
other �ows sharing a link with the foreground �ows are referred
to as background tra�c. Any �ows that interact with background
tra�c at other network links (not along the path) are ignored. m3’s
machine learning model is trained to predict the FCT distribution
of the foreground tra�c in an arbitrary path-level simulation. To
estimate network-wide behavior, m3 samples several paths and
combines their predictions to derive the network-wide FCT distri-
bution.

Our use of path-level decomposition is inspired by Parsimon [55],
which proposed to approximate a large-scale network simulation
via independent link-level simulations that can be executed in par-
allel. Path-level decomposition is more accurate than link-level

decomposition (since it captures interactions between links along
a path), and our experiments show that it provides an accurate
approximation of network-wide performance for real-world data
center workloads and topologies. Using path-level scenarios as
the building block for network-wide performance estimation also
greatly simpli�es m3’s learning task. We only need to collect train-
ing data for path scenarios, which is scalable since even large data
center networks have a modest maximum path length. Providing
topological information to the model is also straightforward using
a sequence of features associated with each link along the path.

m3’s second key idea is to use a fast �ow-level simulator to
extract rich workload-related features suited to FCT performance
prediction. Given a path-level scenario consisting of sequences of
foreground and background �ows, m3 �rst runs �owSim, a simple
simulator that assigns �ows their max-min fair rate allocations
at each point in time and computes the �ow completion times. It
then extracts a feature map of FCT statistics for �ows of di�erent
sizes, which serve as the primary input to the machine learning
model (Figure 1(b)). �owSim is extremely fast, e.g., it simulates
800K �ows on a path in around 1 second (687⇥ faster than ns-3).
However, bandwidth sharing models [33] such as max-min fairness
only provide a coarse approximation of the behavior of congestion-
controlled �ows. Such models are particularly inaccurate for short
�ows since they do not capture queuing dynamics and latency.
Nevertheless, we show that �owSim’s FCT statistics are excellent
features for predicting the network’s true behavior. The feature map
derived from �owSim is sensitive to many important aspects of the
workload, such as the volume, burstiness, and size characteristics
of the �ows.

We train m3 using a diverse mix of synthetically generated path
scenarios. These synthetic scenarios capture the complex dynamics
of network workloads including �ow size variations, burstiness
levels, congestion control protocols, and maximum link load con-
ditions, all within “parking-lot” topologies of 2 to 6 hops. In the
evaluation, we validate m3 against production workloads and actual
network topologies. A primary metric we use is the estimation error
of the p99 FCT slowdown— the ratio of the �ow completion time for
di�erent �ow sizes, normalized to the ideal �ow completion time for
that �ow size on an unloaded network, at the 99th-percentile. We
also present FCT distributions for di�erent �ow sizes, which can be
used to derive alternate metrics such as packet latency and average
long �ow throughput. We summarize our evaluation results below.

• Given a diverse mix of production workloads on a 32-rack, 256-
host fat tree topology, m3 delivers an average speedup of 5.7⇥ in
simulation time over Parsimon [55], alongside better accuracy in
p99 FCT slowdown estimation. m3 demonstratesmean estimation
errors of 9.89%, compared to Parsimon’s 18.29%.

• On a larger scale 384-rack, 6144-host fat-tree topology, m3 com-
pletes the simulation in 40 seconds, compared to 1 minute and 24
seconds for Parsimon and 11.9 hours for ns-3, with a notable re-
duction in estimation error from 11.9% (with Parsimon) to 5.74%.

• m3 can adapt to a variety of workloads, topologies, and network
conditions. Even when trained on scenarios with varied conges-
tion control settings, m3 accurately forecasts tail FCT slowdown
for new, unseen parameters, highlighting its capacity for e�ective
counterfactual analysis.
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m3’s code is available at https://github.com/netiken/m3. This
work does not raise any ethical issues.

2 INSIGHTS
In this section, we use data from ns-3 to motivate our model’s use
of path-level decomposition and workload featurization.

2.1 Path-level Decomposition
Modern hyperscalar data center networks can be enormously large,
with hundreds of thousands of servers and network links and thou-
sands of network switches. With network core and server link
speeds continuing to increase exponentially, accurately simulating
network behavior at scale with a packet-switched simulator is a
daunting task. In recent work on Parsimon [55], Zhao et al. suggest
decomposing the network into a set of independent queues repre-
senting each link, and then simulating the tra�c traversing each
queue in parallel. If each queue experiences congestion indepen-
dently and transiently, the per-queue results can be combined to
approximate aggregate network behavior. However, this approxima-
tion breaks down with higher utilization, higher levels of oversub-
scription, and workloads with correlated endpoint behavior. In the
recent work on Mimicnet [54], Zhang et al. use machine learning to
train a generative model of the impact of clusters, or subsets, of the
network on other clusters. This allows fast, small scale cluster-level
simulations to be generalized to larger scale systems. However, this
work is limited to FatTree topology [3] with uniform tra�c among
equal-sized clusters of machines.

Our work is inspired by these earlier e�orts but aims to work
at scale for general workloads and topologies, without implicit
assumptions about tra�c independence or topological regularity.
While Mimicnet showed that it is possible to train a model on a
speci�c topology, it is hard to envision how to train a model of an
entire network in a way that is topology independent, so that it
produces accurate aggregate performance even when we remove or
add a link or switch, or upgrade a portion of the network [38], or use
optical switching to dynamically change core link capacities [45].

Instead, we set ourselves a simpler problem. We decompose
the network into a set of paths; each path is a sequence of links
and switches connecting a source node with some destination, as
illustrated in Figure 2(a). A large scale data center network may
have billions of such paths; there may be hundreds of paths even
between the same source and destination node. Paths can be of
varying length (in a data center setting, they typically have an
even number of hops) with varying link capacities and tra�c. We
call the tra�c from the path’s source to its destination foreground
tra�c; background tra�c intersects the foreground tra�c over at
least one hop. Importantly, the number of possible con�gurations
and workloads for individual paths is vastly smaller than that for
arbitrary networks, making the challenge of building an accurate
model tractable.

