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ARTICLE INFO ABSTRACT
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Recent years have shown great merits in utilizing neuroimaging data to understand brain structural and functional
changes, as well as its relationship to different neurodegenerative diseases and other clinical phenotypes. Brain
networks, derived from different neuroimaging modalities, have attracted increasing attention due to their po-
tential to gain system-level insights to characterize brain dynamics and abnormalities in neurological conditions.
Traditional methods aim to pre-define multiple topological features of brain networks and relate these features to
different clinical measures or demographical variables. With the enormous successes in deep learning techniques,
graph learning methods have played significant roles in brain network analysis. In this survey, we first provide a
brief overview of neuroimaging-derived brain networks. Then, we focus on presenting a comprehensive overview
of both traditional methods and state-of-the-art deep-learning methods for brain network mining. Major models,
and objectives of these methods are reviewed within this paper. Finally, we discuss several promising research
directions in this field.

Brain functional network

Brain network analysis

Network representation learning
Deep learning

1. Introduction the amount of neuroimaging communities, the longitudinal collections of

neuroimaging data serve as a strong foundation of current brain imaging

In recent decades, brain studies have gained more and more attention
for understanding brain structures and functions, as well as their changes
related to different clinical phenotypes or neurodegenerative diseases. The
advancement of neuroimaging technologies has provided a broad research
perspective and foundation for the studies of brain structure and function.
These neuroimaging technologies, such as functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalog-
raphy (EEG), provide insights into brain inner working patterns, allowing
us to capture detailed snapshots of brain activities, organizations, and ar-
chitectures. One of the valuable resources to promote the development of
neuroimaging studies is the neuroimaging data samples. Credit to the
advancement of medical informatics technologies (e.g., picture archiving
and communication system, or PACS') and the contributions provided by

* Corresponding authors.

studies, particularly for the big-data imaging studies (e.g., machine
learning and deep learning on neuroimaging studies). Another factor that
boosts the progress of this field is the development and spread of
high-performance computing technologies, such as super-computing
servers with advanced Central Processing Units (CPUs) and Graphics Pro-
cessing Units (GPUs), which provide powerful computation resources for
neuroimaging data computing. Moreover, a large number of studies have
been proposed to establish many computational methods for neuroimaging
data analysis from different perspectives, which is the third significant
impetus in this research field. This paper reviews the current neuroimaging
studies from one of the significant perspectives of brain imaging compu-
tational methods, i.e., brain network methods, to summarize a few current
studies and provide some potential future research directions.
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1.1. Introduction to brain networks

Current neuroimaging studies can be roughly categorized based on
the structure of utilized data. Some studies focus on time sequences ob-
tained by different neuroimaging modalities (e.g., EEG signal, fMRI
Blood Oxygen Level-Dependent, or BOLD signal) with signal processing
techniques.? > Many other studies®'° focus on using imaging features
from voxels or regions-of-interest (ROIs). However, increasing
evidence!''* indicates the brain is organized and functionalized based
on the interactions among many brain regions, particularly in explaining
various brain-related clinical phenotypes, resulting in more and more
attention in using brain networks for these clinical phenotype pre-
dictions. Brain network'>!” represents a 3D brain graph model,
comprising the nodes and the edges among brain nodes. The nodes are
brain ROIs and the edges can be defined using DTI-derived fiber tracking
or fMRI-derived correlation. Brain network has great potential to gain
system-level insights into the brain dynamics related to different clinical
phenotypes. The details of brain network definitions and constructions
will be discussed in Section 2.

1.2. Traditional methods

We state that the term “traditional methods™ here refers to methods
distinct from deep neural network methods. The traditional methods aim
to design novel algorithms to extract discriminative network features from
brain networks and investigate specific clinical tasks based on these
network features. The network features are pre-defined by researchers
with different research purposes, and we may leverage these purposes to
roughly categorize these traditional methods. Many research works aim to
explore the heterogeneity of topological structures of brain networks from
different groups (e.g., disease group and healthy group), which propose
various network topological measures such as the betweenness centrality
to measure the node centralities in brain networks.'® Some other
studies'®?® aim to distinguish brain networks from different groups based
on network similarities, which defines many distance metrics or kernels to
measure the network similarity features. A few other studies focus on the
frequency domain, which yields methods for spectrum feature ana-
lysis.?'2* Typical dimension reduction methods, such as Principal
Component Analysis, are also utilized to extract informative brain
network features for different clinical prediction tasks. The details of
traditional methods of brain network analysis will be discussed in Section
3.

