
Crosscutting Areas

The Role of Lookahead and Approximate Policy Evaluation in
Reinforcement Learning with Linear Value Function
Approximation
Anna Winnicki,a,b,* Joseph Lubars,c Michael Livesay,c R. Srikanta,b,d

a Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801; b Coordinated Science
Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801; c Sandia National Laboratories, Albuquerque, New Mexico
87123; d c3.ai Digital Transformation Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801

*Corresponding author

Contact: annaw5@illinois.edu, https://orcid.org/0000-0001-9880-2340 (AW); lubars2@illinois.edu, https://orcid.org/0000-0001-9273-8456
(JL); mlivesa@sandia.gov, https://orcid.org/0000-0002-2594-3772 (ML); rsrikant@illinois.edu, https://orcid.org/0000-0003-1483-5204
(RS)

Received: July 12, 2022
Revised: September 11, 2023; February
13, 2024
Accepted: February 21, 2024
Published Online in Articles in Advance:
May 30, 2024

Area of Review: Machine Learning and Data
Science

https://doi.org/10.1287/opre.2022.0357

Copyright: © 2024 INFORMS

Abstract. Function approximation is widely used in reinforcement learning to handle
the computational difficulties associated with very large state spaces. However, function
approximation introduces errors that may lead to instabilities when using approximate
dynamic programming techniques to obtain the optimal policy. Therefore, techniques such
as lookahead for policy improvement and m-step rollout for policy evaluation are used in
practice to improve the performance of approximate dynamic programming with function
approximation. We quantitatively characterize the impact of lookahead and m-step rollout
on the performance of approximate dynamic programming (DP) with function approxima-
tion. (i) Without a sufficient combination of lookahead and m-step rollout, approximate DP
may not converge. (ii) Both lookahead and m-step rollout improve the convergence rate of
approximate DP. (iii) Lookahead helps mitigate the effect of function approximation and
the discount factor on the asymptotic performance of the algorithm. Our results are pre-
sented for two approximate DP methods: one that uses least-squares regression to perform
function approximation and another that performs several steps of gradient descent of the
least-squares objective in each iteration.

Funding: The research presented here was supported in part by a grant from Sandia National Labs and
the NSF [Grants CCF 1934986, CCF 2207547, CNS 2106801], ONR [Grant N00014-19-1-2566], and
ARO [Grant W911NF-19-1-0379].

Keywords: Markov decision processes • dynamic programming

1. Introduction
In many applications of reinforcement learning (RL),
such as playing chess and Go, the underlying model is
known, and so, the main challenge is in solving the
associated dynamic programming problem in an effi-
cient manner. Policy iteration (PI) and variants of PI
(Bertsekas and Tsitsiklis 1996; Bertsekas 2011, 2019)
that solve dynamic programming problems rely on
computations that are infeasible because of the sizes of
the state and action spaces in modern reinforcement
learning problems. As a remedy to this “curse of
dimensionality,” several state-of-the-art algorithms
(Mnih et al. 2016; Silver et al. 2017a, b) employ function
approximation, lookahead for policy improvement, m-
step rollout for policy evaluation, and gradient descent
to compute the function approximation; see Section 2
for a definition of these terms.

In vanilla PI, one has to compute the value function
associated with each state of a Markov decision pro-
cess (MDP). This is clearly infeasible for large state
spaces; therefore, a number of techniques are used to
mitigate the computational intractability of PI. Our
goal in this paper is to understand the role of multistep
lookahead for policy improvement (i.e., repeatedly
applying the Bellman operator multiple times) and m-
step rollout (which is a technique to approximately
evaluate a policy by rolling out the dynamic program-
ming tree for a certain number of steps m; see Section 2
for definitions of these terms) on the accuracy of
approximate PI techniques with linear value function
approximation. The algorithms we study in this paper
are closely related to least-squares policy iteration
(LSPI) (Lagoudakis and Parr 2001, 2003; Buşoniu et al.
2012) and approximate PI; see Bertsekas and Tsitsiklis

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–18

ISSN 0030-364X (print), ISSN 1526-5463 (online) https://pubsonline.informs.org/journal/opre

(1996) and Bertsekas (2019). In the analysis of approxi-
mate PI, it is assumed that the policy evaluation and
improvement steps have bounded errors, and using
these, an error bound is obtained for the algorithm that
repeatedly uses approximate policy evaluation and
improvement. We remark that vanilla PI is a special
case of approximate PI where there are no errors in
policy evaluation and improvement. LSPI is an algo-
rithm that builds on approximate PI where the policy
evaluation step uses a least-squares algorithm to esti-
mate the value function for the entire state space using
the value function evaluated at a few states. However,
the bounds presented in Lagoudakis and Parr (2003) as
well as the related studies in Lagoudakis and Parr
(2001) and Buşoniu et al. (2012) are simply a special
case of the bounds for generic approximate PI (Bertse-
kas and Tsitsiklis 1996, Bertsekas 2019), and they do
not explicitly take into account the details of the imple-
mentation of least squares-based policy evaluation.
When such details are taken into account, it turns out
that the roles of the depth of lookahead (H) and rollout
(m) become important, and their impact on the error
bounds on the performance of approximate value iter-
ation has not been characterized in prior work.

The recent work in Efroni et al. (2019) considers a
variant of PI that utilizes lookahead and approximate
policy evaluation using an m-step rollout. As stated in
the motivation in Efroni et al. (2019), it is well known
that Monte Carlo tree search (MCTS) (Kocsis and Sze-
pesvári 2006, Browne et al. 2012, Świechowski et al.
2023) works well in practice, even though the worst-
case compute complexity can be exponential (Shah et al.
2020a); see Munos (2014) for some analysis of MCTS in
MDPs, where the number of states that can be visited
from a given state is bounded. It is important to note
that many prior works use lookahead and that the use
of tree search as an enhancement of training RL algo-
rithms has become commonplace. For more on looka-
head, see Hong et al. (2019).