We make a simplifying assumption, that the performance of
foreground tra�c is primarily determined by the latency, capacity,
and scheduling policies of the links along the path, along with the
characteristics of the foreground and background tra�c. In other
words, we assume that �ows that do not intersect a path do not
signi�cantly a�ect the behavior of foreground tra�c. This is of

Background
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(a) A network path (b) Paths’ #hops distribution

(c) Accuracy is workload robust (d) #�ows on a path

(e) Accuracy is robust to path length and #foreground �ows

Figure 2: (a) Illustration of foreground and background �ows on a
path in a fat-tree network topology. (b) Distribution of hop counts
on sampled paths for di�erent workloads. (c) Accuracy of path-level
ns-3 relative to full-network simulation for tail (99th percentile) slow-
down. (d) Number of foreground and background �ows on sampled
paths for di�erent workloads. (e) Path-level ns3’s error distribution
as a function of path length and number of foreground �ows. Violin
plots depict the distribution of errors, with wider areas signifying
a higher density of errors at that value. The center box within the
violin captures the middle half of the data (25th to 75th percentile).

course an approximation. For example, the presence of upstream
bottlenecks can smooth cross-tra�c, a�ecting its interaction with
the foreground �ows. However, it is a weaker assumption than
some prior work, such as Parsimon which assumes independence
of individual queues, rather than individual paths [55].

To validate this approximation, we use ns-3 to simulate three sce-
narios, where each scenario is a simulation on a 32-rack, 256-host
topology with di�erent tra�c matrices and �ow sizes drawn from
production workloads, along with di�erent maximum link load and
oversubscription levels (Table 1) (setup details in §5.1). For each
scenario, we simulate 10 million �ows with Equal-Cost Multi-Path
(ECMP) routing using ns-3. We randomly sample 500 paths with
the probability proportional to the number of foreground �ows
they carry, with replacement. This selection is further explained
in §3.2. The distribution of hop counts of these paths is shown

https://github.com/netiken/m3
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Scenario #Flows Tra�c Max load Workload Oversub ns-3 Parsimon ns-3-path
p99 sldn time p99 sldn time p99 sldn time

Mix 1
10M

Mat A 42.46% CacheFollower 4-to-1 4.565 41.70h 5.023 345s 4.527 11.50h
Mix 2 Mat B 28.46% WebServer 1-to-1 4.602 9.648h 4.893 65s 4.504 1.781h
Mix 3 Mat C 73.83% WebServer 2-to-1 13.891 8.064h 15.24 40s 13.07 0.566h

Table 1: Comparison of the 99th-percentile �ow completion time (FCT) slowdown (sldn) and computation times for 10 million �ows for
di�erent simulation methods, workload, and oversubscription scenarios. Con�guration is the same as Section 5.2.

in Figure 2(b). For each selected path, we simulate its foreground
and background �ows, again using ns-3, but excluding the �ows
that do not intersect that path. We call this approach ns-3-path.
When we compare the per-path results from ns-3 with ns-3-path
in Figures 2(c) and 2(e), we �nd that this approach has high ac-
curacy and is robust to di�erent scenarios, hop counts, and the
ratio of foreground to background �ows. We then aggregate the
�ow completion time slowdown across the 500 sampled paths from
ns-3-path and compare that against the network-wide aggregate
statistics from ns-3. Table 1 shows the p99 tail latency slowdown
of both methods across the three sample scenarios. ns-3-path has
an average p99 slowdown estimation error of only 2%. However,
like ns-3, ns-3-path is slow. Since ns-3-path must simulate all �ows
intersecting the foreground tra�c at the packet level, its runtime
is nearly the same as the full ns-3 simulation. Parsimon is much
faster but less accurate than ns-3-path.

2.2 Workload Featurization
Another key aspect of our approach is to use �ow-level simula-
tion to quickly characterize and summarize path-level workload
information as input to a machine learning model. Even when we
narrow our focus to an individual path, there are hundreds of thou-
sands of �ows and millions of packets intersecting and a�ecting
the performance of foreground tra�c on the path. The path level
workload is a long sequence of foreground and background �ow
arrival times and sizes. Even if we were to try to use that data
to train a model, it is not clear how to featurize the workload [5]
and represent it as input to a model in a way that generalizes to a
su�ciently large space of workloads. Simple features such as �ow
size and inter-arrival time distributions are plausible choices but
insu�cient. For example, marginal distributions of the �ow size
and inter-arrival time cannot represent the joint distribution of �ow
size and inter-arrival times, e.g., whether we have bursts of large
or small �ows. This approach also cannot model non-stationary or
diurnal arrival patterns, something that is trivial in ns-3.

We observe that a max-min �ow-level simulation [37] can cap-
ture much of what we are interested in with respect to workload
characterization. Rather than use hand-crafted features based on
statistical properties of the workload, we simulate the workload
in a �ow-level simulator and summarize the attained performance
characteristics in a compact feature map. Our hypothesis is that
the performance observed in �ow-level simulation provides good
features for characterizing the relevant properties of the workload.
To test this hypothesis, we built a fast max-min �ow-level simula-
tor called �owSim (Algorithm 1 in Appendix A); �owSim assumes
“�uid” �ows that proceed at a uniform rate de�ned by the max-min
fair-share rate given the other �ows along the path. A �ow’s rate is

recalculated after the arrival or completion of any competing �ow.
The �ow completes when its rate consumes the �ow size, plus a
topology-speci�c end-to-end latency factor.

For characterizing tra�c along a path, �owSim o�ers a number
of bene�ts:
• It operates at the �ow-level abstraction, and its computational
complexity increases based on the combined number of fore-
ground and background �ows along a given path.

• Unlike ns-3 which must model switch queueing, packet mark-
ing/dropping, and endpoint congestion control, �owSim involves
only basic calculations that are fast and easy to use.

• Although it does not model queuing e�ects, latency interactions,
or the impact of congestion control protocols, and as we show
later it is not accurate for small �ows (Figure 6), �ow-level sim-
ulation creates a rich representation capturing the bandwidth
interaction of �ows.
To illustrate this workload representation, Figure 3 shows the

�ow completion time (FCT) slowdown computed by �owSim for
a single link. The heatmap shows the FCT slowdown for �ows of
each bucket size (y-axis), using percentile buckets (x-axis) to cap-
ture the FCT slowdown distribution. Thus, the right hand side of
each heatmap shows the 99th-percentile tail latency for each �ow
size; the left its 1-percentile latency. All heatmaps in the middle
column use the CacheFollower size distribution, a burstiness level
of f = 1.5, and a maximum link load of 50% (these parameters
are further explained in §5.1). In the �rst row, tra�c burstiness
increases from left to right. As evident by the �gure, increasing the
burstiness increases the tail slowdown for small �ows and almost all
slowdown percentiles for large �ows. The second row shows the im-
pact of increasing load. This has an e�ect similar to burstiness, but
if we look closer, the e�ect of increasing burstiness is more skewed
across di�erent size buckets. The third row shows the impact of
workload; despite running at the same max link load and burstiness
level, di�erent workloads induce di�erent FCT slowdown distri-
butions. This simple example illustrates the e�ectiveness of using
�ow slowdown statistics under max-min �ow-level simulation for
featurizing the workload. FCT slowdown distributions (across dif-
ferent �ow sizes) are a compact representation sensitive to many
aspects of the workload, allowing a machine learning model to pick
up on the di�erences between workloads with distinct behavior
and produce accurate slowdown estimates.