1.3. Deep learning methods

Though great progress has been achieved, there are several limita-
tions existing in the traditional methods for brain network analysis.
Traditional methods may be sub-optimal since the pre-defined brain
network features contain less information than the original whole net-
works, which may also ignore important brain network attributes.
Meanwhile, a few traditional methods, due to the algorithm complexity,
may not be utilized for large-scale brain network studies. To analyze the
large-scale complex network data (e.g., brain networks), deep graph
learning techniques®® 3! have gained significant attention. A few
outstanding review papers®>>> have summarized recent deep learning
methods on brain network analysis, where the reviewed studies are
categorized based on the methodologies proposed in their works. How-
ever, our survey paper reviews the current studies from another
perspective, where we categorize current deep learning methods in brain
network studies based on their research objectives. We conducted a
comprehensive review of a series of papers published in top-tier journals
and conferences about deep learning on brain networks over the past
three years. Particularly, we collected 126 papers in this direction mainly
from Medical Image Computing and Computer Assisted Interventions
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(MICCAI), Information Processing In Medical Imaging (IPMI), Knowledge
Discovery and Data Mining (KDD), IEEE Transactions on Medical Imaging
(TMD), IEEE Transactions on Neural Networks and Learning Systems
(TNNLS), Medical Image Analysis, and Nature Neuroscience published in
the year of 2020, 2021 and 2022. Based on their research objectives,
these papers can be broadly summarized into 4 categories including
multimodal brain network representation learning, multiscale brain
network representation learning, dynamic brain network modeling, and
interpretable brain network learning models. The details of deep learning
methods on brain network studies will be discussed in Section 4.

The following sections of this review paper are organized as follows.
We provide an overview of the brain network data, including the data
constructions and publicly available datasets in Section 2. In Section 3
and Section 4, we provide a taxonomy for the traditional methods and
deep neural networks on brain network studies, respectively. In Section
5, we propose a few potential challenges and future research directions
for brain network studies. And we conclude our paper in the Section 6.

2. Brain network overview

In this section, we first introduce some preliminaries of graph-
structured data which is a standard mathematical model utilized to
represent the brain network. We then introduce different types of typical
brain networks as well as their construction methods. Finally, we sum-
marize several public brain network datasets that are widely utilized in
current brain network studies.

2.1. Preliminaries of graph structured data

We denote an attributed graph with N nodes as G = {V, E} = (A, X),
where Vis the set of graph vertices (or nodes) and E is the set of the graph
edges. Let v; € V denote a graph node (i.e., i — th node) in the graph and
e;j € E denote a graph edge pointing from the node v; to v;. Particularly, e;
equals ¢;; in an undirected graph, while this may not true in the directed
graph. Given a node v;, its neighbor nodes can be defined as N(v) = {u €
V|(u, v) € E}. A € RNV is the adjacency matrix of G, where the element
a;j of A is the weight of the edge e;. Particularly, A is a symmetric matrix
for an undirected graph, while is an asymmetric matrix for a directed
graph. X € RY*¢ is the node feature matrix of G, where x; € R'*“ of X is a
c-dimensional feature vector of v;.

2.2. Construction of brain networks

Due to the vast number of neurons, synapses, and fibers existing in the
human brain that will cause a computationally expensive task, it may be
intractable to construct the brain network based on each signal brain neuron.
Generally, a node in brain networks represents a brain region-of-interest
(ROI) that consists of a group of brain neurons, while an edge in brain net-
works represents anatomical or functional connections among these ROIs.>*
Different types of brain networks (e.g., functional networks, structural net-
works, morphological networks) can be derived from the corresponding
neuroimaging modalities (e.g., functional magnetic resonance imaging,
diffusion tensor imaging, T1-weighted MRI). Here, we mainly introduce 4
different types of brain networks including structural networks, functional
networks, morphological networks, and effective networks.

2.2.1. Structural networks

A structural network is formulated through the abstraction of a graph
originating from diffusion tensor imaging (DTI)*>® or diffusion spectrum
imaging (DSI).>¢~® These neuroimaging techniques gauge the diffusion
patterns of water molecules to create contrast in MRI scans, facilitating
the differentiation between gray matter and the underlying white matter.
With the preprocessed DTI data, 5 key steps are involved in constructing
a structural network:
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e Estimate the diffusion tensor based on the preprocessed DTI data at
each voxel. The diffusion tensor provides information on the local
orientation and anisotropy of white matter tracts.
Perform fiber tracking or tractography (e.g., deterministic algorithms
or probabilistic algorithms®**) to identify white matter pathways
based on the estimated diffusion tensor information.**
Define regions of interest (ROIs) within the brain, where the defined
ROIs correspond to different anatomical regions or functional regions.
Identify fibers between pairs of ROIs. A fiber is considered to connect
two ROIs if it passes through both regions. The presence of a fiber
between two ROIs indicates a potential structural connection between
them.
e Count the number of fibers connecting each pair of ROIs or compute
the average fractional anisotropy along the fibers connecting the ROIs
as the edge weights within structural networks.

