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Abstract. Function approximation is widely used in reinforcement learning to handle
the computational difficulties associated with very large state spaces. However, function
approximation introduces errors that may lead to instabilities when using approximate
dynamic programming techniques to obtain the optimal policy. Therefore, techniques such
as lookahead for policy improvement and m-step rollout for policy evaluation are used in
practice to improve the performance of approximate dynamic programming with function
approximation. We quantitatively characterize the impact of lookahead and m-step rollout
on the performance of approximate dynamic programming (DP) with function approxima-
tion. (i) Without a sufficient combination of lookahead and m-step rollout, approximate DP
may not converge. (ii) Both lookahead and m-step rollout improve the convergence rate of
approximate DP. (iii) Lookahead helps mitigate the effect of function approximation and
the discount factor on the asymptotic performance of the algorithm. Our results are pre-
sented for two approximate DP methods: one that uses least-squares regression to perform
function approximation and another that performs several steps of gradient descent of the
least-squares objective in each iteration.
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1. Introduction In vanilla PI, one has to compute the value function

In many applications of reinforcement learning (RL),
such as playing chess and Go, the underlying model is
known, and so, the main challenge is in solving the
associated dynamic programming problem in an effi-
cient manner. Policy iteration (PI) and variants of PI
(Bertsekas and Tsitsiklis 1996; Bertsekas 2011, 2019)
that solve dynamic programming problems rely on
computations that are infeasible because of the sizes of
the state and action spaces in modern reinforcement
learning problems. As a remedy to this “curse of
dimensionality,” several state-of-the-art algorithms
(Mnih et al. 2016; Silver et al. 2017a, b) employ function
approximation, lookahead for policy improvement, -
step rollout for policy evaluation, and gradient descent
to compute the function approximation; see Section 2
for a definition of these terms.

associated with each state of a Markov decision pro-
cess (MDP). This is clearly infeasible for large state
spaces; therefore, a number of techniques are used to
mitigate the computational intractability of PI. Our
goal in this paper is to understand the role of multistep
lookahead for policy improvement (i.e., repeatedly
applying the Bellman operator multiple times) and m-
step rollout (which is a technique to approximately
evaluate a policy by rolling out the dynamic program-
ming tree for a certain number of steps m1; see Section 2
for definitions of these terms) on the accuracy of
approximate PI techniques with linear value function
approximation. The algorithms we study in this paper
are closely related to least-squares policy iteration
(LSPI) (Lagoudakis and Parr 2001, 2003; Busoniu et al.
2012) and approximate PI; see Bertsekas and Tsitsiklis
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(1996) and Bertsekas (2019). In the analysis of approxi-
mate PI, it is assumed that the policy evaluation and
improvement steps have bounded errors, and using
these, an error bound is obtained for the algorithm that
repeatedly uses approximate policy evaluation and
improvement. We remark that vanilla PI is a special
case of approximate PI where there are no errors in
policy evaluation and improvement. LSPI is an algo-
rithm that builds on approximate PI where the policy
evaluation step uses a least-squares algorithm to esti-
mate the value function for the entire state space using
the value function evaluated at a few states. However,
the bounds presented in Lagoudakis and Parr (2003) as
well as the related studies in Lagoudakis and Parr
(2001) and Busoniu et al. (2012) are simply a special
case of the bounds for generic approximate PI (Bertse-
kas and Tsitsiklis 1996, Bertsekas 2019), and they do
not explicitly take into account the details of the imple-
mentation of least squares-based policy evaluation.
When such details are taken into account, it turns out
that the roles of the depth of lookahead (H) and rollout
(m) become important, and their impact on the error
bounds on the performance of approximate value iter-
ation has not been characterized in prior work.

The recent work in Efroni et al. (2019) considers a
variant of PI that utilizes lookahead and approximate
policy evaluation using an m-step rollout. As stated in
the motivation in Efroni et al. (2019), it is well known
that Monte Carlo tree search (MCTS) (Kocsis and Sze-
pesvari 2006, Browne et al. 2012, Swiechowski et al.
2023) works well in practice, even though the worst-
case compute complexity can be exponential (Shah et al.
2020a); see Munos (2014) for some analysis of MCTS in
MDPs, where the number of states that can be visited
from a given state is bounded. It is important to note
that many prior works use lookahead and that the use
of tree search as an enhancement of training RL algo-
rithms has become commonplace. For more on looka-
head, see Hong et al. (2019).

Motivated by PI, the algorithm in Efroni et al. (2019)
estimates the value function associated with a policy
and aims to improve the policy at each step. Policy
improvement is achieved by obtaining the “greedy”
policy in the case of PI or a lookahead policy in the
work of Efroni et al. (2019), which involves applying
the Bellman operator several times to the current iterate
before obtaining the greedy policy. The idea is that the
application of the Bellman operator several times gives
a more accurate estimate of the optimal value function.
Then, similarly to PI, the algorithm in Efroni et al.
(2019) aims to evaluate the new policy. The algorithm
in Efroni et al. (2019) uses an m-step rollout to compute
the value function associated with a policy (i.e., it
applies the Bellman operator associated with the policy
m times). The work of Efroni et al. (2019) establishes
that a lookahead can significantly improve the rate of

convergence if one uses the value function computed
using lookahead in the approximate policy evaluation
step. However, like the works of Bertsekas and Tsitsik-
lis (1996), Lagoudakis and Parr (2001, 2003), Busoniu
et al. (2012), and Bertsekas (2019), the work of Efroni
et al. (2019) does not study the use of function approxi-
mation, which is critical to handling large state spaces,
nor does it quantify the effects of varying m in the con-
vergence of their algorithm. Our results show that the
aforementioned results change drastically when least
squares-based policy evaluation is incorporated. For a
more detailed comparison of the works of Bertsekas
and Tsitsiklis (1996), Lagoudakis and Parr (2001, 2003),
Busoniu et al. (2012), Bertsekas (2019), and Efroni et al.
(2019) with our work, see Section 3.4. In this paper, we
assume that policies are evaluated at a few states using
an m-step rollout. The use of a partial rollout in our
algorithm is similar to modified PI (Puterman and Shin
1978), which is also called optimistic PI (Bertsekas and
Tsitsiklis 1996). We remark that vanilla PI is a special
case of modified PI where m = co. However, motivated
by Tsitsiklis and Roy (1994), we present an example
that shows that the algorithm can diverge when func-
tion approximation is used. Therefore, our goal is to
understand how to integrate linear value function
approximation into the well-studied modified PI algo-
rithm. To the best of our knowledge, none of the prior
works consider the impact of using gradient descent to
implement an approximate version of least-squares
policy evaluation within approximate PI. Thus, our
algorithm and analysis can be viewed as a detailed
look at approximate PI and modified PI when linear
function approximation, least-squares policy evalua-
tion, and gradient descent are used to evaluate policies.