3 SYSTEM ARCHITECTURE OF M3
m3 uses machine learning to predict �ow performance distributions
in data center networks. Its e�ciency and generality are supported
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(a) f = 1.0 (b) f = 1.5 (c) f = 2.0

(d) load=20% (e) load=50% (f) load=80%

(g) Hadoop (h) CacheFollower (i) WebServer

Figure 3: Distribution of �ow completion time (FCT) slowdown (x-
axis) computed by �owSim for a single link simulation for di�erent
�ow size buckets (y-axis). The baseline workload is given by the
middle column: CacheFollower size distribution, burstiness level of
f = 1.5, and maximum link load of 50%. Each row varies a single
dimension of the workload.

by two key ideas: 1) decomposing large networks into indepen-
dent paths and 2) extracting rich workload features with �ow-level
simulation. This section describes how m3 implements these ideas.

3.1 High-Level Overview
Figure 4 illustrates m3 ’s architecture. Given the tra�c workload
and the network topology, m3 �rst decomposes 1 the network
topology into independent paths and, for each path, identi�es all
foreground and background �ows. To reduce the number of paths
that must be simulated, m3 uses weighted sampling to select a
representative sample (§3.2). The sampled paths are used for path-
level simulations 2 , which, owing to their independence, can be
executed in parallel. Each path-level simulation uses an e�cient
max-min fair sharing algorithm [33, 37] called �owSim 3 to com-
pute initial FCT slowdown estimates, separately for foreground
and background tra�c. These estimates are then translated into a
feature map 4 used as input to a machine learning model (§3.3).
To account for di�erent network con�gurations such as the choice
of congestion control protocol and bandwidth-delay product, the
feature map is combined with network speci�cations 5 . Then, m3
uses machine learning to re�ne its predictions of FCT slowdowns
for foreground tra�c to match the ground truth 6 from ns-3-path
(§2.1), factoring in the dynamics of the foreground and background
tra�c, queueing delays, and the congestion control protocol (§3.4).
The above process is carried out once for each sampled path (in
parallel). Once all results are obtained, m3 aggregates them 7 into
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Figure 4: m3’s work�ow: Inputs (grey boxes), outputs (purple
boxes), intermediate artifacts (parallelograms), and core components
(rounded boxes).

network-wide performance metrics (§3.5). Lastly, m3 o�ers an in-
teractive user interface 8 , supporting targeted queries that can
enhance network management decisions.

3.2 Generating Path-Level Simulations
We begin by specifying the path-level simulation, which consists
of a workload and a topology.
Path-Level Speci�cation. Given a full network topology and a
set of �ows, m3 uses the �ows’ routes to associate each link with
the �ows traversing it, assuming static routes known in advance.2
A path is a sequence of links, and its path-level workload consists of
all �ows that traverse any link in the path. The �ows’ arrival times
and sizes are unmodi�ed. We distinguish between foreground �ows,
which traverse the entire path, and background �ows, which only
intersect the path at one or more (but not all) hops (Figure 2(a)).
More precisely, suppose % = (;1, ;2, . . . , ;=) is a path that consists of
= links, let F be the set of all �ows, and let traverses(5 , ;) be a
predicate which is true when a �ow 5 2 F traverses a link ; 2 % .
The set of foreground �ows � for path % is

� , {5 2 F | 8; 2 % : traverses(5 , ;)}, (1)

and the set of background �ows ⌫ is

⌫ , {5 2 F | 5 8 � ^ 9; 2 % : traverses(5 , ;)}. (2)

The goal of path-level simulations is to predict the performance of
foreground �ows in � given background �ows in ⌫ (context), for
later downstream processing. §3.4 describes how these outputs are
formatted and used.

Each path also has a path-level topology which contains only the
nodes and links on the path, as well as whatever other nodes and
links are needed to support the background tra�c. For brevity, we
refer to the links on the path as original links, and all other links
as synthetic links. Conceptually, a path-level topology is a parking
lot topology like the one shown in Figure 7(a). In this �gure, the
original links are the ones connecting purple nodes, and all others
are synthetic. To avoid introducing arti�cial contention among
background �ows, each background �ow connects to the point
where it joins/exits the foreground path with a bandwidth equal to
its source/destination capacity.
2This assumption does not hold in case of packet-spraying [9] or �owlets [1].
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Figure 5: (Left) Distribution of the number of active paths across 192
workloads on a 32-rack, 256-host fat-tree topology; (Right) sampling
error distribution shrinks quickly when increasing the number of
sampled paths.

Weighted Path Sampling. m3’s path-level decomposition presents
an additional challenge: the number of paths grows rapidly with
network size. Figure 5(a) shows a CDF of the number of populated
paths when simulating 192 di�erent workloads on a 32-rack, 256-
host topology (see §5.1). Even on small topologies, the number
of populated paths can be in the hundreds of thousands, and it is
prohibitively expensive to simulate each one. To reduce the number
of simulated paths, we use a weighted sampling strategy wherein
the probability of sampling a path % is proportional to the number
of foreground �ows on % , with replacement (a popular path may
appear in the sample more than once).

To investigate the sensitivity of aggregate slowdown to the num-
ber of sampled paths, we �rst run 192 di�erent scenarios in ns-3.
Then, for each scenario, we sample di�erent numbers of paths using
the strategy described above. For each set of sampled paths, we
aggregate the foreground �ows and compute the p99 FCT slow-
down. We then compare the p99 slowdown of the sampled paths to
the p99 slowdown of the entire network to derive a relative error.
Figure 5(b) shows the cumulative distribution function (CDF) of the
relative p99 slowdown error for di�erent path sample sizes. We ob-
serve that sampling 100 paths is enough to exceed Parsimon’s [55]
accuracy; sampling 500 paths bounds the relative p99 slowdown
error to within 10%.

3.3 Quick Estimation via �owSim
To produce initial FCT estimates for the path-level topologies, m3
uses a simple simulator, which we call �owSim, that assigns �ows
their max-min fair rate allocation [33, 37] at each point in time.
Appendix A has the implementation details.