2.2.2. Functional networks

Traditionally, the construction of a functional network entails the
utilization of functional Magnetic Resonance Imaging (fMRI), specifically
focusing on the blood-oxygen-level-dependent (BOLD) signal indicating
changes in blood oxygenation linked to neural activity in a brain re-
gion.*> With the preprocessed fMRI data, 4 key steps are involved in
constructing a functional network:

e Extract the BOLD time series for each voxel or brain ROI. Brain ROIs
can be defined anatomically, functionally, or through parcellation
techniques.

e Process and filter the BOLD time series data to remove low-frequency
drifts and high-frequency noise.

o Estimate the edge weights in functional networks by computing the
correlation between the time series of different brain regions.

e Threshold the correlation matrix to maintain meaningful connections
and denoise.

2.2.3. Morphological networks

Morphological networks utilize cortical metrics, such as sulcal depth
and cortical thickness, to quantify morphological differences between
brain regions.*®*® Extracted from T1-weighted MRI via Freesurfer pre-
processing,”® the steps include skull stripping, motion correction,
normalization, topology correction, and hemisphere delineation.”® Hemi-
spheres are segmented into regions using atlases (e.g., Desikan-Killiany).
For each region, average cortical attribute values are computed. The ab-
solute difference in these values between pairs of regions establishes edge
weights in the networks. With the preprocessed T1-weighted data, 6 key
steps are involved in constructing a morphological network:

o Extract the brain regions by demarcating the boundary between brain
and non-brain tissues with specialized techniques, such as FSL-
BET.51:52

Segment the brain to discern the distinct tissues in T1-weighted im-
ages, such as gray matter, white matter, and cerebrospinal fluid.
Partition the brain into discrete ROIs using parcellation strategies
rooted in anatomical landmarks and/or functional considerations.

e Extract a comprehensive array of pertinent morphological attributes
from each ROI, including volumetric measures, surface area, thick-
ness, and geometrical descriptors.

Quantify the inter-ROI morphological resemblances through the
computation of a similarity matrix, delineating the degree of struc-
tural convergence between pairs of ROIs.

Present the emergent morphological relationships as graph structured
data, where the nodes correspond to the designated ROIs and edges
encapsulate the ascertained morphological interconnections among
the identified regions.

2.2.4. Effective networks
Effective networks aim to capture the causal relationships and
directional influences among different brain regions, which is essential to
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understanding the brain functional activities under specific tasks and
different.>>° Several techniques, such as Dynamic Causal Modeling
(DCM)*®>° and Granger Causality Analysis,’*®* are used in inferring
and modeling the effective connections between brain regions by
analyzing the temporal dynamics of neural activities. The construction of
effective networks can be summarized in the following steps:

Obtain the signals from different modalities (e.g., fMRI, EEG, MEG) to
record brain activities of subjects engaged in specific cognitive tasks
or at a resting-state.

e Define regions of interest (ROIs) within the brain. These ROIs can
correspond to specific anatomical regions or functional areas that are
relevant to the study. ROIs can be defined based on anatomical atlases
or functional parcellation schemes.

e Extract time series data from the selected ROIs that represent the
neural activities of each brain region over time.

e Apply different methods, such as DCM and Granger Causality, to es-

timate the effective connectivity within effective brain networks. The

parameter estimation in for the applied will determine the strength
and directionality of these effective connections.

Conduct statistical tests to assess the significance of the effective

connections, and correct the reconstructed brain effective networks.

2.3. Datasets and implementation tools

We overview widely used publicly available brain network datasets
and algorithm implementation toolboxes (or libraries) in brain network
analysis.

2.3.1. Public brain network datasets

In recent years, the efforts invested in collecting and organizing
large-scale neuroimaging datasets have empowered researchers to
design and implement innovative computational intelligent ap-
proaches, including deep learning models, for different brain studies.
Based on this, multiple brain connectomic projects were proposed to
initiate and provide a series of brain network datasets for brain con-
nectome studies. We briefly summarize several representative brain
network datasets here.

e Human Connectome Project (HCP?). The HCP is one of the most
comprehensive brain mapping initiatives, providing high-quality data
on functional and structural connectivity in the human brain. It in-
cludes data from multiple modalities, such as resting-state fMRI, task-
based fMRI, DTI, and behavioral assessments.®>®°

e Open Access Series of Imaging Studies (OASISP). The OASIS (Open
Access Series of Imaging Studies) dataset is a well-known and
publicly available collection of neuroimaging data that primarily
focuses on structural MRI (Magnetic Resonance Imaging) scans of
the brain. It has been a valuable resource for researchers studying
various aspects of brain structure, aging, and neurodegenerative
diseases.®”:%8

