Inverse Problems and Imaging
Vol. 18, No. 4, August 2024, pp. 993-1023 &M
doi:10.3934/ipi.2024004

SHOWER CURTAIN EFFECT AND SOURCE IMAGING

JOSSELIN GARNIER®! AND KNUT S@LNARE

1Centre de Mathématiques Appliquées, Ecole Polytechnique,
Institut Polytechnique de Paris, 91120 Palaiseau, France

2Department of Mathematics, University of California, Irvine CA 92697

(Communicated by Kui Ren)

ABSTRACT. The shower curtain effect is commonly described as being able to
see a person behind a shower curtain better than that person can see us. This
asymmetric phenomenon has been observed in numerical simulations in various
propagation models and in optics experiments. Here we present an analysis in
the paraxial regime to give a novel characterization of the mechanism behind
this effect and we discuss applications to imaging. The paraxial regime is for
instance appropriate to model the propagation of a laser beam in a turbulent
atmosphere. The theory that we present has also applications to tissue imag-
ing. We consider two different measurement and imaging setups (matched
field imaging and optical imaging) to clarify the shower curtain mechanism.
We give a quantitative description of how the placement of the shower cur-
tain, modeled as a randomly heterogeneous section, affects the optical imaging
resolution. We moreover analyze the signal-to-noise ratio of the image. The
analysis involves the study of multifrequency fourth-order moments associated
with the It6-Schrodinger equation and reveals that broadband sources are nec-
essary to ensure statistical stability and high signal-to-noise ratio.

1. Introduction. An interesting phenomenon in optics is that it is possible to see
a person behind a shower curtain better than that person can see us. This effect
has been referred to as the shower curtain effect [12]. Here we address the challenge
of giving a precise mathematical description of this phenomenon. In addition to
identify what governs the effect we discuss how imaging algorithms can be designed
and analyzed when the objective is to image a source hidden behind the ‘shower
curtain’. We view the shower curtain as a complex section of finite width localized
between the detector and the source and we model this complex section as a random
medium.

The central aspect of the shower curtain effect is that, in addition to the scatter-
ing properties of the random medium, the relative location of the random medium
section between the source and the detector also affects the image quality for stan-
dard imaging devices (such as the human eye) [4, 13, 14]. The motivation in [13] is
to analyze how atmospheric clouds affect imaging performance and in particular the
role of the relative position of the clouds. Numerical illustrations based on a radia-
tive transfer model are presented in [13]. In [12] the authors consider the role of the
relative position of a complex section in the situation with time reversal of waves. In

2020 Mathematics Subject Classification. 60H15, 35R60, 74J20.

Key words and phrases. Optics, waves in random media, shower curtain effect, imaging, mul-
tiple scattering, paraxial approximation.

993


http://dx.doi.org/10.3934/ipi.2024004
mailto:josselin.garnier@polytechnique.edu
mailto:ksolna@math.uci.edu

994 JOSSELIN GARNIER AND KNUT SOLNA

this case a source is beaming and the propagated field is recorded on a time-reversal
mirror, that is, the complex field is recorded, time reversed, and re-emitted. The
re-emitted field then refocuses at the original source location. The authors illustrate
numerically a shower curtain effect in this setting in that the refocusing is all the
better as the complex section is closer to the source. In their study the authors use
a paraxial modeling framework and a Gaussian approximation for the statistics of
the wave field to enable computation of fourth-order moments. Recently the shower
curtain effect has also been considered in the context of speckle imaging [5, 21, 15].
In these papers the autocorrelation of a mask function or object to be imaged is de-
rived from wave speckle patterns and a phase retrieval algorithm is used to retrieve
the mask function. In speckle imaging a shower curtain effect also affects the imag-
ing performance. We remark that speckle imaging is analyzed in [10] in the wave
regime we consider here and the analytic framework set forth there can be extended
to the shower curtain setting considered here. Aspects of the shower curtain effect
from the point of view of active imaging configurations and illumination aspects are
discussed in [20]. In [18, 19] an active imaging configuration in Optical Coherence
Tomography is considered. In these papers it is argued that the system performance
can be understood and enhanced partly from the point of view of the shower curtain
effect. Here we consider the passive imaging case with a source to be imaged and
we give a precise characterization of how the properties of the random section and
its relative location affect the performance of source imaging through the section
in the white-noise paraxial regime. Central to our discussion is an analysis of the
signal-to-noise ratio for the imaging algorithm. We show that the signal-to-noise
ratio may be very low depending on the imaging modality, however, that the use
of broadband (multifrequency) signals may enable imaging. This characterization
derives from recent results for multifrequency fourth-order moments for the waves
in random media.

The outline of the paper is as follows. In section 2 we summarize the main results.
We consider wave propagation in the white-noise paraxial regime and present this
regime in section 3. The two imaging modalities that we consider, matched field
imaging and optical imaging, are presented in section 5 in the case of full aperture.
The case of imaging with partial aperture is analyzed in section 6. One main focus
of the analysis is to characterize imaging resolution and how it relates to the shower
curtain effect. However, imaging with high resolution is of little use if the image
has low signal-to-noise ratio and in section 7 we discuss how one can obtain high
signal-to-noise ratio in the optical set-up by broadband imaging.

2. Summary of results. We will study two imaging modalities: matched field
imaging and optical imaging.

Consider first the matched field imaging set-up illustrated in Figure 1. Here
the source is located to the left in the plane z = 0 and the wave field propagates
through a random section located in the range interval z € (z,, 2p). This random
section models the shower curtain. The transmitted complex field is measured in
the detector plane z = z; beyond the shower curtain. Our objective is to image
the transversal support function of the time-harmonic source. The source spatial
function is denoted by f(x) for @ the lateral spatial coordinates. We consider the
paraxial white-noise regime described in section 3 modeling high-frequency beam
waves in a random medium. This description allows us to analyze the image and
its statistical moments, with the moments being computed with respect to the
randomness in the complex section.
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In the matched field imaging set-up the transmitted complex field is recorded and
the matched field image is obtained by matching or correlating it with the point
source response:

2
@) = [ oy )G g esn (- 25 )ay. 1)
R2
where 9 the transmitted complex time-harmonic wave field (measured by the detec-
tor) and G(z,y, z) the time-harmonic Green’s function. That is, G is the synthetic
field in a homogeneous medium with constant speed of propagation ¢, when recorded
at (y, z) and for a point source at (x,0). In the paraxial regime it has the form

- ik iko|x — yl|?
Glar,) = 52 e (i, + PolZ =9y, )

(2,9,2) = — 2 exp (ihy + 2 (2)
where k, = w/c, is the homogeneous wave number. In (1) we model the finite
aperture of the detector via a Gaussian apodization function with width D, but this
choice is not essential. We ask the question: how well does the imaging function U
describe the source function f 7 We will consider a detector that is large enough
so that

ro < D and z; < k,D?, (3)

where 7, is the radius of the support of the function f. The second condition
means that the Rayleigh length for a beam wave with initial lateral support D is
large compared to z;, with the Rayleigh length being the range where diffraction
and spreading of the beam (in the homogeneous medium) becomes significant. The
transmitted field ¢ is random due to the random section in the propagation path.
If we compute the mean imaging function we find (see (61)):

1 z s|? Zp — %

Eu(@)] =5 /R f(w * 14;0le> P ( - %)dse"p ( N besca a)’ 4)
where lg., is the scattering mean free path defined in (29). Note first that the
source is blurred on the classic Rayleigh resolution scale z1/(k,D) due to the finite
aperture. Thus, with infinite aperture D = +oo we recover in theory the source
shape exactly, and in the homogeneous case this corresponds to time-harmonic
“time reversal” and perfect refocusing at the original source location. However, the
image is exponentially damped due to random scattering causing wave energy to
be transferred to an incoherent wave field part. Therefore, if the thickness of the
random section is large compared to the scattering mean free path fs.,, then the
source cannot be imaged since the coherent wave field is very small. Finally, note
that the location of the random section plays no role here (only the thickness zp — z,
plays a role) and that imaging resolution and magnitude is not associated with any
shower curtain effect. Thus, the shower curtain effect must be associated with the
scattered incoherent wave part. Indeed if we consider the second-order moment or
variance of the field we find that the spreading of the field depends on the location
of the random section and we have a shower curtain effect in that the spreading is
larger when the complex section (of fixed thickness) is farther from the source (see
(31) and (41)). This spreading and the associated shower curtain effect come from
random lateral scattering and affect the incoherent wave. If the random section is
placed away from the source so that the wave field is subject to diffraction before
it passes through the random section then this random lateral scattering effect is
strong. In the optical set-up, imaging is based on the wave field intensity which
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FIGURE 1. Source imaging with matched field. The detector is a
receiver array that records the complex wave field.

is indeed affected by the incoherent wave component. We should therefore find a
shower curtain effect for the mean image and we discuss this next.

