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A B S T R A C T

The Steady State Visual Evoked Potential (SSVEP) is a widely used component in BCIs due to its high noise
resistance and low equipment requirements. Recently, a novel SSVEP-based paradigm has been introduced for
direction detection, in which, unlike the common SSVEP paradigms that use several frequency stimuli, only
one flickering stimulus is used and it makes direction detection very challenging. So far, only the CCA method
has been used for direction detection using SSVEP component analysis. Since Canonical Correlation Analysis
(CCA) has some limitations, a Task-Related Component Analysis (TRCA) based method has been introduced
for feature extraction to improve the direction detection performance.

Although these methods have been proven efficient, they do not utilize the latent frequency information
in the EEG signal. Therefore, the performance of direction detection using SSVEP component analysis is still
suboptimal. For further improvement, the TRCA-based algorithm is enhanced by incorporating frequency
information and introducing Spectrum-Enhanced TRCA (SE-TRCA). SE-TRCA method can utilize frequency
information in conjunction with spatial information by concatenating the EEG signal and its shifted version.
Accordingly, the obtained spatio-spectral filters perform as a Finite Impulse Response (FIR) filter.

To evaluate the proposed SE-TRCA method, two different sorts of datasets (1) a hybrid BCI dataset
(including SSVEP component for direction detection) and (2) a pure benchmark SSVEP dataset (including
SSVEP component for frequency detection) have been used. Our experiments showed that the accuracy of
direction detection using the proposed SE-TRCA and TRCA approaches compared to CCA-based approach
have been increased by 23.35% and 28.24%, respectively. Furthermore, the accuracy of character recognition
obtained from integrating P300 and SSVEP components in CCA, TRCA, and SETRCA approaches are 54.01%,
56.02%, and 58.56%, on the hybrid dataset, respectively. The evaluation of the SE-TRCA method on
the benchmark SSVEP dataset demonstrates that the SE-TRCA method outperforms both CCA and TRCA,
particularly regarding frequency detection accuracy. In this specific dataset, the SE-TRCA method achieved
an impressive frequency detection accuracy of 98.19% for a 3-s signal, surpassing the accuracies of TRCA and
CCA, which were 97.91% and 90.47%, respectively.

These results demonstrated that the TRCA-based approach is more efficient than the CCA approach to
extracting spatial filters. Moreover, SE-TRCA, extracting both Spectral and spatial information from the EEG
signal, can capture more discriminative features from the SSVEP component and increase the accuracy of
classification. The results of this study emphasize the effectiveness of the proposed SE-TRCA approach across
different SSVEP paradigms and tasks. These findings provide strong evidence for the method’s ability to
generalize well in SSVEP analysis.
1. Introduction

Brain-computer interface (BCI) is extensively used as an alternative
communication channel to enable people with disabilities, especially
those suffering from spinal cord injury, to communicate with other
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people and control external devices. Indeed, a BCI system identifies
the user’s intentions through the brain neurons’ activity, then
translates them into executable commands for a device. A BCI can
be developed and implemented based on a variety of brain neu-
ron activity measures, including electroencephalography (EEG),
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magnetoencephalography (MEG), electrocorticography (ECoG), Func-
tional Near-Infrared Spectroscopy (fNIRS), functional magnetic reso-
nance imaging (fMRI), and positron emission tomography (PET) [1–3].
Among these, EEG is one of the most popular modalities of sensing for
BCI [4] due to its affordability, non-invasive nature, and suitability for
portable applications. Furthermore, it provides a high level of temporal
resolution [5,6]. EEG-based BCI systems are categorized according to
the type of brain activities, including Event-related desynchronization
(ERD), Event-related synchronization (ERS), Slow Cortical Potential
(SCP), P300 Evoked Potential, and Steady State Visual Evoked Poten-
tial (SSVEP) [2,4,6–8]. Using computational algorithms and artificial
intelligence techniques, a BCI system is expected to extract these
components from an EEG signal and interpret them into applicable
commands.

Among these EEG signal components, the P300 and SSVEP compo-
nents have been widely adopted due to the high information transfer
rate and minimal user training requirements [8–13]. P300 is the most
prominent ERP component, which is identified by its amplitude and
latency. P300 is a positive deflection in the user’s EEG signal with
a latency of about 300 ms from the onset of a target stimulus. This
component is evoked in the oddball paradigm, in which a series of
stimuli appear such that the probability of the target stimulus is much
lower than other stimuli. In this case, when the target stimulus is
illustrated, the P300 component is evoked [14–17]. A clear advantage
in the P300 paradigm is that the number of commands or stimuli can be
relatively large. For example, there are 36 stimuli in the matrix speller
paradigm [18]. However, in P300-based BCI systems, the presentation
of stimuli needs to be repeated several times to increase the accuracy
(e.g., the intensification of stimuli in the matrix speller is repeated up
to 15 times). Consequently, this increases the time duration of the ex-
periment and reduces the information transfer rate (ITR) [19]. Another
weakness of P300-based BCI systems is that this may not be applicable
to every subject. For instance, people suffering from oculomotor control
disease cannot use properly and comfortably the most common P300
paradigm, the matrix Speller [5]. In recent research [20], a limitation in
the analysis of the P300 component has been identified. This limitation
involves treating P300 detection as a binary problem, where all non-
target trials are considered as a single group. In their study, they
addressed this limitation by categorizing non-target trials into several
groups based on predefined criteria. By employing a multiclass-based
approach, they proposed an approach to resolve the P300 detection
problem more effectively [20].

SSVEP is a periodic electrophysiological response of the brain to
repetitive visual or auditory stimuli with a specific frequency. When the
subject focuses on one of the stimulus frequencies, the SSVEP response
is evoked in the subject’s EEG signal. The SSVEP response appears in the
same fundamental frequency as the stimulus and its harmonics [21].
A significant advantage of SSVEP-based BCI is that it either does not
require any training data or requires a very small amount of training
data (for calibration-based methods) [22–25]. It is very easy to perform
the experiment for most subjects and there is no need to train the
subject although it may cause seizure in some subjects [2]. In addition,
in the SSVEP paradigm, unlike P300, the number of unique stimulus
frequencies utilized as commands is limited, and not every frequency
can be used. Therefore, techniques such as Phase coding [26,27] and
Frequency Coding [28] have been proposed to compensate for this
limitation.

Most of EEG-based BCI systems usually employ one paradigm, es-
pecially P300 or SSVEP. A traditional P300 paradigm has more target
options; however, detecting the target takes a longer time, which
increases experiment time duration and reduces ITR. Although SSVEP-
based paradigm has fewer target options for the subject compared
to P300-based paradigm, it takes less time to detect target stimulus
frequency. ITR cannot be increased beyond a certain limit even using
techniques such as phase coding and frequency coding [29]. In fact,
2

in BCI systems, there is always a trade-off between the number of
target options and ITR, such that, as the number of stimuli (target
options) increases, the experiment time duration increases, and the ITR
decreases, and vice versa.

According to the aforementioned limitations of P300-based and
SSVEP-based BCI systems, a single BCI, which only uses one paradigm,
limits its performance. Recent studies have introduced a hybrid BCI
approach to improve system performance and increase ITR [2,4,6–8].
A hybrid BCI is obtained using two or more EEG components (such
as SSVEP, P300, or Motor Imagery) or other physiological signals to
extract more discriminative features from the user’s EEG data. The
main goals of developing a hybrid BCI system can be summarized as
follow: (1) enhancing classification accuracy and improving system
performance, (2) increasing the number of target options in a paradigm
to increase the number of commands available to the user [8], (3)
extracting discriminative and informative features by employing dif-
ferent components of EEG signals, and (4) reducing the time duration
for displaying stimuli and detecting the user’s target [30]. For the
development of hybrid BCI systems, researchers have introduced a
variety of combinations. Considering SSVEP-based systems have higher
ITR and require less training time among all types of BCI systems [31],
the SSVEP component is usually combined with either the P300 compo-
nents [16,32–35] or MI [36–38]. The study [39] introduced the hybrid
BCI concept of combining P300 and SSVEP for the first time. The
combination of P300-SSVEP can be considered as one of the best hybrid
BCI systems since the speed of stimuli presentations and consequently,
ITR increase with SSVEP, and the number of target options can also be
increased with P300 [8,40].