Alzheimer's Disease Neuroimaging Initiative (ADNI®). The ADNI

dataset is a well-known and publicly available collection of neuro-

imaging and clinical data primarily focused on Alzheimer's disease

(AD) research. ADNI is a landmark project that aims to accelerate the

understanding of AD by providing valuable resources for researchers

studying various aspects of the disease, including its diagnosis, pro-
gression, and treatment.5%7°

e Autism Brain Imaging Data Exchange (ABIDEY): The ABIDE offers a
collection of resting-state fMRI data from individuals with autism and

https://www.humanconnectome.org
https://www.oasis-brains.org
https://adni.loni.usc.edu
http://fcon_1000.projects.nitrc.org/indi/abide/
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typically developing controls. It is a valuable resource for studying
brain connectivity in the context of autism spectrum disorders.” >
Center for Biomedical Research Excellence (COBRE®). The COBRE
provides resting-state fMRI and structural MRI data from individuals
with schizophrenia and healthy controls. It supports research into the
neural basis of schizophrenia.”>7®
NKI-Rockland Sample (NKIf). This dataset includes resting-state fMRI
and other neuroimaging data from the Nathan Kline Institute (NKI)
Rockland Sample, offering insights into various aspects of brain
connectivity.77
BNU18 and BNU3" Dataset. These datasets provide resting-state fMRI
data from the Beijing Normal University (BNU), which can be used to
study brain connectivity and its variations across different
populations.78
ADHD-200 Dataset.! The ADHD-200 offers neuroimaging data,
including resting-state fMRI, from individuals with attention-deficit/
hyperactivity disorder (ADHD) and controls. It supports research into
the neural basis of ADHD.”*%°
e The Human Brainnetome Atlas’. This atlas provides comprehensive
connectivity data, including resting-state fMRI and diffusion MRI, to
map and understand the human brain's functional and structural
connectivity.gl’82

2.3.2. Programming toolboxes and libraries

We summarize a few important programming toolboxes and libraries
in this section to facilitate researchers to implement their algorithms on
brain network studies.

2.3.2.1. Neuroimaging DATA Preprocessing. The widely used toolboxes
for neuroimaging data preprocessing include but are not limited to: SPM"
(Statistical Parametric Mapping),83 FSL' (FMRIB Software Library),84
FreeSurfer,™*° AFNI" (Analysis of Functional Neurolmages),®®> ANTs®
(Advanced Normalization Tools),*® MRtrix3”®” and CONNY(Functional
Connectivity Toolbox).%

The key services, benefits, and drawbacks of these toolboxes are
summarized in Table 1.

2.3.2.2. Graph analysis. The broadly utilized graph analysis libraries for
brain network studies include but are not limited to: NetworkX"®’
Graph-tool,>*° brainGraph“®! BCT (Brain Connectivity Toolbox),"'®
GRETNA (Graph Theoretical Network Analysis),"%? scikit-network,"*>
PyG (Pytorch-Geometric),*’* DGL (Deep Graph Library),””> and BGL
(Boost Graph Library).”96

¢ http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

f https://fcon_1000.projects.nitrc.org/indi/enhanced/

8 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html

h https://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_3.html

1 http://fcon_1000.projects.nitrc.org/indi/adhd200/

J http://atlas.brainnetome.org
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://surfer.nmr.mgh.harvard.edu
https://afni.nimh.nih.gov
http://stnava.github.io/ANTs/
https://www.mrtrix.org
https://web.conn-toolbox.org
https://networkx.org
https://graph-tool.skewed.de
https://github.com/cwatson/brainGraph
https://sites.google.com/site/bctnet/
https://www.nitrc.org/projects/gretna/
https://github.com/sknetwork-team/scikit-network
https://pytorch-geometric.readthedocs.io
https://www.dgl.ai
https://www.boost.org/doc/libs/1_82_0/libs/graph/doc/index.html
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The primary services, advantages, and disadvantages of these li-
braries are outlined in Table 2.

3. Traditional brain network mining methods

Generally, traditional pipelines for brain network analyses include
two stages. The first stage refers to feature extraction, where the effective
network features are extracted by different pre-defined methods. After
the feature extraction stage, statistical analysis will be conducted based
on the extracted features in the second stage. We summarize a few
traditional and widely-used methods for brain network analyses in both
stages in this section.

3.1. Network feature extraction

Four different types of network feature extraction methods are sum-
marized here including (1) network topological measure, (2) graph
kernel, (3) spectral graph analysis, and (4) dimension reduction.

3.1.1. Network topological measure

In network science, network measures refer to various quantitative
metrics or characteristics used to describe and quantify the topological
structures and/or functional properties of brain networks. These mea-
sures assist in gaining biological insights into the organization and
properties of brain networks. The network measures, proposed to
investigate brain networks from a different perspective, can be catego-
rized as follows:

e Degree and Similarity such as brain node degree and node strength.
Density and Rentian Scaling such as brain node density and Rentian
scaling.

Clustering and community structure such as clustering coefficient,
mularity, and transitivity.

e Assortativity and core structure such as Rich club coefficient and
core/periphery structure.

Paths and distances such as characteristic path length and cycle
probability.

Efficiency and Diffusion such as global and local efficiency, as well as
diffusion efficiency.

Centrality such as betweenness centrality and within-module degree
z-score.

Motifs and self-similarity such structural motifs and functional motifs.

The full list of network measures categories is summarized in Table 3.
The definition of each network measure is summarized in Rubinov and
Sporns '%; and the implementation of these measures can be found in the
Brain Connectivity Toolbox (BCT-Toolbox).