In the optical set-up a lens is placed in the plane z = z; and the field intensity is
recorded by the detector located in the plane z = 21 + 29, see Figure 2. Explicitly,
the recorded intensity is

o) =| [ o) TGy 2] )
R2

where 9(y, z1) is the complex field in the plane z = z; and T (y) is the transmission
function of the lens which is modeled by (43) corresponding to a lens aperture D
and a focal length L chosen as in (45). Two situations can be distinguished. First, if
the scattering is weak so that |z1, — za| < lsca, then the effect of the random section
is small and the intensity recorded by the detector gives the source shape with a
resolution limited only by the lens aperture. Thus, the resolution is limited by the
homogeneous medium Rayleigh resolution analogous to the matched field case (see
(72)). Second, if |z1, — za| 2 fsca, then the random lateral scattering reduces the
resolution. This case is interesting since the field now is incoherent and matched
field imaging gives no information about the source, however, optical imaging can
reveal the structure of the source. We find for the mean intensity in this strongly
scattering case an expression given in (73) corresponding to a blurring on a scale
being the root mean square of the Rayleigh resolution and the characteristic shower
curtain resolution which is

_ .3
R, ., = % — “a \/322 +3za(2b — 2a) + (26 — 2a)2. (6)
' 6ep'aur par

Here the paraxial distance £,,, corresponds to the range of validity of the paraxial
approximation (it is defined in terms of the statistics of the random medium by
(38)). Thus, if the random section is close to the source then the shower curtain
resolution scales like (21, — 2a)\/(2b — 2a)/(60par), while if it is far then it scales
like 2o/ (21 — 2a)/(20par). One may then think of the random lateral spreading as
a low pass filter whose (spatial) cut off frequency becomes lower as the random
section is placed farther from the source. It is important to note though that
this affects the intensity pattern, but not the coherent field which is damped, but
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not subject to further spreading by the random scattering. The lens can, up to
the Rayleigh resolution associated with the limited aperture, compensate for the
deterministic diffraction associated with the homogeneous background, however, it
cannot compensate for the random wave field spreading that takes place as the
wave field passes through the random section. If the random section is placed
farther from the source the beam width is larger when it hits the random section
and the enhanced spreading factor (of the incoherent wave field component) due
to the random medium is larger. Indeed, the random medium fluctuations then
happen on a scale that is narrower relative to the beam width and the lateral
scattering strength is larger. In the case that the medium fluctuates only in the
range z direction the shower curtain effect vanishes since broadening of the beam
is then not associated with enhanced lateral scattering.

Our discussion of the optical imaging has so far been incomplete in that we have
not discussed the signal-to-noise ratio of the recorded intensity pattern. Note that
analyzing this involves a characterization of the variance of the intensity which is
a fourth-order moment of the wave field. We push through such an analysis in the
case when the source support is larger than the correlation radius of the medium
fluctuations. This analysis shows that the fluctuations in the intensity pattern is as
large as the mean intensity pattern in the strongly scattering regime. As specified
the imaging scheme then gives only a very poor rendering of the source. We show
however that by using a broadband source one can enhance the signal-to-noise ratio
without sacrificing resolution. In fact the signal-to-noise ratio is characterized by

SNR = 0 ( B) . (7
We

Here, B is the source bandwidth and we = ¢olpar/ (20 — 2,)? is the coherence fre-
quency that characterizes the maximal separation distance in frequency so that the
intensities recorded at two frequencies are still statistically correlated. Formula (7)
shows that, if the source bandwidth is larger than this coherence frequency, then
the image is statistically stable. The full quantitative description of the signal-to-
noise ratio derives from (132) and (152). This result comes from the analysis of
the multifrequency fourth-order moment transport equation that derives from the
It6-Schrodinger equation (16).

We remark also that in our imaging approach we have assumed that the back-
ground velocity and the range distance from the source to the detector are known.
In applications related to propagation through the atmosphere it may be reasonable
to assume that the background velocity is known. Estimation of the range distance
to the source could be possible with detectors in several range planes or with partial
knowledge of the source. We remark that the statistical structure of the transmit-
ted field, the speckle structure, contains information also about the statistics of
the random section. We do not discuss the challenge of estimating the location and
structure of the random section here, but remark that a related estimation challenge
is analyzed in [3] in the context of surface waves.

In the analysis presented in this paper we need to understand how scattering
in the random or complex section transforms the wave field to a partly or fully
incoherent wave field. In the next section we consider the white-noise paraxial
approximation which describes this process for beam waves.

3. The paraxial and It6-Schrodinger approximations. We consider scalar
waves and assume the governing equation:
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FIGURE 2. Source imaging in the optical set-up. The detector
is a camera or photodetector that records the wave intensity. The
source plane z = 0 and the detector plane z = 21 + 29 are conjugate,
i.e. the focal length L of the lens located in the plane z = 2z;
satisfies (45).

2
(02 + Ag)v — %aﬁ =0, (8)
for (z,2) € R? x R, the space coordinates. In (8) n(z,z2) is the local index of

refraction. It is convenient to Fourier transform in time:
O(w, x,z) = / v(t, @, z) exp (iwt)dt. 9)
R

We then obtain the Helmholtz or reduced wave equation:

2
(0% + Ag)b + —n(w, )b = 0, (10)

o
complemented with appropriate radiation conditions. We assume a source located
in the plane z = 0 generating a wave propagating in the positive z-direction. A
particular solution of (10) in the case of a homogeneous medium n = 1 is a prop-
agating plane wave and we make the ansatz of a slowly-varying envelope around a

plane wave going into the positive z-direction:

O(w, x, 2) = exp (i%)u(w,m, z). (11)

o

In the configuration considered here, which is motivated by atmospheric propaga-
tion, there will be negligible backscattering and we can use a forward or one-way
approximation, the paraxial approximation. This corresponds to assuming that u
is slowly varying in z and suppressing backscattering so that u solves an initial
value problem with the source at z = 0 being determined by the probing wave. The
transverse radius of the source r, is assumed to be larger than the typical wavelength
while also being much smaller than the total propagation distance. This is the es-
sential content of the slowly varying envelope assumption leading to the paraxial
approximation. We moreover consider a scaling regime in which diffractive effects
are of order one. Diffractive effects can be measured by the Rayleigh length men-
tioned above, defined as the distance from wave beam waist where the beam area
is doubled by diffraction. In the homogeneous medium the Rayleigh length for a
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beam with initial beam radius r, and carrier wavelength A, is of the order of r?, /Ao
Furthermore, we consider the situation when the medium is not homogeneous, but
rather fluctuating on a fine scale and modeled in terms of a random field captur-
ing the effect of the random section (the shower curtain). Let the local index of
refraction in (8) be modeled by

nz(ma Z) =1+ l(za,zb)(z)y(ma Z)v (12)

for v being the random medium fluctuations. We assume that v is a stationary
zero-mean random process that is mixing in z and with integrable correlations. We
consider the situation in which the correlation radius of the medium is of the same
order as the beam radius to capture the most delicate interaction in between the
lateral fluctuations of the medium and the beam. We then get that u satisfies

iCo w
%Awu + El
the Schrodinger equation with a random potential, also referred to as the paraxial
or forward-scattering wave equation [1, 17]. Here we assume that the potential v
has the white-noise scaling when viewed as a stochastic process in the propagation
coordinate which behaves weakly (or in distribution) as a non-standard Brownian
field, that is a Gaussian process with mean zero and covariance

E[B(z,z)B(z,2")] = min{z,2'}C(z’ — x), (14)

0,u = (zarm) (2)V(, 2)u, (13)

where the covariance C(x) is given by

Clz) = /_ " E[(0,0)(x, )] dz (15)

Indeed, when the typical wavelength is much smaller than the radius of the source
and correlation radius of the medium, which are themselves much smaller than the
total propagation distance, then the statistical distribution of u can be approxi-
mated by that of the solution of the It6-Schrodinger equation as analyzed in [2] and
extensively used to describe physical wave propagation [16]:

iw:l(zawzb) (Z)

2. u(w,x, z) odB(z, 2) . (16)

du(w, x, 2) = &Awu(w, x,z)dz +
2w
The symbol o stands for the Stratonovich stochastic integral in z and B(z,x) is a
non-standard Brownian field or Gaussian spatial process with the covariance (14).
The derivation of (16) starting from the wave equation is in [7]. In the It6 form we
have

' 2C(0)1 =, .
dufw, @, 2) :;&Amu(w,m,z)dz it (0) (za, b)(z)

2 u(w, x, z)dz
w c2

I iw].(za’zb) (Z)

2. u(w, x, z)dB(x, 2) , (17)

where the second term on the right-hand side, corresponding to the Stratonovich
corrector, captures the energy transfer from the coherent part to the incoherent
part of the wave field and the exponential damping of the mean wave field. The
last term in the right-hand side is the centered martingale term and does not affect
the dynamics of the mean field, but it models the one of the incoherent field. The
It6-Schrodinger equation will also allow us to characterize the high-order moments.
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Note that the evolution in (16) is unitary and preserves the L? norm corresponding
to conservation of total energy as the wave propagates from the initial plane z = 0:

/ lu(w, z, 2)|?dz = / lu(w, z,0)|*dz .