In the study [41], this concept was also attempted by presenting
a hybrid BCI speller where two components of P300 and SSVEP were
combined simultaneously. A significant increase in the accuracy, speed,
and ITR of the system was observed with this hybrid BCI speller system.
For the P300 section of the paradigm, a Triple Rapid Serial Visual
Presentation (RSVP) paradigm was used, where three characters were
simultaneously displayed as one stimulus. The SSVEP component was
then employed to specifically identify the target character among the
three characters. Indeed, target character recognition is a two-step
process that relies on the correct detection of both the P300 and SSVEP
components. The reported results indicate that the performance of the
final accuracy is limited by SSVEP detection. Therefore, in the current
study, our goal is to provide a sophisticated approach to improve the
accuracy of SSVEP detection, which would subsequently improve the
final accuracy as well.

Canonical Correlation Analysis (CCA) was first used to detect SSVEP
frequency by Lin et al. [42]. In the common CCA approach, sine-cosine
waves are used to construct the reference signal and then it is used
to calculate the canonical correlation between the EEG signal and the
reference signal [42]. The common CCA approach (also called standard
CCA), despite its effectiveness, has a series of basic limitations. One
of the standard CCA limitations is that it does not take full advantage
of harmonic information in SSVEP frequency detection. To solve this
problem, the Filter Bank CCA (FBCCA) algorithm was developed so
that it could effectively use harmonic information in the construction
of features [43]. The standard CCA also has the drawback that it only
uses the maximum value of correlation coefficients as a classification
feature, even though other correlation coefficients can provide useful
information as well. The Fusing CCA algorithm overcomes this problem
by combining the correlation coefficients in a nonlinear and very simple
way and providing more discriminative classification features [44]. One
of the main problems of the standard CCA is the use of pre-constructed
sine-cosine reference signals. Several studies [22,23,26,45–49] have
indicated that such signals may not be optimal because they do not
possess the characteristics of a real EEG signal and they do not have
inter-trial or inter-subject variability information [22]. Moreover, they
do not consider phase information [46], and may even overfit CCA. And
these issues may affect the performance of CCA in SSVEP frequency

detection. Additionally, CCA-based approaches require the extraction
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of two distinct projection vectors for the EEG signal and the reference
signal, which will double the computational cost and complexity as well
as the number of free parameters.

To tackle those issues in CCA, alternative methods [24,25,50] have
been presented in which only one projection vector is calculated,
and the computational cost is reduced. However, in these methods,
contrary to CCA, the constraint of orthogonality (the constraint of
orthogonality ensures that the extracted components represent distinct
and independent brain signals) has been removed in the projection
vectors. One of these methods is Task-Related Component Analysis
(TRCA), which was first introduced by Nakanishi [24] to detect SSVEP
frequency and has significantly outperformed CCA. In this study, we
proposed a TRCA-based feature extraction approach to extract dis-
criminative features for direction detection using SSVEP component
analysis. Multiple studies [51–56] have proven that including spectral
information in the signal filtering process can significantly improve
the algorithm’s performance. Since CCA and TRCA methods do not
utilize frequency information during feature extraction, to further im-
prove SSVEP component analysis for direction detection, we propose
incorporating frequency information into TRCA, thus referring to it as
Spectrum-Enhanced TRCA (SE-TRCA). In SE-TRCA, in addition to spa-
tial information, spectral information is also incorporated in the feature
extraction. As a result, more discriminative features were extracted and
can further improve the SSVEP detection performance.

The contributions of this study can be summarized as follows:

• We introduce the SE-TRCA method, a novel approach for ex-
tracting discriminative features by combining spatial and spectral
information.

• The utilization of the SE-TRCA-based feature extraction frame-
work in the direction detection procedure using SSVEP analysis
offers a promising methodology for improving performance.

• The superior performance of the proposed SE-TRCA method,
surpassing both CCA and TRCA, in terms of both direction de-
tection and frequency detection using SSVEP analysis highlights
its potential for advancing these areas of research.

• The superior performance of the proposed method on two dif-
ferent datasets with different paradigms and tasks proves the
generalizability of SE-TRCA in SSVEP analysis.

The paper is organized as follows. The introduction and literature
review are presented in Section 1. Section 2 describes RSVP and SSVEP
paradigms, datasets used for evaluation, CCA, and TRCA methods.
Section 3 provides the feature extraction procedure of CCA, TRCA,
and proposed SE-TRCA for direction detection using SSVEP component
analysis on the mentioned datasets. The experimental results and dis-
cussion are presented in Section 4 and Section 5, respectively. Finally,
we conclude the paper in Section 6.

2. Background

2.1. RSVP and SSVEP paradigms

RSVP, an innovative paradigm, has recently gained attention in
the field of brain-computer interface (BCI) systems, particularly in the
context of BCI spellers. The RSVP paradigm involves presenting distinct
stimuli consecutively at the center of a screen [57]. In our previous
study, we employed a standard triple RSVP paradigm, wherein 27
characters, comprising 26 English alphabets and the symbol ‘‘.’’, were
organized into 9 groups. Each group consisted of 3 characters, with
each character positioned in one of the three directions: left, right, or
bottom. Table 1 provides all 9 stimuli used in the experiment.

As depicted in Fig. 1, a series of 9 stimuli are presented consecu-
tively at the center of the screen. In RSVP paradigm, the presentation
of stimuli is repeated multiple times to enhance recognition accuracy.
3

Within this paradigm, the 9 stimuli are presented in a randomized
Table 1
Arrangement of characters group in triple RSVP paradigm corresponding to 9 stimuli.
Stimulus number 1 2 3 4 5 6 7 8 9

Left direction H I C B O M X A E
Right direction R F N Q J U K L G
Bottom direction T S . V Z Y P W D

order. During the experiment, participants were instructed to concen-
trate on the target character. When the target stimulus, comprising 3
characters, appeared, it elicited the P300 component in the subject’s
brain signal. Through analysis of the brain signal and detection of
the P300 response, the target group can be identified. However, it is
important to note that only the target stimulus containing 3 characters
has been identified, not the specific target character itself. To ascertain
the precise position of the target character, SSVEP paradigm has been
incorporated into this paradigm for direction detection.

The SSVEP paradigm is a well-established and widely adopted tech-
nique in the BCI system. In this paradigm, participants are presented
with visual flickering stimuli at specific frequencies. These stimuli elicit
neurological responses at harmonic frequencies, resulting in distin-
guishable oscillatory activity in the visual cortex. By analyzing SSVEP
component using EEG, researchers can infer participants’ intentions or
preferences, such as target selection or attentional focus. Traditionally,
the typical SSVEP paradigm involves using multiple flickering stimuli,
each with a distinct frequency, corresponding to different options.
However, a recent advancement in the field introduced a novel SSVEP
paradigm that utilizes a single flickering stimulus to detect several
options. For instance, according to Fig. 2 a 15 Hz flickering stimulus
is placed at the center of the screen, and participants are instructed
to focus on one of three available directions: left, right, or bottom.
By analyzing the SSVEP components, the target direction, correspond-
ing to the participant’s focus, can be identified. In fact, the novel
SSVEP paradigm introduced within the studies [8], [36] significantly
diverges from the frequency-based SSVEP BCIs discussed earlier. In con-
trast to detecting targets based on power spectra, the proposed SSVEP
paradigm categorizes the spatial patterns of SSVEP power distribution
across the scalp. As mentioned in the research [8] and [36] they have
used this type of SSVEP paradigm to discriminate 4 and 9 different
spatial positions, respectively. overall, the novel SSVEP paradigm is
a sort of spatial-decoded SSVEP instead of a frequency-coded one
(traditional SSVEP with several frequency stimuli).