3.1.2. Graph kernel

Graph kernel-based methods are a set of techniques employed in the
field of network analysis to extract valuable features from graph struc-
tured data. The primary objective of graph kernel methods is to capture
the inherent structural information and patterns within these graphs,
thereby to simplify the high-dimensional complex network data which
facilitates the following statistical analysis. These methods rely on
mathematical functions known as graph kernels to compute similarity
measures between pairs of graphs, effectively quantifying their structural
similarities or differences. By applying these kernel functions to pairs of
brain networks, similarity scores are generated, serving as high-
dimensional features that depict the likeness between two brains. The
advantages and disadvantages of different graph kernel methods,
including Graph Edit Distance Kernel,””*® Graphlet Kernel,”>'%°
Weisfeiler-Lehman Kernel,'°%!% Subgraph Matching Kernel,'%%104
Graph Path Kernel,'*>'%® and Graph Alignment Kernel,'*”"1% are sum-
marized in Table 4.
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Table 1

Toolboxes for neuroimaging data preprocessing.
Toolboxes Main Service Advantages Disadvantages
SPM Functional and structural MRI analysis Widely used and comprehensive tools MATLAB dependency, steep learning curve
FSL fMRI and DTI data analysis User-friendly with GUI, extensive functionality Some tasks are memory-intensive
FreeSurfer Structural MRI analysis Specialized for brain morphometry, quality segmentation Limited for fMRI data, resource-intensive
AFNI fMRI and neuroimaging data analysis Broad analysis techniques, active user community Command-line interface, learning curve
ANTs Image registration and normalization Powerful image registration, multi-modal support Command-line usage, learning curve
MRtrix3 DTI data processing Specialized for diffusion MRI, advanced tractography Limited to diffusion MRI, learning curve
CONN fMRI connectivity analysis Specialized for connectivity, user-friendly Focus on functional connectivity, MATLAB-based

Table 2

Libraries for brain network analysis.
Libraries Main Service Advantages Disadvantages
NetworkX Graph analysis and manipulation Python-based, extensive documentation Slower for large graphs, not optimized for performance
Graph-tool Graph analysis and modeling Efficient C++ library, supports large graphs Steeper learning curve
BrainGraph Brain network analysis Specialized for neuroimaging data, user-friendly Limited scope outside neuroimaging, fewer features
BCT Brain network analysis Comprehensive toolset for neuroimaging data MATLAB-based, may require additional toolboxes
GRETN Brain network analysis User-friendly GUI, supports multiple imaging modalities Limited flexibility for custom analysis
scikit-network Graph analysis and machine learning Integration with scikit-learn, Pythonic API Smaller user community, fewer specialized tools
PyG Graph analysis and deep learning Deep learning integration, GPU support Requires familiarity with PyTorch or TensorFlow
DGLD Dynamic graph analysis Specialized for temporal and dynamic graphs Less support for static graph analysis
BGL General-purpose graph analysis High-performance C++ library, extensive features Steeper learning curve for non-C++ users

Table 3 Table 4

Network measures on brain network analysis.

Network Measure Examples

Degree and similarity Node degree and strength, joint degree,
topological overlap, neighborhood overlap,
matching index

Density, rentian scaling

Clustering coefficient, transitivity, local
efficiency, connected components,
community structure and modularity,
modularity degeneracy and consensus
partitioning

Assortativity, rich club coefficient, core/
periphery structure, K-core, S-core

Paths and walks, distance and
characteristic path length, cycle
probability, Characteristic path length,
global efficiency, eccentricity, radius,
diameter

Global and local efficiency, mean first
passage time, diffusion efficiency, resource
efficiency, path transitivity, search
information, navigation

Betweenness centrality, edge betweenness
centrality, within-module degree z-score,
participation and related coefficients,
eigenvector centrality, PageRank
centrality, subgraph centrality, k-coreness
centrality, flow coefficient, shortcuts
Structural motifs, functional motifs, quasi-
idempotence

Density and rentian scaling
Clustering and community structure

Assortativity and core structure

Paths and distances

Efficiency and diffusion

Centrality

Motifs and self-similarity

3.1.3. Spectral graph analysis

Spectral analysis methods focus on analyzing different frequency
components for the connectivity patterns of brain networks (particularly
for functional brain networks derived from fMRI, EEG, and MEG). These
methods are specially considered to understand the oscillatory dynamics
of brain activity, and the role of different frequency bands in information
processing and communication among different brain regions. Numerous
studies for special analysis methods on brain networks have been pro-
posed, yielding various analysis methods such as frequency decom-
position, 22 24109110 power  spectrum  analysis,?' 13 and
time-frequency analysis.'!*116

Advantages and disadvantages of different graph kernel methods. GEDK = Graph
Edit Distance Kernel, GLK = GraphLet Kernel, WLK = Weisfeiler-Lehman Kernel,
SGMK = Subgraph Matching Kernel, GPK = Graph Path kernel, and GAK = Graph

Alignment Kernel.