Motivated by PI, the algorithm in Efroni et al. (2019)
estimates the value function associated with a policy
and aims to improve the policy at each step. Policy
improvement is achieved by obtaining the “greedy”
policy in the case of PI or a lookahead policy in the
work of Efroni et al. (2019), which involves applying
the Bellman operator several times to the current iterate
before obtaining the greedy policy. The idea is that the
application of the Bellman operator several times gives
a more accurate estimate of the optimal value function.
Then, similarly to PI, the algorithm in Efroni et al.
(2019) aims to evaluate the new policy. The algorithm
in Efroni et al. (2019) uses an m-step rollout to compute
the value function associated with a policy (i.e., it
applies the Bellman operator associated with the policy
m times). The work of Efroni et al. (2019) establishes
that a lookahead can significantly improve the rate of

convergence if one uses the value function computed
using lookahead in the approximate policy evaluation
step. However, like the works of Bertsekas and Tsitsik-
lis (1996), Lagoudakis and Parr (2001, 2003), Buşoniu
et al. (2012), and Bertsekas (2019), the work of Efroni
et al. (2019) does not study the use of function approxi-
mation, which is critical to handling large state spaces,
nor does it quantify the effects of varying m in the con-
vergence of their algorithm. Our results show that the
aforementioned results change drastically when least
squares-based policy evaluation is incorporated. For a
more detailed comparison of the works of Bertsekas
and Tsitsiklis (1996), Lagoudakis and Parr (2001, 2003),
Buşoniu et al. (2012), Bertsekas (2019), and Efroni et al.
(2019) with our work, see Section 3.4. In this paper, we
assume that policies are evaluated at a few states using
an m-step rollout. The use of a partial rollout in our
algorithm is similar to modified PI (Puterman and Shin
1978), which is also called optimistic PI (Bertsekas and
Tsitsiklis 1996). We remark that vanilla PI is a special
case of modified PI where m �∞: However, motivated
by Tsitsiklis and Roy (1994), we present an example
that shows that the algorithm can diverge when func-
tion approximation is used. Therefore, our goal is to
understand how to integrate linear value function
approximation into the well-studied modified PI algo-
rithm. To the best of our knowledge, none of the prior
works consider the impact of using gradient descent to
implement an approximate version of least-squares
policy evaluation within approximate PI. Thus, our
algorithm and analysis can be viewed as a detailed
look at approximate PI and modified PI when linear
function approximation, least-squares policy evalua-
tion, and gradient descent are used to evaluate policies.

Our key contributions can be summarized as fol-
lows. We extend the analysis of approximate PI to
allow for iteration-dependent policy evaluation and
policy improvement errors. However, when we allow
iteration-dependent errors, it is not clear that the accu-
mulation of errors over multiple iterations can be
bounded. We show that under least-squares function
approximation as well as gradient descent-based func-
tion approximation, these errors can be bounded if
lookahead is sufficiently large. Combining this with
the counterexample motivated by Tsitsiklis and Roy
(1994), we believe that our result is why lookahead
is important in approximate policy iteration with func-
tion approximation. Since RL training can be viewed
as a version of approximate PI, our results show the
importance of lookahead in RL training and not just in
implementing an RL agent. In particular, our paper con-
tains the following results.

• We examine the impact of lookahead and m-step
rollout on approximate PI with linear function approxi-
mation. As is common in practice, we assume that we
evaluate an approximate value function only for some

Winnicki et al.: Approximate Policy Iteration with Lookahead
2 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

states at each iteration. We obtain performance bounds
for our algorithm under the assumption that the sum
of the lookahead and the number of steps in the m-step
rollout is sufficiently large. We demonstrate through
an extension of a counterexample in Tsitsiklis and Roy
(1994) that such a condition is necessary, in general, for
convergence with function approximation, unlike the
tabular setting in the prior works. See Section 3.2 for
our counterexample.

• For ease of exposition, we first present the case
where one solves a least-squares problem at each itera-
tion to obtain the weights associated with the feature
vectors in the function approximation of the value
function in Section 3.4. Our performance bounds in this
case generalize the bounds in Bertsekas and Tsitsiklis
(1996), Lagoudakis and Parr (2001, 2003), Buşoniu et al.
(2012), Bertsekas (2019), and Efroni et al. (2019) for
approximate PI.

• We then consider a more practical and widely
used scheme, where several steps of gradient descent
are used to update the weights of the value function
approximation at each iteration. Obtaining perfor-
mance bounds for the gradient descent algorithm is
more challenging, and these bounds can be found in
Section 4.

• Our results show that the sufficient conditions
on the hyperparameters (such as the amount of look-
ahead, rollout, and gradient descent parameters) of
the algorithm required for convergence either do not
depend on the size of the state space or depend only
logarithmically on the size of the state space. Our
results also illustrate the role of feature vectors in the
amount of lookahead required.

• In addition to asymptotic performance bounds,
we also provide finite-time guarantees for our algo-
rithms. Our finite-time bounds show that our algo-
rithm converges exponentially fast in the case of least
squares as well as the case where a fixed number of
gradient descent steps are performed in each iteration
of the algorithm.

• We complement our theoretical results with
experiments on the same grid world problem as in
Efroni et al. (2019). These experiments are presented
in Section 5.

1.1. Other Related Work
The role of lookahead and rollout in improving the per-
formance of RL algorithms has also been studied in a
large number of papers, including Efroni et al. (2018b,
2020), Deng et al. (2020), Moerland et al. (2020), Shah
et al. (2020b), Springenberg et al. (2020), Tomar et al.
(2020), and Winnicki and Srikant (2022, 2023). The
works of Baxter et al. (1999), Veness et al. (2009), and
Lanctot et al. (2014) explore the role of tree search in RL
algorithms. However, to the best of our knowledge, the
amount of lookahead and rollout needed as a function

of the feature vectors has not been quantified in prior
works.

