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Datalog is a declarative programming language that has gained popularity in various domains due to its
simplicity, expressiveness, and e�ciency. But “pure” Datalog is limited to monotone queries, and cannot be
used in most practical applications. For that reason, newer systems are relaxing the language by allowing
non-monotone queries to be freely combined with recursion. But by departing from the elegant �xpoint
semantics of pure datalog, these systems often result in ine�cient query execution, for example they perform
redundant computations, or use redundant storage. In this paper, we propose Temporel, a system that allows
recursion to be freely combined with non-monotone operators. Temporel optimizes the program by compiling
it into a novel intermediate representation that we call TempoDL. Our experimental results show that our
system outperforms a state-of-the-art Datalog engine as well as a vectorized and a compiled in-memory
database system for a wide range of applications from machine learning to graph processing.
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1 INTRODUCTION
Datalog is a declarative programming language that has gained popularity in various domains due
to its simplicity, expressiveness, and e�ciency. Apart from the conventional usecases in databases,
for representing and manipulating large amounts of data e�ciently, it has also found applications
in declarative networking, arti�cial intelligence, and machine learning [20, 41, 69]. Additionally,
Datalog has been used in program analysis and veri�cation, enabling developers to analyze and
verify the high-level [5, 28] and low-level [17, 42, 52] properties of their programs [13, 28, 33].

Most existing Datalog systems only support monotone Datalog programs. Monotone datalog has
elegant semantics, in the form of a minimal model, which leads to several desired properties, for
example, every monotone datalog program is guaranteed to terminate in polynomial time. In order
to use non-monotone operators, the programmer needs to write strati�ed datalog programs. For
example, Sou�é does not allow aggregations inside recursion and one needs to express the program
using strati�ed Datalog. This is sometimes not possible, and other times it results in creating
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unnecessary intermediate results through recursion followed by negation/aggregation [21]. While
some recent theoretical [36, 75] and systems [37, 70, 71] advances have gone beyond the traditional
monotone Datalog, they are still limited, and cannot capture important classes of problems in graph
processing and machine learning.

A few commercial systems and research projects have adopted a more liberal view of datalog, and,
more generally, to programs that extend relational queries with iteration, by allowing recursion and
non-monotone operators to be intertwined freely. For example [32, 50] propose extensions of SQL
with unrestricted iteration constructs, [31] describes how to compile PL/SQL UDFs with arbitrary
iterations into SQL99 recursive queries, while [24, 25] describe a data�ow engine where iteration
can be applied freely to relational queries. Startups like Logicblox [4] and RelationalAI [1] allow
the free use of recursion and non-monotone operators, thus departing from the elegant minimal
model semantics of “pure” datalog. In these systems, the iteration is performed as given, using a
loop-based operational semantics [32], i.e., the iteration is performed repeatedly, as stated in the
program, until some termination condition is satis�ed.

Such “free” datalog systems are very powerful, as they often lead to a Turing-complete language,
and thus can be used to express any desired problem in graph computation or machine learning.
This clearly make these systems desirable in practice. However, their what-you-write-is-what-you-
get semantics means that the optimizer is limited to �ring the queries in exactly the order prescribed
by the programmer. Computations performed at iteration C are performed again at iteration C + 1,
because that is what the semantics dictates. For example, a program as simple as computing the
pre�x sum of an array ? [8] := ? [8 � 1] + E [8] written in any of these systems will take time $ (=2)
instead of $ (=), because the entire array ? is computed at each iteration. Another common source
of ine�ciency stems from the fact that users often need only the last value of the iteration, for
example they only need ? [=], which is the sum of the entire array, and do not need the other
intermediate results ? [8]. Systems restricted to monotone datalog can bene�t from semi-naive
evaluation [7] and magic set rewriting [8, 43, 44] in order to remove these redundant computations,
but these techniques are not available when recursion and non-monotone operators are freely
intermixed.

In this paper, we propose Temporel, a system that optimizes general recursive programs, where
non-monotone operators such as aggregates and negation are intertwined with recursion; its
architecture is described in Sec. 3. We allow recursion and non-monotone operators to be freely
intertwined, and call the language FreeDatalog. Temporel converts FreeDatalog into an optimized
intermediate representation that consists of nested loops (Sec. 4), which enables two further
optimizations: subsumption and temporal elimination (Sec. 5). On one hand, Temporel eliminates
the limitations of strati�ed datalog, by supporting FreeDatalog where recursion and non-monotone
operators can be used freely, on the other hand it removes the redundancies inherent in other
systems that allow such freedom.

Our starting observation is that programs written using unrestricted iteration often use temporal
variables in order control the order in which to apply the relational operators. For example, Fig. 1a
shows how a user would typically write a batch-gradient-descent program for linear regression in
FreeDatalog; she would write a similar program in any of the other extensions mentioned above.
She uses the variable C as a time stamp that allows her to control the order of the recursion and
aggregation. We found the use of these temporal variables to be wide-spread in several benchmarks
that we discuss in Sec. 6. Some systems, such as Bloom [33] or Dedalus [29], even mandate the use
of temporal variables. In FreeDatalog we do not mandate them, but rely on the user to provide them
were necessary. For example a monotone program may have no temporal variables, while complex
programs may use 1, or 2 or more temporal variables per predicate, in order to simulate nested loops.
Temporel starts by performing a static analysis on the program in order to identify the temporal
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model(t, c, p) :-
(t = 0), model0(c, p).

predict(t, id, sum(y)) :-
model(t, c, p), xtrain(id, c, v),
y = v * p.

gradient(t,c,sum(g)) :-
ytrain(id,y), predict(t,id,y�),
xtrain(id,c,v), g=2*(y�-y)*v.

model(t+1, c, p�) :-
model(t, c, p), gradient(t, c, g),
(t<MAX_ITER), p�=p-(U*g/N).

query(c, p) :- model(last, c, p).

(a) The input FreeDatalog program.

Iter #0 Iter #1 ... Iter #10

t c p
0 0 22
0 1 43

t c p
0 0 22
0 1 43
1 0 38
1 1 49

...

t c p
0 0 22
0 1 43
... ... ...
10 0 88
10 1 99

Iter #0 Iter #1 ... Iter #10

t c p
0 0 22
0 1 43

t c p
0 0 22
0 1 43
1 0 38
1 1 49

...

t c p
0 0 22
0 1 43
... ... ...
10 0 88
10 1 99

(b) Intermediate values of model in naïve vs. temporal
stratified evaluations. The updated elements have a gray
background.

model gradient

predict

{ t -> t+1 }

{ t -> t }

{ t -> t }

{ t -> t+1 }

(c) Constructed Annotated Program-
Dependence Graph (APDG).

model{t+1}

predict{t}model{t}

gradient{t}

(d) The transformed APDG a�er tem-
poralization.

model{0}(t, c, p) := (t = 0), model0(c, p).
for t from 0
predict{t}(t, id, sum(y)) +=
model{t}(t, c, p), vtrain(id,c,v,_),
y = v * p.

gradient{t}(t, c, sum(g)) +=
predict{t}(t,id,y�), ytrain(id, y),
xtrain(id,c,v), g=2*(y�-y)*v.

model{t+1}(t+1, c, p�) +=
model{t}(t, c, p), gradient{t}(t, c, g),
(t<MAX_ITER), p�=p-(U*g/N).

end
query(c, p) := model{last}(last, c, p).
return query(c, p).

(e) Nested temporal stratified representation in TempoDL.

Fig. 1. The Batch-Gradient Decent (BGD) for a linear regression model.

variables, and checks that the program is T-strati�ed, meaning that it is strati�ed by the temporal
variables; the system returns an error if the program is not T-strati�ed. Next, the predicates of the
program are assigned explicit time stamps, through a process that we call temporalization, which
essentially creates multiple versions of each predicate. Finally, the program is compiled into a
novel intermediate language, TempoDL, which is based on nested loops. Temporel postprocesses
TempoDL in order to perform two additional optimizations. Subsumption removes the temporal
variable when that is implied by the version number, and temporal elimination removes the version
when the system determines that it su�ces to store only the last version.