2.2. Data description

To assess the effectiveness of the proposed methodology, two dif-
ferent types of SSVEP datasets: a hybrid BCI speller dataset and a
benchmark pure SSVEP dataset [58] were used.

We utilized the dataset associated with a Hybrid BCI Speller from
[41] to evaluate our proposed method. The data was derived by com-
bining SSVEP and P300 components, where a Triple RSVP paradigm
[59,60] was employed to evoke the P300 component, and a single
flickering stimulus at a specific frequency was employed to derive the
SSVEP component, simultaneously illustrated in Fig. 3. In the RSVP
paradigm, a total of 27 characters including 26 English alphabet charac-
ters and a ‘‘.’’ symbol were divided into 9 stimuli, where each stimulus
consists of three characters. The three characters in each stimulus are
placed in three different directions (i.e., left, right, and bottom) on
the screen and these 9 stimuli of characters randomly appear one by
one for 5 repetitions. The appearance of each stimulus sustains for
230 ms. Meanwhile, a square for SSVEP analysis is placed in the middle
of the screen surrounded by the three characters, and flickers with a
frequency of 15 Hz. In the RSVP paradigm, only the target stimulus with
three characters can be detected, however, the exact target character
in the stimulus cannot be detected. Previous studies [61,62] suggest

the center stimulus can help detect the exact point of the test subject
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Fig. 1. Triple RSVP paradigm. Each stimulus including 3 characters is presented in the center of the screen.
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Fig. 2. The Novel SSVEP paradigm for direction detection.

sing a flickering square with a certain frequency, thus the exact
arget character can be identified. The dataset was collected from six
est subjects during one session using a 32-channel g.Hlamp (G.Tech
ompany) device including active electrodes in accordance with the
tandard 10–20 system. In this dataset, for analysis of P300 component
nalysis, it must be notated that each repetition consists of 9 stimuli,
ncluding three characters, which are randomly presented to the sub-
ect. One of these stimuli is the target (P300), while the remaining 8 are
on-target (non-P300) stimuli. Simultaneously, a flickering stimulus is
ntensified with a frequency of 15 Hz. Nine EEG trials corresponding to
he stimuli are separated in each repetition to identify the target group.
pecifically, out of the 9 stimuli, one is the P300 and the remaining 8
re non-P300 stimuli. For the direction detection using SSVEP analysis,
he EEG signal from the beginning to the end of each repetition is
tilized to detect the direction. According to Fig. 4 It should be noted
that if consecutive repetitions information is to be used for identifying
the target character, in the P300 analysis section, the EEG trials of
each repetition are examined individually. Finally, the target group is
identified by voting across repetitions. However, for SSVEP analysis,
the EEG signal from the start of the first repetition to the end of
the considered repetition is concatenated to construct a continuous
signal, which is then used for analysis. We remove the first repetition
4

because of the noise and only utilize the remaining 4 repetitions for our
experiments. The data preprocessing manners (e.g., signal filtering) are
deployed by following [41].

For further evaluation, a pure SSVEP dataset has been utilized in
this research comprising BCI Speller data with a total of 40 targets,
as described by Wang et al. [58]. This dataset consists of 64-channel
EEG recordings obtained from 35 healthy participants, including eight
experienced individuals and 27 naive individuals. The visual stimuli
were encoded using the Frequency and Phase Modulation method, with
stimulus frequencies ranging from 8 Hz to 15.8 Hz in intervals of
0.2 Hz. The phase difference between neighboring frequencies was set
at 0.5𝜋. Each stimulus had a duration of 5 s, and the data were sampled
at a frequency of 250 Hz. For each subject, the data is organized as a
four-dimensional matrix with dimensions of [64, 1500, 40, 6]. These
dimensions represent the number of electrodes, time points, targets,
and blocks, respectively. Each subject’s data matrix consists of 240
trials (40 targets 𝑥 6 blocks), with each trial containing 64 channels
and 1500 time points. The overall duration of the data is 6 s, including
0.5 s before the start of the stimulus, 5 s during the stimulus, and 0.5 s
after the stimulus.

2.3. CCA in SSVEP

The CCA is one of the most classic statistical methods which is used
to compute the correlation between two multivariate data. It was first
applied by [42] for SSVEP frequency detection. Let 𝑋 ∈ 𝑁𝑐×𝑁𝑠 be
any EEG signal, where 𝑁𝑐 , 𝑁𝑠 denote EEG channel number and data
length, respectively. Let 𝑌 ∈ 2𝑁ℎ×𝑁𝑠 be constructed reference signal
consisting of sine and cosine functions, where 𝑁ℎ denotes the number
of harmonics. The reference signal (i.e., 𝑌𝑘) for 𝑘th stimulus frequency
can be constructed by:

𝑌𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑖𝑛(2𝜋𝑓𝑘𝑡)
𝑐𝑜𝑠(2𝜋𝑓𝑘𝑡)

𝑠𝑖𝑛(2𝜋𝑁ℎ𝑓𝑘𝑡)
𝑐𝑜𝑠(2𝜋𝑁ℎ𝑓𝑘𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

where 𝑡 =
[

1
𝑓𝑠
, 2
𝑓𝑠
,… , 𝑁𝑠

𝑓𝑠

]

and 𝑓𝑠 is sampling rate of EEG signal.
CA method requires that 𝑋 and 𝑌 have the same length. Then,
CA is utilized to compute the correlation coefficient vectors between
he multi-channel EEG signal and each reference signal with different
timulus frequencies. For this purpose, the spatial filters 𝑊 ∈ 𝑁𝑐×1

and 𝑉 ∈ 2𝑁ℎ×1 are extracted by the CCA according to the equation
2 somehow linear combinations (canonical variables) 𝑍𝑥 = 𝑊 𝑇𝑋
and 𝑍𝑦 = 𝑉 𝑇 𝑌 have the highest canonical correlation. Thirdly, the
maximum correlation coefficient in each coefficient vector is selected
as a potential feature set for determining the SSVEP signal frequency.
Finally, we select the frequency, which is corresponding to the optimal
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Fig. 3. Character detection procedure in hybrid BCI speller paradigm combining Triple RSVP and SSVEP paradigms.
Fig. 4. Trigger time of stimuli presentation in the mentioned hybrid BCI paradigm. (a) RSVP paradigm stimuli and (b) flickering stimulus in SSVEP paradigm.
T
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𝑋

eature (i.e., the maximum one) in the feature set, from the stimulus
requencies as the SSVEP frequency.

= argmax
𝑊 ,𝑉

corr(𝑍𝑥, 𝑍𝑦)
√

var(𝑍𝑥)
√

var(𝑍𝑦)

= argmax
𝑊 ,𝑉

𝑊 𝑇𝑋𝑌 𝑇 𝑉
√

𝑊 𝑇𝑋𝑋𝑇𝑊
√

𝑉 𝑇 𝑌 𝑌 𝑇 𝑉
(2)

2.4. TRCA in SSVEP

The TRCA method is proposed to enhance the evoked potentials
(i.e., SSVEP components in this work) which are not easy to detect in
the EEG signals in that the EEG signals are always contaminated by
noise and other brain activities. Previous studies [24,63] have shown
that the TRCA method can substantially make evoked potentials more
prominent compared to other brain activities and can suppress a lot of
noise, which facilitates the detection of the SSVEP components. We use
𝑋̄𝑘,𝑖 ∈ 𝑁𝑐×𝑁𝑠 to denote the 𝑖th trial of EEG signal with length of 𝑁𝑠
and channel number of 𝑁𝑐 from 𝑘th class (trial group). Each channel of
EG signal should be normalized over the entire duration to be a fixed
ynamic range by using the zero-mean and unit-variance method. Then
he inter-trial cross-covariance is calculated according to the Equation
.