Figure 6 shows that �owSim provides good estimates of FCT
slowdown for large �ows exceeding 10KB since the performance of
DCTCP (the congestion control protocol used in these experiments)
is reasonably modeled as bandwidth sharing for large �ows. How-
ever, �owSim underestimates the FCTs of short �ows, especially
in the tail of the distribution, because it does not model queueing
dynamics. The next section describes how we use machine learning
to reduce this error.

(a) �ow size 2 (0, 1KB] (b) �ow size 2 (1KB, 10KB]

(c) �ow size 2 (10KB, 50KB] (d) �ow size 2 (50KB,1)

Figure 6: Distribution of FCT slowdown for di�erent �ow size buck-
ets from ns-3, �owSim, and m3 on a 4-hop parking-lot topology

3.4 Improving Estimates with Machine
Learning

m3 uses �owSim’s initial estimates to create feature maps as input
to a machine learning model. The foreground estimates are re�ned
by machine learning, incorporating the dynamics of queueing and
congestion control, while the background estimates are used as
context to help the model produce accurate predictions for the
performance of foreground tra�c.
Deriving FeatureMaps from�owSim’s FCT Slowdown. �owSim
estimates FCT slowdowns for all �ows in the path-level workload,
both foreground and background. The number of background �ows
can be very large, as shown in Figure 2(d). We wish to re�ne these
estimates with machine learning, but what should the features be?
Processing large numbers of �ows directly using standard sequence
models such as Transformers [50] is prohibitively expensive. On
the other hand, statistical features like tra�c volume, mean �ow
size, and inter-arrival times may not capture enough workload
dynamics, as discussed in §2.2.

To balance e�ciency against �delity, m3 converts �owSim’s
estimates into concise feature maps, as shown in Figure 7(a). Given
a path % = (;1, ;2, . . . , ;=) with = links and a set of foreground �ows
� (the red solid line) the feature map" is:

"�
B,? = {Sldn(5 ) | 5 2 � , size(5 ) 2 bucketB , percentile(5 ) = ? } (3)

where m3 �rst categorizes foreground �ows into B buckets based
on the size of each �ow. Within each bucket B , m3 records the slow-
down (Sldn) predicted by �owSim across ? �xed percentiles. The
�nal feature map has dimension B ⇥ ? , represented by the orange
rectangle. By default, the feature map has 10 �ow size buckets,
ranging from �ows with a single packet under 250B to �ows ex-
ceeding 50KB, as shown in Figure 3. Additionally, it includes 100
�xed percentiles, ranging from 1% to 100% in 1% increments.

The performance of the foreground �ows is also a�ected by the
amount and character of the background tra�c (shown as blue
dotted lines). For each link along the foreground path, m3 cre-
ates a similar feature map (�owSim computed FCT slowdown of
dimension B ⇥ ?) for the background �ows traversing that link.
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(a) m3 uses path-level simulations with �owSim to generate compact fore-
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(b) m3’s ML model predicts FCT slowdown distribution for the network
con�gurations of interest using �owSim generated features.

Figure 7: Design of path-level m3

This yields = contextual feature maps (represented by blue rect-
angles) {"⌫;1

B,? , . . . ,"
⌫;=
B,? }, one for each hop in an n-hop path % =

(;1, ;2, . . . , ;=).
Re�ning �owSim’s FCT Slowdown Estimations. Figure 7(b)
shows howm3 re�nes �owSim’s FCT slowdown estimates: 1 Start-
ing with �ow sizes and their associated slowdown estimates, 2 m3
transforms the FCT slowdowns into = + 1 structured feature maps
("�

B,? ; {"⌫;1
B,? , . . . ,"

⌫;=
B,? }), corresponding to both foreground and

background tra�c along the =-hop path. 3 The feature map"�
B,?

is then �attened to serve as a feature for foreground �ows � . 4 m3
feeds the sequence of = background feature maps {"⌫;1

B,? , . . . ,"
⌫;=
B,? }

into a generic sequence model (small Llama-2 [50]) to generate a
�xed-length vector that we call background context. The only rea-
son we use a transformer is its ability to process a variable number
of inputs (one feature map per hop, representing the competing
background tra�c). We did not try other sequence model archi-
tectures or tune hyper-parameters, although they could improve
our results. 5 An additional input to the model is the foreground
path speci�cation, such as the bandwidth-delay product (BDP) ,
congestion control protocol used (e.g., DCTCP [2], TIMELY [36],
DCQCN [56]), and parameters for those protocols. We show that
m3 generalizes across the space of those parameters.

6 The combined foreground feature, background context, and
network speci�cations are then fed into a two-layer multilayer
perceptron (MLP) model to predict the �nal slowdown distribution
of foreground �ows for this path. 7 Responding to user-de�ned
queries, m3 generates the foreground FCT slowdown at speci�c
percentiles for designated �ow size buckets. For example, the default

Per-size 
Empirical CDF

Weighted Combining 
across Size Buckets

CDF of 
Network-wide  

FCT Slowdown 

Per-size Uniform 
Aggregation

K paths

Figure 8: Aggregating FCT slowdown at di�erent size buckets from
: path-level simulations into an empirical CDF for network-wide
FCT slowdown analysis.

output has four size buckets for (0, 1KB], (1KB, 10KB], (10KB, 50KB],
(50KB, 1). Each bucket has the corrected FCT slowdown at 100
�xed percentiles, spanning from 1% to 100% in 1% increments. 8 In
training, m3 optimizes its transformer and DNN using L1 loss for all
100 �xed percentiles to align it with the user-provided ground truth,
such as FCT slowdown data from ns-3. In future work, we hope
to test the model’s ability in learning the slowdown distribution
of real networks with di�erent con�gurations and live application
demand.

Our results suggest these features su�ciently capture network’s
dynamics for e�ective prediction of foreground FCT slowdown
distribution for various �ow sizes. Figure 6 compares the corrected
FCT slowdowns at speci�c percentiles (represented by blue dots)
against the original estimates of �owSim (represented by green
stars) for a 4-hop path topology and Meta’s workloads (details in
§5.1). m3 is able to accurately adjust �owSim’s FCT slowdowns
across various �ow size buckets, even for tail slowdowns of short
�ows.

3.5 Estimating Network-Wide Slowdown
Carrying out the above for: sampled paths results in: size-bucketed
FCT slowdown distributions as shown in Figure 8. What remains
is to combine the : path-level results into a network-wide set of
size-bucketed distributions, and then, optionally, to further com-
bine the distributions in each bucket into a single FCT slowdown
distribution.