Example 1.1. We will use as running example a program computing Batch-Gradient Decent
(BGD), shown in Figure 1. This formulation is inspired by the previous work [69]. The input
relations (called EDBs in datalog) are the following: xtrain corresponds to the features, ytrain are
the labels, and model0 to initial model parameters. The computed relations (called IDBs in datalog)
are model that keeps the learned parameters, gradient holds the parameters’ gradient, and predict
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keeps the predicted targets. Intuitively, the FreeDatalog program performs the standard loop in
BGD, for C = 0, 1, . . . , MAX_ITER, and ensures that the model at iteration C + 1 is computed from
model and gradient at iteration C (rule 4). A naïve evaluation of this program would recompute
the values at time C at all future steps C + 1, C + 2, . . ., as shown on the left of Fig. 1b. Temporel does
not evaluate the program naïvely, but instead starts by performing a static analysis of the program
where it identi�es the temporal variable, and constructs an annotated program dependency graph
(APDG), Fig. 1c, which represents explicitly how the temporal variable is updated. Next, it performs
a temporalization of the program, leading to Fig. 1d, and checks that the program is T-strati�ed
by verifying that the temporalized APDG is acyclic. Finally, Temporel converts the program into
TempoDL, which is an intermediate language with explicit loops, Fig. 1e. The explicit loops in
TempoDL have a �xed-point semantics and keep track of time stamps; they remove the redundant
computations, because at each iteration C only the data values with that time stamp are processed:
its execution is illustrated on the right of Fig. 1b. Finally, the value computed at the last timestamp
of the loop is accessed using the last keyword. Further optimizations are described in Section 5.

Several recent projects discuss optimization and evaluation techniques for iterative relational
programs: [50] and [32] propose extensions of SQL to overcome the current limitations of WITH
RECURSIVE, [30, 31] describe how to compile python programs and PL/SQL programs respectively
into WITH RECURSIVE queries, while [36, 71] extend the semantics of datalog to semirings. Our
work is orthogonal to these systems: we propose the exploitation of temporal variables and introduce
a new intermediate language TempoDL to optimize queries where iteration and non-monotone
operators are used freely. In summary, our paper makes the following contributions:

• We present Temporel, a system for optimizing general recursive programs (Section 3). Users
write the input programs in FreeDatalog, a language for expressing recursion and non-
monotone operators. Temporel uses a novel intermediate language, TempoDL, that supports
iterations as �rst-class citizens to capture di�erent existing recursion evaluation strategies
such as naïve evaluation, (generalized) semi-naïve evaluation, and XY-strati�cation, as well
as a novel evaluation proposed in this work.

• We present the compilation of FreeDatalog to TempoDL (Section 4). Temporel accepts a
T-strati�ed Datalog programs, a class of Datalog programs that capture a wide range of
iterative algorithms.

• We present the optimizations required to further improve the performance of the translated
TempoDL programs, including subsumption, temporal elimination, and code generation
(Section 5).

• We experimentally show that Temporel can express programs that are either not representable
in existingDatalog and relational database systems or are asymptotically slower in comparison
with Temporel (Section 6).

2 BACKGROUND
Datalog.We brie�y review Datalog here and refer to [3] for details. A Datalog program consists
of a set of rules, where each rule itself consists of a head and a body. The body consists of the
conjunction of a set of atoms separated comma (or, equivalently, by ^), while the head consists
of a single atom. Each predicate that occurs in the head of a rule is called an IDB (Intensional
Database) predicate, all others are called EDB (Extensional Database) predicates. When multiple
rules have the same predicate in the head then they are combined with _, and we often write
this explicitly, for example by replacing the two rules on the left with the rule on the right:
h(x,y) :- b1(x,y).
h(x,y) :- b2(x,y).

{ h(x,y) :- b1(x,y) _ b2(x,y).
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The semantics of a datalog program is de�ned as its minimal model. The naïve evaluation
algorithm computes the minimal model by computing the �x-point of the Immediate Consequence
Operator (ICO): it evaluates all the rules on the current state of the IDBs in order to obtain the next
state of the IDBs, and stops when there is no more change. The semi-naïve evaluation algorithm
improves over the naive algorithm, by avoiding recomputations across iterations. We illustrate
these concepts on a classic example.

Example 2.1 (Reachability). Assuming edge(x, y) speci�es an edge in between nodes x and y in
a graph, the reachability is expressed as the following Datalog program:

reach(x, y) :- edge(x, y).
reach(x, y) :- reach(x, z) ^ edge(z, y).

The �rst rule speci�es the reachability of two connected nodes and the second rule speci�es its
transitive closure. The naïve recursive evaluation of the reachability query, starts by reach0(x, y)
= ;, and at the iteration C , updates reachC+1 based on edge and reachC , until we reach a �x-point:

reach0(x, y) = ;; t = 0;
fixpoint loop
reachC+1(x, y) = edge(x,y)_

�
9I reachC(x, z) ^ edge(z,y)

�
The semi-naïve algorithm keeps track of the di�erence Xreach between two consecutive states:
Xreach0(x, y) = edge(x,y); reach(x, y) = ;; t = 0;
fixpoint loop
XreachC+1(x, y) =�

9I XreachC(x, z) ^ edge(z,y)
�
\ reachC(x, y)

reachC+1(x, y) = reachC(x, y) _ XreachC+1(x, y)

Negation & Aggregation. Pure Datalog includes neither negation nor aggregations. Datalog is
often extended with negation and aggregates, by allowing atoms in the body to be negated and
allowing aggregate operators to occur in the head. However, such an extension no longer has
a unique minimal model, which creates a problem. One popular solution is to restrict datalog
programs to be strati�ed, de�ned as follows.

De�nition 2.2. The Predicate Dependence Graph (PDG) of a datalog program is the graph whose
vertices are the IDBs, and whose edges are pairs of IDBs ('1,'⌘) s.t. there exists a rule where '1
occrs in the body and '⌘ occurs in the head. We say that the edge is negative if '⌘ contains an
aggregate operator, or '1 occurs negated in the body; otherwise we say that the edge is positive.
The datalog program is strati�ed if no cycle contains a negative edge.

Several Datalog systems including Sou�é [34] require the program to be strati�ed. We illustrate
with a simple strati�ed program.

Example 2.3 (Complement of Reachability). The program below computes the complement of the
transitive closure of an undirected graph speci�ed by the nodes node(x) and edges edge(x, y):
reach(x, y) :- edge(x, y).
reach(x, y) :- reach(x, z) ^ edge(z, y).
comp_reach(x, y) :- node(x),node(y), not(reach(x, y)).

This is a strati�ed Datalog program with two strata: (1) the �rst two rules compute reach, and (2)
the last rule computes comp_reach. The �rst stratum is computed using the semi-naïve algorithm,
and the second stratum is an anti-join.

Local Strati�cation. Unfortunately, many applications cannot be written using strati�ed datalog.
For example, the BGD program in Fig. 1a is not strati�ed, because the IDBs model, predict, gradient
are mutually recursive and also involve the aggregate operator sum. A more general condition is
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Temporel

Scheduling

TempoDL 
Program

Temporalization

Temporal  
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SCC Detection

SCCSCCSCC

Code 
Generation

Julia 
Program

FreeDatalog 
Program

T-Stratified?

Error!

No

Yes

Optimization

Fig. 2. The high-level workflow of Temporel.

that of a locally strati�ed program, where strati�cation is checked only at runtime, however, it has
been shown that local strati�cation is undecidable in general [14, 49]. Thus, there has been e�orts
in identifying subsets of locally strati�ed programs that are decidable [48, 54].
One such restriction is XY-strati�cation [74]. All the rules of an XY-strati�ed program have

a distinguished parameter called a temporal parameter t, which must be used under certain
restrictions. However, XY-strati�ed programs are restrictive. For example, it is not possible to
express nested recursive computations as XY-strati�ed programs.

Both semi-naïve evaluation and XY-strati�cation leverage temporal variables; the former uses it
as a temporal index, while the latter identi�es it in the program. Next, we show how our proposed
framework subsumes both.

3 TEMPOREL
In this section, we describe the architecture of our system Temporel, which supports an extension
of Datalog called FreeDatalog, where recursion and aggregation can be intertwined. In order to
optimize such programs we propose a new intermediate language called TempoDL. Our system
compiles FreeDatalog into TempoDL, optimizes the latter, then executes it in Julia.

3.1 Architecture
We show the architecture of Temporel in Figure 2. The light yellow boxes correspond to the input
FreeDatalog program, intermediate programs in TempoDL, and the generated code in Julia. The
yellow-gold boxes correspond to the data structures required for the compilation process. Finally,
the blue boxes correspond to the components of the compiler.