The works of Bertsekas (2011, 2019) also study a vari-
ant of PI, wherein a greedy policy is evaluated approxi-
mately using feature vectors at each iteration. These
papers also provide rates of convergence as well as a
bound on the approximation error. However, our main
goal is to understand the relations between function
approximation and lookahead/rollout, which are not
considered in these other works.

2. Preliminaries
We consider an MDP, which is defined to be a 5-tuple
(S,A, P, r,α). The finite set of states of the MDP is S.
There exists a finite set of actions associated with the
MDP A. Let Pij(a) be the probability of transitioning
from state i to state j when taking action a ∈ A. We
denote by sk the state of the MDP and by ak the corre-
sponding action at time k. We associate with state sk

and action ak a nondeterministic reward r(sk, ak) ∈ [0, 1]
∀sk ∈ S, ak ∈ A:

Our objective is to maximize the cumulative dis-
counted reward with discount factor α ∈ (0, 1): Toward
this end, we seek to find a deterministic policy μ, which
associates with each state s ∈ S an action μ(s) ∈ A. For
every policy μ and every state s ∈ S, we define Jμ(s) as
follows:

Jμ(s) :� E
X∞
i�0

αkr(sk,μ(sk))
�����s0 � s

" #
:

We define the optimal reward-to-go J∗ as J∗(s) :� maxμ

Jμ(s): The objective is to find a policy μ that maximizes
Jμ(s) for all s ∈ S. Toward the objective, we associate
with each policy μ a function Tμ :

|S | → |S | , where
for J ∈ |S | , the sth component of TμJ is

(TμJ)(s) � r(s,μ(s)) + αX|S |

j�1

Psj(μ(s))J(j),

for all s ∈ S. If function Tμ is applied m times to vector
J ∈ |S | , then we say that we have performed an m-
step rollout of the policy μ, and the result Tm

μ J of the
rollout is called the return. It is well known that each
time Tμ is applied to a vector J to obtain TμJ, the follow-
ing holds:

‖TμJ � Jμ‖∞ ≤ α‖J � Jμ‖∞,

where ‖ · ‖∞ refers to the supremum norm or the largest
component of a vector. Thus, applying Tμ to obtain TμJ
gives a better estimate of the value function corre-
sponding to policy μ than J. Furthermore, it is easy to
see that the result of an m-step rollout of policy μ gives

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 3

the following:

‖Tm
μ J � Jμ‖∞ ≤ αm‖J � Jμ‖∞,

and hence, increasing m yields better estimates of Jμ:
Similarly, we define the Bellman operator T : |S | →
|S | with the sth component of TJ being

(TJ)(s) � max
a∈A

r(s, a) +α
X|S |

j�1

Psj(a)J(j)
8<
:

9=
;: (1)

The policy corresponding to the T operator is defined
as the greedy policy. If operator T is applied H times to
vector J ∈ |S | , we call the result—THJ—the H-step
“lookahead” corresponding to J. The greedy policy
corresponding to THJ is called the H-step lookahead
policy or the lookahead policy when H is understood.
More precisely, given an estimate J of the value func-
tion, the lookahead policy is the policy μ such that
Tμ(TH�1J) � T(TH�1J):

Similarly to Tμ, each time the Bellman operator is
applied to a vector J to obtain TJ, the following holds:

‖TJ � J∗‖∞ ≤ α‖J � J∗‖∞:
Thus, applying T to obtain TJ gives a better estimate of
the value function than J.

The Bellman equations state that the vector Jμ is the
unique solution to the linear equation

Jμ � TμJμ: (2)

Additionally, we have that J∗ is a solution to

J∗ � TJ∗:

Note that every greedy policy w.r.t. J∗ is optimal and
vice versa (Bertsekas and Tsitsiklis 1996). More pre-
cisely, J∗ is the value function corresponding to an opti-
mal policy.

We will now state several useful properties of the
operators T and Tμ. See Bertsekas and Tsitsiklis (1996)
for more on these properties. Consider the vector e ∈

|S | where e(i) � 1 ∀i ∈ 1, 2, : : : , |S | : We have

T(J + ce) � TJ + αce, Tμ(J + ce) � TμJ + αce: (3)

Operators T and Tμ are also monotone:

J ≤ J′ ⇒ TJ ≤ TJ′, TμJ ≤ TμJ′: (4)

Finally, in this paper, we repeatedly use the following
induced ∞-norm of a matrix A :

‖A‖∞ � sup
x≠0

‖Ax‖∞
‖x‖∞ :

For reference, we include the notation in Table A.1 in
Appendix A.

Algorithm 1 (Approximate PI with Lookahead)
Input: θ0, m, H.
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1 such that Ĵ

μk+1 satisfies the follow-
ing:

‖Ĵμk+1 � Jμk+1‖∞ ≤ δ:
4: Jk+1 � Ĵ

μk+1 :
5: Set k ← k+ 1: Go to (2).

3. Approximate PI with Linear Value
Function Approximation

As mentioned in Section 1, the work of Efroni et al.
(2019) extends the result of Bertsekas (2019) to incor-
porate the use of lookahead policies as opposed to
one-step greedy policies as well as m-step returns. We
outline the algorithm of Efroni et al. (2019) in Algo-
rithm 1. We then wish to incorporate linear value
function approximation into the analysis. We will out-
line the approximate PI algorithm with lookahead and
linear value function approximation and compare it
with Algorithm 1.

Algorithm 2 (Least-Squares Function Approximation
Algorithm)

Input: J0, m, H, feature vectors {φ(i)}i∈S ,φ(i) ∈ d,
and subsets Dk ⊆ S, k � 0, 1, : : : : Here, Dk is the set of
states at which we evaluate the current policy at
iteration k.
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1(i) � Tm

μk+1
TH�1(Jk)(i) +wk+1(i) for i ∈

Dk:
4: Choose θk+1 to solve

min
θ

X
i∈Dk

((Φθ)(i)� Ĵ
μk+1(i))2, (5)

where Φ is a matrix whose rows are the feature
vectors.