= 1
𝑁 (𝑁 − 1)𝑁

𝑁𝑡
∑

𝑋̄𝑘,𝑖𝑋̄
𝑇
𝑘,𝑗 ,∈ 𝑁𝑐×𝑁𝑐 . (3)
5

𝑡 𝑡 𝑠 𝑖≠𝑗;(𝑖,𝑗)=1
hen, the EEG signal of all the training trials of each specific stimulus is
oncatenated and a two-dimensional continuous signal is constructed.

⃛𝑘 =
[

𝑋̄𝑘,1, 𝑋̄𝑘,2,… , 𝑋̄𝑘,𝑁𝑡

]

,∈ 𝑁𝑐×(𝐿) (4)

where 𝐿 = 𝑁𝑠 × 𝑁𝑡 and 𝑁𝑡 represents the number of trials. Then
the covariance matrix of the continuous signal is calculated according
to Eq. (5).

𝑄 = 1
𝑇
𝑋⃛𝑘𝑋⃛

𝑇
𝑘 ,∈ 𝑁𝑐×𝑁𝑐 . (5)

In practice, it is easier to calculate the S matrix as follows:

𝑆 =
𝑁𝑡

(𝑁𝑡 − 1)𝑁𝑠
(𝑈𝑈𝑇 − 1

𝑁𝑡
𝑉 ),∈ 𝐑𝑁𝑐×𝑁𝑐 (6)

where 𝑈 and 𝑉 matrices are defined as follows:

𝑈 = 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1
𝑋̄𝑘,𝑖,∈ 𝑁𝑐×𝑁𝑠

𝑉 = 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1
𝑋̄𝑘,𝑖𝑋̄

𝑇
𝑘,𝑖 ∈ 𝑁𝑐×𝑁𝑐 . (7)

According to the 𝑄 and 𝑆 matrices, the TRCA problem is defined as
follows:

max𝑤𝑇𝑆𝑤 (8)
𝑠.𝑡. 𝑤𝑇𝑄𝑤 = 1 (9)

A constrained optimization problem is obtained which is solved ac-
cording to the following equation. Using the Lagrange multiplier, the
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optimization problem is converted to the following equation.

𝑤̂ = argmax 𝑤𝑇𝑆𝑤
𝑤𝑇𝑄𝑤

(10)

Now, the optimization problem can be solved using generalized
eigenvalue decomposition and the 𝑁𝑐 eigenvectors and eigenvalues are
obtained. The eigenvectors are sorted in descending order according to
their eigenvalues, and the first eigenvectors are implemented as spatial
filters to extract task-related information (SSVEP).

3. Methodology

It is important to acknowledge that the dataset utilized in this
research embodies a Hybrid BCI speller paradigm, incorporating two
distinctive components, P300 and SSVEP. This paradigm was originally
introduced by S. Jalilpour et al. [41]. Within this framework, the
identification of the target character involves a two-step process: firstly,
recognizing the target group(using the P300 component) in which the
target character is also located, and secondly, determining the correct
direction (using the analysis of the SSVEP component) that the user
is staring at. In fact, first, the group containing the target character
is recognized and then the direction in which the target character
is located is detected, and eventually, the combination of these two
steps leads to the identification of the target character. If the target
group is recognized accurately but its direction is misjudged, the target
character cannot be correctly identified vice versa. The results reported
in the study [41] based on this dataset revealed that the accuracy of the
P300 component detection is higher than SSVEP component analysis,
and SSVEP component poses certain limitations and adversely affects
the final accuracy. Given that direction detection using the SSVEP
component remains a challenge within this dataset, our objective is
to propose an effective approach for extracting discriminative features
from the SSVEP component, enabling the detection of the target di-
rection and ultimately enhancing the overall accuracy of the system.
As of now, CCA algorithm has been used to extract the feature in
order to detect the direction from SSVEP component [41,61,62]. In this
section, CCA algorithm is first described as a classic method for the
analysis of SSVEP frequency detection. Several studies have proposed
more efficient methods than CCA to analyze the SSVEP component,
such as TRCA. we introduce an optimal approach based on TRCA that
we can extract more discriminative features by SSVEP analysis and
finally perform the process of direction detection accuracy with higher
accuracy. Finally, for further improvement, we have improved the
TRCA algorithm to perform better. Therefore, the SE-TRCA algorithm
is presented to detect the direction from the SSVEP component with
higher accuracy.

3.1. Direction detection using SSVEP analysis

As illustrated in Fig. 3, in this hybrid BCI, one of the steps in
target character recognition is to correctly recognize the direction by
analyzing the SSVEP components. In this section, the feature extraction
procedures based on CCA, TRCA, and SE-TRCA methods are described.
Then, the classification procedure using extracted features is explained.

3.1.1. CCA-based feature extraction
As aforementioned, the subject focuses in one of three directions:

left, right, and bottom in the experiment for data collection. Suppose
𝑋̄𝑘,1, 𝑋̄𝑘,2,… , 𝑋̄𝑘,𝑁𝑡

,∈ 𝑁𝑐×𝑁𝑠 are training trial of 𝑘− 𝑡ℎ group and 𝑌 is
reference signal constructed according to Eq. (1). Since only a single
requency has been implemented in SSVEP paradigm, one reference
ignal is constructed for all groups with 𝑓𝑘 = 15 Hz and 𝑁ℎ = 2. To
alculate spatial filters using CCA, the training trials of each group are
irst concatenated to create a continuous signal as Eq. (4). Reference
ignals are duplicated 𝑁𝑡 times to have the same data length as a
ontinuous EEG signal.

⃛ [

𝑋̄ , 𝑋̄ ,… , 𝑋̄
]

6

𝑘 = 𝑘,1 𝑘,2 𝑘,𝑁𝑡
, 𝑘 = 1, 2, 3
𝑌 =
[

𝑌 , 𝑌 ,… , 𝑌
]

(11)

Where 𝑋⃛𝑘 ∈ 𝑁𝑐×(𝐿) and 𝑌 ∈ 2𝑁ℎ×(𝐿) and 𝐿 = 𝑁𝑠×𝑁𝑡 and𝑁𝑡 indicates
the number of training trials of each group. It must be mentioned that
𝑁𝑐 = 9 (i.e., including ⌈𝑃7, 𝑃3, 𝑃𝑧, 𝑃4, 𝑃8, 𝑃𝑜3, 𝑃𝑜4, 𝑂1, 𝑂2⌉) since usually
only 9 channels placed in occipital region are used in SSVEPs analysis.
The spatial filters 𝑊𝑘 and 𝑉𝑘 of each class can now be extracted
by applying CCA on the continuous signals and the reference signal
as Eq. (2). Since 𝑁𝑐 = 9 and 2𝑁ℎ = 4, therefore 4 spacial filters
re extracted for each class named 𝑤𝑘,𝑀 , where 𝑘 ∈ {1, 2, 3} and

𝑀 ∈ {1, 2, 3, 4}. These four filters of each class are indeed eigenvectors
obtained from Eq. (2) and are sorted in descending order. In order to
extract classification features, the spatial filters 𝑊𝑘 and 𝑉𝑘 are applied
to the EEG test signal and reference signal, respectively. As a result,
two linear transforms are obtained as 𝑍1 = 𝑊 𝑇