First, the cluster of all mutually recursive IDBs of the input Datalog program is speci�ed by the
Strongly Connected Component (SCC) Detector. Then, for each SCC, we test to see if it is T-strati�ed.
If this is not the case, Temporel rejects the program. Otherwise, it compiles the FreeDatalog program
to an intermediate TempoDL program through the temporalization and scheduling procedures.
After applying optimizations on this program (cf. Section 5), Temporel �nally generates a low-level
specialized engine. We currently use Julia for our engine, however, one could use C/C++ similar to
Sou�é or LLVM similar to several query compilers.
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FreeDatalog
Prog. ? ::= A | A ? List of rules.
Rule A ::= � :- ⌫. Head and body.
Head � ::= � | '(G ,agg(~)) Access with(/out) aggs.
Body ⌫ ::= 4 | 4, ⌫ Conjunction of expressions.
Expr. 4 ::= 0 \ 0 | � Comparison (\ ), access,

| not � negation.
Access � ::= '(G ) Rel. access without aggs.
Atom ' ::= - Relation name.
Arith. 0 ::= G | 2 | 0 ⇧ 0 Variable, const., bin. ops. (⇧).

TempoDL
Prog. ? ::= B return �. Top-level program.
Stat. B ::= A | decl ' | B B Rule, decl., list of stmts.,

| for G from 2 B end & for loop.
Rule A ::= � := ⌫. | � += ⌫. Assignment and update.
Atom ' ::= - | -{C} Rel. name with(/out) strata.
Temp. C ::= G | 2 | G+2 | last Variable, const., o�set, last.
Arith. 0 ::= ... | last Arith. exprs. and last.

Fig. 3. The grammar of FreeDatalog and TempoDL.

3.2 FreeDatalog
FreeDatalog is standard Datalog extended with negation and aggregates. We show the grammar in
Fig. 3. An example of FreeDatalog is the BGD program in Fig. 1a.

3.3 TempoDL
In this paper, we introduce a novel intermediate language called TempoDL, where the recursive
evaluation strategy in FreeDatalog is made explicit by two main additions. First, TempoDL consists
of for-loop iterations that implement directly a �xpoint computation. Second, time-indices are
�rst-class citizens of TempoDL. Every iteration exposes a time index, and each nested iteration has
a sequence of time indices that corresponds to a nested stratum. To avoid repeated computations,
TempoDL uses versioned IDBs, by annotating them with a time index: a versioned IDB idb is
represented as idb{t}. Versioning allows TempoDL to avoid redundant computations, by restricting
each computation to only the necessary version (stratum).

Example 3.1 (Reachability in TempoDL). Figure 4 shows the representation of the previously
mentioned evaluation strategies of Reachability in TempoDL (Example 2.1). Figure 4a corresponds
to the naïve evaluation. Figure 4b shows the semi-naïvely evaluated using a for-loop updating the
IDB reach and its changes Xreach.

4 COMPILING FREEDATALOG TO TEMPODL
We describe in this section the main part of Temporel: compiling a FreeDatalog program into the
intermediate language TempoDL. This consists of four phases. First, Temporel breaks the input
FreeDatalog program into a set of SCCs, each one specifying a set of mutually recursive IDBs.
Then for each SCC, it identi�es the temporal variables and checks if the program is T-strati�ed;
if not, then it returns an error message. Afterwards, it rewrites the FreeDatalog program into a
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reach{0}(x, y) := ;.
for t from 0
reach{t+1}(x, y) := edge(x, y).
reach{t+1}(x, y) += reach{t}(x, z}, edge(z, y).

end
return reach{last}(x, y).

(a) Naïve evaluation.
Xreach{0}(x, y) := edge(x, y). reach{0}(x, y) := ;.
for t from 0
Xreach{t+1}(x, y) += reach{t}(x, z), edge(z, y),

not(reach{t}(x, y)).
reach{t+1}(x, y) := reach{t}(x, y).
reach{t+1}(x, y) += Xreach{t}(x, y}.

end
return reach{last}(x, y).

(b) Semi-Naïve evaluation.

Fig. 4. Evaluation strategies of Reachability expressed in TempoDL.

1: function C������(�A44⇡0C0;>6%A>6)
2: (⇠⇠B  SCCD��������(�A44⇡0C0;>6%A>6)
3: )4<?>⇡!%A>6 ""
4: for (⇠⇠  (⇠⇠B do
5: )4<?�CCAB  C��������T�������A����((⇠⇠)
6: )4<?+0AB , (⇠⇠  N��������SCC((⇠⇠ , )4<?�CCAB)
7: %⇡⌧  E������PDG((⇠⇠)
8: �%⇡⌧  A�������PDG((⇠⇠ , %⇡⌧ , )4<?+0AB)
9: )4<?>A0;)A44  T�������P���(�%⇡⌧)
10: for +0A  P�������()4<?>A0;)A44) do
11: �%⇡⌧  T����������(�%⇡⌧ , +0A )
12: end for
13: ⇢G?  S�������((⇠⇠ , �%⇡⌧ , )4<?>A0;)A44)
14: )4<?>⇡!%A>6 "$)4<?>⇡!%A>6; $⇢G?"
15: end for
16: end function

Algorithm 1. The compilation of FreeDatalog to TempoDL.

temporalized program, where the temporal strata are annotated with symbolic variables. Finally, it
compiles the temporalized program into TempoDL.

4.1 SCC Detection
As the �rst step, the rules are broken into a sequence of Strongly Connected Components (SCC) of
the PDG (Def. 2.2). Each SCC involves a set of rules that de�ne mutually recursive IDBs. The SCC
Detection component is responsible for creating a topological order for the SCCs. The next stages
of compilation are applied over each SCC one-by-one.
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4.2 The T-Stratification Test
When users combine recursion with non-monotone operators like summation or negation, they
usually control the order of operations by using temporal variables. The BDGprogram in Example 1.1
is a typical illustration: the variable C in Fig. 1a is a temporal variable, which ensures that the values
computed by sum are used only at the next time stamp. Temporel detects automatically the temporal
variables, then checks that the program is T-strati�ed (de�ned below); if the programs is not
T-strati�ed, then Temporel returns an error message.

If ' is IDB relation, then we denote by '.1,'.2, . . . its attributes. To detect temporal variables,
Temporel starts by constructing the Attributes Graph, AG, whose nodes are the attributes of the
IDB relations, and whose edges are pairs ('1 .8,'⌘ . 9) for any rule where '1 occurs in the body and
has some variable x on position 8 , and '⌘ occurs in the head with an expression x+c on attribute 9 ,
where 2 is a constant, possibly 0. A T-equivalence class is a Strongly Connected Component in the
AG.

Example 4.1. Continuing Example 1.1, we have the following T-equivalence classes:

• [gradient.1, predict.1, model.1]: The variable t in the �rst rule connects gradient.1with
predict.1 and in the second rule connects predict.1with model.1. Furthermore, this variable
connects model.1 and gradient.1 in the third rule as it is a constant o�set (t+1).

• [gradient.2, model.2]: The variable c in the third rule connects gradient.2 with model.2.

Note that there is no T-equivalence class related to the variable p. This is because in the third rule,
model.3 is connected with itself through a complicated arithmetic expression.

De�nition 4.2 (Candidate Temporal Attributes). The attributes of each IDB that are in the same
T-equivalence class are called candidate temporal attributes if at least in one of the rules there is a
constant o�set (e.g., t+c, for c > 0).

Identifying Temporal Variables. Temporel uses a union-�nd data structure to construct the
disjoint sets of T-equivalence classes. Afterwards, Temporel associates a distinct temporal variable
to each T-equivalence class; this is achieved by renaming the occurrences of candidate temporal
attributes in an SCC into a single name (by calling N��������SCC in Algorithm 1 and returning
)4<?+0AB).

In our running example, the variable t is the candidate temporal variable in the �rst three rules.
However, c is not a candidate temporal variable as there is no constant o�set in any of the rules.

De�nition 4.3 (Annotated Predicate Dependence Graph (APDG)). An APDG is a graph is a PDG
(Def. 2.2)⌧ =< + , ⇢ >, where each edge is annotated with a mapping {C ! C +X}, where C speci�es
a candidate temporal variable, and X speci�es its increment in the corresponding rule.

In our running example, the corresponding APDG is shown in Figure 1c. For example, the label {t
-> t+1} on the edge between gradient and model corresponds to the fourth rule; gradient(t,...)
appears in the body whereas model(t+1, ...) is the head.

De�nition 4.4 (T-Strati�ed Program). A Datalog program is T-strati�ed if for any cycle in the
APDG graph there exists an edge labeled C ! C + X , with X > 0.