Figure 8 illustrates how this is done. First, recall from §3.2 that
the : paths already constitute a �ow-count-weighted random sam-
ple of the entire network. Therefore, to combine them into a single
set of buckets in a manner that respects workload volume, we only
need to aggregate them uniformly. Second, m3 combines the distri-
butions from each bucket into a single distribution via probabilistic
sampling, where the probability of sampling a particular bucket is
proportional to the number of �ows in that bucket. Because perfor-
mance on each path is di�erent, some paths may contribute more
(or less) than their share to the aggregate tail latency at a given
percentile. Thus, averaging the buckets at a given percentile across
all paths will not produce accurate statistics for the network-wide
performance at that same percentile.
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Figure 9: m3’s implementation

3.6 What m3 does and what it does not
m3 predicts FCT slowdown distributions for individual paths, mak-
ing its predictions topology-agnostic. This also enables sampling
from speci�c paths of interest. However, m3 assumes static routes
known in advance, associating each link with the traversing �ows.
This assumption breaks in the case of dynamic routing strategies
like packet-spraying [9] or �owlets [1]. Furthermore, m3 abstracts
detailed per-�ow information by converting complex workloads
into a compact feature map through �owSim and predicts the dis-
tribution of FCT slowdown, not the performance of speci�c �ows.
Moreover, m3 encodes the CC algorithms as a one-hot vector in
its features fed into the MLP model. Hence, it cannot predict the
performance of new CC protocols not seen during training. m3’s
current implementation also does not model the e�ects of priority
classes; we leave this for future work.

In addition to the FCT slowdown distribution, m3’s output cap-
tures the network’s throughput and latency performance. For ex-
ample, the distribution of FCT slowdown for short �ows indicates
packet latency and queueing delay, and the FCT of medium to long
�ows captures throughput e�ects. However, we note that our eval-
uation is based on FCT slowdown distribution; we leave for future
work on how to adapt m3 to predict other metrics such as packet
loss rates.

4 IMPLEMENTATION
Figure 9 depicts m3’s main components:
• MLModel Training ( 1 ): m3 uses the PyTorch Lightning frame-
work for distributed training to speed up the training processing.
We train the transformer and the MLP from scratch. Our train-
ing runs for 400 epochs on four A100 GPUs with four workers
launched on each. Each worker processes batches of 20 data sam-
ples. The entire training process is completed in two days, with
each epoch taking roughly 7 minutes. 4 m3’s model checkpoints
include a 66.5MB transformer and a 4.9MB MLP.

• End-to-End Inference ( 2 ): m3’s inference pipeline is written
in 4300 lines of Rust and C. The Rust component exposes the
top-level interface and implements path decomposition, parallel
execution, and aggregation. 3 Path level computations including
�owSim, feature map extraction, and ML inference are written
in C. Inference code runs on CPU and is optimized for speed,
facilitating interactive network performance querying and design
exploration. We used a single machine with dual AMD EPYC

Parameter Sample space
#Foreground �ows 20000
Flow size distribution Pareto, Exp, Gaussian, Log-normal
Size parameter (\ ) 5k (small) to 50k (large), continuous
Burstiness parameter (f) 1 (low) to 2 (high), continuous
Max load 20% to 80%, continuous
Path length 2 hops, 4 hops, 6 hops
Network con�guration See Table 4

Table 2: Training Set Parameters

Parameter Sample space
#Flows 10M
Oversubscription 1-to-1, 2-to-1, 4-to-1
Tra�c matrix A, B, C (See Figure 18(a))
Flow size distribution CacheFollower, WebServer, Hadoop
Burstiness Low (f = 1), High (f = 2)
Max load 26% to 83% (continuous range)
Fat-tree topology Small (256-host), Large (6144-host)
Network con�guration See Table 4

Table 3: Test Set Parameters

Parameter Sample space
Init window 5 to 30KB, continuous
Bu�er size 200 to 500KB, continuous
PFC Flag 0 (disabled), 1 (enabled)
CC protocol DCTCP, TIMELY, DCQCN, HPCC
DCTCP ( ) 5 to 20KB, continuous
DCQCN ( <8= ,  <0G ) (20 to 50KB, 50 to 100KB)
HPCC ([, '0C4�� ) (0.70 to 0.95, 500 to 1000 Mbps)
TIMELY ();>F , )⌘86⌘) (40 to 60`s, 100 to 150`s)

Table 4: Network Con�guration Parameters

7763 64-core processors (256 CPUs and 512GB RAM in total) for
inference in all our experiments.

5 EVALUATION
We evaluate m3 using three criteria:
• Generalization across workloads and topologies (§5.2)
• Scalability for large-scale network topologies (§5.3)
• Counterfactual search for network parameter exploration (§5.4)
Further experiments (§5.5) demonstrate sources of error, and ablate
the impact of design choices.

5.1 Setup
Training Dataset. We train m3 on a synthetic dataset of 120,000
parking lot topology (single path) ns-3 simulations. To generate this
dataset, we select 2000 workload parameters randomly from Table 2.
For each workload, we pick 20 random network con�gurations from
Table 4, and use all the 3 path lengths in Table 2. We leave out 10%
of the data points randomly for validation. Generated �ows are
divided uniformly at random among all source-destination pairs.
We train m3 once and show its performance in §5.2, §5.3, and §5.4.
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ML model. m3 uses a tiny [14] version of Llama-2 [50] to process
�owSim feature maps for background �ows and generate context
features. This sequence model has 4 layers and 4 attention heads
with an embedding size of 576 and a block size of 16, resulting in
approximately 16.8 million parameters. Its output is a vector with
576 elements. m3 also uses a two-layer MLP with a hidden size of
512 to predict the slowdown distribution given foreground features,
background context, and the network con�guration of interest.