𝑘 ×𝑋 and 𝑍2 = 𝑉 𝑇
𝑘 × 𝑌 .

hen, the ordinary correlation of two linear transforms 𝑍1 and 𝑍2 are
alculated, denoted by 𝐹𝑘. As presented in Algorithm 1 this procedure is
epeated for all groups and feature vectors 𝐹1, 𝐹2 and 𝐹3 are obtained.

hese features are fused as 𝐹 =
⎡

⎢

⎢

⎣

𝐹1,1, 𝐹1,2, 𝐹1,3, 𝐹1,4
𝐹2,1, 𝐹2,2, 𝐹2,3, 𝐹2,4
𝐹3,1, 𝐹3,2, 𝐹3,3, 𝐹3,4

⎤

⎥

⎥

⎦

, and classification

eatures are obtained for EEG test signal, X. The details of CCA-based
eature extraction approach are summarized in Algorithm 1.
Algorithm 1: CCA-Based feature extraction approach

input : Training-trials: 𝑋̄𝑘,1, 𝑋̄𝑘,2, ..., 𝑋̄𝑘,𝑁𝑡

New-Trial: 𝑋 % multi-channel EEG signal
Reference signal: 𝑌
% 𝑁𝑡 ∶ # of training trials
% 𝑘 ∶ index of groups (1: left, 2: right, 3: bottom).

output: 𝐹 =
⎡

⎢

⎢

⎣

𝐹1,1, 𝐹1,2, 𝐹1,3, 𝐹1,4
𝐹2,1, 𝐹2,2, 𝐹2,3, 𝐹2,4
𝐹3,1, 𝐹3,2, 𝐹3,3, 𝐹3,4

⎤

⎥

⎥

⎦

, % New feature vector

Step 1: Concatenating

𝑋⃛𝑘 =
[

𝑋̄𝑘,1, 𝑋̄𝑘,2, ..., 𝑋̄𝑘,𝑁𝑡

]

, 𝑘 = 1, 2, 3

𝑌 =
[

𝑌 , 𝑌 , ..., 𝑌
]

Step 2: Calculating spatial filters using CCA

𝑊𝑘, 𝑉𝑘 = 𝐶𝐶𝐴(𝑋⃛𝑘, 𝑌 )

% 𝑊𝑘 = [𝑤𝑘1|𝑤𝑘2|, ..., |𝑤𝑘𝑀 ]
% 𝑉𝑘 = [𝑣𝑘1|𝑣𝑘2|, ..., |𝑣𝑘𝑀 ]
% 𝑀 ∈ {1, 2, 3, 4}: # of spatial filters
Step 3: Applying extracted filters

𝑍1,𝑘 = 𝑊 𝑇
𝑘 𝑋

𝑍2,𝑘 = 𝑉 𝑇
𝑘 𝑌

Step 4: Calculating correlation

𝐹𝑘 = 𝑐𝑜𝑟𝑟(𝑍1,𝑘, 𝑍2,𝑘)

3.1.2. Proposed TRCA-based feature extraction
A two-stage TRCA-based approach is applied to extract SSVEP-

related features from EEG signals. In the first stage, spatial filters
are calculated by TRCA from training trials. In the second stage,
the feature is extracted using obtained spatial filters. Assume that
𝑋̄𝑘,1, 𝑋̄𝑘,2,… , 𝑋̄𝑘,𝑁𝑡

,∈ 𝑁𝑐×𝑁𝑠 are the training trials of 𝑘 − 𝑡ℎ group,
𝑘 ∈ {1, 2, 3} and 𝑋 is a EEG test trial. First, the average of each
group’s trials is calculated as 𝑋𝑘 = 1

𝑁𝑡

∑𝑁𝑡
𝑖=1 𝑋̄𝑘,𝑖. Indeed, 𝑋𝑘 is used

as a reference signal instead of a constructed sin-cos signal in CCA.
Since there are three groups in the dataset (left, right, and bottom),
three TRCA algorithms are applied to calculate spatial filters. Six spatial
filters are extracted based on training trials of each group named 𝑤𝑘,𝑀 ,
where 𝑘 ∈ {1, 2, 3} and𝑀 ∈ {1, 2,… , 6}. As a result, three sets of spatial
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filters 𝑊1, 𝑊2, 𝑊3 are calculated for the left, right and bottom groups,
respectively. Then spatial filters are utilized in the feature extraction
stage. For this purpose, the extracted filters are applied on both EEG
trials 𝑋 and averaged training trial of each group 𝑋𝑘. Therefore, two
filtered signals 𝑍1 = 𝑊 𝑇

𝑘 ×𝑋 and 𝑍2 = 𝑊 𝑇
𝑘 ×𝑋 are obtained for each

group. Next, the ordinary correlation between 𝑍1 and 𝑍2 is calculated.
This procedure is repeated for training and test trials. Eventually, the
obtained values are fused as a corresponding feature vector of trial
𝑋. The optimal number of filters is obtained 𝑚 = 3, so for each
class 3 features are extracted, and by concatenating features a feature
vector with size of 9 × 1 is constructed. More details are depicted in
he Algorithm 2. Then, a classifier is trained using training data to
lassify a new trial. The extracted features of test trials are fed into
he trained classifier, and its output (direction) is predicted using the
rained classifier. The details of CCA-based feature extraction approach
re summarized in Algorithm 2.
Algorithm 2: TRCA-Based feature extraction approach

input : Training-trials: 𝑋̄𝑘,1, 𝑋̄𝑘,2, ..., 𝑋̄𝑘,𝑁𝑡

New-Trial: 𝑋 % multi-channel EEG signal
Reference signal: 𝑌
% 𝑁𝑡 ∶ # of training trials
% 𝑘 ∶ index of groups (1: left, 2: right, 3: bottom).

output: 𝐹 =
⎡

⎢

⎢

⎣

𝐹1,1, ..., 𝐹1,5, 𝐹1,6
𝐹2,1, ..., 𝐹2,5, 𝐹2,6
𝐹3,1, ..., 𝐹3,3, 𝐹3,4

⎤

⎥

⎥

⎦

, % New feature vector

Step 1: Calculating individual templates

𝑋̃ = 𝑚𝑒𝑎𝑛(𝑋̄𝑘,1, 𝑋̄𝑘,2, ..., 𝑋̄𝑘,𝑁𝑡
)

Step 2: Calculating spatial filters using TRCA

𝑊𝑘 = 𝑇𝑅𝐶𝐴(𝑋̄𝑘,1, 𝑋̄𝑘,2, ..., 𝑋̄𝑘,𝑁𝑡
)

% 𝑊𝑘 = [𝑤𝑘1|𝑤𝑘2|, ..., |𝑤𝑘𝑀 ]
% 𝑀 ∈ {1, 2, 3, 4}: # of spatial filters
Step 3: Applying filters

𝑍1,𝑘 = 𝑊 𝑇
𝑘 𝑋

𝑍2,𝑘 = 𝑊 𝑇
𝑘 𝑋̃𝑘

Step 4: Calculating correlation

𝐹𝑘 = 𝑐𝑜𝑟𝑟(𝑍1,𝑘, 𝑍2,𝑘)

3.1.3. Proposed SE-TRCA
This section describes our proposed feature extraction approach

used for SSVEP component analysis. It must be noted that SSVEP
component has been used to extract features for direction detection.
Since Studies [24,63] have demonstrated that TRCA-based methods
outperform CCA-based methods, a TRCA-based approach has been
utilized for SSVEP component-related feature extraction. In addition,
we have improved the TRCA approach for further improvement. Based
on the studies [20,53], it has been presented that concatenating shifted
signals with original signals can yield spectral filters as well as spatial
filters in filter extraction. Therefore, discriminative features are derived
that play an important role in target detection. Motivated by the
current methods [20,53,64], we extend the TRCA method and propose
a spectrum-enhanced TRCA method (named as Spectrum-Enhanced
TRCA or SE-TRCA) by incorporating frequency information with the
corresponding spatial information in EEG signals. Compared to the
previous TRCA method, the proposed SE-TRCA method yields more
discriminative features, which can further improve the classification
performance. To capture the features containing both spatial and fre-
quency information, we design a sort of spatial–spectral filter. In order
to extract spatio-spectral filters by SE-TRCA, it is necessary to first apply
a temporal shift to the EEG signal, as noted 𝛿𝜏𝑋̄𝑘,𝑖,∈ 𝑁𝑐×𝑁𝑠 where 𝜏
7

is the amount of time delay. The temporal shift is performed through o
a linear shift. Then by channel-wised concatenating the shifted signal

with the original signal a new signal is constructed as 𝑋̂𝑘,𝑖 =
[

𝑋̄𝑘,𝑖
𝛿𝜏𝑋̄𝑘,𝑖

]

.