In the APGD of the BGD program (e.g., Figure 1c), there are two cycles, and for both cycles, we
have the temporal variable t and (1) all the edges include t, and (2) there is an edge with { t ->
t+1 }. Thus, this program is T-Strati�ed.
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1: function T����������(�%⇡⌧ , C )
2: �%⇡⌧ 0  E����G����
3: ⇢364B  E������E����(�%⇡⌧)
4: for ⇢ ⇢364B do
5: if C -> C + X 2 ⇢ .;014; then
6: ⇢0 .;014;  ⇢ .;014; � {C -> C + X}
7: if X = 0 2 ⇢ .;014; then
8: ⇢0 .BA2  ⇢ .BA2{t}
9: ⇢0 .3BC  ⇢ .3BC{t}
10: else
11: ⇢0 .BA2  ⇢ .BA2{t}
12: ⇢0 .3BC  ⇢ .3BC{t+1}
13: end if
14: �%⇡⌧ 0  A��E���(�%⇡⌧ 0, ⇢0)
15: else
16: �%⇡⌧ 0  A��E���(�%⇡⌧ 0, ⇢)
17: end if
18: end for
19: end function

Algorithm 2. Temporalization Algorithm.

4.3 Temporalization
In the next stage, we need to associate a stratum for each recursive IDB. This is achieved in a
process called temporalization. In this process, the nodes in the APDG are transformed into ones
with strata, and the temporal increment labels on the edges are removed.

Algorithm 2 shows the process for transforming an input APDG for a given temporal variable. In
line 3, we extract the list of edges. In the case that the label does not contain the temporal variable
(lines 15-16) the edge is unchanged. Otherwise, we remove the associated temporal increment
from the label (line 6). If the delta value is zero (lines 7-9) we use {t} as the stratum for both IDBs.
Otherwise, if the delta value is 1 (line 10-12) we use {t+1} for the IDB appearing in the head and
{t} for the IDB in the body.

Example 4.5 (BGD, Cont.). Figure 1d shows the temporalized APDG of our running example
(Example 1.1). The edge from gradient to model is transformed into an edge from gradient{t} to
model{t+1}, and the self-loop on model is transformed into an edge from model{t} to model{t+1}.
The other two edges from model to predict and from predict to gradient are transformed into two
edges from model{t} to predict{t} and from predict{t} to gradient{t}, respectively.

In the case of nested recursions, Algorithm 2 is invoked multiple times by a pre-order traversal
over the temporal variables. At each invocation, the APDG is partially temporalized for the edges
with the relevant temporal increments.

Example 4.6 (BGD with Backtracking Search (BGD-BTS)). The BGD algorithm shown earlier
assumes a �xed learning rate. One can improve this algorithm by deciding on how much to move
towards the direction of gradient (Figure 5a). This requires a nested loop responsible for doing a
search for a learning rate that results in better cost than the current prediction. Thus, one needs to
compute the cost both in the outer loop (cost) and the inner loop (cost_inner), and the program
uses two temporal variables for this purpose, t and k.

Figure 6 shows the temporalized APDG of the aforementioned program. At �rst, the T����������
function is invoked for the temporal variable t. At this stage, all the nodes are rewritten to include
a stratum of t (either {t} or {t+1}) and the temporal increments of t are removed from their
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model(t, c, p) :- (t = 0), model0(c, p).
predict(t, id, sum(y)) :- model(t, c, p), xtrain(id, c, v), y = v * p.
gradient(t,c,sum(g)) :- ytrain(id,y), predict(t,id,y�), xtrain(id,c,v), g=2*(y�-y)*v.
cost(t, sum(f)) :- ytrain(id,y), predict(t,id,y�), f=(y�-y)^2.
alpha(t, k, lr) :- cost(t, x), k = 0, lr = U.
alpha(t, k+1, lr) :- cost(t,f1), cost_inner(t,k,f2), f1>=f2, k<MAX_INNER,
alpha(t, k, lr2), lr=lr2*0.9.

model_inner(t,k,c,p�) :- model(t,c,p), alpha(t,k,a), gradient(t, c, g),
(t<MAX_ITER), p�=p-(U*g/N).

predict_inner(t,k,id,sum(y)) :- model_inner(t,k,c,p), xtrain(id, c, v), (y = v * p).
cost_inner(t, k, sum(f)) :- ytrain(id, y), predict_inner(t, k, id, yp), f = (yp-y)^2.
alpha_final(t, lr) :- alpha(t, last, lr).
model(t+1, c, p�) :- model(t,c,p), alpha_final(t,lr), gradient(t, c, g),
(t<MAX_ITER), p�=p-(lr*g/N).

query(c, p) :- model(last, c, p).

(a) The input FreeDatalog program.
model{0}(t, c, p) := (t = 0), model0(c, p).
for t from 0
predict{t}(t, id, sum(y)) += vtrain(id, c, v, _), model{t}(t, c, p), y = v * p.
gradient{t}(t, c, sum(g)) += ytrain(id, y), predict{t}(t, id, y�),
xtrain(id, c, v), g = 2*(y�-y)*v.

cost{t}(t, sum(f)) += ytrain(id,y), predict{t}(t,id,y�), f=(y�-y)^2.
alpha{t, 0}(t, k, lr) += cost{t}(t, x), k = 0, lr = U.
for k from 0
model_inner{t,k}(t,k,c,p�) += model{t}(t,c,p), alpha{t,k}(t,k,a),
gradient{t}(t, c, g), (t<MAX_ITER), p�=p-(U*g/N).

predict_inner{t,k}(t,k,id,sum(y)) += model_inner{t,k}(t,k,c,p),
xtrain(id, c, v), (y = v * p).

cost_inner{t,k}(t, k, sum(f)) += ytrain(id, y),
predict_inner{t,k}(t, k, id, yp), f = (yp-y)^2.

alpha{t,k+1}(t,k+1,lr) += cost{t}(t,f1), cost_inner{t,k}(t,k,f2), f1>=f2,
k<MAX_INNER, alpha{t,k}(t,k,lr2), lr=lr2*0.9.

end
alpha_final{t}(t, lr) += alpha{t,last}(t, last, lr).
model{t+1}(t+1, c, p�) += model{t}(t,c,p), alpha_final{t}(t,lr),
gradient{t}(t, c, g), (t<MAX_ITER), p�=p-(lr*g/N).

end
query(c, p) := model{last}(last, c, p).
return query(c, p).

(b) Nested temporal stratified representation in TempoDL.

Fig. 5. The compilation procedure of Batch-Gradient Decent (BGD) with backtracking search.

connecting edges. Next, the same function is invoked for the temporal variable k. At this stage,
only the dark gray nodes and their connecting edges are transformed.

T������ 4.7. If the Datalog program is T-strati�ed, then its temporalized APDG is acyclic.
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model{t+1}

predict{t}

alpha{t,k}

cost_inner{t,k}

model_inner{t,k}

predict_inner{t,k}

cost{t}

alpha_final{t}

gradient{t}

model{t}

alpha{t,k+1}

Fig. 6. Temporalized APDG of BGD with backtracking search.

P����. We prove the previous theorem by contradiction. Let us assume that temporalized APDG
has a cycle. As Algorithm 2 does not increase the number of cycles, the cycle existing on the output
of this algorithm can be traced back to a cycle from the input APDG. By the de�nition of a T-
strati�able program, this cycle contains at least one edge with label {C->C +X} with X > 0. However,
this cycle is already broken by Algorithm 2 applied to the associated temporal variable. ⇤

The previous theorem results in an e�cient way of scheduling the tempralized APDG which is
presented next.

4.4 Scheduling
As the �nal stage, the scheduling process transforms the temporalized APDG into a TempoDL
expression that exploits the nested strata information. Rather than following the naïve evaluation
that involves many recomputations, the temporal strati�ed evaluation carefully keeps track of the
previous versions and reuses the values stored in them.

Algorithm 3 shows the process of generating TempoDL programs for a given SCC of rules. The
function S�������S����� returns the following three. First, it returns the statements that are
invariant to the loop and thus can be scheduled before executing the loop. Second, the statements
that are dependent on the loop and thus required to be put inside it. The S�������S����� function
uses the dependency information in the APDG in order to schedule the inner rules. Finally, it
returns the start value for the temporal variable. In the case of a single temporal variable, the
generated TempoDL program simply glues together these values (lines 18-21).