To generate �owSim feature maps, we partition �ow sizes into 10
consecutive size buckets, ranging from less than 250 bytes to over
50KB. For �ows in every size bucket, we extract slowdowns from
�owSim and convert it to a 100-dimensional vector of percentiles
from 1% to 100%, in 1% steps. We further stack vectors for all size
buckets. This creates a feature map with a dimensionality of 10 ⇥
100, o�ering a detailed and extensive view of �owSim’s slowdown
pro�le. m3 outputs the same percentile range for four �ow size
buckets, from less than 1KB to over 50KB. The output is a vector
with 400 elements.
Real-world Test Set. We use Meta’s tra�c matrices [48], cover-
ing diverse clusters like databases (CacheFollower), web servers
(WebServer), and Hadoop. Tra�c within these matrices is rack-to-
rack, with random intra-rack host selection. Flow size distributions
come from the same study (Figure 18(b)). For inter-arrival times,
we use log-normal distribution with two burstiness levels. For low
burstiness, we select log-normal shape parameter f = 1, and for
high burstiness, we choose f = 2. Load level is picked randomly
such that no link exceeds its capacity. Tables 3 and 4 summarize
the test set.
Network Topology. We evaluate m3’s performance using two
di�erent fat-tree network topologies. We use a large-scale 384-rack,
6144-host fat-tree topology to evaluate m3’s scalability in §5.3. This
topology is based on Meta’s data center fabric design [48], featuring
layers of switches with hosts linked via 10 Gbps connections to
top-of-rack (ToR) switches and higher-tier connections at 40 Gbps.
Due to the high computational complexity of running ns-3 for
gathering ground-truth data in this large setup, we scale down
the topology and workload to �t a 32-rack, 256-host topology for
extensive experiments in §5.2 and §5.4.
Baseline and Performance Metrics. We compare m3’s perfor-
mance with Parsimon [55], a state-of-the-art fast simulator, using
the ns-3 simulator as ground truth. The primary performancemetric
is relative p99 slowdown estimation error de�ned as follows:

estimated slowdown � ground-truth slowdown
ground-truth slowdown

(4)

We drop the sign and use the magnitude when reporting median or
average. We also record the wall clock running time of each scheme
for a speed comparison.

5.2 Sensitivity Analysis
Setting. To assess m3’s adaptability to workloads and topologies,
we use the small-scale topology described in §5.1. It consists of
two pods with 16 racks each and eight hosts per rack, with vari-
able spine counts to re�ect di�erent oversubscription levels. We
randomly sample 192 scenarios that use DCTCP3 from Table 3 to
3Parsimon’s fast implementation in Rust only supports DCTCP.

(a) p99 slowdown error distribution (b) m3 is robust to load variation

(c) Running time distribution (d) Speed vs. workload

Figure 10: m3 is faster, more accurate, and robust than Parsimon.
Shaded areas represent con�dence intervals for the median.

Figure 11: Sensitivity of p99 slowdown error distribution to work-
load parameters. Each boxplot depicts the distribution of relative p99
slowdown error for a con�guration, with the center box capturing
the middle 50% (between the 25th and 75th percentiles) and a center
line marking the median. Whiskers extend outwards to encompass
the remaining data.

create our test set. We show the impact of di�erent protocols and
their parameters in §5.4.
Accuracy and Workload Robustness. Figure 10(a) shows the
distribution of p99 FCT slowdown estimation errors across the
test set for m3 and Parsimon. m3 achieves average relative p99
slowdown error of 9.9%, outperforming Parsimon’s 18.3%. Notably,
m3 maintained superior performance at the tail with a maximum
p99 error of 33.2%, compared to Parsimon’s 146%. Figure 10(b)
illustrates the median of error in estimating p99 slowdown for
di�erentmaximum link load buckets.While Parsimon’s error and its
variance increase at loads above 50%, m3’s accuracy remains stable,
exhibiting a consistent median error of about 8% throughout the
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Init. Window Methods p99 Error Time Speedup

10KB
ns-3 2.05 - 13.5h -

Parsimon 4.29 +109% 1m29s 546⇥
m3 2.10 +2.44% 37s 1314⇥

18KB
ns-3 2.44 - 11.9h -

Parsimon 2.73 +11.9% 1m24s 510⇥
m3 2.30 -5.74% 40s 1071⇥

Table 5: Comparison of m3, Parsimon, and ns-3 in terms of p99 FCT
slowdown and runtime in large-scale simulations.

load spectrum. Error variance for m3 increases modestly for loads
above 50%, but less than Parsimon. Further analysis in Figure 11
depicts m3’s robustness against variations in tra�c matrix, �ow size
distribution, oversubscription, and burstiness. m3 su�ers slightly
for tra�c matrix C since it has the most skewed tra�c, resulting
in many paths with less than 10 �ows deviating from our training
distribution. In contrast, Parsimon exhibits a more pronounced and
skewed estimation error pattern when dealing with tra�c matrix A,
the �ow size distribution of WebServer, an oversubscription ratio
of 4-to-1, and burstier workloads (f = 2.0).
Runtime. The wall clock time for running simulations is demon-
strated in Figure 10(c). Despite its better accuracy, m3 is 4-8⇥ faster
in end-to-end runtime compared to Parsimon on the same topology
and workload. m3 has an average runtime of 36.4 seconds, while
Parsimon and ns-3 take 3 minutes 27 seconds and nearly 40.5 hours
on average, respectively. Figure 10(d) further indicates that �ow
size distribution does not a�ect m3’s runtime, as its execution time
depends only on the number of �ows. However, the runtime of a
discrete-event packet-level simulator like Parsimon depends on the
number of packet-level events and therefore is a�ected by the �ow
size distribution. In other words, Parsimon is relatively slower for
workloads with more packets per �ow.

5.3 Scalability to Large Topologies and High
Loads

Setup. To evaluate m3’s scalability, we use the large-scale topology
with 384 racks and 6,144 hosts [48] described in §5.1. We use tra�c
matrix B and a 2-to-1 oversubscription ratio in the core network.
The network manages 11.4 million �ows, achieving a maximum
link load of 50%. We use the WebServer workload and set the tra�c
burstiness to a high level (f = 2). The maximum Bandwidth-Delay
Product (BDP) is 15KB. We use two di�erent initial congestion
window sizes, 10KB (smaller than maximum BDP) and 18KB (larger
than maximum BDP).
Quantitative Results: Table 5 highlights the performance of m3,
Parsimon, and ns-3 in terms of p99 FCT slowdown and simula-
tion running time. Notably, m3 signi�cantly accelerates simulation,
achieves up to 1314⇥ speedup over ns-3, and reduces simulation
time from tens of hours to as low as 37 seconds. Regarding accuracy,
m3 achieves a relative p99 FCT slowdown error of 2.44% for the
10KB initial congestion window size, compared to Parsimon’s 109%
error. In the case of 18KB initial congestion window size, m3 has
an estimation error of -5.74%, while Parsimon’s error is +11.9%.
Comparative Insight: Figure 12 shows the FCT slowdown distri-
butions from m3, Parsimon, and ns-3 under 10KB initial window

(a) �ow size 2 (0, 1KB] (b) �ow size 2 (1KB, 10KB]

(c) �ow size 2 (10KB, 50KB] (d) �ow size 2 (50KB,1)