Where 𝑖 is the trial number and 𝑘 is the trial group number.
A new signal (𝑋̂𝑘,𝑖) is constructed for each training trial (𝑋̄𝑘,𝑖),

which contains the trial itself and its shifted. The generated signals are
then fed into the TRCA algorithm. In the other words, 𝑋̂𝑘,𝑖 must be used
into Eqs. (4):(8) instead of 𝑋̄𝑘,𝑖 and the TRCA algorithm generates the

filter 𝑤̂ =
[

𝑤0
𝑤𝜏

]

. Half of the obtained filter coefficients are related to the

original signal, while the other half are related to the shifted signal.
In order to demonstrate how SE-TRCA method can analyze fre-

quency information, suppose that 𝑋̄𝑘,𝑖 =
⎡

⎢

⎢

⎣

𝑥1
⋮

𝑥𝑁𝑐

⎤

⎥

⎥

⎦

and 𝛿𝜏𝑋̄𝑘,𝑖 =
⎡

⎢

⎢

⎣

𝛿𝜏𝑋̄1
⋮

𝛿𝜏𝑋̄𝑁𝑐

⎤

⎥

⎥

⎦

denote EEG signal and its shifted version respectively. Then, they are
concatenated and a new EEG signal is obtained as follows:

𝑋̂𝑘,𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
⋮

𝑥𝑁𝑐
𝛿𝜏𝑥1
𝛿𝜏𝑥2
⋮

𝛿𝜏𝑥𝑁𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

SE-TRCA method is applied on 𝑋̂𝑘,𝑖 and filter coefficient 𝑤̂ =
[

𝑤0
𝑤𝜏

]

is obtained and the expanded form is as follows:

𝑤̂𝑇 =
[

𝑤0
1, 𝑤0

2, ⋯ , 𝑤0
𝑁𝑐 , 𝑤𝜏

1, 𝑤𝜏
2, ⋯ , 𝑤𝜏

𝑁𝑐
]

Eventually, this filter is applied on EEG trials in the feature extrac-
tion procedure as Eq. (12)

𝑍1 = 𝑤̂𝑇𝑋 −− > 𝑍̂1 = 𝑤𝑇
0 𝑋̄ +𝑤𝑇

𝜏 (𝛿𝜏𝑋̄) = 𝑤𝑇
0 𝑋̄[𝑛] +𝑤𝑇

𝜏 (𝛿𝜏𝑋̄[𝑛− 𝜏]) (12)

As can be seen, it performs as an FIR filter. Indeed, in addition
to spatial filtering, spectral filtering is implemented simultaneously.
Accordingly, in addition to spatial information, frequency information
is also utilized in the construction of features.

3.1.4. Proposed SE-TRCA based feature extraction
As shown in Fig. 5, to extract features using SE-TRCA method, the

first training trials (𝑋̄𝑘,𝑖) must be shifted in the time domain as 𝛿𝜏𝑋̄𝑘,𝑖.
Then each trial and its shifted are concatenated to construct a new trial
as 𝑋̂𝑘,𝑖 =

[

𝑋̄𝑘,𝑖
𝛿𝜏𝑋̄𝑘,𝑖

]

. Now the training trials of each group are formed

like 𝑋̂𝑘,1, . . . 𝑋̂𝑘,𝑁𝑡
, 𝑘 ∈ {1, 2, 3}. The average of each group’s trials is

calculated and used as a reference signal as follows: 𝑋𝑘 = 1
𝑁𝑡

∑𝑁𝑡
𝑖=1 𝑋̂𝑘,𝑖.

hen, a new averaged reference signal is obtained as ̄̄𝑋𝑘,𝑖 =
[

𝑋𝑘,𝑖
𝛿𝜏𝑋𝑘,𝑖

]

. A

procedure similar to TRCA is implemented to extract filters. Eventually,

the filter 𝑤̂𝑘,𝑀 =
[

𝑤0
𝑤𝜏

]

is obtained, where 𝑘 ∈ {1, 2, 3},𝑀 ∈ {1, 2,… , 6},

𝜏 ∈ {1, 2, 3, 4}. Half of the obtained filter coefficients are related to the
original signal, while the other half are related to the shifted signal. The
signal filtering is performed by using the obtained filters as follows:

𝑊̂𝑘 = [𝑤̂𝑘1|𝑤̂𝑘2|,… , |𝑤̂𝑘𝑀 ]

𝑧̂1 = 𝑊̂ 𝑇
𝑘 𝑋̂, 𝑧̂1 = 𝑤𝑇

0 𝑋 +𝑤𝑇
𝜏 (𝛿𝜏𝑋)

̂2 = 𝑊̂ 𝑇
𝑘

̄̄𝑋𝑘, 𝑧̂2 = 𝑤𝑇
0 𝑋𝑘 +𝑤𝑇

𝜏 (𝛿𝜏𝑋𝑘)

.1.5. Classification
After the features are extracted by one of the methods including

CA, TRCA, or SE-TRCA, they are applied to the classifier. Then, the
lassifier predicts the direction of the subject’s attention (left, right,

r bottom). It should be noted that the non-linear support vector
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Fig. 5. Direction detection using SE-TRCA based feature extraction approach.
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machine (SVM) with radial basis function (RBF) kernel was employed
as a classifier. The Libsvm toolbox was utilized for implementing this
classification approach [65].

3.2. Group detection using p300 analysis

In P300 analysis, the target group is detected through a binary
classification problem including P300/Non-P300 detection. In each
repetition, 9 stimuli (each stimulus includes 3 English alphabets) are
presented for subjects, and one out of 9 stimuli is the target (P300)
and the remaining 8 stimuli are non-target (non-P300). Although the
main focus of this study was the development of a novel approach
for direction detection using SSVEP analysis, we include P300 analysis
because the final accuracy should be reported by combining the SSVEP
and P300 accuracy. We followed our previous approach for P300
detection [41]. An FIR bandpass filter is used to filter the EEG signal
of all channels in the frequency range [0.5 − 25] Hz as the first step in
pre-processing. Then, for epoching, the EEG signal from the stimulus
onset to one second afterward is considered as a trial corresponding to
the same stimulus (according to the 512 Hz sampling rate, each epoch
includes 512 temporal samples). Using the Nyquist theorem, each
trial is downsampled to 50 Hz (51 temporal samples). Since temporal
8

amples are used as features, preprocessed signals of all channels are s
concatenated to construct a feature vector for each trial. Each trial
must be vectorized to feed it as input to a classifier. Since the trial
size becomes very large after vectorizing, Lasso method is employed
to reduce its dimension to prevent overfitting while maintaining the
necessary information of trials. For P300 detection, the regularized
linear discriminant analysis (RLDA) was chosen as one of the most
effective classifiers. RLDA is a variant of Fisher linear discriminant
analysis (FLDA) that addresses the issue of overfitting by applying
regularization techniques to the features [57,66]. Thus, RLDA was
tilized for performing the classification in the P300 analysis. It should
e noted that the k-fold cross-validation method with 𝐾 = 4 was used
o evaluate the model.