Example 4.8 (BGD, Cont.). The TempoDL representation of the BGDprogram is shown in Figure 1e.
The program consists of two SCCs, and here we focus on the scheduling for the �rst SCC that is
T-strati�able. The �rst rule is invariant to the loop and is thus generated outside the loop. The
rest of the three rules are scheduled inside the loop. The three rules are scheduled based on the
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1: function S�������((⇠⇠ , �%⇡⌧ , )4<?>A0;)A44)
2: +0A  )4<?>A0;)A44 .E0A
3: $DC4A , �==4A , (C0AC  S�������S�����((⇠⇠ , �%⇡⌧ , +0A )
4: if I�L���()4<?>A0;)A44) then
5: !>>?⌫>3~ �==4A
6: else
7: !>>?⌫>3~ ""
8: for (D1)A44  )4<?>A0;)A44 do
9: (⇠⇠0,�%⇡⌧ 0  F�����((⇠⇠,�%⇡⌧, (D1)A44)
10: �==4A!>>?  S�������((⇠⇠0,�%⇡⌧ 0, (D1)A44)
11: %A4!>>?  D��������S���������(�==4A , �==4A!>>?)
12: !>>?⌫>3~ "$!>>?⌫>3~
13: $%A4!>>?
14: $�==4A!>>?"
15: �==4A  R�����S���������(�==4A , %A4!>>?)
16: �==4A  R�����S���������(�==4A , �==4A!>>?)
17: end for
18: !>>?⌫>3~ "$!>>?⌫>3~
19: $�==4A "
20: end if
21: ⇢G?  "$$DC4A
22: for $+0A from $(C0AC"
23: $!>>?⌫>3~
24: end"
25: end function

Algorithm 3. The scheduling algorithm.

dependencies of their heads: predict{t} -> gradient{t} -> model{t+1}. Note that all statements
inside the loop are updating the head rather than replacing it.

Let us consider the case of a hierarchy of temporal variables, that corresponds to nested loops.
We need to invoke the scheduling algorithm for each of the subtrees recursively. For each one, we
need only to consider the relevant set of rules ((⇠⇠0) and APDG (�%⇡⌧ 0). After computing the
expression for the inner loop, we need to compute the list statements of the outer loop that current
inner loop is dependent on (%A4!>>?). Afterwards, we append the dependent statements as well as
the inner loop statement to the current list of statements (!>>?⌫>3~) and update the remaining list
of statements. Finally, once we are done with all the children temporal variables, we append the
remaining statements to the inner loops statements.

Example 4.9 (BGD-BTS, Cont.). Figure 5b shows the scheduled TempoDL expression for BGD-
BTS. The temporal variables form a tree structure with t as the root and k as the leaf. First,
S�������S����� is called for the temporal variable t returning the rule with model{0} as the outer
statement, and the rest of the rules as the inner statements. Then, it goes to the else branch iterating
the subtree, i.e., the temporal variable k. It only considers the dark-gray sub-APDG in Figure 6 and
its associated SCC (�%⇡⌧ 0 and (⇠⇠0) when recursively invoking the scheduling algorithm for k.
This results in the inner loop and its preceding statement with the head alpha{t,0} (�==4A!>>?).
Afterwards, among the transformed statements of the outer loop, the ones on which the inner
loop is dependent are assigned to %A4!>>? , which includes the rules with predict{t}, gradient{t},
and cost{t} as the head. These statements are put before the inner loop statements based on their
dependencies extracted from the temporalized APDG, and are appended to !>>?⌫>3~, which was

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 16. Publication date: February 2024.



16:14 Amir Shaikhha, Dan Suciu, Maximilian Schleich, and Hung Ngo

model{0}(c, p) := model0(c, p).
for t from 0
predict{t}(id, sum(y)) := vtrain(id, c, v, _),
model{t}(c, p), y = v * p.

gradient{t}(c, sum(g)) := ytrain(id, y),
predict{t}(id, y�), xtrain(id, c, v), g = 2*(y�-y)*v.

model{t+1}(c, p�) := model{t}(c, p),
gradient{t}(c, g), t<MAX_ITER, p� = p-(U*g/N).

end
query(c, p) := model{last}(c, p).
return query(c, p).

(a) The TempoDL program a�er subsumption.
model�(c, p) := model0(c, p).
for t from 0
model(c, p) := model�(c, p).
predict(id, sum(y)) := vtrain(id,c,v,_), model(c,p), y=v*p.
gradient(c, sum(g)) := ytrain(id, y),
predict(id, y�), xtrain(id, c, v), g = 2*(y�-y)*v.

model�(c, p�) := model(c, p),
gradient(c, g), t<MAX_ITER, p� = p-(U*g/N).

end
query(c, p) := model�(c, p).
return query(c, p).

(b) The TempoDL program a�er temporal elimination.

Fig. 7. The optimization of the BGD example.

empty initially and are removed from the list of the statements of the body of the outer loop.
Finally, the remaining statements of the body of the outer loop (with the heads alpha_final{t} and
model{t+1}) are appended after the inner loop.

5 OPTIMIZATIONS
Up to now, we have seen the process of translating FreeDatalog programs (with implicit/inherent
iterations) to TempoDL programs (with for loops). In this section, we observe how we can optimize
further the generated TempoDL programs.

5.1 Subsumption
The generated TempoDL expression appends the result of intermediate strata to the �nal result.
However, in many cases, we are only directly interested in the result computed in the last stratum;
the intermediate results are only indirectly required to compute the last result.

In such cases, we can leverage the fact that the result of each iteration subsumes [38] its previous
iterations. This has two implications. First, there is no more need to keep track of the stratum as
an attribute in the relation, i.e., one can push the projection in the recursion. Second, the result of
each iteration replaces the result of its prior ones.

Performing subsumption involves an analysis phase followed by a transformation. The analysis
pass performs a backward analysis on the TempoDL program to detect the attributes and the related
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IDBs that we demand their last value. If there is nothing apart from the last value, the analysis
pass marks the IDBs and the temporal attribute as the candidate for subsumption.
The transformation pass removes the temporal attribute(s) from the candidate IDBs; inside the

loop the occurrences of the temporal variable is removed and outside the loop the occurrences of
the base case constant and last are eliminated. Furthermore, the �rst instance of update rules in the
loops are substituted by a replacement. This is because we are no longer interested in appending
all intermediate strata to the �nal result; instead we are only interested in the result of the last
stratum.

Example 5.1 (BGD, Cont.). Figure 7a shows the result of applying subsumption to TempoDL
representation of the BGD example. Note that the intermediate IDBs now have an arity of 2 instead
of 3. Furthermore, the rules in the body of the loop are replacement (:=) instead of addition (+=).

5.2 Temporal Elimination
Even though with subsumption we removed the need to keep track of the intermediate results at
the IDB level, we still keep all the intermediate levels at the stratum level. In many cases, each
iteration only needs two versions: the result from the previous iteration and the result after this
iteration.

The temporal elimination transformation removes the intermediate strata of IDBs by replacing
each IDB with two versions: its old version (with the same name, e.g., idb) and its new version
(the primed name, e.g., idb�). The transformation is as follows. For the rules inside the loop, each
occurrence of idb{t} is replaced with idb and idb{t+1} with idb�. In the rules outside the loop
the IDBs (idb{basecase} and idb{last}) are replaced with idb�. Finally, the IDBs that appear with
next stratum in the head (e.g., idb{t+1}), we add a replace statement to copy the content of the IDB
computed in the previous iteration (idb := idb�).

Example 5.2 (BGD, Cont.). The result of applying temporal elimination to the BGD example is
shown in Figure 7b. All the occurrences of model{t}, predict{t}, and gradient{t} are replaced
with model, predict, and gradient, respectively. The rest of the cases for model are replaced with
model�. Finally, as the �rst statement of the loop, we copy the content computed from the previous
iterations (model := model�).

5.3 Code Generation
As the �nal step, we generate a specialized engine from the optimized TempoDL program. This
involves a two-stage process. First, the TempoDL program is compiled into SDQL [59, 61], a
recently introduced intermediate representation for query processing. Then, the SDQL expression
is compiled down to low-level Julia code [56].
To handle for loops in TempoDL, SDQL is extended with temporal �x-point recursion. This

additional construct performs a for-loop-like iteration where the termination is achieved when the
inner IDBs involved in the loop have reached a �x-point.
Each rule is �rst converted into a physical query plan. Similar to Sou�é we currently do not

consider changing the join order and rely on the order speci�ed by the programmer. However, Tem-
porel uses the primary-key/foreign-key information to leverage e�cient physical query operator
implementations. Then, the query plan is compiled to SDQL by using a push-based approach [47, 60].