Methods Advantages Disadvantages

GEDK Captures structural Computationally expensive
differences effectively Can for large graphs Sensitivity to
incorporate domain-specific edit operation costs
knowledge

GLK Efficient and quick for large May not capture global
graphs Captures local structural properties Limited
structural patterns in handling variations in

graph size and structure

WLK Captures both local and global May not perform well on
structure Computationally highly irregular graphs
efficient, especially with Limited in capturing fine-
hashing grained structural differences

SGMK Captures local and global Computationally expensive
structural patterns Measures for large graphs Sensitive to
similarity based on common subgraph size and similarity
subgraphs definition

GPK Captures structural info Computationally expensive
through shortest paths Can for large graphs May not
handle weighted graphs capture fine-grained
effectively structural variations

GAK Handle labeled and attributed Computationally expensive

graphs effectively Capture
both structural and semantic
information

for large graphs

3.1.4. Dimension reduction

Since the brain networks are high-dimensional complex graph
structural data, it will result in information redundancy and dimension
explosion if we directly apply machine learning algorithms to original
brain network data, particularly for small-size datasets. Hence, a
dimension reduction or feature engineering (e.g., feature extraction and
selection) should be performed to remove redundancy information and
maintain discriminative features of brain networks before we apply
machine learning algorithms for specific tasks. General dimension
reduction methods include Principal Component Analysis (PCA),'Y In-
dependent Component Analysis(ICA),''® Isometric Mapping (Isomap),'*°
t-Distributed Stochastic Neighbor Embedding (t-SNE),'?°  Linear
Discriminant Analysis (LDA),121 and Laplacian Eigenmaps.122
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3.2. Statistical analysis

After extracting features from brain networks, various statistical an-
alyses can be employed to unveil patterns of brain changes across
different groups, such as control versus disease or male versus female.
Diverse statistical tests, including t-tests, ANOVA tests, and network
permutation tests, can be applied to investigate the presence of signifi-
cant group differences among various brain network groups. Currently,
machine learning techniques, such as linear regression, logistic regres-
sion, support vector machines, and k-means clustering, serve as powerful
tools for classifying and performing regressions on brain networks.
Additionally, network visualization techniques (e.g., BrainNet visuali-
zation as demonstrated in Ref. 123) are sometimes employed to visually
represent distinctions within brain networks.

4. Deep brain network representation learning

With the development of artificial intelligence (AI) techniques,
learning-based methods (e.g., machine learning, deep learning) are
broadly investigated and applied to brain network data for different
research purposes. Most of these learning methods are based on the graph
neural networks (GNN), a class of deep neural networks for graph-
structured data representations.”” 2%!24"128 Many research objectives
on brain network learning have been proposed in recent years. For
example, a few studies focus on developing deep learning methods to
model the multiview representations across different modalities-derived
brain network data. Some other studies focus on investigating the
interpretability of the deep learning models to yield biological insights
(e.g., finding new biomarkers that closely relate brain networks to
different neurological disorders) for the model outcomes. As shown in
Fig. 1, we summarize these studies based on these research objectives.

4.1. Multimodal brain network learning

Brain networks can be generated from different neuroimaging modal-
ities to depict and record the human brain from diverse perspectives. Two
main perspectives are generally considered, including brain anatomical
structures and brain functionalities, in multimodal brain network studies.
The target of the multimodal brain network learning is to aggregate effective
information from multiple data modalities to yield comprehensive brain
network representations for different clinical tasks.'?°1°* For example, Li et
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al.'*! proposed a joint graph convolution network (joint-GCN) to combine
the functional and structural networks by introducing inter-network edges
between the corresponding brain regions within these two brain networks.
The weights of these inter-network edges are trainable parameters that
reflect the non-uniform structure-function coupling strength across the
brain. This structure-function joint graph is embedded by a single GCN,
which allows for the integration of both functional and structural infor-
mation in the brain network learning stage. Another strategy to combine
multimodal networks is to model the network communications by con-
structing a map between different network modals, where networks of
different modals constrain each other. For example, Zhang etal.'*® and Tang
etal.'*® proposed generative graph neural networks to construct mappings
from functional brain network to the structural counterpart, while Zhang et
construct the mapping inversely. Ye et al.'>® propose a bidirectional
mapping framework to model the communication between functional and
structural networks from both sides and an ROI-level contrastive learning
method is utilized to yield a unified multimodal network representation.
Besides combining the networks of different modals in the latent space,
Zhang et al.'“*° performed the network fusion directly original graph space
by creating a fused adjacency matrix based on both structural networks and
the corresponding functional network profiles. In Table 5, we compare
several multimodal brain network learning approaches on HCP and OASIS
datasets for two classification tasks: gender classification and disease
classification.