Our key contributions can be summarized as fol-
lows. We extend the analysis of approximate PI to
allow for iteration-dependent policy evaluation and
policy improvement errors. However, when we allow
iteration-dependent errors, it is not clear that the accu-
mulation of errors over multiple iterations can be
bounded. We show that under least-squares function
approximation as well as gradient descent-based func-
tion approximation, these errors can be bounded if
lookahead is sufficiently large. Combining this with
the counterexample motivated by Tsitsiklis and Roy
(1994), we believe that our result is why lookahead
is important in approximate policy iteration with func-
tion approximation. Since RL training can be viewed
as a version of approximate PI, our results show the
importance of lookahead in RL training and not just in
implementing an RL agent. In particular, our paper con-
tains the following results.

e We examine the impact of lookahead and m-step
rollout on approximate PI with linear function approxi-
mation. As is common in practice, we assume that we
evaluate an approximate value function only for some
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states at each iteration. We obtain performance bounds
for our algorithm under the assumption that the sum
of the lookahead and the number of steps in the m-step
rollout is sufficiently large. We demonstrate through
an extension of a counterexample in Tsitsiklis and Roy
(1994) that such a condition is necessary, in general, for
convergence with function approximation, unlike the
tabular setting in the prior works. See Section 3.2 for
our counterexample.

e For ease of exposition, we first present the case
where one solves a least-squares problem at each itera-
tion to obtain the weights associated with the feature
vectors in the function approximation of the value
function in Section 3.4. Our performance bounds in this
case generalize the bounds in Bertsekas and Tsitsiklis
(1996), Lagoudakis and Parr (2001, 2003), Busoniu et al.
(2012), Bertsekas (2019), and Efroni et al. (2019) for
approximate PI.

e We then consider a more practical and widely
used scheme, where several steps of gradient descent
are used to update the weights of the value function
approximation at each iteration. Obtaining perfor-
mance bounds for the gradient descent algorithm is
more challenging, and these bounds can be found in
Section 4.

e Our results show that the sufficient conditions
on the hyperparameters (such as the amount of look-
ahead, rollout, and gradient descent parameters) of
the algorithm required for convergence either do not
depend on the size of the state space or depend only
logarithmically on the size of the state space. Our
results also illustrate the role of feature vectors in the
amount of lookahead required.

e In addition to asymptotic performance bounds,
we also provide finite-time guarantees for our algo-
rithms. Our finite-time bounds show that our algo-
rithm converges exponentially fast in the case of least
squares as well as the case where a fixed number of
gradient descent steps are performed in each iteration
of the algorithm.

e We complement our theoretical results with
experiments on the same grid world problem as in
Efroni et al. (2019). These experiments are presented
in Section 5.

1.1. Other Related Work

The role of lookahead and rollout in improving the per-
formance of RL algorithms has also been studied in a
large number of papers, including Efroni et al. (2018b,
2020), Deng et al. (2020), Moerland et al. (2020), Shah
et al. (2020b), Springenberg et al. (2020), Tomar et al.
(2020), and Winnicki and Srikant (2022, 2023). The
works of Baxter et al. (1999), Veness et al. (2009), and
Lanctot et al. (2014) explore the role of tree search in RL
algorithms. However, to the best of our knowledge, the
amount of lookahead and rollout needed as a function

of the feature vectors has not been quantified in prior
works.

The works of Bertsekas (2011, 2019) also study a vari-
ant of PI, wherein a greedy policy is evaluated approxi-
mately using feature vectors at each iteration. These
papers also provide rates of convergence as well as a
bound on the approximation error. However, our main
goal is to understand the relations between function
approximation and lookahead/rollout, which are not
considered in these other works.

2. Preliminaries

We consider an MDP, which is defined to be a 5-tuple
(S, A,P,r,a). The finite set of states of the MDP is S.
There exists a finite set of actions associated with the
MDP A. Let Pji(a) be the probability of transitioning
from state i to state j when taking action a € A. We
denote by sy the state of the MDP and by g, the corre-
sponding action at time k. We associate with state s;
and action g, a nondeterministic reward r(sk, ax) € [0, 1]
Vs € S,a; € A.

Our objective is to maximize the cumulative dis-
counted reward with discount factor a € (0,1). Toward
this end, we seek to find a deterministic policy 1, which
associates with each state s € S an action p(s) € A. For
every policy ¢ and every state s € S, we define J¥(s) as
follows:

So = S‘| .

We define the optimal reward-to-go J* as J*(s) := max,
J¥(s). The objective is to find a policy y that maximizes
J¥(s) for all s e S. Toward the objective, we associate
with each policy u a function T, : RISI - RIS!, where
for ] e RIS!, the sth component of T,] is

Ji(s) = E li o r(si, 1(s)
i=0

S|

(Tu])(s) = r(s, u(s) + @) Pyi(u())] (),
j=1

for all s € S. If function T}, is applied m times to vector
J €RIS!, then we say that we have performed an m-
step rollout of the policy y, and the result T}/] of the
rollout is called the return. It is well known that each
time T, is applied to a vector | to obtain T.J, the follow-
ing holds:

IT] = J¥lleo < alll = J¥lleo.

where || - ||, refers to the supremum norm or the largest
component of a vector. Thus, applying T}, to obtain T,J
gives a better estimate of the value function corre-
sponding to policy u than J. Furthermore, it is easy to
see that the result of an m-step rollout of policy u gives
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the following:
ITeT =Tl < @™ = J¥ll/

and hence, increasing m yields better estimates of J*.
Similarly, we define the Bellman operator T: RISl —
R!S! with the sth component of TJ being

[S]

(T)(s) = max q r(s,a) +a)_Py(@)]() o (1)
j=1

The policy corresponding to the T operator is defined
as the greedy policy. If operator T is applied H times to
vector J € R°I, we call the result—T"]—the H-step
“lookahead” corresponding to J. The greedy policy
corresponding to TH] is called the H-step lookahead
policy or the lookahead policy when H is understood.
More precisely, given an estimate | of the value func-
tion, the lookahead policy is the policy u such that
T, (TH1]) = T(T1)).

Similarly to T}, each time the Bellman operator is
applied to a vector | to obtain T7, the following holds:

ITT =T lleo < all] = Tlleo-

Thus, applying T to obtain TJ gives a better estimate of
the value function than J.

The Bellman equations state that the vector J# is the
unique solution to the linear equation

JE=TJ" )
Additionally, we have that J* is a solution to
=T

Note that every greedy policy w.r.t. J* is optimal and
vice versa (Bertsekas and Tsitsiklis 1996). More pre-
cisely, [* is the value function corresponding to an opti-
mal policy.

We will now state several useful properties of the
operators T and T,. See Bertsekas and Tsitsiklis (1996)
for more on these properties. Consider the vector e €
RIS wheree(i)=1Vie1,2,...,|S|. We have

T(J+ce)=T] +ace, T,(J+ce)=T,]+ace. (3)
Operators T and T, are also monotone:
J<]'=T<T', T,J<TJ" @)

Finally, in this paper, we repeatedly use the following
induced co-norm of a matrix A :

Ax
Al = sup 23l
28 Tl

For reference, we include the notation in Table A.1 in
Appendix A.

Algorithm 1 (Approximate Pl with Lookahead)
Input: 6p,m, H.
1: Letk=0.
2: Let iy, besuch that [TH], — T, T" il < ea.

3: Compute [ such that /"' satisfies the follow-
ing:

7 = el < 6.

4 Jen =]
5: Setk « k+1.Go to (2).

3. Approximate Pl with Linear Value

Function Approximation

As mentioned in Section 1, the work of Efroni et al.
(2019) extends the result of Bertsekas (2019) to incor-
porate the use of lookahead policies as opposed to
one-step greedy policies as well as m-step returns. We
outline the algorithm of Efroni et al. (2019) in Algo-
rithm 1. We then wish to incorporate linear value
function approximation into the analysis. We will out-
line the approximate PI algorithm with lookahead and
linear value function approximation and compare it
with Algorithm 1.