R2 R?

The It6-Schréodinger equation in the context of electromagnetic waves is presented
in [9]. Then the polarization modes propagate dynamically uncoupled, but they are
strongly statistically coupled as the modes experience the same complex section.
This means that similar estimation techniques as those presented here could be
used in the case when polarization is taken into account.

4. The mean Wigner transform. In order to characterize the behavior of imag-
ing algorithms based on processing of the observed wave field it is important to
be able to describe moments of the wave field, that is moments when we average
with respect to the driving Brownian field in (16). It turns out that in order to
specifically describe the second moment of the wave it is convenient to introduce
the Wigner transform. The mean Wigner transform is defined by

Win(r, €, 2) = /]Rz exp (—i&-q)E [u(r + g,z)ﬂ(r — %z)} dg. (18)

It satisfies the closed system

W 1 k2 .
T e VoW = sl () [ OO0 [Wae — ) = W) ak. (19)

0z
starting from Wy, (r, &,z = 0) = Wiy(r, €), which is the Wigner transform of the
initial field f:

Wino (7, &) 1= /

exp (—i€-q)f(r+3)f(r—3)dg. (20)
R2

This result follows from the It6-Schrodinger equation (16) using Itdé calculus for
Hilbert-space valued processes [22], Theorem 2.4. The transport equation (19) can
be solved, first over the (homogeneous) section from 0 to z,, then from z, to zy,
and finally from zp, to z1, and we find

1 . . s
Wm(ra€7 Zl) :W //RQXR2 eXp (lc ’ (T - 6%1) - Zé. . q) Wmo (C, q)
2 Zb
X exp (% / C(q + Cki) — C(O)dz)d{dq7 (21)

where Wmo is defined in terms of the initial field f as:

Wino(<, q) :/R2 exp (—i¢-7)f(r+ g)?(r— g)dr. (22)

5. Full-aperture time-harmonic imaging. In this section we discuss imaging
when the receiver array (matched field imaging) or the lens (optical imaging) has
full aperture. In the next section we discuss the case with limited aperture modeled
by a Gaussian cut-off function.
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5.1. Matched field imaging. Assume then first that we observe the complex
field u(y, z1) in the plane z = z;. The matched filter imaging method consists in
computing the correlation between the observed field, which is u(y, 21), and the

1ko ik0|:z:7y|2 .
271'21 exp ( 221 :

ik, iko|T — y|?
= -—_— . 2
Ule) = 5 / gz e (- 5V )ay (23)

Here the synthetic field is computed in a fictitious, homogeneous medium with
constant speed of propagation c,.

synthetic field generated by a point source at @, which is —

Proposition 1. If the medium is homogeneous, then the matched field image is

Ux) = f(x). (24)
Proof. The recorded field is
ik, iko|z — y|?
= — —— |dy. 25
uw. ) =~ [ pl)es (F25 2 )ay (25)
If we substitute ( ) into (23), then we find
koly =y koly — 2y
— dy'd
U( 271'21 //]RQX]RQ f y exp( 22’1 ‘ 22’ ) yoy
n_ o
// exp( ol = l2) | Koy~ (@ y))dyldy
2’/T21 ]R2><]R2 221 21
= f(z), (26)
where we have used 2ml)2 Jg2 exp (i M)dy =0(y' —x). O

This proposition shows that the reconstruction of the initial field is perfect under
these ideal conditions. In (23) we have assumed that the receiver array is large
enough to collect the whole wave and we have

:Bza:: uw212w: (E2$.
[ W@Pie = [ @)k = [ (f@) (27)

We will address the case where the array has a limited aperture in section 6.
Let us now consider the case where the medium is randomly heterogeneous in
the section z € (za, 2p).

Proposition 2. If the medium is randomly heterogeneous then the mean image is

E[U(x)] = f(x)exp ( BT za)’ (28)

gsca

where Lgen 18 the scattering mean free path

8

gsca = W . (29)

Proof. From (17) the mean field is the field obtained in a homogeneous medium but
with an exponential damping

Zb — Za)

gsca

E[u(z, 21)] = u(®, 21) |homo €xp ( - (30)

The desired results then follows. O
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The expected image has the same resolution as the image obtained in homoge-
neous medium, one can observe only a damping. The damping depends only on
the thickness z, — z, of the random medium, not on its position. Matched field
imaging, therefore, is not sensitive to the shower curtain effect.

The exponential damping plays an important role, because the variance of the
image does not experience such damping. As we will see below, when the medium
is randomly heterogeneous, the image actually looks like a speckle pattern in which
the damped image of the original field is embedded.

Proposition 3. The variance of the image Var(U(x)) = E[[U(z)|?] — |E[U(x))]|?
18

Var((a)) = [ 7P Qe ~r)ir, (1)
with
o)
= (271r)2 /]Rz ’g’“ exp / C —1}dCe ( %m)(zb—za)).
(32)

Proof. Let us consider the second—order moment

E[Z/{(ac)l/{( 271'21 //Rz R2 y721) (y/721)]
(12 —y[* |z — ) ) dydy’ (33)
21

By (18) we can express the second moment of the wave field in terms of the mean
Wigner transform:

xexp(

E[u(+ %MT—%}
:(2:51)2/]1%2 Wm(r,]z—j(r—w),zl)exp (%(T—m)-p)dr. (34)

By (21) we find

Elu(e + g)m] :ﬁ /]Rz Wino (¢, p)e™ P

2

kO
X exp (—

: / Clo+ -0~ CO)dz)ac. (35)

The second moment of the image is

B[ ()] / Wootc.0pesp (% [ c<,§c> c >dz)dc

\2/ e's@=m) eXp / C c(o )dz)dCd’r
R2

(36)
The variance of the image is, therefore, given by (31). O
Note in particular that
Var(U (z))da = / \f(r)2dr {1 —exp ( 9% T Z)] (37)
R2 R2 esca
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which expresses the conservation of energy (27): A fraction exp ( — 2%) of the
transmitted wave energy is coherent and the rest is incoherent.

When the medium is weakly heterogeneous zp, — z, < flsca, the image is clear
ElU(x)] ~ f(x) and Var(U(x)) ~ 0.

When the medium is strongly heterogeneous z, — z5 > fsca and C' is smooth so
that it can be expanded as

2
Cla) = €(0) = = +oflaf). el =0 (38)
par
with fpar = —2/A5C(0) the paraxial distance mentioned above, then the coherent
component of the image is exponentially damped as shown by (28) and the noise
standard deviation is significant. We have

Var(e)) = [ Ifr)P e —r)ar. (39)
with

3lpar 3lpar|r|?
_ _ par _ ZarTI 40
o) = (- ) 1o
Note that the kernel Q satisfies [, Q(r)dr = 1, so that we have [, Var(U(z))dzx =

Jgz |f(r)|?dr] as stated in (37). For instance, if f(x) = exp(—|z|*/(2r2)), then

ar(U(zx)) = S exp( — |- (41)
I+ 3%1{;,; rs (1 + 3:gep:r)

Note that the square width of the incoherent field is proportional to 2z — 22 which
increases with z, for a given thickness zj, — z,. This is a first manifestation of the
shower curtain effect: the spreading is larger when the complex section (of fixed
thickness) is farther from the source.

5.2. Optical imaging. In optics it is not straightforward to observe the complex
field, it is more usual to record the intensity (the square modulus of the complex
field). Tt is then possible to propose imaging methods based on the use of a simple
optical device, such as a lens, and a photodetector that records the intensity profile.
This is actually the principle of the human eye and the approach we will use here.