al.'>®

4.2. Multiscale brain network learning

The complex human brain networks are organized hierarchically,
where different brain regions collaborate to maintain brain functional-
ities. Multiscale brain network learning refers to the process of modeling
high-order patterns in brain networks at multiple levels or scales of or-
ganization, aiming to capture and understand the interactions within and
between these different levels of the organization.'*®'%"~17® One of the
strategies for multiscale brain network learning is based on multigraph
investigation. For example, Tang et al.'”'"'73 proposed a series of hier-
archical graph representation learning models to extract hierarchical
structures (e.g., network communities) within brain networks, and
perform the graph pooling for brain network downscale based on the
captured the structures. The multiscale network representations yielded
from different pooling layers are fused for downstream task predictions
(e.g., neurodegenerative disease classifications). The generative graphic

Clinical Tasks

Brain Network Learning

fMRI BOLD Signal

Clinical
Tasks

Multiscale Brain Network Learning

@ Task 3|

in Bi ke
Interpretable Brain Network ﬁ’%ﬁﬁ‘é’ R

Fig. 1. Key research objectives of deep learning models on brain network studies.
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Table 5

Accuracy (%) for gender classification on HCP data and Alzheimer Disease classification on OASIS dataset by applying different deep learning models.
Multimodal Methods Gender Disease Multiscale Methods Gender Disease
Joint-GCN'*! 83.45 £ 1.61 78.26 + 0.71 MMTGCN ' 81.97 £ 0.71 78.47 £1.13
DSBGM'*® 82.19 + 2.01 78.92 + 1.38 HSGPL'”? 81.51 + 1.14 77.51 + 1.84
EC-GNN'°? 85.20 + 0.05 - Dual-HINet'®° 82.20 £ 0.25 76.42 £ 0.77

model is also a promising method to capture the hierarchical high-order
information from brain networks for multiscale learning. For example,
Pang et al.'®>'”? proposed different deep belief networks (e.g., a prior
knowledge guided deep belief network (PKG-DBN)) which fully leverage
prior knowledge to capture the hierarchical structures in functional brain
networks. Moreover, the diffusion kernel-based graph learning models
may also be considered for multiscale brain network learning. For
example, Zhang et al.'”® proposed a Diffusion Kernel Attention Network
that uses the Transformer model to incorporate high-order information
from interactions among much broader brain regions. Similarly, we
compare several multiscale brain network learning methods on HCP and
OASIS datasets in Table 5.

4.3. Dynamic brain network learning

Dynamic brain network learning refers to the process of modeling and
analyzing the time-varying or dynamic aspects of brain networks, which
are representations of the functional or structural connections between
different regions of the brain over time. Static brain network analysis
treats connectivity as constant, instead, dynamic brain network learning
considers that brain connectivity patterns change over time and can
capture fluctuations in brain activity or organization. The common
neuroimaging data sources for dynamic brain network learning include
fMRI, EEG, MEG, and DTI-derived brain networks. Dynamic brain
network learning can be used to study cognitive processes, investigate
brain changes resulting from neurological and psychiatric disorders, and
understand brain development,!5%1°3166:180-206 The recurrent neural
network (RNN) based architecture is one of the methods to model tem-
poral dynamics in brain networks. For example, Demirbilek and Rekik'®
proposed a recurrent multigraph integrator network (ReMI-Net) to pre-
dict the longitudinal evolution of population-driven brain connectivity
templates over time, which enables the identification of brain biomarkers
in dementia prediction. Dynamic Bayesian Networks (DBNs) are another
class of powerful modeling frameworks for capturing temporal de-
pendencies and dynamics in dynamic brain networks. For example,
Moguilner et al.?”’ introduced a Bayesian machine learning pipeline
based on dynamic connectivity fluctuation analysis (DCFA) on
resting-state fMRI data for neurodegenerative condition predictions.
Moreover, the transformer plays an undoubted role in modeling the brain
dynamics over time sequences. For example, Zhao et al.'>® proposed a
continuous multi-head attention-based graph transformer for Brain Dy-
namics modeling, where heterogeneous network representations can be
extracted from both spatial and temporal domains.

4.4. Interpretable brain network learning

Many deep graph learning models have been proposed for brain
network analysis, yet most current models lack interpretability, which
makes it hard to gain any heuristic biological insights into the results, and
to identify novel biomarkers indicating brain pattern heterogeneity
among different clinical phenotypes. A few recent studies make contri-
butions to proposing interpretable graph learning models which, from
different perspectives, yield biological insights and explanations on their
model outputs,t4%152171-173,208-216 g4 example, Cui et al.2! proposed
an explainable mask to identify the most important brain nodes and
edges as closely related biomarkers to different disease prediction
tasks.!”>17® designed an interpretable hierarchical graph pooling module
to identify the important brain regions as biomarkers related to multiple

clinical phenotypes and brain disorders. Liu et al.>!® proposed a frame-

work, DeepHoloBrain, that represents a region-adaptive interference
pattern between neural activities and a collection of reference harmonic
wavelets as a symmetric and positive-definite (SPD) matrix, allowing for
interpretability and analysis of brain states and disease connectomes.
D'Souza and Venkataraman®!'! proposed an mSPD neural network with
bilinear fully connected layers with tied weights, which achieves inter-
pretability by leveraging the underlying geometric structure of con-
nectomes in fMRI brain networks to discover stable biomarkers
associated with attention deficit hyperactivity disorder (ADHD).