6 EXPERIMENTS
In this section, we empirically evaluate the performance of Temporel. More speci�cally we answer
the following research questions:
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Table 1. The datasets used in the experiments

Name Parameters Description
DS-"-# " : # of elements Training dataset for

# : # of features machine learning
PNTS-# # : # of points Random 2D points
HOSP-# # : # of hospitals & Residents/Hospital

residents preference data
RMAT-# # : # of nodes Synthetic graphs

10# : # of edges generated by [6]
VECT-# # : # of elements Vector of numbers

• How well does Temporel work in comparison with the state-of-the-art systems on various
workloads?

• How much is the bene�t of temporal strati�cation over standard recursive evaluation strate-
gies for iterative programs?

• What is the impact of each individual optimization for TempoDL programs?

6.1 Experimental Setup
We conducted our experiments on an AWS t2.2xlarge instance with 8 vCPUs, 32 GBs of RAM,
and Ubuntu 22.04 LTS. Temporel runs using Julia 1.8.5. As the competitors, we consider Datalog
engines as well as database systems. For the former, we consider the Sou�é engine, while for the
latter, we consider the DuckDB and HyPer systems. There are many Datalog systems including
Sou�é [34], SociaLite [58], Myria [68], the DeALS family of systems (DeALS [65], BigDatalog [64],
and RaDlog [27]), and RecStep [21]. We consider Sou�é (version 2.3) because of its state-of-the-art
performance for strati�ed Datalog programs. RecStep and the DeALS family have e�cient support
for aggregates in recursion in comparison with previous research [64]. However, neither RaDlog, as
the open source representative of the DeALS family, nor RecStep supported any of our workloads.

Most DBMSes with support for recursion (e.g., HyPer and Postgres), only expect a single recursive
relation. DuckDB supports a wider range by inlining mutual recursive functions. We use DuckDB
version 0.8.1, which supports nested recursion as well as LIMIT inside a recursive query, a feature
missing from prior versions and necessary for the workloads that use the choice construct. We
also compare it against HyPer, an in-memory DBMS that, similarly to Sou�e, employs code
generation [47, 62, 63]. We use Tableau’s publicly available HyPer API version 0.0.17537. However,
its support for recursion is more limited than DuckDB and thus supports a subset of our workloads.
We do not use other database systems such as PostgreSQL, because they are more limited than
DuckDB for dealing with mutual recursion. Other previous work [19, 30, 31] are orthogonal as
they provide source-to-source translation from PL/SQL and Python UDFs to SQL code and use
PostgreSQL as the backend.

6.2 Workloads
We consider nine workloads: (1) BGD for linear regression (BGD-LR), (2) BGD with backtracking
search for linear regression (BGD-BTS-LR), (3) the stable matching problem (SMP), (4) prim’s
algorithm for computing the minimum spanning tree (MST-PRIM), (5) computing window sums
(WIN-SUM), (6) computing window z-scores (WIN-ZSCORE), (7) k-means clustering (K-MEANS),
(8) the page-rank algorithm, and (9) computing the graph diameter (GRAPH-DIAM). We have
already covered the �rst two in the previous sections. Below we present the remaining applications.
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hprefers(h,s1,s2) :- hosp(h),stud(s1),
stud(s2),hpref(h,s1,r1),
hpref(h,s2,r2), r1 < r2.

hpairs(t,h,s) :- (t=0), (h=1), (s=1).
sfree(t, s) :- (t = 0), stud(s).
hfree(t, h) :- (t = 0), hosp(h).
next_stud(t, min(s)) :- sfree(t, s).
next_hfree_rank(t, min(r)) :-
next_stud(t,s),hfree(t,h),
spref(s, h, r).

next_hpref_rank(t, min(r)) :-
next_stud(t, s1), hpairs(t, h, s2),
hprefers(h, s1, s2), spref(s1,h,r).

next_hosp_rank(t, r) :-
next_hfree_rank(t,r1),
next_hpref_rank(t,r2), r=min(r1,r2).

next_hosp_rank(t, r1) :-
next_hfree_rank(t, r1),
not(next_hpref_rank(t, r2)).

next_hosp_rank(t, r2) :-
next_hpref_rank(t, r2),
not(next_hfree_rank(t, r1)).

next_hosp_id(t, h) :- next_stud(t, s),
next_hosp_rank(t, r), spref(s,h,r).

hpairs(t+1, h, s) :- hpairs(t, h, s),
not(next_hosp_id(t, h)).

hpairs(t+1, h, s) :- next_stud(t, s),
next_hosp_id(t, h).

query(h, s) :- hpairs(last, h, s).

(a) Stable Matching Problem

uedge(x, y, w) :- edge(x, y, w).
uedge(x, y, w) :- edge(y, x, w).
min_edge_init(min(w)) :- uedge(x, y, w).
tree_edge(t,x,y) :- t=0, min_edge_init(w),
uedge(x, y, w), choose((), (x, y)).

tree_node(t, x) :- tree_edge(t, x, y).
tree_node(t, x) :- tree_edge(t, y, x).
min_edge_weight(t,min(w)) :- uedge(x,y,w),
tree_node(t, x), not(tree_node(t, y)).

min_edge(t, x, y) :- min_edge_weight(t, w),
uedge(x, y, w), tree_node(t, x),
not(tree_node(t, y)), choose((), (x, y)).

tree_edge(t+1, x, y) :- tree_edge(t, x, y).
tree_edge(t+1, x, y) :- min_edge(t, x, y).
query(x, y) :- tree_edge(last, x, y).

(b) Prim’s algorithm for MST.
winsum(i, a) :- i = 0, a = 0.
winsum(i+1, s) :- i>=0, i<W, winsum(i,a�),
vec(i+1,a), s=a+a�.

winsum(i+1, s) :- i>=W, winsum(i, a�),
vec(i+1,a1), vec(i-W+1,a2), s=a�+a1-a2.

winsumsq(i, a) :- i = 0, a = 0.
winsumsq(i+1, s) :- (i >= 0), (i < W),
winsumsq(i, a�), vec(i+1, a), s = a+a�.

winsumsq(i+1, s) :- (i>=W),winsumsq(i,a�),
vec(i+1,a1),vec(i-W+1,a2),s=a�+a1^2-a2^2.

winzscore(i,r) :- winsum(i,w),winsumsq(i,s),
vec(i,v), g=(s-w*w/W)/W,r=sqrt((v-w/W)/g).

(c) Window Z-Score (W is the window size).

Fig. 8. Applications used in the experiments.

Stable Matching Problem (SMP). This problem has many applications including matching
resident students to hospitals, job market matching, resource allocation, and task assignment. We
consider the EDBs stud(s) and hosp(h) showing the IDs of students and hospitals, and the EDBs
spref(s, h, r) and hpref(h, s, r) showing the ranking of a particular hospital for a student and
vice versa. This program (cf. Figure 8a) consists of two SCCs: the �rst one is non-recursive, and the
second one is T-strati�ed.
Minimum Spanning Tree (MST-PRIM). Computing the spanning tree of a graph with minimum
sum of weights has many applications in network design, circuit design, and data mining. For
an input undirected weighted graph speci�ed by the EDB edge(x, y, w) the Datalog program of
Figure 8b uses the Prim’s algorithm to compute its MST. This program is T-strati�ed.
Window Sum (WIN-SUM). The window sum of elements of a vector by window size speci�ed by
the parameter W is presented in the top part of Figure 8c. This program is T-strati�ed.
Window Z-score (WIN-ZSCORE). The rolling (window) Z-score is a statistical technique with
applications in �nancial analysis, anomaly detection, and time series analysis. The FreeDatalog
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Table 2. Performance comparison of di�erent systems on various recursive programs. TO: Timeout a�er 15
minutes, NS: Not Supported, NP: Not Possible (to express the stratified version).