The field is generated by a source in the plane z = 0, it goes through a convergent
lens located in the plane z = z; and the transmitted wave is recorded in the plane
z = z3 by a photodetector (which records the spatially resolved intensity). The
transmitted intensity in the detector plane z = 21 4 25 is

ik, kol — y|?
— / gz Tw)esp (1H5 Y )ay

where u(y, z1) is the complex field in the plane z = z; and 7 (y) is the transmission
function of the lens. A perfect, full-aperture lens has a transmission function of the
form

2
; (42)

(@) - |

T (y) = exp ( - ik02|2|2 ), (43)

where L is the focal length of the lens.

As we will see below, when the medium is homogeneous, then we have Z(x) =
|f(x)|? up to magnification. When the medium is random, Z(z) is blurred in the
sense that it is a smoothed (and magnified) version of |f(x)[?> and we want to
quantify the blurring in this section.
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In (42) we have assumed that the lens is large enough to collect the whole wave

and we have
/RZ I(z)de = /]R lu(a, 21)|2da = /R 1 (@) 2de. (44)

We will address the case where the lens has a limited aperture in section 6.

Proposition 4. If the photodetector is placed so that
1 1 1
—-—=— 4 — 45
=t (45)
and if the medium is homogeneous, then

éf(—z—lac)r. (46)

T =
(@) =17 .

The condition (45) means that the detector plane z = z; 4 29 is the conjugate
plane of the source plane z = 0 by the lens located at z = z;. Proposition 4 shows
that we can perfectly reconstruct the intensity profile of the initial condition. The
image is inverted and magnified, and the magnification factor is M = —z5/2;. It is
M = —1if z; = z5. For a typical optical device (such as the eye) we have zo < 21
and the image (such as the one formed on the retina) is a reduced and inverted
version of the source.

Proof. We have

I()
.ko|y_y/|2 -ko|y_m|2 -ko|y|2> e
_ _ dy'd ]
2122 //]RZXR2 (Z 221 T 222 ! 2L vy
ko / ko 2 / 2
_ // (ZM pikelel e (E g)>dy/dy’
2122 1R{2><1R2 221 222 z9 z1
B
z9 Z9

We next consider the mean imaging function when the medium is randomly
heterogeneous and (45) holds true.

Proposition 5. If the photodetector is placed so that (45) holds and if the medium
is randomly heterogeneous, then

E[Z(@)] = le( @), (47)
/|f PH(w — r)dr (48)
H(z) = (%) / exp (iC )exp(k: /Z:bc(cljo)—(,*(o)dz)dc. (49)

This means that the image is the magnified convolution of the initial intensity
distribution | f()|?. The convolution kernel #(z) depends on the random medium
properties. The magnification factor is M = —z1/zs.

Proof. We have

B2(w) = s [ Bty ) e (— B2 (1 - )

(27r22
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"
xexp(; (lz = yi* ~ o — y/'I?) ) dydy’

— q
27‘(’22 //]RZX]RZ 27Z1)u(r_ 5721)}

X exp(—z—r q —zk—(w —-r)- )drdq,

L z92
which can be expressed in terms of the mean Wigner transform as
E[Z(z)] = ks Wi (7 ko, + @(:c —7),2z)dr (50)
a (27T22)2 R2 m ’ L z9 ot '

By substituting the expression (21) of the mean Wigner transform we get
E[Z(z)]

_ kfz) T . Z1 21
W //]IQ2><R2><]R2 WmO(CaQ) exp (Z((]- - f)r + ;2(213 — 7‘)) . C)
2 Zb
X exp ( - i(%’“ + %’(m —7))-q+ %/ C(g+ Cki) - C(o)dz)drdcdq.

Using (45) and integrating in = (which generates the factor 6(q)), we find
E[Z (w)]

k‘2 Zb
(27r2 2/ WmoCO)exp(—zC x 2)exp(4/2 C(Ckio)—C(O)dz)dC,

a

From the expression (22) of Wiy we finally obtain the desired result. O

The convolution kernel (49) determines the image quality. Its radius gives the
resolution of the image. In a homogeneous medium (C' = 0), it is a Dirac distribution
0(y). In a random medium,

H(y) =exp ( - %@(zb - za))5(y) + ﬁ /]Rz exp (i€ - y)

X | exp k—‘z’ b C(Ci) —C(0)dz) —exp | — k5C(0) (zb — za) ) | dC.
1) "%k 1
(51)

The first term of the right-hand side is the contribution of the coherent wave and
the second term is the contribution of the incoherent waves. The contribution of
the coherent wave decays exponentially with the thickness z, — z, of the random
medium, whatever the position of the random medium in between the source plane
z = 0 and the lens plane z = z;.

When zp, — 2, < lsca, the contribution of the coherent wave dominates and the
image is good, independently on the location of the random medium.

When 2z, — 25 > flgca, the contribution of the incoherent wave dominates. We
assume now that the medium is smooth so that C(x) can be expanded as (38). We
then have

1 ly|?
. 52
H(y) = R L Xp( 2R§m) (52)

It is a Gaussian convolution kernel with radius R, ., defined by (6). This result
is a manifestation of the shower curtain effect (see Figure 3). For a given thickness
of the random medium z, — z,, the radius of the convolution kernel increases with
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2h;2a ——source
Source Detector == Za = 2Zh — Za
r [ 0.8 e |+ Za = 5(2p — za)
P | | == 2za = 10(z1, — 2a)
P i : —=0.6
i [ 8
[ L g
<~ 04
Za=2b— Za
Sy E—— 0.2 i
2o = 5(2p — 2a) A
T Y — 0 2 3 S
° B -20 -10 0 10 20

z/r,

FIGURE 3. Source imaging in the optical set-up. The left pic-
ture shows the set-up with three different locations of the ran-
dom section. The right picture shows the original source func-
tion and the three corresponding mean optical imaging func-
tions. The source function is a double peak. The mean opti-
cal imaging functions are blurred versions of the source function,
with a blurring that increases when the random section is far-
ther from the source. Here we consider a two-dimensional situ-
ation, f(z) = exp(—(x —4r,)?/(2r%)) +exp(—(z +47,)%/(2r2)) and
(2b — 2a)3/(6par) = 0.2%72.

Za. So the image is much clearer when z, ~ 0 (the random medium is close to the
source) than when z, ~ z; (the random medium is close to the detector).

In this section we have considered the mean imaging function. In practice we
observe one realization of the imaging function Z(x). It is therefore of interest
to analyze the statistical stability of the image, which is based on the study of
Var(Z(x)), which in turn involves fourth-order moments of the wave field. As we
will see in Section 7, the image Z(x) obtained in the time-harmonic regime as
described in this section is not statistically stable (i.e. Z(x) # E[Z(x)] or equiv-
alently Var(Z(z)) > E[Z(x)]?). In order to get a statistically stable image (i.e.
I(x) ~ E[Z(x)] or equivalently Var(Z(x)) < E[Z(x)]?) we need a self-averaging
mechanism. As we will see, this can be situation when the source is broadband, and
therefore the image is the superposition of many uncorrelated components, which
insures the self-averaging property. This question will be addressed in section 8.

6. Imaging with a limited aperture. We revisit the previous section when the
receiver array (matched field imaging) or the lens (optical imaging) has limited
aperture. We assume that the limited aperture can be modeled by a Gaussian
cut-off function with radius D.

6.1. Matched field imaging. The imaging function is (instead of (23)):

ike iko|z — y|? \yIQ)
_ _ _ dy.
U =5 /]Rz “(y’zl)eXp( 22 op2) Y

(53)

If the medium is homogeneous, by substitution of (25) into (53) we obtain

koD? / kolly'| = |=*)  k3D? 2
— ;o _ Yo _ d /
Uw) = =5 | W) exp (Z o 27 1=yl ) y
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1 2 ) ( s>  x-s zl\s|2)
— St ds. 54
o RJ(“” D) P\ Ty e (54)
If the receiver array is large enough so that
ro < D and z; < k,D?, (55)

where 7, is the radius of the support of f, then we get

U(x) = %/]R? f(:c kles) exp(— |87>ds. (56)

This shows that we get a blurred image of the initial condition, with a blurring
kernel that is Gaussian with radius z;/(k,D) (the Rayleigh resolution formula).
Note that, due to the fact that the array aperture is not infinite, the image energy
is not equal to the energy of the initial field, but we have

2 _ L NF (e 2L ) o8l 2
. |U(x)|*de = //]R?x]sz cc+ s)f( Ds) dsda:</ |f(x)|*dx,

(57)
the last inequality is due to Cauchy-Schwarz. For instance, if
|z — :c0|2>
= - 58
f@)=ew (- 5550), (58)
then
22 -1 |z — o|? 22 -1
Uw) = (1 + k2D2r 2) P ( 22 (1 * k‘2D2r2) )’ (59)
and
2 2 i -t
| @par = [ ir@Pae(1+ o) (60)

This shows that matched field imaging is correct as long as z; < k,Dr,.