5: Jk+1 � Φθk+1:
6: Set k ← k+ 1: Go to (2).

3.1. Approximate PI with Linear Value Function
Approximation

Our main algorithm is described in Algorithm 2. We
now explain our algorithm and the associated notation
in detail. For more on the notations used, see Table A.1
in Appendix A. Because of the use of function approxi-
mation, our algorithm is an approximation to PI with
lookahead. At each iteration index, say k, we have an
estimate of the value function, which we denote by Jk.
To obtain Jk+1, we perform a lookahead to improve the
value function estimate at a certain number of states

Winnicki et al.: Approximate Policy Iteration with Lookahead
4 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

(denoted by Dk), which can vary with each iteration.
For example, Dk could be chosen as the states visited
when performing a tree search to approximate the loo-
kahead process. During the lookahead process, we note
that we will also obtain an H-step lookahead policy,
which we denote by μk+1. As noted in Section 1, the
computation of TH�1(Jk)(i) for i ∈ Dk in Step 3 of Algo-
rithm 2 may be computationally infeasible; however, as
mentioned in Efroni et al. (2019), techniques such as
MCTS are employed in practice to approximately esti-
mate TH�1(Jk)(i): In this paper, we model the fact that
lookahead cannot be performed exactly because of the
associated computational complexity by allowing an
error in the lookahead process, which we denote by εLA

in Step 2 of Algorithm 2. The use of εLA is similar to the
work of Efroni et al. (2019).

We obtain estimates of Jμk+1 (i) for i ∈ Dk, which we
call Ĵ

μk+1(i). To obtain an estimate of Jμk+1(i), we perform
an m-step rollout with policy μk+1 and obtain a noisy
version of Tm

μk+1
TH�1Jk(i) for i ∈ Dk: We also model the

approximation error in the rollout by adding noise
(denoted by wk+1(i) in Step 3 of Algorithm 2) to the
return (result of the rollout; see Section 2) computed at
the end of this step. In order to estimate the value func-
tion for states not in Dk, we associate with each state i ∈
S a feature vector φ(i) ∈ d, where typically, d < < |S | .
The matrix composed of the feature vectors as rows is
denoted by Φ. We use those estimates to find the best-
fitting θ ∈ d: that is,

min
θ

X
i∈Dk

((Φθ)(i)� Ĵ
μk+1(i))2:

The solution to the minimization problem is denoted by
θk+1. The algorithm then uses θk+1 to obtain Jk+1 �Φθk+1.
The process then repeats. This step of our algorithm
differs from the algorithm in Efroni et al. (2019) in that
the algorithm in Efroni et al. (2019) does not assume
any particular technique for computing the estimate of
Jμk+1 . It merely assumes the existence of some δ such
that the distance from the estimate of Ĵ

μk+1 to Jμk+1 is less
than δ. We will show that the results of Efroni et al.
(2019) change drastically when linear function approx-
imation is employed to estimate Jμk+1 . Additionally,
note that to compute Ĵ

μk+1(i), we obtain noisy estimates
of Tm

μk+1
TH�1Jk(i) for i ∈ Dk: Another alternative is to

instead obtain noisy estimates of Tm
μk+1

Jk(i) for i ∈ Dk: It
was shown in Efroni et al. (2019) that the former option
is preferable. Thus, we have chosen to use this compu-
tation in our algorithm as well. However, we will
show in Appendix D that the algorithm also has
bounded error, which becomes small if m is chosen to
be sufficiently large.

Remark 1. We note that μk+1(i) in Step 2 of Algorithm 2
does not have to be computed for all states i ∈ S: The

actions μk+1(i) have to be computed only for those i ∈ S
that are encountered in the rollout step of the algorithm
(Step 3 of Algorithm 2).

3.1.1. Computational Considerations. We would like
to note that m-step return and H-step lookahead are
not algorithms that we propose to improve computa-
tional tractability. They are algorithms that are used in
practice, and our goal is to point out why they are
important in RL training. We will now attempt to
explain why each of these ideas is used in practice. In
the case of chess, for example, Shannon estimated the
number of states to be approximately 10120: So, to
implement the policy evaluation step exactly, one has
to perform the inversion of matrix of size 10120 × 10120

or perform a fixed-point iteration of an operator repre-
sented by a 10120 × 10120 matrix. Compared with this,
even m of the order of several hundred steps (or even
much more) is much more computationally efficient.
Regarding H-step lookahead, this could indeed be a
computational bottleneck. As mentioned earlier, the
worst-case complexity can be exponential as shown in
Shah et al. (2020a). However, there are practical imple-
mentations of lookahead that are efficient and perform
well in practice. See Winnicki and Srikant (2023) for
more on efficient implementations of lookahead. Our
goal is not to argue the computational efficiency of
these ideas but to understand why these ideas are
important to ensure boundedness of errors given the
fact that computationally efficient approximate imple-
mentations already exist in practice. In particular, in
contrast to prior works, in our paper we have shown
that, without these ideas, the algorithms used in prac-
tice may even fail to converge.

To analyze Algorithm 2, we make the following
assumption, which states that we explore a sufficient
number of states during the policy evaluation phase at
each iteration and that the noise is bounded.

Assumption 1. For each k ≥ 0, rank {φ(i)}i∈Dk
� d. Addi-

tionally, assume that the noise wk is bounded. For some
εPE > 0, the noise in policy evaluation satisfies ‖wk‖∞ ≤
εPE ∀k.