Query Dataset Temporel Sou�é DuckDB HyPer
DS-8-1 < 0.1 s NP 0.1 s NS
DS-8-8 0.1 s NP 0.6 s NS

BGD-LR DS-8-64 1.2 s NP 5.6 s NS
DS-8-512 15.4 s NP 50.3 s NS
DS-8-4" 208.5 s NP 421.8 s NS
DS-8-1 < 0.1 s NP 0.8 s NS
DS-8-8 0.1 s NP 5.1 s NS

BGD-BTS-LR DS-8-64 2.1 s NP 41.1 s NS
DS-8-512 23.8 s NP 341.7 s NS
DS-8-4" 333.5 s NP TO NS
PNTS-1 < 0.1 s NP 0.3 s 0.1 s
PNTS-8 0.2 s NP 1.5 s 0.6 s

K-MEANS PNTS-64 3.4 s NP 10.8 s 7.5 s
PNTS-512 32.0 s NP 110.6 s 64.8 s
PNTS-4" 898.1 s NP TO TO
HOSP-16 < 0.1 s NP 14.3 s NS
HOSP-32 < 0.1 s NP 101.2 s NS

SMP HOSP-64 0.4 s NP TO NS
HOSP-128 6.2 s NP TO NS
HOSP-256 93.3 s NP TO NS
RMAT-1 0.8 s NP 0.9 s 0.4 s
RMAT-2 1.8 s NP 1.9 s 0.8 s

PAGE-RANK RMAT-4 4.4 s NP 4.0 s 1.8 s
RMAT-8 9.8 s NP 10.2 s 4.2 s
RMAT-16 25.1 s NP 21.6 s 11.2 s

Query Dataset Temporel Sou�é DuckDB HyPer
RMAT-128 < 0.1 s 5.1 s 0.6 s < 0.1 s
RMAT-256 0.4 s 61.0 s 3.3 s 0.3 s

MST-PRIM RMAT-512 1.6 s 750.6 s 19.8 s 2.4 s
RMAT-1 7.7 s TO 133.2 s 19.7 s
RMAT-2 31.8 s TO TO 160.8 s
RMAT-256 0.4 s NP 1.5 s 0.6 s
RMAT-512 2.5 s NP 12.4 s 6.0 s

GRAPH-DIAM RMAT-1 11.3 s NP 126.4 s 81.4 s
RMAT-2 68.0 s NP TO TO
RMAT-4 370.3 s NP TO TO
VECT-512 < 0.1 s < 0.1 s 0.3 s < 0.1 s
VECT-2 < 0.1 s < 0.1 s 1.4 s < 0.1 s

WIN-SUM VECT-8 0.4 s 1.3 s 10.1 s 0.4 s
(W = 30) VECT-32 6.3 s 22.7 s 104.8 s 7.8 s

VECT-128 92.8 s 350.1 s TO 131.4 s
VECT-512 < 0.1 s < 0.1 s 0.6 s < 0.1 s
VECT-2 < 0.1 s 0.1 s 3.0 s < 0.1 s

WIN-ZSCORE VECT-8 0.8 s 2.8 s 20.7 s 0.9 s
(W = 10) VECT-32 11.9 s 45.2 s 209.0 s 15.5 s

VECT-128 180.1 s 720.3 s TO 265.2 s
VECT-512 < 0.1 s < 0.1 s 0.6 s < 0.1 s
VECT-2 < 0.1 s 0.1 s 3.0 s < 0.1 s

WIN-ZSCORE VECT-8 0.8 s 2.8 s 20.6 s 0.9 s
(W = 30) VECT-32 11.9 s 45.2 s 208.6 s 15.5 s

VECT-128 175.9 s 718.6 s TO 264.7 s

program for computing the rolling z-score of elements of a vector by window size speci�ed by the
parameter W is shown in Figure 8c. This program has three SCCs: the �rst two are T-strati�ed and
the last one is non-recursive.
K-Means. Clustering a dataset of unlabeled elements is one of the main tasks in unsupervised
machine learning with applications in document clustering, image segmentation, and lossy data
compression. This algorithm has been already encoded in recursive SQL [57] and can be encoded
as a T-strati�able Datalog program.
Page-Rank. This algorithm was originally used by Google to rank webpages in the search results.
In addition, this algorithm can be used for recommendation systems, social network analysis, and
fraud detection. This algorithm has also already been encoded as a recursive SQL program [57] and
we encode a T-strati�able version of it in Datalog.
Graph Diameter Computation (GRAPH-DIAM). The longest shortest path between any two
edges in a graph is referred to as the graph diameter. This measure can be used for network
bottleneck analysis, transportation optimization, and community identi�cation in social networks.
This problem can be encoded as a nested T-strati�able problem; the outer loop is responsible for
iterating over source nodes and the inner loop computes the single-source shortest path (SSSP). At
the end, the maximum of SSSPs is computed.

6.3 Datasets
Depending on the workload type we use di�erent datasets (cf. Table 1). For the machine learning
training workloads, we use a randomly generated dataset named DS-"-# where" and # specify
the number of features and elements, respectively. For K-Means, we use randomly generated 2D
points named as PNTS-# where # speci�es the number of points. For SMP we generate random
preferences for # residents/hospitals as the dataset HOSP-# . For the graph problems, we use the
RMAT dataset with a slight modi�cation compared with the earlier work [64]. RMAT-# has initially
# nodes and 10# edges. We modify it by connecting each node to its next node by maximum
weight in order to make the graphs fully connected. Finally, for the windowed statistics workloads
we use the vector dataset VEC-# where # speci�es the size of the vector.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 16. Publication date: February 2024.



Optimizing Nested Recursive�eries 16:19

Fig. 9. Run time and memory consumption of Temporel for the iterative Hadamard product kernel using
naïve evaluation and temporal stratification by varying the size of data and the number of iterations.

6.4 Benchmarking Recursive Programs
In this section, we show the comparison between the performance of Sou�é, DuckDB, HyPer,
and Temporel for a wide range of applications. Table 2 shows the results for di�erent dataset
con�gurations on these systems.

In terms of expressiveness, Sou�é is more limited than other engines. As it only handles strati�ed
aggregations, it does not support most workloads. For MST-PRIM, there is an implementation
provided by the developers of Sou�é with higher computational complexity, as can be observed in
the run times. The GRAPH-DIAM needs to be implemented by �rst computing a reachability path
query, followed by computing a min-group-by-aggregate query to compute the all-pairs shortest
path (APSP), then computing the single-source shortest path (SSSP) by a min-group-by-aggregate
query and �nally the maximum over the SSSP by a max-aggregate query. Finally, for the WIN-SUM
and WIN-ZSCORE, as the queries are monotone, we observe that Sou�é can express them and
handle them e�ciently using semi-naïve evaluation. The performance is signi�cantly better than
DuckDB and HyPer, however, it is still worse than Temporel.
DuckDB has more expressive power than Sou�é and HyPer; the SQL CTE recursion support

of DuckDB is su�cient to support all workloads. HyPer cannot support workloads with mutual
recursion: BGD, BGD-BTS-LR, and SMP. For PAGE-RANK and K-MEANS we used non-mutually
recursive SQL implementations [57]. For the GRAPH-DIAM workload, in all engines except Tem-
porel, we compute the APSP using aggregates inside recursion and then compute the SSSP and
graph diameter similar to Sou�é.
Overall, there are two important factors in the performance of DuckDB in comparison with

Temporel. First, the higher the number of iterations, the more important becomes the impact of
subsumption and temporal elimination in removing redundant computations. Second, workloads
with more recursive IDBs will also show better the impact of reducing redundant storage and
computations. For BGD-LR, K-MEANS, and PAGE-RANK, DuckDB andHyPer are either competitive
or better in comparison with Temporel. This is because these workloads only involve ten iterations,
and a few recursive IDBs, which makes the optimized hash-join implementation of in-memory
DBMSes more important. The workloads with more iterations such asWIN-SUM andWIN-ZSCORE,
and more iterations and more recursive IDBs such as SMP and MST-PRIM show 10⇥-100⇥ speedup;
in some cases, DuckDB timed out. HyPer cannot support SMP, and for MST-PRIM scales worse
than Temporel due to not supporting subsumption.
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Fig. 10. The impact of di�erent optimizations on the run time and memory consumption of Temporel.

6.5 E�ect of Temporal Stratification
In this section, we show the impact of temporal strati�cation in comparison with a naïve imple-
mentation of recursion. For this, we micro-benchmark a synthetic kernel. This kernel performs
an iterative Hadamard product of two vectors. We vary the size of the vectors and the number of
iterations. The FreeDatalog representation of this kernel is as follows:
V2(t, i, v) :- (t = 0), V0(i, v).
V2(t+1, i, v1 * v2) :-
V1(i, v1), V2(t, i, v2), (t < MAX_ITER).

query(i, v) :- V2(last, i, v).

The TempoDL representation for the naïve recursive evaluation of this program is as follows:
V2(t, i, v) := (t = 0), V0(i, v).
for iter from 0
V2(t+1, i, v1 * v2) :=

V1(i, v1), V2(t, i, v2), (t < MAX_ITER).
query(i, v) := V2(last, i, v).