Figure 12: FCT slowdown estimated by m3, Parsimon, and ns-3 in a
large-scale network simulation with 50% max link load and 10KB
initial window. The horizontal dashed line shows the 99th percentile.

size. m3’s estimation is close to ns-3 across di�erent �ow size buck-
ets, especially for the tail. In contrast, Parsimon overestimates the
FCT slowdown for large �ows, resulting in a p99 FCT slowdown of
4.29, twice as large as ns-3’s 2.05 (Table 5). Parsimon decomposes
the network simulation into independent link-level simulations and
aggregates the link-level results along a path. For the smaller 10KB
initial window size, the initial window size becomes a bottleneck
for �ows larger than 10KB in each link-level simulation. Parsimon
adds the slowdowns incurred in the link-level simulations, and thus
it over-counts the e�ect of the window size on the delay. Essentially,
Parsimon assumes that the slowdown in every link-level simulation
is due to congestion at that link. But when the bottleneck is the
transport itself (e.g., a small initial window), summing the slow-
downs for links along a path is incorrect. In contrast, m3 learns the
e�ect of the initial window size correctly from the ground-truth
path-level simulation data.

5.4 Counterfactual Search for Design
Exploration

As a case study to demonstrate m3’s utility for quickly explor-
ing the space of network design parameters via counterfactual
search, we evaluate m3’s ability in predicting the impact of chang-
ing HPCC [28]’s initial congestion window size and [ (parameter
controlling the tradeo� between utilization and transient queue
length) on p99 FCT slowdown for di�erent �ow classes. We use the
32-rack, 256-host small network topology for this experiment. Flow
size distribution is WebServer, tra�c matrix is C, max link load is
50%, PFC is enabled, and bu�er size is 400KB.

First, we �x [ to 90% and sweep the range of initial congestion
window sizes in Figure 13. As the �gure shows, m3’s p99 slowdown
predictions are close to ns-3, and capture the trends. For example,
it correctly predicts that increasing the congestion initial window
size hurts the performance of small �ows. Notably, m3 takes only
25.2 seconds to explore the e�ect of window size, whereas the same
experiment takes 8 hours with ns-3. As a result, m3 enables live
con�guration exploration, opening new avenues for tuning data
center network parameters in response to changes in workloads (a
topic we leave to future work). Next, we �x the initial congestion
window size to 20KB, and sweep [ in Figure 14. Again, m3 is able
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Figure 13: m3 accurately predicts the e�ect of changing the initial congestion window size on p99 FCT slowdown for di�erent classes of �ows,
much faster (1139⇥) than ns-3.

Figure 14: m3 accurately predicts the e�ect of changing CC parameters (HPCC’s [) on p99 FCT slowdown for di�erent classes of �ows, much
faster (763⇥) than ns-3.

to correctly capture the e�ect of [ on p99 FCT slowdown, while
having an average speedup of 763⇥ compared to ns-3.

5.5 Ablation Study
Here, we ablate m3’s design choices. m3’s sources of estimation
errors are twofold: First, it decomposes full networks into indepen-
dent path-level simulations, ignoring the e�ect of any tra�c not
intersecting the path. Second, it approximates the path-level simu-
lation with �owSim and machine learning. To measure the e�ect
of ignoring tra�c that does not intersect a path, we use ns-3-path
de�ned in §2. It shows what the error is if the simulator is perfect
(ns-3), but we ignore the e�ect of tra�c not intersecting paths on its
foreground �ows. We estimate the slowdown of paths’ foreground
�ows in the small-scale 32-rack, 256-host fat-tree topology with
ns-3-path, m3, and Parsimon. Figure 15 shows that the assumption
we made (ignoring tra�c that does not intersect a path) accounts
for less than half of m3’s error, and more than half of the error is
coming from approximation with machine learning. Furthermore,
Parsimon’s assumption of link independence is strictly worse than
m3’s assumption across all �ow size buckets and path lengths.

We further evaluate the necessity of m3’s components (includ-
ing background contexts as input to the model, and using an ML
model) for estimating the FCT slowdown of our building block, a
parking-lot topology (a single path). If we don’t use an ML model,
we are left with the outputs of �owSim. If we do use the ML model
but do not include context features from background �ows in its
input, we have a crippled version of the model that we call m3
without context. Figure 16 displays the distribution of the p99 FCT
slowdown for �owSim, m3 w/o context, and the full implementa-
tion of m3 for synthetic workloads described in Table 2. �owSim
underestimates slowdowns in general, particularly for smaller �ows

Figure 15: Error breakdown for paths’ foreground �ows in the
small-scale 32-rack 256-host fat-tree topology.

Figure 16: m3 components (machine learning model and back-
ground features) are both necessary for its path-level accuracy.

and on longer paths, resulting in errors as large as -80%. m3 corrects
�owSim’s estimation. Using context features improves m3’s accu-
racy by about 33% on average, and signi�cantly decreases variance.
The observation is consistent across varying path lengths and �ow
sizes.
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6 RELATEDWORK
We organize the large literature on performance modeling for com-
puter networks into three groups: (i) queueing theory (§6.1), (ii)
�ow-level methods (§6.2), and (iii) packet-level methods (§6.3). Like
m3, various researchers have leveraged machine learning methods
to compensate for some of the limitations of each approach; we
discuss those in each section.

6.1 Queueing Theory
Queueing theory models networks as system of queues with arrival
and service time processes [8, 47]. Closed-form results are possible
under certain assumptions, such as Poisson processes with single
packet �ows. These assumptions are generally too simplistic for
networks with endpoint congestion control, bursty arrivals, and
arbitrary �ow sizes. MQL [39, 40] uses per queue-type regression
trees to learn to correct for systematic bias in latency estimates
from queueing theory, for all queues that a packet traverses. Al-
though correcting for systematic bias has similarities to our work-
load featurization technique, MQL is inherently less expressive
since it assumes single packet �ows and uses as inputs the average
�ow arrival rate and coe�cient of variation. These are su�cient
in the case of generalized exponential processes, but not for more
general networks. More expressive models like Markovian arrival
process [4, 10] can produce accurate estimates; however, this re-
sults in a huge state space that is computationally complex and
scales poorly. Nevertheless, they have use-cases in performance
modeling [21, 25, 26, 31, 34, 42, 44].