Algorithm 2 (Least-Squares Function Approximation
Algorithm)
Input: Jo,m, H, feature vectors {¢(i)}cs, P(i) € RY,
and subsets D, C S,k=0,1,.... Here, Dy is the set of
states at which we evaluate the current policy at
iteration k.
1: Letk=0.
2: Let y,, be such that [|T?], — T, TH il < epa.

3: Compute [*'(i) = T TH-Y(J)(i) + wys1 (i) for i €

Hier1

Dx.
4: Choose 0y, to solve
min DO)(i) — [ (1)), 5
i iEZDk(( (@) =] () ®)

where @ is a matrix whose rows are the feature
vectors.

5: Jkr1 = POgaa-

6: Setk«—k+1.Goto (2).

3.1. Approximate Pl with Linear Value Function
Approximation

Our main algorithm is described in Algorithm 2. We
now explain our algorithm and the associated notation
in detail. For more on the notations used, see Table A.1
in Appendix A. Because of the use of function approxi-
mation, our algorithm is an approximation to PI with
lookahead. At each iteration index, say k, we have an
estimate of the value function, which we denote by J;.
To obtain /i1, we perform a lookahead to improve the
value function estimate at a certain number of states
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(denoted by Dy), which can vary with each iteration.
For example, Dy could be chosen as the states visited
when performing a tree search to approximate the loo-
kahead process. During the lookahead process, we note
that we will also obtain an H-step lookahead policy,
which we denote by ;. As noted in Section 1, the
computation of TH=1(J;)(i) for i € Dy in Step 3 of Algo-
rithm 2 may be computationally infeasible; however, as
mentioned in Efroni et al. (2019), techniques such as
MCTS are employed in practice to approximately esti-
mate TH1(Jy)(i). In this paper, we model the fact that
lookahead cannot be performed exactly because of the
associated computational complexity by allowing an
error in the lookahead process, which we denote by ¢;4
in Step 2 of Algorithm 2. The use of €14 is similar to the
work of Efroni et al. (2019).

We obtain estimates of J#+1(i) for i € Dy, which we
call ["*'(i). To obtain an estimate of JF1(i), we perform
an m-step rollout with policy u, , and obtain a noisy
version of T} | TH1(i) for i € Dy. We also model the
approximation error in the rollout by adding noise
(denoted by wj41(i) in Step 3 of Algorithm 2) to the
return (result of the rollout; see Section 2) computed at
the end of this step. In order to estimate the value func-
tion for states not in Dy, we associate with each state i €
S a feature vector ¢(i) € R?, where typically, d < < |S].
The matrix composed of the feature vectors as rows is
denoted by ®. We use those estimates to find the best-
fitting 6 € R”: that s,

min > (@0)() — [ ()"

i€Dy

The solution to the minimization problem is denoted by
Ok+1. The algorithm then uses Oy to obtain Ji1 = POp.1.
The process then repeats. This step of our algorithm
differs from the algorithm in Efroni et al. (2019) in that
the algorithm in Efroni et al. (2019) does not assume
any particular technique for computing the estimate of
J#e1. It merely assumes the existence of some 0 such
that the distance from the estimate of | et to JHe1 is less
than 6. We will show that the results of Efroni et al.
(2019) change drastically when linear function approx-
imation is employed to estimate [“+1. Additionally,
note that to compute J i (i), we obtain noisy estimates
of Tj! T"'Ji(i) for i€ Dy. Another alternative is to
e+

instead obtain noisy estimates of T;”lm Ji(Q) for i e Dy. Tt
was shown in Efroni et al. (2019) that the former option
is preferable. Thus, we have chosen to use this compu-
tation in our algorithm as well. However, we will
show in Appendix D that the algorithm also has
bounded error, which becomes small if m is chosen to
be sufficiently large.

Remark 1. We note that y, , (7) in Step 2 of Algorithm 2
does not have to be computed for all states i € S. The

actions 1, (i) have to be computed only for those i € S
that are encountered in the rollout step of the algorithm
(Step 3 of Algorithm 2).

3.1.1. Computational Considerations. We would like
to note that m-step return and H-step lookahead are
not algorithms that we propose to improve computa-
tional tractability. They are algorithms that are used in
practice, and our goal is to point out why they are
important in RL training. We will now attempt to
explain why each of these ideas is used in practice. In
the case of chess, for example, Shannon estimated the
number of states to be approximately 10'®. So, to
implement the policy evaluation step exactly, one has
to perform the inversion of matrix of size 10'*° x 10'%
or perform a fixed-point iteration of an operator repre-
sented by a 10" x 10'® matrix. Compared with this,
even m of the order of several hundred steps (or even
much more) is much more computationally efficient.
Regarding H-step lookahead, this could indeed be a
computational bottleneck. As mentioned earlier, the
worst-case complexity can be exponential as shown in
Shah et al. (2020a). However, there are practical imple-
mentations of lookahead that are efficient and perform
well in practice. See Winnicki and Srikant (2023) for
more on efficient implementations of lookahead. Our
goal is not to argue the computational efficiency of
these ideas but to understand why these ideas are
important to ensure boundedness of errors given the
fact that computationally efficient approximate imple-
mentations already exist in practice. In particular, in
contrast to prior works, in our paper we have shown
that, without these ideas, the algorithms used in prac-
tice may even fail to converge.

To analyze Algorithm 2, we make the following
assumption, which states that we explore a sufficient
number of states during the policy evaluation phase at
each iteration and that the noise is bounded.

Assumption 1. For each k > 0, rank {¢(i)},cp, = d. Addi-
tionally, assume that the noise wy is bounded. For some
epe >0, the noise in policy evaluation satisfies ||wylle, <
EPE Vk.

Using Assumption 1, [i4; can be written as

Jks1 = @Oy = O(PF, Op,) ' @F P, (6)

=M

where ®p, is a matrix whose rows are the feature vec-
tors of the states in Dy and Py is a matrix of zeros and
ones such that Py f #41'is a vector whose elements are a
subset of the elements of [**! corresponding to Dy.
Note that J' Hert (i) for i ¢ Dy does not affect the algorithm,
so we can define "' (i) = T TH=1],(i) for i ¢ Dy.
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Written concisely, our algorithm is as follows:

]k+1 = Mk+1(Tm

Hier1

TH?l]k + wk)/ (7)

where (1., is defined in Step 2 of Algorithm 2. Because
wy (i) for i ¢ Dy does not affect the algorithm, we define
wi(i) =0 fori ¢ Dy.

We now present a counterexample to show that
applying linear value function approximation to ap-
proximate PI is not a straightforward application of
the bounds in Bertsekas (2019) and Efroni et al. (2019).
In the counterexample, we give an MDP, which uses
an m-step return to evaluate greedy policies at several
states of the state space and linear value function
approximation to estimate the value functions corre-
sponding to the greedy policy at the rest of the states.
The iterates diverge, which shows that more work
needs to be done to understand how to incorporate lin-
ear value function approximation into approximate PI.