.3. Evaluation metrics

In order to assess the efficacy of the proposed approach on the
ybrid BCI dataset, Its performance along with TRCA and CCA are
valuated using the k-fold cross-validation technique with 𝑘 = 4.
uring each iteration of the cross-validation, one subset was used for
alidation, while the remaining three subsets were utilized as training
ata. The accuracy was calculated by averaging the accuracies obtained
rom the four subsets. Each subset consisted of 24 characters and was

pecifically reserved for validation purposes. In the pure SSVEP dataset,
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Fig. 6. Direction detection performance of the proposed SE-TRCA, as well as two baseline methods (i.e., CCA and TRCA) on SSVEP analysis of hybrid BCI dataset.
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three frequency detection methods including CCA, TRCA, and the
proposed SE-TRCA were employed and evaluated using the leave-one-
out technique. In addition to the conventional criterion of classification
accuracy, the performance of the proposed system was evaluated using
the information transfer rate (ITR). ITR is a measure for assessing the
performance of BCI systems, as it quantifies the amount of information
that can be transmitted in one minute [46]. It is defined as follows:

𝐼𝑇𝑅 = (log2 𝑁 + 𝑃 . log2 𝑃 + (1 − 𝑃 ). log2[
1 − 𝑃
𝑁 − 1

])( 60
𝑇

) (13)

here N, P, and 𝑇 denote the number of classes, the accuracy of
lassification, and the duration (in seconds) needed for the completion
f the spelling procedure, respectively [67].

. Results

.1. Comparative experiments

The direction detection accuracy of proposed SE-TRCA, as well as
wo baseline methods including TRCA and CCA, onhybrid BCI dataset,
re presented in Fig. 6. All methods were compared with fine-tuned
arameters, therefore the number of EEG channels, the temporal shift
i.e., 𝜏), and the number of spatial filters (i.e., 𝑀) were set to 9, 3,
nd 4, respectively for our SE-TRCA. The parameter 𝑀 is set to 3 for
RCA baseline method. it should be noted that The parameters were
hosen by the grid search. As shown in Fig. 6, our proposed SE-TRCA
ethod outperforms the TRCA and CCA baselines across all repetitions,
here the classification accuracy (direction detection) increases by at
east 7.3%, 3.6%, 3.4%, and 4.8% for each repetition, respectively.
Following [41], we also combined the P300 analysis with SSVEP

nalysis together to detect the target character. In this dataset, P300
etection is a 9−class classification task to detect the target group and
SVEP is a 3−class classification task to detect the target direction.
e integrated the classification results of these two analyses such that
he target character is correctly identified if both components P300
target group) and SSVEP (target direction) are correctly detected.
he target character is missed if either component is misclassified. It
ust mention that implemented P300 analysis method is the same,
ut SSVEP analysis is performed by the proposed SE-TRCA, TRCA, and
CA. The results are obtained over 6 subjects and presented the overall
ccuracy (%) and ITR (bit/min) in Table 2. It shows that the overall
9

lassification results are improved results from a more precise SSVEP
nalysis yielded by our proposed SE-TRCA method.
To conduct a more comprehensive comparison, the performance of

he proposed model was also assessed alongside CCA and TRCA on the
enchmark SSVEP dataset [58]. The aim on this database is to identify
he frequency of a stimulus based on EEG signals. It is important to
ote that all three methods utilized the average EEG signal from the
raining trials as a reference signal. The leave-one-out approach was
mployed to evaluate the model, with five trials allocated for training
nd one trial for testing in each repetition. Tables 3 and 4 present the
verage accuracy and ITR achieved by each model across all subjects,
espectively.

.2. Parameter analysis

We first analyzed the impact of the number of EEG channels for
ifferent models on SSVEP analysis. Fig. 7 presents the classification
ccuracy under two modes of EEG channels (i.e., using 9 channels for
he occipital regions and utilizing all 32 channels). It indicates that the
etting of 9 EEG channels is better than the setting of 32 EEG channels
or all approaches in each repetition.
To determine the optimal number of spatial filters (i.e., 𝑀) and the

ptimal temporal shift (i.e., 𝜏) for our SE-TRCA model, we grid search
and 𝜏 within {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4}, respectively in Fig. 8. It

hows that the proposed SE-TRCA model is consistent under different
alues of parameters 𝑀 and 𝜏. The optimal number of spatial filters
s 𝑀 = 4, and the optimal value of temporal shift is 𝜏 = 3. We also
onducted an experiment to search for the best parameter 𝑀 for the
RCA baseline method. As shown in Fig. 9, the optimal 𝑀 for TRCA
aseline is 𝑀 = 3.

.3. Visualization of SSVEP components

Compared to other regions, EEG electrodes in the occipital region
re expected to record more active signals since this region is active
uring the SSVEP analysis. Fig. 10 visualizes the topography of spatial
ilter coefficients yielded by CCA, TRCA, and our proposed SE-TRCA
pproaches. In general, TRCA-based methods are superior to the CCA
nes in occipital region detection. It is obvious that our proposed SE-
RCA performs better than CCA and TRCA baselines, where the activate
ccipital regions (see red circles in Fig. 10) can be better detected via



Computers in Biology and Medicine 166 (2023) 107488A. Mijani et al.

c

5

a
i
r
b
i

Table 2
Character recognition performance obtained by combining P300 detection and SSVEP component analysis (direction detection) using
proposed SE-TRCA, as well as two baseline methods including CCA and TRCA (in hybrid BCI dataset).
Method P300 + SSVEP (CCA) P300 + SSVEP (TRCA) P300 + SSVEP(SE-TRCA)

Number of
repetitions

Accuracy (%) ITR (bit/min) Accuracy (%) ITR (bit/min) Accuracy (%) ITR (bit/min)

1 53.01 ± 3.48 44.99 ± 5.26 56.02 ± 3.69 49.43 ± 5.37 58.56 ± 3.52 53.06 ± 5.58
2 59.49 ± 3.76 27.27 ± 2.75 73.38 ± 3.01 38.49 ± 2.66 72.22 ± 3.10 37.43 ± 2.73
3 67.13 ± 3.24 22.19 ± 1.76 80.79 ± 2.52 30.50 ± 1.75 82.41 ± 2.00 31.37 ± 1.46
4 72.69 ± 2.67 18.89 ± 1.17 83.33 ± 2.25 24.02 ± 1.21 84.03 ± 2.31 24.32 ± 1.23
Table 3
Averaged Frequency detection accuracy ± Standard Error of methods using different data lengths (from 0.5 s to 3 s with a step size
of 0.5 s) in pure SSVEP dataset.
Method Time window

0.5 s 1 s 1.5 s 2 s 2.5 s 3 s

CCA 23.92 ± 3.26 60.83 ± 4.34 75 ± 3.78 82.86 ± 3.26 87.27 ± 2.72 90.47 ± 2.11
TRCA 46.20 ± 3.85 82.01 ± 3.19 91.32 ± 2.17 94.63 ± 1.44 96.73 ± 0.81 97.91 ± 0.50
SE-TRCA 46.71 ± 3.64 83.64 ± 3.04 91.61 ± 2.28 95.23 ± 1.38 97.17 ± 0.73 98.19 ± 0.44
Table 4
Averaged ITR ± Standard Error of methods using different data lengths (from 0.5 s to 3 s with a step size of 0.5 s) in pure SSVEP dataset.
Method Time window

0.5 s 1 s 1.5 s 2 s 2.5 s 3 s

CCA 77.34 ± 17.62 150.16 ± 15.04 135.33 ± 9.63 117.74 ± 6.54 101.70 ± 4.58 89.35 ± 3.16
TRCA 177.90 ± 24.60 221.47 ± 11.97 177.49 ± 6.12 142.08 ± 3.26 118.59 ± 1.74 101.29 ± 0.97
SE-TRCA 181.01 ± 26.98 228.86 ± 12.39 178.50 ± 6.56 143.79 ± 3.68 119.67 ± 1.82 101.91 ± 0.99
Fig. 7. The impact of the number of EEG channels in SSVEP component analysis on CCA, TRCA, and SE-TRCA approaches (for direction detection in hybrid BCI dataset).
our method compared to the traditional TRCA and CCA methods. The
color scheme used in the topography figure represents activity levels,
where ‘‘−1’’ or blue color indicates the lowest activity, and ‘‘+1’’ or red
olor indicates the highest activity.