Using Assumption 1, Jk+1 can be written as

Jk+1 � Φθk+1 � Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Mk+1

Ĵ
μk+1 , (6)

where ΦDk
is a matrix whose rows are the feature vec-

tors of the states in Dk and Pk is a matrix of zeros and
ones such that PkĴ

μk+1 is a vector whose elements are a
subset of the elements of Ĵ

μk+1 corresponding to Dk.
Note that Ĵ

μk+1(i) for i Dk does not affect the algorithm,
so we can define Ĵ

μk+1(i) � Tm
μk+1

TH�1Jk(i) for i Dk:

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 5

Written concisely, our algorithm is as follows:

Jk+1 � Mk+1(Tm
μk+1

TH�1Jk + wk), (7)

where μk+1 is defined in Step 2 of Algorithm 2. Because
wk(i) for i Dk does not affect the algorithm, we define
wk(i) � 0 for i Dk:

We now present a counterexample to show that
applying linear value function approximation to ap-
proximate PI is not a straightforward application of
the bounds in Bertsekas (2019) and Efroni et al. (2019).
In the counterexample, we give an MDP, which uses
an m-step return to evaluate greedy policies at several
states of the state space and linear value function
approximation to estimate the value functions corre-
sponding to the greedy policy at the rest of the states.
The iterates diverge, which shows that more work
needs to be done to understand how to incorporate lin-
ear value function approximation into approximate PI.

3.2. Counterexample
Even though in practice, Jμk is what we are interested
in, the values Jk computed as part of our algorithm
should not go to ∞ as the algorithm uses the values of
Jk to compute Jμk , so divergence of Jk can result in inac-
curate computations of values of Jμk . Additionally,
divergence of Jk would result in a numerically unstable
algorithm, which is also undesirable. Here, we show
that Jk can become unbounded.

The example we use is depicted in Figure 1. There are
two policies, μa and μb, and the transitions are deter-
ministic under the two policies. The rewards are deter-
ministic and only depend on the states. The rewards
associated with states are denoted by r(x1) and r(x2),
with r(x1) > r(x2). Thus, the optimal policy is μa. We
assume scalar features φ(x1) � 1 and φ(x2) � 2:

We fix H� 1. The MDP follows policy μa when

Jk(x1) > Jk(x2) ⇒ θk > 2θk:

Thus, as long as θk > 0, the lookahead policy will be μb:
We will now show that θk increases at each iteration

when 65α
m > 1: We assume that θ0 > 0 and Dk � {1, 2} ∀k:

At iteration k+ 1, suppose μk+1 � μb, and our Ĵ
μk+1(i) for

i�1, 2 are as follows:

Ĵ
μk+1 (1) � r(x1) +

Xm�1

i�1

r(x1)αi + 2αmθk,

Ĵ
μk+1 (2) � r(x2) +

Xm�1

i�1

r(x2)αi + 2αmθk:

Thus, from Step 5 of Algorithm 2,

θk+1 � arg min
θ

X2

i�1

((Φθ)(i)� Ĵ
μk+1(i))2

⇒ θk+1 �
Pm�1

i�1 α
ir(x1)

5
+ 2

Pm�1
i�1 α

ir(x2)
5

+ 6αmθk

5

⇒ θk+1 >
6

5
αmθk:

Thus, because θ0 > 0, when 65α
mθk, θk goes to ∞:

It is worth noting that, even though Jμk is always
bounded, the fact that Jk diverges means that the algo-
rithm cannot be implemented in a numerically stable
manner. The discussion can be summarized in the fol-
lowing claim.

Claim 1. There exists an MDP with a linear feature vector
representation for which modified PI diverges.

An interpretation of this result is that modified policy
iteration in the presence of linear function approxima-
tion is not a straightforward extension of modified pol-
icy iteration with convergence guarantees. In fact, the
algorithm may diverge unlike modified policy itera-
tion, which always converges. In Section 3.4, we intro-
duce lookahead as a remedy to this divergence.

3.3. Approximate PI with Time-Dependent Policy
Evaluation Error

Algorithm 3 (Modified PI with Lookahead and Function
Approximation)

Input: θ0, m, H.
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

Figure 1. An Example Illustrating the Necessity of the Condition in Theorem 1

x1 x2 x1 x2

(a) (b)

Notes. (a) μa. (b) μb.

Winnicki et al.: Approximate Policy Iteration with Lookahead
6 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

3: Compute θk+1 such that Ĵ
μk+1 :�Φθk+1 satisfies the

following:

‖Ĵμk+1 � Jμk+1‖∞ ≤ δk:

4: Jk+1 � Ĵ
μk+1 :

5: Set k ← k+ 1: Go to (2).

Before we present our main results, we first obtain
bounds for modified PI with lookahead and time-varying
bounds in the policy evaluation error. The algorithm we
analyze in this section is described in Algorithm 3. The
algorithm in Efroni et al. (2019) (Algorithm 1) is similar to
Algorithm 3 except that at time k, the work of Efroni et al.
(2019) assumes a constant bound in the policy evaluation
error, δ, and in Algorithm 1, we assume that the policy
evaluation error is upper bounded by time-dependent δk:
Then, we assume that δk is of the following form: δk ≤
βkδ0 +μ when 0 < β < 1. The bounds are given in Prop-
osition 1. In Section 3.4, we obtain values of β and μ corre-
sponding to Algorithm 2, approximate PI with linear
value function approximation, and lookahead. We fur-
ther extend the results to incorporate the use of gradient
descent in Section 4.

We now obtain a bound on the iterates in Algorithm 3
as follows.

Proposition 1.