4.5. Other research topics

The scope of brain network studies is so broad that many additional
topics are also worthy of attention, such as causality explora-
tion, !8%19%:206,217 powerful reconstruction tools, 68218221 and multisite
brain network learning.'*>**? Causal inference in brain networks refers to
the study of causal relationships between different brain regions that in-
volves identifying and understanding how one brain region's activity or
state causally affects the activity or state of another brain region. For
example, Zhuang et al?°® proposed a Bayesian framework, named
Multiple-Shooting Adjoint (MSA), to perform dynamic causal modeling to
estimate the directed causality among different brain regions in the func-
tional brain networks. Neuroimaging dataset is typically in small size,
therefore, data obtained from different sites as well as different scanners
may be jointly trained for deep learning models. However, domain gaps
obviously exist across different scanners introduced by the heterogeneity
of imaging modalities, radiologists, and imaging protocols, which makes
multisite learning exceptionally important.

5. Discussions and challenges

Although recent studies have made significant strides in the domain
of brain network analysis, numerous open questions persist, providing
ample opportunities for researchers to explore. In this section, we
delineate several noteworthy challenges that could serve as potential
future directions.

Initially, this review consolidates the construction procedures of
several frequently employed brain networks, along with publicly acces-
sible datasets for brain network analysis. Most existing studies focus
more on structural brain networks and functional brain networks, where
both brain networks are undirected attributed graphs with undirected
edge e;; between v; and vj (i.e., e = ¢;;). The difference between structural
networks and functional networks is that the e € E in structural networks
are positive values, while they can be negative in functional networks.
Since the functional networks are constructed based on the BOLD signal
correlation among different brain nodes, the positive and negative edges
represent synchronous activation and asynchronous activation among
brain regions, respectively. However, the directed brain graph (e.g.,
effective brain networks) is rarely studied, which may be a potential
direction to explore the functional influence among brain regions (e.g.,
causality influence between brain nodes). To this end, preliminary
studies should be conducted first to build up several effective directed
brain network datasets. Another challenge of the current brain network
dataset is data insufficiency, which will further limit the progress of big
data mining on brain network studies. For example, the current brain
network datasets may not be easy to utilize for the group difference
studies based on the deep learning model since the number of networks
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in a few subgroups may not be enough to train the neural networks.
Instead of enlarging the current dataset, technical methods in addressing
data quantity issues should also be strictly considered. These methods
include but are not limited to data augmentation techniques, fast algo-
rithms for brain network constructions from neuroimaging data, multi-
site learning for dataset combinations, and pre-trained model
development.®?*

We also discussed the model interpretability for current brain
network learning methods in this review, which is a very important di-
rection in the future that is closely related to clinical translations. Most of
the current studies provide biological explanations of their model out-
comes based on identified biomarkers related to different clinical phe-
notypes, such as the most important brain regions corresponding to
Alzheimer's Disease. However, the pattern changes of the pathway of
information flow among brain regions, resulting from neurodegenerative
diseases, gain more attention in clinical translation studies. Also, the
generalization ability of current interpretable models is always chal-
lenged across diverse populations and brain network datasets. The pro-
posed model may yield different explanations (e.g., identify different
biomarkers) for the same prediction task when utilizing different brain
network datasets, which may be due to the diversity of different popu-
lation groups, heterogeneity of brain network data, and the model's
robustness. Another more profound challenge is that the current model
yielded explanations (e.g., discovered biomarkers) are only evaluated by
the previous clinical references, while real clinical validations are
required for these biomarkers before the clinical translation stage in the
future.

Another future direction is distributed computing and resource-
decentralized techniques in medical big-data studies, which will
boost the development efficiency of Al communities. The collaborations
across multiple institutions and research centers will be closer in the
future, where the machine learning algorithms may be collaboratively
trained without sharing raw medical data. Therefore, distributed al-
gorithms such as federated learning, aiming to address privacy, secu-
rity, and data ownership sensitivities, will be a promising future
direction undoubtedly. Moreover, Large Language Models (LLMs) such
as GPT (Generative Pre-trained Transformer) are also likely to have a
substantial impact on brain network studies in the future, opening up
new possibilities and enhancing various aspects of research in this field.
The large language pre-trained model can serve as a powerful feature
extractor for brain network representation learning. It also has great
potential to tackle the brain network annotation issues, model inter-
pretability issues, and data augmentation issues by generating more
synthetic brain networks.?**

6. Conclusion

This survey paper commences with an overview of brain network
constructions and publicly available brain network datasets. Then the
research objectives of recent studies, encompassing both traditional and
deep learning methods for brain network analysis, are comprehensively
discussed. Finally, we propose several pertinent future directions,
aiming to serve as a catalyst for additional contributions to this evolving
field.
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