6.2 Flow-level granularity
Network Calculus [11, 27] models worst-case metric bounds using
min-plus and max-plus algebras. However, it cannot estimate the
mean or any percentile. As we have seen, max-min �ow approx-
imations like �owSim can accurately model the performance of
long �ows, but fall short when asked to estimate the performance
of short and medium-size �ows where queue dynamics dominate.
Fluid-based approaches [2, 6, 32, 35, 43] can correct for this by
modeling the evolution of �ows using partial di�erential equa-
tions (PDEs). However, they require a high level of expertise to
de�ne PDEs describing system dynamics for every new system, and
can only model the average behavior of a stochastic system [13].
The Routenet line of work [15, 16, 49] uses graph neural networks
with �ow-level inputs to predict performance metrics. However,
their �ow-level features, e.g., mean rate or pre-de�ned parameters
for simple processes, are not expressive enough to capture com-
plex workloads. Furthermore, they have challenges in generalizing
across topologies, link capacities, and path lengths [12, 20]. As
with MQL, QT-Routenet [12] uses predictions of queuing theory
techniques assuming Poisson arrivals as inputs to the graph neural
network, and has many of the same limitations.

6.3 Packet-level granularity
The most popular tools for estimating network performance model
the network behavior down to the granularity of individual packet
arrivals and departures from every switch. Examples include ns-
3 [46], OPNET [30], and OMNET++ [51]. Although widely used by

practitioners and researchers, their main issue is performance for
networks of data center scale.

It has been di�cult to get signi�cant speedup [23, 29, 41] using
standard parallelization techniques [17, 18], leading to slower per-
formance than single-threaded simulation in some cases [46, 54]. Re-
cently, DONS [19] and Parsimon [55] showed signi�cant speedups
for packet-level simulation. DONS uses a data-oriented design to
improve multi-core, cache, and memory e�ciency of precise packet-
level simulation, achieving a speedup of 65⇥ on a cluster of CPU-
based servers. m3, on the other hand, does approximate �ow-level
performance prediction and achieves a speedup of about 1300⇥.
Parsimon assumes that simultaneous congestion events at multiple
bottleneck links are second-order e�ects. This assumption enables
reasoning about links independently, leading to speedup gains, as
we have seen at some cost in accuracy.

Inspired by a workshop paper [24], a line of research uses ma-
chine learning to speed up packet-level simulation. Mimicnet [54]
uses a traditional packet-level simulation of a cluster in a data center
to learn the behavior of a cluster of machines; exploiting symme-
tries in FatTree topology [3] with uniform tra�c among equal-sized
clusters of machines, it composes “mimics” to model the behavior
of the network. DeepQueueNet [53] uses packet-level simulation
to train a model of the packet-level behavior of every network
component, that is, every link and switch, using RNNsearch [7]. It
achieves a speedup of about 70⇥ using four V100 GPUs, compared
to traditional packet-level simulation. However, m3 trains a model
of path behavior that runs on CPUs for inference and achieves a
speedup of about 1300⇥.

7 CONCLUSION
We presented m3, a fast and accurate model for estimating aggre-
gate �ow-level statistics for data center networks under di�erent
workloads and con�guration choices. The model is novel in several
aspects. First, it is path-based, in that it approximates aggregate
network-wide performance by considering only the tra�c that in-
tersects with a given path. Second, it uses a max-min �ow-level
simulator to quickly summarize and featurize the broad space of
possible workload characteristics that can a�ect path-level perfor-
mance. Feature maps for the foreground and background tra�c
are combined with topology and con�guration options such as the
choice of TCP congestion control protocol, protocol parameters
such as initial window size, and link capacity and latency. These
inputs are then used to train the model on synthetically generated
input workloads, and tested against more realistic workloads taken
from industry standard benchmarks. Our experiments show that
m3 outperforms prior estimation approaches in execution speed,
prediction accuracy, and generalization capabilities.
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(a) Impact of bu�er size (b) Impact of init. window size

(c) Impact of CC algorithms (d) Impact of triggering PFC

Figure 17: m3’s estimation errors of p99 slowdown across di�erent
sample spaces in Table 4.

(a) Tra�c matrices (32-rack sample)

(b) Flow size distributions

Figure 18: We use data fromMeta’s data center network [48], includ-
ing (a) the tra�c matrices extracted from the accompanying dataset,
and (b) the �ow size distributions estimated from the published data
for evaluation.

Appendices are supporting material that has not been peer-
reviewed.

A DETAILS ON FLOWSIM
Algorithm 1 depicts the path-level simulation with a path-level
workload on a parking-lot topology. �owSim begins by initializ-
ing a priority queue & with all �ows � , including their sizes and
arrival times (lines 2). Next, �owSim schedules the �ow arrival and
completion events (lines 4-10). For each event, �owSim iteratively
identi�es the bottleneck link along with its associated �ows (line
14) and assigns the max-min rate to each associated �ow by con-
sidering the capacity of its bottleneck link (lines 11-17). �owSim
ends when all �ows are completed. �owSim processes even a 6-hop
parking-lot topology with 1 million �ows in just a few seconds.

Algorithm 1: �owSim’s FCT estimation based on �ow
event scheduling and max-min fair sharing.
Input: Set of = �ows � , Set of : links ! with initial

capacities ⇠
Output: Flow Completion Times (FCT) for �ows in �

1 Function getFctFlowsim(� , !, ⇠)
ù Dynamic �ow event scheduling

2 &  PriorityQueue(� ) // Initialize an event queue with

flow sizes and arrival times

3 � ⇤  ; // Set of active flows

4 while !& .isEmpty() do
5 (5 , C, EventType)  & .pop()
6 if EventType is Arrival then
7 � ⇤ .add(5 ) // Add a new flow

8 else
9 � ⇤ .remove(5 ) // Remove a completed flow

10 addFCT(5 , C)
ù Iterative max-min fair rate allocation

11 '⇤  ; // Flow rates of active flows in � ⇤

12 ⇠⇤  ⇠ // Initialize link capacities

13 while ;4=('⇤) < ;4=(� ⇤) do
14 (A , ;)  getBottleneckLinkRate(� ⇤, !,⇠⇤)

foreach 5 2 getFlowsOnLink(� ⇤, ;) do
15 if 5 8 '⇤ then
16 '⇤ [5 ]  A // get its max-min fair rate

17 ⇠⇤  UpdateCapacities(⇠⇤, � ⇤,'⇤)
18 &  UpdatePriorityQueue(&, � ⇤,'⇤)

19 return getFCT()

B M3’S ESTIMATION ERROR FOR
COUNTERFACTUAL SEARCH

Figure 17 demonstrates m3’s p99 slowdown estimation error across
di�erent sample spaces in Table 4.
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