If the medium is randomly heterogeneous, then the expected image has the same
expression as in the homogeneous medium, but with an additional exponential
damping factor. In particular, if (55) holds true, then

1 21 |s|? b — Za
Eu@)] =5~ | f( Jexp (=2 )sexp (- ). 61
[ (m)] 5 /R? flz koDS exp 5 S exp o (61)
This shows that the coherent image energy is strongly damped:
21
|IE[ )|?de =— // +—sfa:f—s ~ls* qsda
IEAC ol il

xexp(—?zb_za).

gsca

Let us consider the second moment

B ~gatss [, Elut.a e

/ /12 _al2) _ ‘y|2+|y/|2) !
xexp(%u —y P - le—yP) - o )dydy. (63)

After using (21) we find:

K2D? Dk, laf
E[ju() T 167322 //szexp i q_i‘* —¢l _4D2)
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. 2 21— Za
Wan(Ga= ¢ exp (%2 [ Cla= 26~ C(0)d:)dcda.

The variance of the image is, therefore,

Var(Z/I
k2D? D? k, 2 |g*\ 21
RTEE: //R2xR2eXp Z*w q—7|fq—c| —@)Wmo(c,q—kfoc)

e[

Z1—2Zb

Clq - —C)dz) - 1} d¢dqexp ( zzbé;;a). (65)

As a consequence, we have

» Var(U(x))dz :f—j /R2 exp ( — %2|C|2)Wmo(c, —%C)
x [exp (%2 /b C(kioc)dz) - 1} d¢ exp ( _ 2zbés—caza>.

(66)

When the medium is weakly heterogeneous zp, — z, < fsca, the image is clear
Var(U(x)) ~ 0.

When the medium is strongly heterogeneous z, — z5 > 5., and C' is smooth so
that C(x) can be expanded as (38), then the mean (coherent component) of the
image is exponentially damped as shown by (61) and the standard deviation is much
larger than the mean as we now explain. If the initial field is (58), then we have

(21 — Za)3 -

_ (21 —2p)%1 71
/RzVar(Z/{ ))da = / f(r |dr[1+k2D“+ ST, |6

The ratio of the coherent image energy over the incoherent image energy is

Jez [EU()][*da _ [1 I (21— 2a)® — (21 — Zb)3:| exp ( _9?b s:aza)’

Jea Var@e)de ~ U 5p20,, (15 i) ‘

which shows that the image quality is poor when zy, — 2z, > fyca-

(68)

6.2. Optical imaging. We consider next optical imaging in the case with limited
aperture. The imaging function is (42) as before, however now the transmission
function of the lens is:

Tly) = exp (- ifoWl WY, (69)

The mean imaging function is given by

) =gy [, B lo onte - .0

ko r> lal?
xexp(—zfr q—zg(m—r)q—ﬁ—w)drdq. (70)

We assume that (45) holds true and then by following the same steps as in subsection
5.2, we get that the mean imaging function has the form

E[Z()]
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2 k2 D> k2D?|q)> g+ 7:¢I?
= mO Cv )exp( - 2 )
R2xRR?

22 167322 422 4D?

xexp(<’;q+<) Zayr ke [Morel) - coaz)acag )

When zp, — 2z, < lyca, we get the result corresponding to a homogeneous medium.
If the receiver array is large enough so that (55) is satisfied, then

29 2T

BIZ@) = 2(6) o= [ 257 [ (= L2+ 2s) e (- S )asf. (72)

This shows that the image is obtained by a blurring of the initial field with a Gauss-
ian kernel with radius z1/(k,D) and a magnification by the factor M = —z;1/zs.
The radius of the Gaussian kernel corresponds to the Rayleigh resolution formula.

When 2y, — 2, > lsea, and the medium is smooth so that C(x) can be expanded
as (38), we have

E[Z()]
2 k4D2 o k2 _ Ay _p 2
[ i 76 - Dew (- P AT
23 Am? a+ D2 ]R?x]R2 2 21(a+ﬁ)
QZkOb 2 o ® kD%,
- (o) qti2qor— (c— + 2 )drda,
Zl(a-i-%)( 22 ) Z1q ( a+ gz 47 Jlal q
(73)
with
LR s (74)
327 lpar
2
b ke [321 (28 — 22) — 2(z — 22)], (75)
IZZ%KPM a a
k,Q
=Ko [3:2(a,— 2) = Ba (e — ) + (5 - ). (76)
12270 par

The expression (73) is complicated, but it is clear that the random medium induces
blurring. For instance, if the initial condition is a sharp peak so that we can consider
that f(x) = §(x — x), then

2 42
25 k:D

E[Z(z)] = 4T (-
()] 23 42z} (a + %) P ( 22(a+ %)

k2| — Zx — x0)?

ol — 2 ) (77)
Up to the magnification factor —z;/z2, this shows that the point spread function
of the mean optical imaging function is a Gaussian with radius

2 2 2 3 3

z az z z -z
212+712: 212+ o (78)

2k2D 2k2 2k2D 6par
which is the root mean square of the point spread function radius in a random
medium with infinite receiver aperture and of the point spread function radius in a

homogeneous medium with finite receiver aperture. This section, therefore, shows
that the shower curtain effect is also noticeable with a limited receiver aperture.
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7. Statistical stability of optical imaging in the time-harmonic case. In
this section we address the question of the statistical stability of the optical imaging
function. We address the full-aperture case only. We have analyzed the mean imag-
ing function E[Z(x)] in Section 5 in the case when the field is time-harmonic. We
will show in this section that the image is not statistically stable when scattering is
strong. We anticipate, however, that the use of broadband source (with bandwidth
smaller than the carrier frequency, but larger than a critical coherence frequency to
be determined) should not affect the resolution analysis but should ensure statisti-
cal stability. In Section 8 we address the broadband case and we determine under
which circumstances we can claim that Z(x) ~ E[Z(x)].

The second-order moment of the imaging function is

N K
E[I($) ] a (2mzg)* //]R? xR2 xR2 x R2 derdeadydy,

X E[u(ml, zl)u(w27 Zl)u(yl, Z1)U(’y2, Zl):|

ko
xexp (= 57 (@l =l + |l — [y )

iko
xexp (2 [lon —al? — Iy — @ + |22 2l — g2~ 2?]).  (79)
2
We introduce the special Fourier transform of the fourth-order moment defined by:

M2(£17£27C17 <27 Z)
:// E[u(mhz)u(wg,z)u(yl,z)u(yg,z)}
R2 xR2 xR2xR2

xexp (—iqy - & —iry - { —iqa - &5 — iry - {y)dgidgadridry, (80)
with
i+ r2t+qi+q T +T2—q1 — Q2
T, = 2 ) Yy = 2 ) (81)
33227‘1—7“2';‘(11—1127 y2:7“1—7‘2;Q1+(I2. (82)

If (45) holds true, then the second-order moment of the imaging function can be
written as

E[Z(z)?]

1 z1\4
- (27T)8 (;2) //]RZ xR2 xR2 xR2 dﬁldﬁQdCldC2
Mol o) e (261 () + G 6 G 6)- (89)

This expression shows that it is necessary to study the fourth-order moment of the
transmitted field.

7.1. The time-harmonic fourth-order moment of the wave field. We con-
sider the time-harmonic fourth-order moment My (:cl, T2, Y1, Yo, z) defined by:

MQ(xL T2,Y1,Y2, Z) = E|:’U,(a}'1, Z)“(an Z)U(yh Z)“(y?; Z):| . (84)
It satisfies
1

2k,

2

k
0:My = 5 (B, 480, =By, =By, ) Mo+ =2Us (@1, @2, Y1, Y2) Lz, 1) () Ma, (85)
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with the generalized potential

Us (21, 2, y1,92) =C(x1 — y1) + C(@1 — y2) + C(w2 — 1)

+ C(IIJQ - yg) - C(w1 — 5132) - C(y1 - yz) - QC(O) R (86)

and it starts from Ma(w1, @2, y1,y2,2 = 0) = exp( — (|&1]* + [y1]? + 22| +
ly2[?)/(2r2)). Note that for simplicity, we here assume that the source function
is of the form f(x) = exp(—|z|*/(2r?)).