Note that the iteration variable iter does not appear in the body of the loop. At each iteration, we
need to recreate the results for all intermediate ts from scratch (cf. Figure 1b).
Figure 9 shows the run time and memory consumption comparison between naïve recursion

and temporal strati�ed evaluation. As we increase the number of iterations, the gap between the
performance widens. Crucially, for small vectors with many iterations (cf. the middle �gure), the
performance improvement can be one order of magnitude. As the size of the vector gets closer to
the number of iterations, the performance improvement decreases to 1.1⇥.

Similarly, memory consumption is also signi�cantly improved thanks to removing the temporal
attribute from the intermediate computations. In all cases, the memory consumption improvement
is similar to the run time.

6.6 E�ect of Optimizations
Finally, we show the impact of individual optimizations over temporal strati�ed programs. Similar
to the previous section, we only consider the iterative Hadamard product of two vectors using
di�erent con�gurations. We consider three variants of the generated TempoDL program. The
unoptimized variant corresponds to TempoDL program produced immediately after compilation
from FreeDatalog (similar to Figure 1e). The “Subsumption” variant, which is the result of applying
the subsumption optimization to the compiled TempoDL expression (similar to Figure 7a). Finally,
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Fig. 11. The comparison of Temporel, the MLIR A�ine dialect, and a C++ implementation of a variant of
power iteration.

the “Sub. + Temp. Elim.” variant corresponds to the fully optimized TempoDL program (similar to
Figure 7b).
Figure 10 shows the run time and memory consumption of these three variants. Overall, the

improvement trends are similar to the case of naïve recursion and temporal strati�ed recursion.
One can observe that the impact of temporal elimination is more signi�cant than subsumption.
This is because even with subsumption, we still keep the results of the intermediate strata; it is
only after the temporal strati�cation combined with subsumption that we completely remove the
intermediate history.

6.7 Discussion: Polyhedral Frameworks
The techniques for handling nested recursion with temporal constraints have a close connection to
polyhedral frameworks [9] such as Halide [51] and the A�ne dialect in the MLIR framework. In
this section, we compare Temporel with polyhedral frameworks.
Qualitative Comparison. In general, TempoDL is more generic and more expressive; it allows
for data-dependent control �ows and arbitrary types of attributes, whereas the polyhedral model
only supports static control programs [22] over multi-dimensional dense arrays. The static control
programs can be summarized as programs with two features [9, 72]. First, its control statements are
for-loops with a�ne bounds and if-statements with a�ne conditions. Second, these a�ne bounds
and conditions can only depend on constant values and outer loop counters.
This makes the polyhedral model appropriate for applications dealing with multi-dimensional

dense array computations such as image processing (themain target domain of Halide). Furthermore,
the polyhedral model can capture the temporal loops where the termination can be statically
determined. However, for the cases where the termination is dependent on the value of data (e.g.,
BGD where the termination condition can be speci�ed by a threshold or MST-PRIM where the
termination is data dependent) the polyhedral model is not applicable. In addition, the inner loops
that implement selections or joins also will involve control �ows that are data-dependent and thus
go beyond the static control programs. Finally, polyhedral-based optimizers can be used as the
backend (for dense cases), however, the high-level transformations to extract temporal information
from Datalog (e.g., translation from Figure 1a to Figure 1e) are beyond the scope of polyhedral
techniques.
Quantitative comparison. Let us consider an example that both frameworks support. We consider
a variant of the power iteration method, a numerical method for computing eigenvalues and
eigenvectors of a square matrix with applications in Principal Component Analysis (PCA), Quantum
Mechanics, etc. This method is an iterative algorithm that at each iteration involves a matrix-vector
multiplication followed by normalization. We remove the normalization inside the loop and perform
matrix-matrix multiplication instead of matrix-vector multiplication. The TempoDL program is
represented as follows:

M2(t, i, j, a) :- (t = 0), M0(i, j, a).
M2(t+1, i, j, sum(m1 * m2)) :-
M1(i, k, m1), M2(t, k, j, m2), (t < MAX_ITER).
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query(i, j, r) :- M2(last, i, j, r).

Figure 11 shows the performance of the code generated by Temporel compared to a version
written in the MLIR framework [39] and a C++ implementation. MLIR provides polyhedral op-
timizations through the A�ne dialect [18]. The MLIR A�ne implementation is faster than the
C++ version thanks to the polyhedral optimizations. However, due to the constraints of the static
control �ow, it is impossible to express algorithms that leverage the sparsity of matrices. Thus, as
the matrices get sparser, which is the case for most relational and graph data, Temporel shows
better performance.

7 RELATEDWORK
Most e�orts on extending Datalog with negation and aggregation in the literature can be classi�ed
into two categories [37]. The �rst category involves restricting the recursion to not allow negation
and aggregation inside it. This is achieved by strati�ed Datalog [45]. The second category supports
monotone aggregates in recursion by de�ning an ordering for the aggregation operators [16, 36, 55,
71]. The key limitation of both approaches is their limited expressive power. For example, neither
approach can express the �rst seven workloads we used in our experiments. Most other approaches
in the literature su�er from a similar expressiveness issue [23, 35, 40].

There have been temporal extensions toDatalog either as explicit arguments such asDatalog1S [15,
53, 73], or approaches inspired by temporal logic such as TempLog [2], DatalogLite [26], and Data-
logMTL [10, 12, 67]. The former approach admits XY strati�cation, enabling e�cient evaluation
of iterative programs without nested recursion [74]. Our approach generalizes this idea by sup-
porting nested recursion. Furthermore, we use program analysis to automatically detect temporal
argument(s), rather than enforcing the programmer to put them as a distinguished (e.g., �rst)
attribute.
The SQL 1999 standard introduced the WITH RECURSIVE keyword to express recursion. There

has been recent interest in converting PL/SQL UDFs and Python code into pure SQL recursive
queries [19, 30, 31]. Also, the recursive SQL queries have been used to expressMachine Learning [11]
and Data Mining [57] algorithms. However, the standard SQL recursion is limited to monotonic
�xpoint iterations; expressing non-monotonic iterations requires workarounds with additional run
time and storage complexities [25]. As a partial remedy, recent proposals on extensions for SQL give
more control over recursive evaluation [32, 50]. However, these additional constructs contradict the
declarative nature of query languages [32]; rather than specifying what the recursive computation
needs to do, the programmers are forced to specify how it should be performed. Temporel solves
this issue by exposing a declarative language, nevertheless, it uses program analysis to determine
the execution strategy for T-strati�ed programs. Timely Data�ows [46] can serve as an alternative
backend for Temporel after performing optimizations on TempoDL. Alternatively, one can also
target Polyhedral frameworks [9, 22, 51, 72] as the backend for a subset of Datalog programs
that can be translated to static control programs, i.e., programs with a�ne bound controls (cf.
Section 6.7). Another promising backend is Sparse Polyhedral Frameworks [66], however, they
have limited support for selection predicates and aggregations such as maximum/minimum.

To the best of our knowledge, no other query processing system has an optimization similar to
subsumption. Even though we chose Datalog because of its clean, well-understood semantics, our
techniques could, in principle, be extended to SQL. The “physical recursive plan” produced by an
SQL engine is similar to TempoDL. For example, consider the following recursive SQL query:

WITH RECURSIVE presum(j, p) AS (
SELECT 0, 0
UNION ALL
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SELECT presum.j + 1, presum.p + vector.p
FROM presum, vector
WHERE presum.j < 10 AND presum.j = vector.j )

SELECT presum.p FROM presum
WHERE presum.j = (SELECT MAX(presum.j) FROM presum)

In this query, we are only interested in the result computed in the last iteration. By integrating
our technique in DBMSes, this query will be rewritten into a recursive physical plan that uses the
idea of subsumption to just keep the last state.

8 CONCLUSION
In this paper, we present Temporel, a Datalog engine for e�ciently executing recursive programs.
We identi�ed a class of Datalog programs called T-strati�ed programs that can express nested
iterative programs as well as semi-naïve evaluation of monotone Datalog programs. We proposed a
transformation, called nested temporal strati�cation, along with an intermediate language, called
TempoDL, to capture an e�cient evaluation of T-strati�ed Datalog programs. We have shown
empirically that Temporel can express a wide range of iterative workloads, with better performance
than the state-of-the-art Datalog and in-memory database systems.
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