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
Xk�1

��0

α(k���1)(H)2αHδ�
1 � α

+ εLA

(1 � α)(1 � αH�1) :

Furthermore, when

δk ≤ βkδ0 + μ for 0 < β < 1, 0 < μ: (8)

Then,

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH

1 � α k max(αH�1
, β)k�1δ0|ffl{zffl}

≕ finite-time component

+ 2αHμ + εLA

(1 � α)(1 � αH)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≕ asymptotic component

:

Taking limits on both sides, when 0 < β < 1, we have

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHμ+ εLA

(1� α)(1� αH) :

3.4. Approximate PI with Linear Value Function
Approximation and Lookahead

To apply Proposition 1 to Algorithm 2, we have to
compute the parameters β and μ in the proposition. In

Appendix C, we show that β and μ for Algorithm 2 are
given by

β :� αm+H�1δFV

μ :� τ

1 � β , (9)

where τ :� αm+αm+H�1

1�α δFV + δapp + δFVεPE:

Using (9) along with Proposition 1, we now state
Theorem 1, which characterizes the role of lookahead
(H) and return (m) on the convergence of approximate
PI with function approximation.

Theorem 1. Suppose that m and H satisfy m+H � 1 >
log(δFV)=log(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞:

Then, under Assumption 1, the following holds for Algo-
rithm 2:

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH‖Jμ0 � J0‖∞

1 � α k max(αH
, β)k�1|ffl{zffl}

finite-time component

+ 2αH τ
1�β + εLA

(1 � αH)(1 � α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

, (10)

where

τ :� α
m + αm+H�1

1 � α δFV + δapp + δFVεPE,

β :� αm+H�1δFV ,

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Remark 2. The tightness of the condition m+H � 1 >
log(δFV)=log(1=α) can be observed in our counterex-
ample in Section 3.2, where it can easily be shown
that when m+H � 1 ≤ log(δFV)=log(1=α), the algorithm
diverges.

The proof of Theorem 1 follows easily from Pro-
position 1. In Appendix E, we give corresponding
bounds on the iterates Jk in the algorithm. We now
provide an interpretation of Theorem 1. First, we pro-
vide an interpretation of several terms in Theorem 1,
including δapp and δFV. δapp represents the maximum
error over k when feature vectors corresponding to
the states in Dk are used to construct an estimate of Jμk

based on Jμk(s) for s ∈ Dk. In other words, δapp is error
because of function approximation. δFV is a function
of the feature vectors. Although it is not straight-
forward to characterize δFV for different choices of

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 7

function approximation, δFV can be quantified for sev-
eral choices of feature vectors. First, in the tabular set-
ting (i.e., one-hot encoded feature vectors), when all
states are visited at each iteration, δFV � 1: Next, we
consider the case of state aggregation in Bertsekas
(2019, section 6.1). In this case, under Assumption 1,
δFV � 1: To show this, we provide details for the special
case of two “representative” states (i.e., the case where
the feature vectors are [0, 1]� and [1, 0]�). The idea can
be easily extended to cases with more than two repre-
sentative states. In the case of two representative states,

it can be shown that (Φ�
DkΦDk)�1 �

h1=N1 0
0 1=N2

i
,

where N1 is the number of items in Dk belonging to the
first representative state and N2 is the number of items
in Dk belonging to the second representative state.
Note that because of Assumption 1, N1 and N2 are non-
zero. Hence, the ith row of Φ[Φ�

Dk
ΦDk

]�1 � φ(si) 1
Ni

,
where si is the state corresponding to the ith row.

It is straightforward to show that the jth column of
ΦDkPk is equal to φ(sj)1j∈Dk

, where sj is the state corre-
sponding to the jth column.

Thus, we have that

[Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk]ij � 1

Ni
1j∈Dk

:

Hence, every sum of row components of Φ(Φ�
Dk
ΦDk

)�1

Φ�
Dk

Pk is equal to one, and thus, ‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞ � 1:
In general, it is hard to characterize δFV. However,

when the terms of (10) are written out, the coefficients
of δFV are αm+H�1, 2αm+2H�1, 2 α

m+H+αm+2H�1

1�α , and 2αHδFV

εPE, where εPE is noise from the rollout. Thus, appro-
priately chosen m and H can offset the effect of δFV.

In light of our interpretations of δapp and δFV, Theo-
rem 1 can then be used to make the following observa-
tion; how close Jμk is to J∗ depends on four factors—
the representation power of the feature vectors and
the feature vectors themselves (δapp,δFV), the amount of
lookahead (H), the extent of the rollout (m), and the
approximation in the policy determination and policy
evaluation steps (εLA and εPE). Additionally, Theorem 1
shows that although ‖Jμk � J∗‖∞ depends on the func-
tion approximation error (δapp) and the feature vectors
(δFV), the effect of these terms diminishes exponentially
with increased H, with the exception of the tree search
error (εLA). Further, it is easy to see that lookahead and
rollout help mitigate the effect of feature vectors and
their ability to represent the value functions.

3.4.1. Comparison with Prior Works. We observe that
the models studied in Lagoudakis and Parr (2003), Bert-
sekas (2019), and Efroni et al. (2019) are all special cases
of model studied in Theorem 1.

• Specifically, if we set εPE � 0, m �∞, and H � 1
and consider the tabular case, we get the models studied

in Lagoudakis and Parr (2001) and Bertsekas (2019). We
note that Lagoudakis and Parr (2001) is motivated by
the linear value function approximation setting, but the
errors because of function approximation are not explic-
itly modeled.

• On the other hand, if we set εPE � 0 and m �∞ but
allow an arbitrary H, we get the model in Efroni et al.
(2019). Our work quantifies the effect of varying m on
the convergence of Algorithm 1.

• The most important detail in our model that
makes it different from the other models is the fact
that we model the errors because of function approxi-
mation, which leads to convergence issues not noticed
in the other papers.

In Bertsekas (2021), it is noted that in reinforcement
learning, to play computer games or board games, it is
not uncommon during training to get a relatively crude
estimate of the value function, which is improved by
lookahead and m-step return during actual game play.
Our analysis would also apply to this situation; we
have not explicitly differentiated between training and
game play in our analysis.