We consider the scintillation regime, that is, we assume that the radius of the
initial condition (source) is much larger than the correlation radius of the random

medium. We introduce a small dimensionless parameter £ in order to model this
scaling regime:

T zZ Zb z1 zZ9
To— —, C—=eC, za— = 2=, 21— —, 22— —. (87)
€ € € € €
We parameterize the four points @1, 2, y1,y2 in (85) as in (81-82). We consider

a propagation distance of the form z/e and we denote by M5 the function My ex-
pressed in the variables (q1, g2, 71, T2, 2/¢). The function M§ satisfies the equation:

i k2
az]\/IQ8 = E(vrl . vql + v‘l‘z : VQQ)MZE + ZOUQ(qla q27r17r2)1(za,zb)('z)M2€a (88)

with the generalized potential
Uz(q1,q2,71,72) =C(q2 +q1) + C(g2 — q1) + C(r2 +q1) + C(r2 — q1)
—C(q2 +72) — C(gq2 — 72) — 2C(0), (89)

and where we have not written terms of order . The initial condition for Eq. (88)
is

o2 +Ire? ol + |Q2|2)
272 272 '

The Fourier transform (in g1, g2, 71, and 73) of the fourth-order moment is defined

by:

M;5(q1,q2,71,72,2 =0) = exp ( —€

M§(£17£2aC17C27 g)

z

€
:// Mz(‘hyﬂhﬂ'lﬂ’%*)
R2 XR2 xR2 xR2 €

X exp ( —iqy - & —iry -y —iqa - &y — QT - C2)d7'1d7'2dqldq2. (90)
It is clear that the first term in the right-hand side of (88) gives a rapid phase term
in the equation satisfied by M5. Let us absorb this rapid phase by introducing the
function

MS(EU&%CUCQ; g) = MS(&I?&Q&CI?CQ? g) exp (%(52 “Cat+ & 41)) (91)

In the scintillation regime the rescaled function Mf satisfies the equation with fast
phases
2

9. M: 4(];;)21(%,%)(2) /]R? C‘(k){ OME(Ey, €0, ¢, C)
+ M(& — K, &y — k,Cy, Cy)el 7o P (Caten)
+ M5(&) — k, €5, 1, €y — k)el oo F (82t
M5 (&) + K, &y — K, Cp, Co)el TR (a6
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+M2€(£1+k7£2aC17C2_ )6 Ek k-(£2—¢€1)
- M§(£1a€2 - k, Cl’ CZ — k)eiﬁ(k'(42+£2)*|k|2)

- MQE(SD 52 - ka Clv C2 + k)eiea)(k'(C2_€2)+lk|2):| dk’ (92)

starting from M5 (&, &2, ¢y, Car 2 = 0) = (2m)%65, (£1)65, (£2)0%, ()65, (C), where
@7, is defined by
2 r2lef?
5 _ o _ o
(&) = 27e? exp( 2e2 )
The following result shows that MQE exhibits a multi-scale behavior as ¢ — 0, with

some components evolving at the scale € and some components evolving at the
scale 1.

(93)

Proposition 6. The function M§(£1,£2,C1,C2,z/5) can be expanded as

Mg(élaéQvCl?CZag)
= K(2)¢7,(€1)47, (€2)07, (C1)97, (C2)

20 (B8t (067, (@A ( 258 20
Rl LA NACAVICES 251 2ot
B A S LAV TGRS S
) (6 G (e 58, B
i o ea(s S8 GGy (’eggsl’czgcl)
L e S8 86 (L 66 6

+R;(Za€1752aC17C2)7 (94)

where the function K is defined by

K(2) = (2m) exp ( — % (0) min((21, — 20), (2 = za)+)), (95)

the function (z,€) — A(z,&,¢) is the solution of

9.4 — 4(’2";)21(%%)(@ /]R C(R)[A(E — R)eFiR < — A(g)]ak

k2 . iz
o €<
+4(27r)2K(Z)l(za,zb)(Z)C(S)eko ) (96)
starting from A(z = 0,€&,¢) =0, and the function RS satisfies
& 0
S[lép | 1R5(z, ')||L1(R2><R2><R2><R2) =0. (97)
z€|0,2z1

This result was already formulated in Proposition 6.1 in [8]. It shows that, if we
deal with an integral of M5 against a bounded function, then we can replace M5
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by the right-hand side of (94) without the R§ term up to a negligible error when &
is small.

7.2. The second-order moment of the optical imaging function in the
time-harmonic case. We again consider the scintillation regime, that is, we as-
sume that the radius of the initial condition is much larger than the correlation
radius of the random medium. We introduce a small dimensionless parameter ¢ in
order to model this scaling regime as in (87).

Proposition 7. When € — 0, the mean optical imaging function is
T

E[Z(Z)]
_(zl>2;ﬂi/ e (ic- (- 2a) - 2|C|2+4/:b0(gki)0(0)dz) (98)

22

and its variance is

Var(I(%))
:(ﬂ>4‘42daexp(ia (@) ok, () exp ( / Clag) ~CO)d:)[

Z2

- ’/deaexp(za (fﬁm)) {F( )exp( ]10 (0)(zbfza))‘2. (99)

22

Proof. Flrst, the expression of the mean follows from (71) in the scaling regime (87).
Second, we find that the second-order moment of the optical imaging function is

E{Iéﬂ

:(Qﬂ / d¢, exp (2i¢; - (— w))qﬁio(CI){K(zl)Q

+K(zl)//Rz I dC,désdr, (Co) [A(21, €, Co + C1) + Al21, €5, 8o — ¢1)]
K(Zl)/Az B2 d42d£2¢io(£2)A(Z17C27€2 +C1)

+ K(z1) //R2 2 d42d£2¢i0 (52)14(7«'174'2,52 - C1)

+ i //R2><R2><]R2 dC2d€1d€2¢}~o(42)A(z &+ El:Cz +¢)A(z, £ §£1:C2 —¢)
+ i //R2XR2><]R2 d¢,d€,déy e, (€5) A2, Cat 51,52 +¢)A(z, %752 _ Cl)}
Therefore we can write
Var(Z(2))
1 4
e () / Ay exp (2i¢, - ()6}, (¢1)
K(z1) // d¢ad€ady, (C2) [A(21,€2,Co + C1) + A(21,€5, ¢ — €1)]
R2 xR?
1
- Z//R?X]RZX]Rz d¢,dé1déser, (C2)A (2, S2t 517C2 +¢1)

A(Zla 52 ;517C2 7C1)}7
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Var(Z(D) = (2) [[, daaen (ita - 9) - (-Za)) oty ()0, (8)
X {K(zl)E(zl,a) + K(21)E(21,8) + E(zl,a)E(zl,,B)}, (100)
with

= /]R2 A(z,€,¢)dE. (101)

From (96) the function F satisfies the ordinary differential equation (in which ¢ is
frozen)
2

k kS
0-B = P10,)(3)[O(C) —1| B+ FEE ) (0CE),  (102)

starting from E(z = 0,¢) = 0, which makes it possible to obtain a closed-form
expression:

k2C(0 — Za
E(Zl,C) = ( eXp / C } exp( W) (103)
Substituting this into (100) we obtain the expression of the variance of the optical

imaging function (99). O

In the strongly scattering regime the expressions of the mean and variance of the
optical imaging function become simpler and we study this situation in the next
subsection.

7.3. The second-order moment of the optical imaging function in the
time-harmonic case and in the strongly scattering regime. In the strongly
scattering regime, when zj, — 2, > fs., and the random medium is smooth so that
C(x) can be expanded as (38), then the mean optical imaging function is

2 1 — Z1gp|?
E[Z(3)] = (2) —Z= e (- =5 ). (104)
z Zb_z 2 2L "%
c 20 1457 270 "o T 30
and its variance is of the form
4 1 2 le 2
Var(I(E)) :(ﬂ> T35 3 &XP ( - | 3 ,le, )
© 27 (1+ 37?2@;) o+ T
that is to say,
T T\ -2
var(z(2)) = E[Z(2)]* (105

This shows that the fluctuations are of the same order of magnitude as the mean
image, in other words, the image is not stable.

8. Stability in the broadband regime. We consider here an initial condition of

the form
|z|?

f(z,t) =exp ( — E)g(t) + c.c., (106)

where g(t) is a time profile with central frequency w, and bandwidth B, so that its
Fourier transform has the form:

g(w) = %éo(%). (107)
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The time-dependent transmitted field at z = z; is

1 ,
— [ u(w,x, z1)e “'dw + c.c., (108)
2
where u(w, x, z) is solution of the Itd-Schrodinger equation (in which w is frozen)
starting from
=)o) (109
w).