. Discussion

The proposed SE-TRCA approach in this paper demonstrates several
dvantages over the baseline methods, CCA, and state-of-the-art TRCA,
n terms of accuracy, spatial filters, and frequency content. In the
apidly advancing field of BCIs, achieving high accuracy in classifying
rain signals is of paramount importance. Our SE-TRCA method excels
n this regard, as evidenced by the results presented in Tables 2, 3, and
4. The method consistently outperforms both TRCA and CCA baselines
across all repetitions in the SSVEP component analysis task, showcasing
its robustness and generalizability.
10
5.1. Accuracy

The results presented in Fig. 2 indicate that the SE-TRCA method
outperforms both the TRCA and CCA baseline across all repetitions in
the SSVEP classification task. The classification accuracy consistently
increases by at least 7.3%, 3.6%, 3.4%, and 4.8% for each repetition,
respectively, compared to the baselines. This improvement in accuracy
demonstrates the effectiveness of the proposed SE-TRCA approach in
capturing more discriminative features from the SSVEP component,
resulting in enhanced classification performance. Furthermore, a sta-
tistical comparison was performed among the methods. According to
Table 5, the paired t-test analysis between the methods (SE-TRCA vs.
TRCA, SE-TRCA vs. CCA, and TRCA vs. CCA) reveals a significant en-
hancement in the direction detection accuracy of our proposed method

compared to both CCA and TRCA methods (𝜌 < 0.05).



Computers in Biology and Medicine 166 (2023) 107488A. Mijani et al.

S
b
I
d
C
t
h
p
a
o
d

5

y

Fig. 8. Effects of temporal shift(𝜏) and number of spatial filters (𝑀) in SE-TRCA method for direction detection in hybrid BCI dataset.
Fig. 9. Effects of number of spatial filters (𝑀) in TRCA method for direction detection (Hybrid dataset).
The performance of the SE-TRCA method was assessed using a pure
SVEP dataset. The results illustrate that the SE-TRCA method surpasses
oth CCA and TRCA, even regarding frequency detection accuracy.
n the mentioned dataset, the SE-TRCA method achieved a frequency
etection accuracy of 98.19% for a 3-second signal, while TRCA and
CA attained accuracies of 97.91% and 90.47%, respectively. Through
he evaluation of the SE-TRCA method on two different datasets, it
as been demonstrated that the proposed approach exhibits strong
erformance in both direction detection and frequency detection when
pplied to SSVEP analysis. This finding highlights the effectiveness
f the SE-TRCA method in accurately detecting both the intended
irection and frequency detection with SSVEP components.

.2. Spatial filters

The SE-TRCA approach incorporates spatial information in the anal-
sis of the SSVEP component. By utilizing spatial filters, the method
11
Table 5
The paired t-test between methods based on the results of Figure for direction
detection (SSVEP component analysis).
Methods SE-TRCA vs. TRCA SE-TRCA vs. CCA TRCA vs. CCA

𝑃 -value 6.2e−3 3.1948e−12 1.2205e−05

can capture and integrate the spatial characteristics of the EEG signals
recorded from the occipital region. As shown in Fig. 6, the topography
of spatial filter coefficients obtained by SE-TRCA reveals its ability to
better detect the active occipital regions compared to the traditional
CCA method and even TRCA. This suggests that the SE-TRCA approach
can effectively focus on the relevant brain regions involved in SSVEP
generation, leading to improved feature extraction and subsequent
classification accuracy.
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Fig. 10. Topography of spatial filter coefficients obtained using CCA, TRCA, and SE-TRCA approaches in direction detection analysis (Hybrid dataset). ‘‘+1’’ or red color indicates
the highest activity, while ‘‘−1’’ or blue color indicates the lowest activity.
5.3. Frequency content

In addition to spatial information, the SE-TRCA approach also lever-
ages spectral (frequency) information. By considering both spatial and
spectral aspects, SE-TRCA can extract more discriminative features
from the SSVEP component. This is particularly important in SSVEP-
based tasks where the frequency content of the EEG signals carries valu-
able information about the attended visual stimulus. By combining the
strengths of both spatial and spectral analyses, SE-TRCA enhances the
extraction of relevant frequency components associated with SSVEP,
leading to improved classification performance. Nevertheless, a con-
straint exists in the implementation of SE-TRCA, where the constructed
FIR filter is limited to only two terms. Specifically, during the opti-
mization process of SE-TRCA, certain coefficients of the FIR filter are
determined while other coefficients are assigned zero values, suggesting
that the filter has not undergone full optimization.

6. Conclusion

In this study, we proposed a novel approach, named SE-TRCA, for
feature extractions in the concept of direction detection and frequency
detection by SSVEP component analysis. The task of direction detection
in novel SSVEP paradigms poses significant challenges, and to our
best knowledge, only CCA has been utilized in this area thus far.
However, due to certain limitations associated with CCA, we introduced
a novel framework based on TRCA for feature extraction in direction
detection. The TRCA-based feature extraction method has significantly
outperformed CCA. Since, both CCA and TRCA solely extract spatial
information, frequency information is ignored. Therefore we extended
TRCA method and proposed SE-TRCA method in which the original
12
EEG signals are concatenated with its shifted version to extract fre-
quency information. The proposed SE-TRCA can capture and integrate
both spectral (frequency) information and spatial information, from
which more discriminative features can be extracted for classification
tasks (e.g., direction detections in SSVEP paradigm). We evaluate our
proposed approach on a hybrid BCI dataset and a benchmark pure
SSVEP dataset. The experimental results manifest the superiority of
our method compared with CCA and TRCA baselines. CCA, TRCA,
and SE-TRCA methods were evaluated on a hybrid BCI dataset to
determine their direction detection accuracy. The results showed that
the SE-TRCA method achieved the highest accuracy of 96.76% for four
repetitions, followed by TRCA with an accuracy of 92.36%, and CCA
with an accuracy of 78.93%. Additionally, when applied to a pure
SSVEP dataset, the frequency detection accuracy of the three methods
was assessed. The SE-TRCA method demonstrated the highest accuracy
of 98.19%, while TRCA achieved an accuracy of 97.91%, and CCA
attained an accuracy of 90.47%. These findings highlight the superior
performance of the proposed SE-TRCA method in various paradigms
and tasks, supporting its wider applicability and generalizability in
SSVEP analysis.

Implementation of the proposed method on MEG dataset can be
investigated in further studies. Subsequent studies can prioritize the
enhancement of the FIR filter design in the SE-TRCA method, as the
current implementation is constrained to only two terms. Specifically,
future research can focus on refining and optimizing the FIR filter by
expanding its number of terms and allowing for non-zero coefficients
to be obtained through the training process.
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