4. Extension to Gradient Descent
Algorithm 4 (Gradient Descent Algorithm)

Input: θ0, m, H, feature vectors {φ(i)}i∈S ,φ(i) ∈ d,
and Dk, which is the set of states for which we eval-
uate the current policy at iteration k.
1: k � 0, J0 �Φθ0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1(i) � Tm

μk+1
TH�1Jk(i) +wk+1(i) for i ∈

Dk:
4: θk+1, 0 :� θk: For � � 1, 2, : : : ,η, iteratively compute

the following:

θk+1, � � θk+1, ��1 � γ∇θc(θ; Ĵμk+1) |θk+1, ��1
, (11)

where

c(θ; Ĵμk+1) :� 1

2

X
i∈D

((Φθ)(i)� Ĵ
μk+1(i))2,

and Φ is a matrix whose rows are the feature
vectors.

5: Define

θk+1 � θk+1, η,

and set

Jk+1 � Φθk+1:

6: Set k ← k+ 1: Go to (2).

Solving the least-squares problem in Algorithm 2
involves a matrix inversion, which can be computa-
tionally difficult. So, this step is often replaced by a
few steps of gradient descent that are performed on
the least-squares objective. Here, we assume that we

Winnicki et al.: Approximate Policy Iteration with Lookahead
8 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

perform η steps of gradient descent with step size γ at
each iteration k, where the gradient is the gradient of
the least-squares objective in (5).

The gradient descent-based algorithm is presented in
Algorithm 4. When γ is sufficiently small and η is suffi-
ciently large, we have convergence to an asymptotic
error, assuming that m and H are sufficiently large.
When we increase η, our asymptotic error becomes
smaller until it reaches the asymptotic error of the least-
squares algorithm (i.e., when η→∞, we recover the
asymptotic error of Algorithm 2).

To apply Proposition 1 to Algorithm 4, we have to
first identify the parameters β and μ for this algorithm.
We make the following assumption.

Assumption 2. γ, m,η, and H satisfy

γ <
1

d infk‖Φ�
Dk
ΦDk

‖2
∞

,

m+H > 1+ log(2δFV)=log(1=α),
and

η > log
3

ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

� �
=log(1=αGD,γ),

where αGD,γ :� supk maxi |1� γλi(Φ�
Dk
ΦDk

) | , in which λi

denotes the ith-largest eigenvalue of a matrix and σmin,Φ is
the smallest singular value in the singular value decomposi-
tion of Φ.

Under Assumption 2, we can obtain β and μ for
Algorithm 4. In Appendix F, we show that β and μ are
given by

β � αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1),

μ � τ

1 � β , (12)

where τ :�
�

1+
ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

σmin,Φ
αηGD,γ

��
αm+αm+H�1

1�α δFV + δapp +
δFVεPE

�
+

ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

(1�α)σmin,Φ
αηGD,γ:

Using (12) along with Proposition 1, we now state
our theorem, which characterizes the error in using gra-
dient descent in approximate PI with linear value func-
tion approximation and lookahead. We remark that any
term undefined in Theorem 2 is assumed to have the
same definition as in Theorem 1.

Theorem 2. Suppose that m and H satisfy m+H � 1 >
log(2δFV)=log(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞,

in which the norm is the induced matrix norm defined in

Section 2. Then, under Assumptions 1 and 2, the following
holds:

‖Jμk � J∗‖∞ ≤ αkH

1� α+
2αH‖Jμ0 � J0‖∞

1� α k max(αH
,β)k�1|ffl{zffl}

finite-time component

+ 2αH τ
1�β+ εLA

(1� αH)(1� α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

, (13)

where

τ :� 1+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ

� �

αm + αm+H�1

1� α δFV + δapp + δFVεPE

� �

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞

(1� α)σmin,Φ
αηGD,γ,

β :� αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1),

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Theorem 2 follows directly from Proposition 1 when
β and μ are defined in (12).

Remark 3. Note that as η→∞, (i.e., the number of
steps of gradient descent becomes very large), the
error becomes the same as that of Algorithm 2.

Remark 4. Consider any ε such that 0 < ε < 1: It is
straightforward to see that when

m >
log 8δFV

1�α
	

=ε
	

log(1=α)

η >
log

4
ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

σmin,Φ(1�α)

� �
=ε

� �
log(1=αGD,γ) ,

and

H >

log
32
7 α

H 5
4

1
4+δapp+δFVεPE()+1

4[]
(1�α)2 =ε

� �
log(1=α) ,

ignoring the error because of lookahead, the asymptotic
error will be less than or equal to ε: Notice that the
parameters η, H, and m depend on log |S | instead of
|S | or

ffiffiffiffiffiffiffiffi|S |√
:

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 9

5. Numerical Results
We test our algorithms on a grid world problem using
the same grid world problem as in Efroni et al. (2018a,
2019).

For our simulations, we assume a deterministic grid
world problem played on an N×N grid. The states are
the squares of the grid, and the actions are {’up’,
’down’, ’right’, ’left’, and ’stay’}, which move the agent
in the prescribed direction, if possible. In each experi-
ment, a goal state is chosen uniformly at random to have
a reward of one, whereas each other state has a fixed
reward drawn uniformly from [�0:1, 0:1]. Unless other-
wise mentioned, for the duration of this section, n�25
and α � 0:9.

In order to perform linear function approximation,
we prescribe a feature vector for each state. In this sec-
tion, we focus on three particular choices.

1. Random feature vectors. Each entry of the matrix
Φ is an independent N (0, 1) random variable.

2. Designed feature vectors. The feature vector for
a state with coordinates (x, y) is [x, y, d, 1]T, where d is
the number of steps required to reach the goal from
state (x, y).

3. Indicator vectors. The feature vector for each state
i is an N2-dimensional indicator vector where only the
ith entry is nonzero.