3.2. Counterexample

Even though in practice, J#+ is what we are interested
in, the values [, computed as part of our algorithm
should not go to oo as the algorithm uses the values of
Ji to compute [#, so divergence of ; can result in inac-
curate computations of values of J#+. Additionally,
divergence of [, would result in a numerically unstable
algorithm, which is also undesirable. Here, we show
that J; can become unbounded.

The example we use is depicted in Figure 1. There are
two policies, u* and p”, and the transitions are deter-
ministic under the two policies. The rewards are deter-
ministic and only depend on the states. The rewards
associated with states are denoted by r(x1) and r(xz),
with 7(xq) > r(x;). Thus, the optimal policy is u”. We
assume scalar features ¢(x1) = 1 and ¢(x2) = 2.

We fix H = 1. The MDP follows policy p” when

Je(x1) > Jx(x2) = Ok > 26

Thus, as long as 0, > 0, the lookahead policy will be .
We will now show that 6, increases at each iteration
when £a™ > 1. We assume that 6y > 0 and Dy = {1,2} Vk.

At iteration k + 1, suppose i, = i, and our J***!(i) for

i=1,2 are as follows:

m—1

[ @) =r() + > (el + 220,
i=1
m—1

JH12) = r(xy) + Z r(x2)a +2a™ 6.
i=1

Thus, from Step 5 of Algorithm 2,

2
O = arg min > _(@0)() — "))
i=1

Z?Ql alr(xy) N 22;’;1 alr(xy) N 6a™0;

= B == 5 5

= Orq > ga”’ek.

Thus, because 0y > 0, when a0y, 0, goes to co.

It is worth noting that, even though J#r is always
bounded, the fact that J; diverges means that the algo-
rithm cannot be implemented in a numerically stable
manner. The discussion can be summarized in the fol-
lowing claim.

Claim 1. There exists an MDP with a linear feature vector
representation for which modified PI diverges.

An interpretation of this result is that modified policy
iteration in the presence of linear function approxima-
tion is not a straightforward extension of modified pol-
icy iteration with convergence guarantees. In fact, the
algorithm may diverge unlike modified policy itera-
tion, which always converges. In Section 3.4, we intro-
duce lookahead as a remedy to this divergence.

3.3. Approximate Pl with Time-Dependent Policy
Evaluation Error

Algorithm 3 (Modified Pl with Lookahead and Function
Approximation)

Input: 6y, m, H.

1: Letk=0.

2: Let ;. be such that |[T], — T, TH |l < €1a.

M1

Figure 1. An Example Illustrating the Necessity of the Condition in Theorem 1

(a)

Notes. (a) u”. (b) u.

(b)
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3: Compute Oy such that J He = @O, satisfies the
following:

([ — JHea ], < S

4 Jyn =
5: Setk«— k+1. Go to (2).

Before we present our main results, we first obtain
bounds for modified PI with lookahead and time-varying
bounds in the policy evaluation error. The algorithm we
analyze in this section is described in Algorithm 3. The
algorithm in Efroni et al. (2019) (Algorithm 1) is similar to
Algorithm 3 except that at time k, the work of Efroni et al.
(2019) assumes a constant bound in the policy evaluation
error, 0, and in Algorithm 1, we assume that the policy
evaluation error is upper bounded by time-dependent 0.
Then, we assume that 6y is of the following form: o <
B0 + 1 when 0 < B < 1. The bounds are given in Prop-
osition 1. In Section 3.4, we obtain values of § and u corre-
sponding to Algorithm 2, approximate PI with linear
value function approximation, and lookahead. We fur-
ther extend the results to incorporate the use of gradient
descent in Section 4.

We now obtain a bound on the iterates in Algorithm 3
as follows.

Proposition 1.

kH) k=1 (—0-1)(H)p  Hg
e
1—a = 1—«a
€LA
+ .
1—-a)1—af1

I = Jlleo <

Furthermore, when
op < oo +u for0<p<1,0< p (8)

Then,

ak®) o
+

b < k H-1 pyk-1
I =l < 3+ 1k max(@", ) 'y

=: finite-time component
2a i+ era
(1-a)1—aM)
—

=:asymptotic component

Taking limits on both sides, when 0 < < 1, we have

2af i+ ey
. [J _ *
llr?j;lpllfk J'lleo < o)1 —af)’

3.4. Approximate Pl with Linear Value Function
Approximation and Lookahead

To apply Proposition 1 to Algorithm 2, we have to

compute the parameters f and u in the proposition. In

Appendix C, we show that § and u for Algorithm 2 are
given by
ﬁ = am+H715FV

T

Tt ©)

W=

where 7 := O‘mqaim

2 Ory + 6“1”1” + OryEpE.

Using (9) along with Proposition 1, we now state
Theorem 1, which characterizes the role of lookahead
(H) and return (m) on the convergence of approximate

PI with function approximation.

Theorem 1. Suppose that m and H satisfy m+H —1 >
log(orv)/log(1/ar), where

Spv 1= sup Myl = sup [|D(Pp, Pp,) ' @p, Pl
k k
Then, under Assumption 1, the following holds for Algo-
rithm 2:

af B 2aH [k — ol
1—«a 1—a

finite=time component

k max(ozH,ﬁ)k*1

IH =Tl <

Z(XH# + Era

A
~— ——

asymptotic component

(10)

where
a™ + am+H71
e N— OFv + Oapp + OFVEPE,
‘B = am+H716FV,
and

Oapp 1= sup || Mt — JH¢||.o.
Ky

Remark 2. The tightness of the condition m+H —1 >
log(0rv)/log(1l/a) can be observed in our counterex-
ample in Section 3.2, where it can easily be shown
that when m + H — 1 < log(6rv)/log(1/a), the algorithm
diverges.

The proof of Theorem 1 follows easily from Pro-
position 1. In Appendix E, we give corresponding
bounds on the iterates Ji in the algorithm. We now
provide an interpretation of Theorem 1. First, we pro-
vide an interpretation of several terms in Theorem 1,
including 6,,, and Ofy. 0,4, represents the maximum
error over k when feature vectors corresponding to
the states in Dy, are used to construct an estimate of JF«
based on Jt(s) for s € Dy. In other words, 0, is error
because of function approximation. 0y is a function
of the feature vectors. Although it is not straight-
forward to characterize Ory for different choices of
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function approximation, 6py can be quantified for sev-
eral choices of feature vectors. First, in the tabular set-
ting (i.e., one-hot encoded feature vectors), when all
states are visited at each iteration, ory = 1. Next, we
consider the case of state aggregation in Bertsekas
(2019, section 6.1). In this case, under Assumption 1,
Orv = 1. To show this, we provide details for the special
case of two “representative” states (i.e., the case where
the feature vectors are [0,1]" and [1,0]"). The idea can
be easily extended to cases with more than two repre-
sentative states. In the case of two representative states,

it can be shown that (qDqu)Dk)_l: 1/5)\] ! 1 /(;\[ ’
2

where Nj is the number of items in Dy belonging to the
first representative state and N is the number of items
in Dj belonging to the second representative state.
Note that because of Assumption 1, N; and Nz are non-
zero. Hence, the ith row of CD[CI)DkCDDk = (s )N ,
where s; is the state corresponding to the ith row.

It is straightforward to show that the jth column of
Dpy Py is equal to ¢(s;)1jep,, where s; is the state corre-
sponding to the jth column.