2r2 g

The optical imaging function is the spatially resolved wave energy recorded by
the photodetector in the plane z = z29:

kW) -yl kw)y]*
/dt’/d 27T22 RQdyu(w,y,zl)eXp (z % =7 zw(t) |
110

u(w,m,z:O):exp(f

2

)

where k(w) = w/c,. By Parseval’s formula this can also be written as:

I(z) :/R;L: ];gz /R2 dyu(w,y, 21) exp (ik(w)‘;; y’ —ik(O;)Lw'Q)‘Q. (111)

As a consequence, if (45) holds true, then the mean imaging function is

E[Z(z)] = (ﬂ)sz( - zia;) (112)

22 2

Tufw) = [

with the convolution kernel

(o) /(21:|g |2/ A exp (ic )exp(k(ciﬁ /:bC(Ck(ZwQ_C(O)dZ).

(114)
If g is of the form (107) and the bandwidth B is smaller than the central frequency
w,, then we have simply

dw ., o 1 ) K2 [# z
H(w) = {/}Rgg(wﬂ [ /R acexp (ic-a) exp (22 / C(¢)~Cl0)dz)].
(115)
where k, = k(w,). The mean imaging function has the same resolution properties

as the ones presented in Section 5
The second-order moment of the imaging function is

E[I(sc)Q]

dwidw
// 2 g k(wr)?k(w2)? // dzidzedyidy-:
27TZ2 RxR 277 R2 xR2xR2xR2

X E[U(Wh @1, 21)u(wa, @2, 21 ) u(wr, Y1, 21) u(ws, Yo, 21)}

exp ( — Z:;) ‘Q’H(w —r)dr, (113)

ik K
coxp (= P [y 2y 2] - T 2 )
ik ik
xexp (B g — o — g — ") + 5 (o, — af? ~ |y~ 2P]). (110

We introduce the special Fourier transform of the fourth-order moment defined by:

MQ(Wl,W2,€1,€27C17CQ,Z)
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:// E[u(wl,m17z)u(w27.’132,Z)U<W1,y1,Z)U(WQ,y2,Z):|
R2 xR? xR2 xR?
x exp (—iqy - & —iry- ¢y —iqa - &y — iry - {y)dqidgadridrs, (117)

with the four points @1, 2, Y1, y2 expressed in terms of g1, gs, 71,72 as in (81-82).
If (45) holds true, then the second-order moment of the imaging function can be
written as

E[Z(z)?]

_ 1 ﬂ 4 dwidws
() ] Sest [ asdgacac,
X MQ(W]_,(,U27£17£2’ C17 C2> Zl) exp <2ZC1 . (—%IE))

izl iZl
—_— . — (¢ — . — . (118
<o (g €+ ) (6 + &)+ 56— G) (6 - &) (119)
This expression shows that it is necessary to study the fourth-order moment of the
transmitted field at two different frequencies.

8.1. The two-frequency fourth-order moment of the wave field. Let us
consider two frequencies wy,ws. We consider the fourth-order moment

E[U(Wla xy, 2)u(wa, T2, 2)u(w, Y1, 2)u(ws, Yo, Z)}

My (21, ®2,Y1,Y2,2) = - _ (119)
|9(w1)[?]g(w2)[?
It satisfies
azM :J(iAw —Am — — A — A )M
272 w1 1+w2 e 2
1
+ 4702[]2(113171132;ylv:‘/2;Wl,(/.)2)].(Zawzb)(;;)]\4’27 (120)

with the generalized potential

Uz (21, T2, Y1, Y25 w1, wa) =wiC(x1 — y1) + wiwsC (@1 — y2) + wiwaC (w2 — y1)
+wiC (@2 — y2) — wiw2C (@1 — T2) — wiw2C (Y1 — Y2)
— (Wi +w3)C(0), (121)

2rZ

2 2 2
and it starts from My (x1, 2, Y1, Y2,2 = 0) = exp ( — [l ] des|+lys| )

We again consider the scintillation regime, that is, we assume that the radius
of the initial condition (source) is much larger than the correlation radius of the
random medium. We introduce a small dimensionless parameter ¢ in order to model
this scaling regime as in (87). We also assume that the bandwidth is much smaller
than the central frequency:

B — ¢B. (122)

Accordingly we parameterize the two frequencies w; and wo as follows:
w1 = W, + ew + €42, wo = w, + ew — XL (123)

We parameterize the four points @1, 2, y1,y2 in (120) as in (81-82) and consider
a propagation distance of the form z/e, moreover, we denote by M$ the function
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My expressed in the variables (qi, g2, 71,72, 2/¢). The function M5 satisfies the
equation:

(3
azM§ :E(Vﬁ 'vq1 + V"‘z : VQQ)M2€ - ko wo (vh Vth + v”z VQQ)MQ
i0 k2
- b w (vrl qu + v’rz Vql)MQ ZUZ(qlaq27r17r2>1(za,zb)(z)M2€a

(124)

with the generalized potential Us defined by (89) and where we have not written
terms of order e. The initial condition for Eq. (124) is

o |r1[* +[ra|? 2 a1]* + |QQ|2)

Mg(qquarlarQaZ:O) :eXp(—E 27.3 27”3

The Fourier transform (in g1, g2, 71, and 73) of the fourth-order moment is defined
by:

N z
M§(£17£27C13 C27 g)
z
= // Mg(qlanarlaTQaf)
R2 xR2 xR2 xR? €

X exp ( —iqy & —iry -y —ige - &y —iry - Cz)dmdrgdqldqg. (125)

Let us absorb the rapid phase in the function
~, z - z 1z
M;5 (€, €5.¢1,Co g) = M;5(&1,€5,¢1,Cos g) exp (E(Eg Cot+ & Cl))- (126)

In the scintillation regime the rescaled function MQ‘E satisfies the equation with fast
phases

0, M3 7k: (51 ¢1+&- CQ)M2 k‘ o (&, -¢+ & Cl)
2 o
+m1(za,n’)(z) /]Rz C(k)[—2M§(£1,£27C17C2)
+M2 k,£2 k Cl?C2 e skok(C2+< )

(& )

Jr]\42(51 k,§5,61,C —k)e' ik (€21¢7)

+ ME(E + K, &y — K, Cy, Cy)et o (€a=C)

+ME(E, + K, €y, ¢, Cy — K)ei TP (E27C0)
( k)

e ei e (e (Catea)—IkI?)

2

El7£2 k Clv C2

~ M5 (61,6 — K,y Gy + R)el e BT g (12)
starting from MS(&D&%CUC%Z =0) = (2m)® v (€1) io(é:g) 5. (€1)95, (), where
#5. is defined by (93). The following result shows that M5 exhibits a multi-scale

behavior as € — 0, with some components evolving at the scale £ and some compo-
nents evolving at the scale 1.

Proposition 8. The function M5(&,,&,, ¢y, Cy. 2/€) can be expanded as
—~ z
M; (517 527 Cl? C2a g)
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= K(2)%¢f,(€1)05, (€2)05, (€1)95,(C2)

-‘rK;Z) To(gl\/i£2) io(Cl) iO(CQ)A(Z7
; £ (B0, (€065, (@Al 255 8 )

— o . . + +
o, (R0t (€)of, (A (e 258 S8 )
K

n 2) TD(§1+C2> S (¢1)dE, () Az, G —& 52_471,_9)

E+& (ot
66t

=

+

=

+

(
(2) o
(

2 V2 2 €
H0L (€05, (€A, 8L 28 ) a(; o8 L2
o oo (e)ae ST 8 52?‘ )A(s 25 228 )

+R§(2»517€2,C1,Cz)7 (128)

where the function K is defined by (95), the function (z,€) — A(z,&,¢{,Q) is the so-
lution of (96) starting from A(z = 0,&,¢, Q) = 0, and the function RS satisfies (97).

This result is an extension of Proposition 6 in which the case w = 2 = 0 is
addressed. It shows that, if we deal with an integral of Mf against a bounded
function, then we can replace ]’\‘4“25 by the right-hand side of (128) without the R§
term up to a negligible error when ¢ is small.

8.2. The second-order moment of the optical imaging function in the
broadband case. We consider the scintillation regime, that is, we assume that
the radius of the initial condition is much larger than the correlation radius of the
random medium and that the bandwidth is much smaller than the central frequency.
We, therefore, introduce a small dimensionless parameter ¢ in order to model this
scaling regime as in (87)-(122).