Thus, we have that

[D(Df, Pp,) ' OF, Pyl = ]1]€Dk
Hence, every sum of row components of ®(®p, p, )"
@}, Py is equal to one, and thus, [|®(Dp, (Dpk) 1<DD
7)k “oo =1

In general, it is hard to characterize Ory. However,
when the terms of (10) are written out, the coefficients
of 8py are aH=1 pgm+2H-1 ZW and 2a16py
epe, where ¢pg is noise from the rollout. Thus, appro-
priately chosen m and H can offset the effect of Opy.

In light of our interpretations of d,,, and 6ry, Theo-
rem 1 can then be used to make the following observa-
tion; how close J# is to J* depends on four factors—
the representation power of the feature vectors and
the feature vectors themselves (84, rv), the amount of
lookahead (H), the extent of the rollout (m), and the
approximation in the policy determination and policy
evaluation steps (e14 and epg). Additionally, Theorem 1
shows that although [|J* —J*||,, depends on the func-
tion approximation error (9,,,) and the feature vectors
(0pv), the effect of these terms diminishes exponentially
with increased H, with the exception of the tree search
error (e14). Further, it is easy to see that lookahead and
rollout help mitigate the effect of feature vectors and
their ability to represent the value functions.

3.4.1. Comparison with Prior Works. We observe that
the models studied in Lagoudakis and Parr (2003), Bert-
sekas (2019), and Efroni et al. (2019) are all special cases
of model studied in Theorem 1.

e Specifically, if we set epp=0,m=00, and H=1
and consider the tabular case, we get the models studied

in Lagoudakis and Parr (2001) and Bertsekas (2019). We
note that Lagoudakis and Parr (2001) is motivated by
the linear value function approximation setting, but the
errors because of function approximation are not explic-
itly modeled.

e On the other hand, if we set epg = 0 and m = oo but
allow an arbitrary H, we get the model in Efroni et al.
(2019). Our work quantifies the effect of varying m on
the convergence of Algorithm 1.

e The most important detail in our model that
makes it different from the other models is the fact
that we model the errors because of function approxi-
mation, which leads to convergence issues not noticed
in the other papers.

In Bertsekas (2021), it is noted that in reinforcement
learning, to play computer games or board games, it is
not uncommon during training to get a relatively crude
estimate of the value function, which is improved by
lookahead and m-step return during actual game play.
Our analysis would also apply to this situation; we
have not explicitly differentiated between training and
game play in our analysis.

4. Extension to Gradient Descent

Algorithm 4 (Gradient Descent Algorithm)
Input: 0y, m, H, feature vectors {¢(i)};cs, ¢(i) € RY,
and Dy, which is the set of states for which we eval-
uate the current policy at iteration k.
1. k= 0,]0 = (DG().
2: Let iy, besuch that [TH], — T, T" 'l < ea.

3: Compute ]Ayk”(i):T;Z(+1TH*1]k(i)+wk+1(i) for i€

Dy.
4: Oky1,0:= 6. For £=1,2,...,1, iteratively compute
the following;:

Ok+1,0 = Oks1,0-1 — VVQC(Q}]W”)|9M,€,1/ 11)
where

c(0;]) = Z((cb@)(z) @y,
ZED

and @ is a matrix whose rows are the feature
vectors.
5: Define

Oks1 = Oks1, s
and set
Jir1 = POgsr-
6: Setk < k+1.Go to (2).

Solving the least-squares problem in Algorithm 2
involves a matrix inversion, which can be computa-
tionally difficult. So, this step is often replaced by a
few steps of gradient descent that are performed on
the least-squares objective. Here, we assume that we
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perform 7 steps of gradient descent with step size y at
each iteration k, where the gradient is the gradient of
the least-squares objective in (5).

The gradient descent-based algorithm is presented in
Algorithm 4. When v is sufficiently small and 7 is suffi-
ciently large, we have convergence to an asymptotic
error, assuming that m and H are sufficiently large.
When we increase 7, our asymptotic error becomes
smaller until it reaches the asymptotic error of the least-
squares algorithm (i.e., when 1 — oo, we recover the
asymptotic error of Algorithm 2).

To apply Proposition 1 to Algorithm 4, we have to
first identify the parameters § and u for this algorithm.
We make the following assumption.

Assumption 2. y,m,n, and H satisfy

1
PR p—
d infy||®p, Op,[|;,

m+H >1+log(26rv)/log(1/a),

and

n>log /log(1/acp,,),

<3V ISIII(PIIoo)
Omin, ®

where acp,, = sup, max;|1— yAi((I);k(DDkH, in which A;

denotes the ith-largest eigenvalue of a matrix and omin,o i

the smallest singular value in the singular value decomposi-
tion of ®.

Under Assumption 2, we can obtain § and u for
Algorithm 4. In Appendix F, we show that § and u are
given by

m+H 16 4 1P lleo V ”(I)”oo

Omin, ®

‘3:

GDy( m+H 16 V+1)

T

luzl_ﬁ’

(12)

where 7:= (1 + \/En”i”w aln y) (a"’%”’:“@w + Oupp +

Using (12) along w1th Proposition 1, we now state
our theorem, which characterizes the error in using gra-
dient descent in approximate PI with linear value func-
tion approximation and lookahead. We remark that any
term undefined in Theorem 2 is assumed to have the
same definition as in Theorem 1.

Theorem 2. Suppose that m and H satisfy m+H —1>
log(20rv)/log(1/ar), where

Oy = sup || Ml = sup |D(@F, Pp,) ' OF Pill.o,
k k

in which the norm is the induced matrix norm defined in

Section 2. Then, under Assumptions 1 and 2, the following
holds:

kH H|T1,
a 2a||JHo
He — T* < +
I = Flle < 5+ =

finite-time component

]0”00 k max(a ,B)k 1

20( ﬁ""éLA
(1 - aH)(l —a)’
~——————

asymptotic component

(13)

where

o

a™ +am+H71
< 1-a

L VI[Pl )
GD Y

Omin, ®
OFy + Ogpp + 5FV€PE)

VISII®Plle 5

(1 a)ammd> &b,y

m+H 15 4 7Tl V “q)Hoo 1]

GD)/( m+H ]6V+1)

pi=

Omin, ®

and

Oapp 1= sup || Mt — JHe| .
k/‘uk

Theorem 2 follows directly from Proposition 1 when
p and u are defined in (12).

Remark 3. Note that as 1 — oo, (i.e., the number of
steps of gradient descent becomes very large), the
error becomes the same as that of Algorithm 2.

Remark 4. Consider any ¢ such that 0 < e < 1. It is
straightforward to see that when

_log((%2)/)
log(1/a)

fog (54 ) /¢
log(1/acp,,)

n>

and

32, H[ ( +8, +OFvéPE)+ ] .
; log [7 i\7 (1PPa) 1 /5]
> log(1/a) ,

ignoring the error because of lookahead, the asymptotic
error will be less than or equal to ¢. Notice that the
parameters 1,H, and m depend on log|S| instead of

|S| or V|S].
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5. Numerical Results

We test our algorithms on a grid world problem using
the same grid world problem as in Efroni et al. (2018a,
2019).

For our simulations, we assume a deterministic grid
world problem played on an N X N grid. The states are
the squares of the grid, and the actions are {up’,
"down’, ‘right’, "left’, and ’stay’}, which move the agent
in the prescribed direction, if possible. In each experi-
ment, a goal state is chosen uniformly at random to have
a reward of one, whereas each other state has a fixed
reward drawn uniformly from [—0.1,0.1]. Unless other-
wise mentioned, for the duration of this section, n=25
and o =0.9.

In order to perform linear function approximation,
we prescribe a feature vector for each state. In this sec-
tion, we focus on three particular choices.

1. Random feature vectors. Each entry of the matrix
® is an independent A/ (0, 1) random variable.

2. Designed feature vectors. The feature vector for
a state with coordinates (x, y) is [x,y, d,1]", where d is
the number of steps required to reach the goal from
state (x, y).

3. Indicator vectors. The feature vector for each state
i is an N*-dimensional indicator vector where only the
ith entry is nonzero.

Recall that our theorems suggest that the amount of
lookahead and return depends on the choice of the fea-
ture vectors. Our experiments support this observation
as well. The amount of lookahead and m-step return
required is high (often over 30) for random feature vec-
tors, but we are able to significantly reduce the amount
required by using the designed feature vectors, which
better represent the states.

We test Algorithm 2 in each of our experiments using
a starting state of Jo = Oy = 0. All plots in this section
graph an average over 20 trials, where each trial has
a fixed random choice of Dy, the set of states used for

Figure 2. (Color online) Value of J; as m and H Increase for Various Feature Vectors
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Notes. (Upper panels) For random feature vectors, as m and H increase, the value J; eventually stops diverging. (Lower panels) For designed fea-
ture vectors, smaller amounts of lookahead and m-step return are needed to prevent J from diverging.
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Figure 3. (Color online) We Plot the Probability That ||J, — J*||, Diverges as a Function of H and m
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Notes. For the first plot, m = 3, and for the second plot, H = 3. In both cases, the algorithm never diverges after H + m is large enough, although a
smaller amount of lookahead or m-step return is needed for the designed feature vectors. (a) Varying H. (b) Varying m.

policy evaluation. Error bars show the standard devia-
tion of the mean.

5.1. The Effect of m and H on Convergence

In Figure 2, we showed how H and m affect conver-
gence of the iterates J; to J*. When m and H are small,
the value of [, sometimes diverges. If the value diverges
for even one trial, then the average over trials of ||, —
J'llo also increases exponentially with k. However,
if the average converges for all trials, then the plot is
relatively flat. The m or H required for convergence
depends on the parameter 6py defined in Theorem 1.
Over 20 trials, the average values of 6ry for each of our
choices of feature vectors are 30.22,16.29, and 1.0,
respectively. As shown in our counterexample, in gen-
eral, one needs m + H — 1 >log(6ryv)/log(1/a) for con-
vergence. However, in specific examples, it is possible
for convergence to occur for smaller values of m + H.
For example, in our grid word model, %zg((}% ~26.5,
but we will observe that such a large amount of m+H
is not required for convergence.

In Figure 2, it is difficult to see how H and m affect
the probability of divergence as a function of the rep-
resentative states chosen to be sampled. Therefore, we
introduce Figure 3. These plots show the proportion of
trials in which the distance ||J — J*|l., exceeded 10°
after 30 iterations of our algorithm. As expected, the
algorithm never diverges for indicator vectors as our
algorithm is then equivalent to the tabular setting. The
designed feature vectors clearly require a much smal-
ler amount of lookahead or m-step return, well below
the amount predicted by the average 0ry of 16.29.
However, no matter the choice of feature vectors, we

will eventually prevent our algorithm from diverging
with a large-enough value of H +m.

5.2. Convergence to the Optimal Policy

In Theorem 1, we show that as H increases, we converge
to a policy p that is closer to the optimal policy. In this
section, we experimentally investigate the role of 7 and
H on the final value of ||J# — J*||.. The results can be
found in Figure 4. As predicted by theory, we do get
closer to the optimal policy as H increases. However,
increasing m does not help past a certain point, which is
also consistent with the theory. Indeed, although pi is
approaching the optimal policy y* as H increases, the
iterates J; are not converging to |* because of error
induced by function approximation. Increasing m im-
proves the policy evaluation, but it cannot correct for
this inherent error from approximating the value func-
tion. The figures also show the importance of good fea-
ture selection. In practice, this feature selection is done
using neural networks, but analyzing this is beyond the
scope of the paper. However, it should be noted that
Ory somewhat captures this effect in our analysis.

Note that, in Figure 4, the plots corresponding to
indicator feature functions converge very fast. This is
because the indicator features correspond to no func-
tion approximation. Further, we note that m plays only
a small role in controlling the error, whereas H plays a
much larger role. This is consistent with the perfor-
mance bounds in Theorem 1.

6. Conclusion
Practical RL algorithms that deal with large state spaces
implement some form of approximate PI. In traditional
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Figure 4. (Color online) We Plot the Final Value of ||J# — J*||., After 30 Iterations

(a)

Final difference in policy evaluation

(b)
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Notes. For the first plot, m = 3, and for the second plot, H = 3. As H increases, the final policy improves. With large-enough H, we obtain the opti-
mal policy. However, past a certain point, increasing m is not helpful for finding a better policy. (a) Varying H. (b) Varying .

analyses of approximate PI (for example, in Bertsekas
2019), it is assumed that there is an error in the policy
evaluation step and an error in the policy improvement
step. The work of Efroni et al. (2019) extends this analy-
sis to incorporate lookahead policies, which mitigate the
effects of function approximation. We provide a counter-
example to show that incorporating linear value func-
tion into approximate PI is not straightforward as the
iterates may diverge. In this paper, we seek to under-
stand the role of linear value function approximation in
the policy evaluation step and the associated changes
that one has to make to the approximate PI algorithm
(such as lookahead) to counteract the effect of function
approximation. Our main conclusion is that lookahead
mitigates the effects of function approximation, rollout,
and the choice of specific feature vectors.

Possible directions for future work include the
following.

e In game-playing applications, gradient descent is
commonly used to estimate the value function, but tem-
poral difference (TD) learning is used in other applica-
tions. It would be interesting to extend our results to the
case of TD learning-based policy evaluation.

e Although neural networks are not linear function
approximators, recent results on the neural tangent
kernel (NTK) analysis of neural networks suggest
that they can be approximated as linear combinations
of basis functions (Jacot et al. 2018, Arora et al. 2019,
Cao and Gu 2019, Du et al. 2019, Ji and Telgarsky
2019). Thus, to the extent that the NTK approximation
is reasonable, our results can potentially shed light on
why the combination of the representation capability
of neural networks and tree search methods works
well in practice, although further work is necessary to
make this connection precise.
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Appendix A. Notation

Table A.1. Notation

Notation Definition
MDP
a Discount factor
I Optimal value function
Indices
k Iteration index
13 Gradient descent iteration index
Ok Provides estimate of optimal value function (i.e., Jx = P6x)
Tk Estimate of optimal value function
d Dimension of 6y (i.e., 6 € RY)
Policies
u Policy
J* Value function corresponding to a policy
u Optimal policy
Uk Policy at iteration k

Value operators/maps

T.J Bellman operator for y,
(Tu)(s) = rls, 1(s)) +a LS Py(u()() ¥s €S
TJ Bellman optimality operator,