Proposition 9. When ¢ — 0, the mean optical imaging function is
T
E|Z(—
(%))
2 2 Zb
o o (LA _ TelSE kS 2y
X[47T/R2dﬁexp<zﬁ (- @) = / () C(O)dz)}, (129)

and its variance 1s

Var(Z(2))
~a (%) [ apl iz @o(wéﬂ)ﬁ%(“;g)f]

><//R2X]R2 dadﬁexp((a B (—— - ))qbl%(a)(blgo(ﬂ)
+

V2

x {K(z1)B(21,0,9) + K(21)B(21,8,-9) + E(21,0,Q) E(21,8,-9) },
(130)
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with
2
Z' |£| Q’Zl ) .

131
o (131)

E(Zl,C,Q) :/R2 dgA(ZhstvQ) exp(—

Proof. First, the expression of the mean of the optical imaging function follows from
(71) in the regime (87)-(122). Second, we find that the second-order moment of the
imaging function is

E[I(ff]
“a(2) (]2 jfﬁpA( 7 ) (5[

x / dclexp@zcl (~Za)at, () { Ky

# K [ 00601 A o+ €10) + Aler. 3.6 = €1,0)]

Q
K(z //]sz . d¢od€s0y, (€9)A(21,Ca, €0 + €1, Q) exp (— |Cz\owozl)
Q
FRE) //RZ R2 dC2d£2¢iu (52)A(21a €2:8— €1, — ) exp ( |C]2g| wjl)
1
i 4 ‘//RzX]RZXRQ dc2d€1d€2¢}“0(42)A(21’ Lt 61 ,Co + ¢4, )
x A(217£2 617C2 Cl,O)
1
JFZ//11%2‘XR2><R2 A¢2d€,d820, ,(€2)A (21’ CZ+€1,€2+C17 )
— 0
XA(Zl,C22£1,€2_C1,— )exp( %)}

Therefore, we can write

var(T(3)) = ¢

w5 (5[

// dwd?
RxR 2 27T 282

X / d¢, exp (22'(1 . (——:L‘))qi),l_o (¢1)

Qz
K(z1) // dC2d§2¢ro(C2) (21752a42 + ¢, )exp( |£i‘ 1)
R2 xR2 oWo
1 €572
+ K (z1) dC2d£2¢ro(C2)A(Zla£27C2 — ¢y, =02 )exp( I )
R2 xR2 oWo
1 & + 51
+ 1 d¢,dg, Ay, L(C)A (217 G2+ G, )
R2 xR2 xR2
£ —¢ & &0
XA(Zl, 22 17C2*C1,* )exp( %)}7
which gives the expression (130) of the variance of the imaging function. O

The expression (129) of the mean imaging function shows that the bandwidth
does not affect the resolution in this regime. The variance of the imaging function is
given by the expression (130), which is exact but quite complicated. This expression
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can be simplified in the strongly scattering regime and we address this problem in
the next subsection.

8.3. The second-order moment of the optical imaging function in the
broadband case and in the strongly scattering regime. In the strongly scat-
tering regime, when 2z, — 2, > fsca and the random medium is smooth so that C'(x)
can be expanded as (38), then the mean optical imaging function is

x 21\ 2 ds . 1 | — §w|2
()] = (2) [ [ solil ] —ew (- ). (32

c 2 R 1 L+ g o+ 3

otpar par

while the function A solution of (96) can be approximated by the solution of the
parabolic partial differential equation
i0 2
koW, Al por
starting from As(z = 0,€,¢,9Q)
Fourier transform

As<za Z, C7 Q) =

212 4
azAs = ‘€|2As + 1(za,zb)(z) [AEAS - E‘CFAS - QZka . V5A5:|, (133)

(2m)*(8).

If we consider the partial inverse

(2m)2 /R As(2,€,¢, Q) exp(i€ - a)dE. (134)

then it is solution of
R 1) R
0.A = — " AgA —

OwO

ko
—1
Ay Z070)
starting from Ag(z = 0, ,¢, Q) = (27)2. The solution has the form

As(z,:c, ¢, Q) = (2m)% exp [ —aq(z) — ba(2)|z|* — ca(z)x - ¢ — dg(z)|C|2], (136)

where (aq, ba, cq, dq) is the solution of the system of ordinary differential equations:

2 ~
()[lel + P +2.-¢ @] A (135)

daQ . 4Q b

=

dz Eowe Y

dbg K2 40,

it U b

dz 4€par (za)Zb)(Z) + ZkoWo »

deq koz . 4Q

dz :2£ l(za,zb)(z) + Z]f w chﬂa
par oWo

ddQ 22 . Q 2

9 __~ 3 o

Lo Al o)) it

startingrom @2, bQ, CcQ, dQ)(Z = 0) = (O, 0, 0, 0) We have (a_Q, b_Q, C_Q, d_Q)(Z)
= (ag, ba, ¢a,da)(z) and by solving the system, we obtain

Q

a(zn) =W (y| —— (20 — 7)) (137)
otpar
kg(zb Za) Q
bo(z) = T \IJ( cogpar(zb—za)>, (138)
ko(2p 2a)? Q
calz) = I \IJC( Cogpar(Zb za)), (139)
_(Zb_za)3
do(21) T xpd( coépar(zb za)), (140)
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for {2 > 0 with the functions ¥, . 4 defined by

o(8) =In | cos T ,
14 1 h ’ 141
tanh(e 7 s
Uy (s) 2671%%8)7 (142)
~i% g tanh(e~3s) — 1 + cosh~ ' (e~i%
. (s) _g; ¢ '*stan (e7'15) - +cosh™ " (e 45)7 (143)
3 [° x - x
U,(s) =1— S—; (e7"% s tanh(e "% s) — 1 + cosh™!(e™'% s’))zds’, (144)
0
for s > 0. Finally
4ibq (2p)2(21 — 2
aq(z1) =aq(zp) +1In (1 — a blioofol b)), (145)
ba(2p)
ba(21) =t G (146)
kowo
ca(zb)
ca(z1) :1 — e ) (147)
kowo
s 5
do(z1) =doy(z) + —HE1L— 2b)calz) (148)

kowo — 4iQ(2z1 — 21p)ba(2p)

We then get (with aq, ba, co, do evaluated at z1)

e 2) ()" [ 5] [ (5l (5 o -t

B
‘ 1 | — Za|? 2
. - )
(4 5 +iEe) R+ -
° bari—i—zra®
(149)
If
B 2
— *a 1a
Coepar (Zb : ) <
then
T 21\4 ds 2 1 |- 2af? \12
V@) = (2)'[ [ grao] [ e (- 2] 050
2 R T T "ot B
By comparing with (132) this shows that the imaging function is not stable:
Var(Z(2
ar( (5)2 —1. (151)
E[(Z(2)]
If
B
Cogpar (Zb a Za)Z > 1,
then
Var(Z(2))
21 4[ ds . 4} [/ ds
=(— — — — 2R s
<22) R 4T gO(S)| R 2T exp( elan ))
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1

| = RIS
x e exp(f - )’ } 152
(14 e ) (1 + 45500 ) r2(1 4 dpe A )

kowor2

¢ bBSTg*Z 4z1Bs

By comparing with (132) and by taking into account the fact that

1
exp ( — 2Re(aBs)) :1 n 16]b5s (20) 2 B252 (21 —2p)2
k3w3

2
cosh A/ coQ[]j’ar (20 — za)V/|8]) + cos( cfgfar (20 — 2za)V/I8])
b

— 2a)4/$|), this shows that the imaging function

X

decays as exp(—+/2B/(colpar)(2
is stable:
Var(Z(Z Coar
Var(Z(2)) _ 0(%),  we= o (153)
E[Z(2)] B (26 = 2a)
To summarize, the statistical stability of the image is ensured by the source band-
width. If the source bandwidth is larger than the coherence frequency w. then the
image is stable.

9. Conclusions. We have analyzed the shower curtain effect and found that it is
an effect associated with the incoherent wave field and driven by random lateral
scattering. The intensity of this lateral scattering depends on the location of the
random section (the shower curtain) relative to the source. We expect that the
shower curtain effect can also be observed in a wave transport regime or for a
wave transmission problem through a rough interface, while it is small or even
vanishes for a medium with strong lateral coherence like a randomly (quasi-)layered
medium [6]. Note that optical imaging (with a lens) is less sensitive to the complex
medium fluctuations than matched field imaging. We have moreover shown that
for optical imaging in the strongly scattering regime the use of broadband signals
is important for statistical stability and high signal-to-noise ratio. Here broadband
means a broad frequency-band relative to the coherence frequency. We remark that
another mechanism to obtain statistical stability is via multiple snapshots in a time-
dependent medium, see for instance [11]. In this paper we have considered a coherent
source and passive source imaging while recent physical experiments and numerical
studies have used partly coherent sources and active imaging configurations. Such
configurations will be the subject of future work in view of the tools presented here.
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