(TT)(s) = maxeea{r(s,a) + a3 |5 Py(@)](j)} Vs € S
Function approximation

Matrix of zeros and ones such that P4J is a vector with elements that are a subset of the elements of J** corresponding to Dy

o(s) Feature vector for state s

0] Matrix with rows that are the feature vectors

Dk States for which policy is evaluated at iteration k

Dp, Matrix with rows that are the feature vectors of the states in Dy
Py

My Projection matrix (i.e., given FU(i),i € Dy, O = MiJ™, where

Oy = arg mingy",p, ((PO)(1) — J(1))*)
Error terms

Ory Feature vectors (i.e.,
Oy = supy|Mill = sup,|O(@F, Pp,) ' OF, Pill)
Oapp Function approximation error (i.e., 0y := supy , [IMiJ* — J¥|l.,)
€L 1T = T, TR illoo < €14
EpE Noise in policy evaluation where |[wyl|o, < epg Vk
Algorithm 4
n Number of steps of gradient descent
Y Gradient descent step size
aco,y aGp,y = sup,max;|1 — )//\,-((I>7TJA Dp,)|,
Ai ith-largest eigenvalue of a matrix
Omin, ® Smallest singular value in the singular value decomposition of ®

Appendix B. Proof of Proposition 1
The work of Efroni et al. (2019) shows that

) . 20715 + e
s~ Pl < @t = Flle + 2525 @By
Iterating over k,
2aH5 + €14

lim sup [|J* — |, <

k—o0

1 -1 —at)’

which is a main result of Efroni et al. (2019). Suppose now
that 6 depends on k, and we call the sequence .

Starting from (B.1), we substitute 6 for 0, and we get the
following:

ZOZH(Sk + Era

4t = T'lloo < @®llJFs Tl + T

(B.2)

Iterating over k, we have

H k=1 _(k—(-1)(H-1)n H .
I~ o a0~ + 2230 2o e
—

=0 1
= ak=C=DEHS 4 o) 4
S Z 1
- = ¢
o . KL gk t-D(H) g s, £LA
_1_a 1—0{ (1_0()(1—0(H71).

(B.3)

Note that for the bound in (B.3) to be useful, we need for the
O sequence to exhibit some properties that ensure that the
second term does not go to infinity as k — co.
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The bound in (B.3) can be further simplified if
op<BGo+u for0<p<1,0<pu. (B.4)

Starting from (B.2), where &; = 6y + u, we get the following:

k(H) H k-1

o 2a

”]Uk _]*”oo << g 2 :a(k—é’—l)(H)[ﬁiéo + [J]
l-a 1-«a =

ELA
Ao —af)

KH)  pgH kol

o o

< + s (k—C—1)(H-1) ot

“l1-a 1—«a 0;“ p
20+ g4

T —a)1—a)

KH) 9, H k-l
o 104 H-1 p\k—1
< 4L
S + T aéofz:(;max(a .B)
. 208+ €10
(1—-a)1 —ah)
k) opH

_ H-1 pyk—1
—1_a+1_akmax(a B oo

. 2au+epa
(1-a)1—atl)’

Taking limits on both sides, noting that 0 < § <1, we have

204”;1 +éra
3 e 1% e
lim supII] =T < a ) Y-

k—o0
Appendix C. Obtaining g and p for Algorithm 1
Using Assumption 1, Ji41 can be written as

Jis1 = POpyq = CD(q)ngJDk)ﬂ@;kpk f:“m/

=My

where ®p, is a matrix whose rows are the feature vectors of
the states in Dy and Py is a matrix of zeros and ones such that
P is a vector whose elements are a subset of the ele-
ments of [’ corresponding to Dy. Note that J' ¥1(7) for i ¢ Dy
does not affect the algorithm, so we can define JHe (i) =
Tﬂm THilfk(i) fori¢ Dy.

Written concisely, our algorithm is as follows:

Jest = M (T, T i+ wy), (CI)
where ., is defined in Step 2 of Algorithm 1. Because wy(i)
for i ¢ Dy does not affect the algorithm, we define wy (i) = 0 for
i¢ Dy.

Using contraction properties of T, and T along with the tri-
angle inequality, we obtain 6, as follows:

Wk = J¥lleo = IM(T T iy + wg) = Tl

S IMET T iy = Tl + Mgl

< ||MkTZlkTH_1]k71 =¥l + Moo llx] o

= ||/\/lsz1kTH’1]k,1 —J*leo + OFvEPE

= IMET T iy = MM+ MyJHe = Tl
+Opvepe

SIMETS T iy = My el + MG = [l
+Opvepe

S IMll 1Ty T Jiog = J¥elloo + IMETH: = Tl
+Opvepe

< @ MIIT i1 = ¥l +sup M — ]l

ki,
+ OrvepE
<@ WMl T oy =T+ = J¥llo + Oapp
+ OrvepE
<@ Ml IT" et = T'lleo + @ Mool = J#4l|co

+ 6app + Oy epE

_ . a™
<™ Ml lkr — T ||oo+m”Mk”oo+6upp

+OpvepE
<@ Myl k=1 = ¥t + e — Tl
aﬂl
g [IMillco + Oapp + OFvepE

< @™ Ml llTie-1 =T o

a™ + a,m+H—1

+ 17”/\/@”00 + Oapp + OFvEPE
—a
B a™ +am+H—1
<@ opy |l — JH | t— O

+ 6app + Oy €pE.

Now, we have

Tk — Tl < @™ 80y Tt — 1|l
—_— Y Z
O =p Ok1

a™ + am+H71

Oy + Oupp + OFVEPE -
1—a app

=T
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Iterating,
k=1
5 < B0+ BT
i=0

< oo + ﬁ . (C2)
~——
::’L[

Appendix D. A Modified Least-Squares Algorithm
Suppose Step 3 of Algorithm 2 is changed to J***! (i) = T J()
+ Wy1(i) for i € Dy. Then, it is still possible to get bounds on the
performance of the algorithm when m is sufficiently large. With
this modification to the algorithm, we have the following.

Proposition D.1. Suppose that m satisfies m >log(6rv)/log
(1/ax), where

Oy 1= sup | Mll, = sup |(®F, @p,) '@, Pill...
k k

Then, under Assumption 1, the following holds:

k(H) H
T

finite=time component

]O||°°kmax(a ﬁ )k 1

ZlX T— ﬁ/ + Era
(1 —a)(1-a)’
[ E—

asymptotic component

where
T = a"opy,
, . a"Opy
ﬁ =1 + 611}0;7 + OrvepE,
and

Oapp = sup [[MJH — JH|.
Ky e

Proof of Proposition D.1. The proof of Theorem 2 is similar
to the proof of Theorem 1 and relies on contraction properties
and the triangle inequality. We thus give the following itera-
tion, which can be substituted in our proof of Theorem 1:

Wk = J#lo

= [IMK(T} Jx—1 + wie) — JHlloo

= [IMK(T} Jx—1 + wie) — JHlloo

S IMET Ji-1 = JHlleo + Moo

S IMET Jie-1 = T lleo + Moo llzox|oo

< IIMETY Jie-1 = J*lloo + Opvepe

= ||MkTm]k71 = MyJt + Mt — ¥l + OrvepE

< IMTy Ji1 — MiJ®loo + [IMJHs — JHé |l + Opvepe

He

< sup MllulI Ty Ji-1 = J¥lleo + sup [[Mi]H —
k k,

JH||o + OFveEpE

< a"Orvllfi—1 — J*¥lleo + Oupp + OFVEPE
= a"OpylJie1 — JHer + JHer — JHe|| o + Ogpp + OFveEpE

< a"opvlfi—1 — JFtlleo + @ Opv|l[Ht — JH¥ ||y + Oapp + OFvepE

a™opy
< @0y llict — JHe | +

+ 6app + Opye€pE.

Substituting
ﬁ, = D(m o jave
and

ams
’ . FV
T = 71 — + 6app + OpvepE,

in place of  and 7, respectively, in the proof of Theorem 1, we

obtain Proposition D.1. 0O

Appendix E. Bounds on Ji in Algorithm 2
In the following proposition, we present a bound on the dif-
ference between J, and J*.

Proposition E.1. When a"+-15;, < 1,

lim sup [|fx — "Il

k—o0
+
(1+ opya™ ) [%} + 6app +O0rvera
<
= 1— éFVam+H—1 4

where  and 7 are defined in Theorem 1.
The proof is as follows.

Proof of Proposition E.1.

W1 = J'lloo

= err = o+ JH1 = Tl

< Wi = T oo + W1 = Tl

<M Ty T i — el + Oevera
+ ]t = J'lleo + OpverLa

= M Ty T = My + Mg Jien — Jlon|g,
+[[JFt = Jlleo + OFvera

<M Ty T i = Myt flgg + (Mg ] = Jiea |l

+ JHe1 = J'lleo + OFvera

< IMialllI Ty T i = JFetllog + 1M JHor — JHea |l

+ /"1 = Jlleo + OFveLa
< 5FV(X"1||TH71]I< — ||, + 6upp
1 = Jlleo + Orvera
= Opy ™ [T e = '+ T = JH1 || + Bapp + ]9 = Tl
+ OrveLa
< opva”|IT" i = T'lleo + 0rva™|II"
+ [ — J'|leo + OFvera
—Jlleo + Opva™ ([ = JHe1]lo + Oapp
+ /"1 — Jlleo + OFveLa

= opya™ Tk = J'lles + (1 + Spva™)II* = J¥1 |l + Oapp

+6rvera.

- ]’lk” ||oo + 6upp

< Spva™ T
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From Theorem 1, we have that
H_t .
1-B €LA

Tl < gama—ay

lim sup [[JH

k—o0

Thus, for every ¢’ >0, there exists a k(¢’) such that for all
k> k(e),

L+£LA

, ZaHl_ﬁ
e _ T* [
I =l = =gy — )+

Thus, for all k > k(¢’), we have

Wks1 =T lleo < Opva™ Ik = T'lleo
+ (1 +0 Oém) m + ¢
T a=ai-a)

+ 6app +Orvera-

Iterating over k gives us

lim sup [y — J'llw
k—o0
§ m ZaHITfﬂ‘FCLA , § §
(1 + vaa ) T=al)(1=a) + &+ bapp + bFVSLA
<

- 1— 5FVam+H71

Because this holds for all ¢/,
lim sup [[Jx — J*lleo
k—o0
A" rptera

(1 + 6[:\/0[ ) {m} + 6app + (SFVSLA
<

- 1— 5pvam+H—l =

Appendix F. Obtaining g and p for Algorithm 4
In order to derive B and u for Algorithm 4, we define 0" for

any policy

ot —arg min = ||(DDk6 Pi(Ty, TH 1 + ).

Note that

DO = My(T}; TH oy + ), (E1)

where M; is defined in (6). Thus, oM represents the function
approximation of the estimate of J¥+ obtained from the m-step
return.

First, because Qk is obtained by taking 1 steps of gradient
descent toward 6" beginning from 6;_;, we show that the
following holds:

B 21
16k — 01, < ot NIOk1 — 8™,

where acp,y 1= sup;, max;|1— yA;(®}, ®p,)|, in which A; de-
notes the ith-largest eigenvalue of a matrix.
We note that because

0 < A(DF, Dp,) < |0F, p, |5 < dlI0f, Op 1%,
<d sup |0}, P,
k

acp,y <1 when y<

7 which follows from
Assumption 2.

dsupkll(l)pk‘l)pk\

Recall that the iterates in Equation (11) can be written as
follows:

Ok ¢ = Ok -1 — YVoc(6;]")o, .,
= Ok 1 — y(@p,_ DPp, 6k 01
- @ P (TZIkTH_l]k + Wi_1)).
Because
0= Voc(0;]") | gn = @f P, 0™
- (I’gk,lpkfl(TZlTH*l]k + Wy 1),
we have the following:
Ok¢ = Ok 01 — Y(Of,_ Pp, O 1 — D, Dp, 0%
- CD;kil’Pkfl(T;Z(TH_lfk + Wy_1)
+ q);k,lpk—l(Tzlk T+ wye1))
= Okc1 — yPL_ Pp, ,(Op 1 — 0.
Subtracting 6" from both sides gives
Ok — 0" =0 01 — O™ — Y5, Do (61— 0")
=(I—y®p,_,Pp, )01 — ™).
Thus,
16k, ¢ — 0"l = T — y®F,_ Pp, )1 — 0 ),
<M —y®f_ Pp, [l 1 — 0™l
< max |AI = y®f, ®p, )16k -1 — 8"l

< max |1 —yA(@p, Do, )0, -1 — 0™l

<sup max|1— VAP ©p,) | (165, -1 — 0" I,
k

=acp,y

where A; denotes the ith-largest eigenvalue of a matrix.
Iterating over k, the following holds:

Al Al
10 — 6", = 161, — 0"
Al
<alp, N0k0 - 0"l
»
= aly, N0 — 0" . (F2)

Using (F.2) as well as equivalence and submultiplicative
properties of matrix norms, we have the following;:

[D6) — @O |, < 1|6 — 8"l
||c1>||w
< [16x — 8"l
< agp, 61 — 6%l
1 ~ 11,
<o — alp, 1961 — D6™|,
S -
< VL 100, — 00,
Omin, ® "V
\/_ Nl .
= = @8" e < == =" alp, i1 = 26",
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where Omin,¢ is the smallest singular value in the singular
value decomposition of @ and the last line follows from the
fact that J; := ©O,.

This implies the following:

V VISHI®le

I = Jileo 10" = il + = === al [Vt = PO
= IMKTE T i + w0 —
1P| ~u
N A (£3)
where the equality follows from (F.1).
Now, we bound |[|J_; — ®6"||., as follows:
i1 = PO loo < k-1 = JHtlloo + [t = ¥4l
{7 — @6,
— THk- L e — oM
S Wi =T oo + =+ I = POl
—a
S RN
- C l-a
+ (4 = M(T T et + i) o,
(F.4)

where the last line follows from (F.1). We use our upper bound
on IIMk(T:YkTH‘ljk,l +wy) — J#|| introduced in Appendix C
to put together with (F.3) and (F.4), and we get the following:

W = Jlloo < B k-1 — ]l +7,
—_——— —_——
O Op-1

m+H 15 4 Y1l V ”(D”oo n

GD )’(anz+H 15 V+1)

pi=

Omin, ®

and

T=

\/_”CD”oo a +am+H—1
aGD y a

T OFy + Oapp + 5FV€PE>

Omin,®

VISTIPll.

(1 )0 min, @ GD v

Thus, we get
T

when 0 < g < 1, which follows from the assumptions in Prop-
osition 1 and Assumption 2.
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