Recall that our theorems suggest that the amount of
lookahead and return depends on the choice of the fea-
ture vectors. Our experiments support this observation
as well. The amount of lookahead and m-step return
required is high (often over 30) for random feature vec-
tors, but we are able to significantly reduce the amount
required by using the designed feature vectors, which
better represent the states.

We test Algorithm 2 in each of our experiments using
a starting state of J0 � θ0 � 0. All plots in this section
graph an average over 20 trials, where each trial has
a fixed random choice of Dk, the set of states used for

Figure 2. (Color online) Value of Jk as m and H Increase for Various Feature Vectors

Notes. (Upper panels) For random feature vectors, as m and H increase, the value Jk eventually stops diverging. (Lower panels) For designed fea-
ture vectors, smaller amounts of lookahead and m-step return are needed to prevent Jk from diverging.

Winnicki et al.: Approximate Policy Iteration with Lookahead
10 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

policy evaluation. Error bars show the standard devia-
tion of the mean.

5.1. The Effect of m and H on Convergence
In Figure 2, we showed how H and m affect conver-
gence of the iterates Jk to J∗. When m and H are small,
the value of Jk sometimes diverges. If the value diverges
for even one trial, then the average over trials of ‖Jk �
J∗‖∞ also increases exponentially with k. However,
if the average converges for all trials, then the plot is
relatively flat. The m or H required for convergence
depends on the parameter δFV defined in Theorem 1.
Over 20 trials, the average values of δFV for each of our
choices of feature vectors are 30:22, 16:29, and 1.0,
respectively. As shown in our counterexample, in gen-
eral, one needs m+H � 1 > log(δFV)=log(1=α) for con-
vergence. However, in specific examples, it is possible
for convergence to occur for smaller values of m+H:
For example, in our grid word model, log(16:29)

log(1=0:9) ≈ 26:5,
but we will observe that such a large amount of m+H
is not required for convergence.

In Figure 2, it is difficult to see how H and m affect
the probability of divergence as a function of the rep-
resentative states chosen to be sampled. Therefore, we
introduce Figure 3. These plots show the proportion of
trials in which the distance ‖Jk � J∗‖∞ exceeded 105

after 30 iterations of our algorithm. As expected, the
algorithm never diverges for indicator vectors as our
algorithm is then equivalent to the tabular setting. The
designed feature vectors clearly require a much smal-
ler amount of lookahead or m-step return, well below
the amount predicted by the average δFV of 16.29.
However, no matter the choice of feature vectors, we

will eventually prevent our algorithm from diverging
with a large-enough value of H+m.

5.2. Convergence to the Optimal Policy
In Theorem 1, we show that as H increases, we converge
to a policy μk that is closer to the optimal policy. In this
section, we experimentally investigate the role of m and
H on the final value of ‖Jμk � J∗‖∞. The results can be
found in Figure 4. As predicted by theory, we do get
closer to the optimal policy as H increases. However,
increasing m does not help past a certain point, which is
also consistent with the theory. Indeed, although μk is
approaching the optimal policy μ∗ as H increases, the
iterates Jk are not converging to J∗ because of error
induced by function approximation. Increasing m im-
proves the policy evaluation, but it cannot correct for
this inherent error from approximating the value func-
tion. The figures also show the importance of good fea-
ture selection. In practice, this feature selection is done
using neural networks, but analyzing this is beyond the
scope of the paper. However, it should be noted that
δFV somewhat captures this effect in our analysis.

Note that, in Figure 4, the plots corresponding to
indicator feature functions converge very fast. This is
because the indicator features correspond to no func-
tion approximation. Further, we note that m plays only
a small role in controlling the error, whereas H plays a
much larger role. This is consistent with the perfor-
mance bounds in Theorem 1.

6. Conclusion
Practical RL algorithms that deal with large state spaces
implement some form of approximate PI. In traditional

Figure 3. (Color online) We Plot the Probability That ‖Jk � J∗‖∞ Diverges as a Function of H and m

Notes. For the first plot, m � 3, and for the second plot, H � 3. In both cases, the algorithm never diverges after H + m is large enough, although a
smaller amount of lookahead or m-step return is needed for the designed feature vectors. (a) Varying H. (b) Varying m.

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 11

analyses of approximate PI (for example, in Bertsekas
2019), it is assumed that there is an error in the policy
evaluation step and an error in the policy improvement
step. The work of Efroni et al. (2019) extends this analy-
sis to incorporate lookahead policies, which mitigate the
effects of function approximation. We provide a counter-
example to show that incorporating linear value func-
tion into approximate PI is not straightforward as the
iterates may diverge. In this paper, we seek to under-
stand the role of linear value function approximation in
the policy evaluation step and the associated changes
that one has to make to the approximate PI algorithm
(such as lookahead) to counteract the effect of function
approximation. Our main conclusion is that lookahead
mitigates the effects of function approximation, rollout,
and the choice of specific feature vectors.

Possible directions for future work include the
following.

• In game-playing applications, gradient descent is
commonly used to estimate the value function, but tem-
poral difference (TD) learning is used in other applica-
tions. It would be interesting to extend our results to the
case of TD learning-based policy evaluation.

• Although neural networks are not linear function
approximators, recent results on the neural tangent
kernel (NTK) analysis of neural networks suggest
that they can be approximated as linear combinations
of basis functions (Jacot et al. 2018, Arora et al. 2019,
Cao and Gu 2019, Du et al. 2019, Ji and Telgarsky
2019). Thus, to the extent that the NTK approximation
is reasonable, our results can potentially shed light on
why the combination of the representation capability
of neural networks and tree search methods works
well in practice, although further work is necessary to
make this connection precise.

Acknowledgments
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration [Con-
tract DE-NA0003525]. This paper describes objective techni-
cal results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily rep-
resent the views of the U.S. Department of Energy or the U.S.
Government.

Figure 4. (Color online) We Plot the Final Value of ‖Jμk � J∗‖∞ After 30 Iterations

Notes. For the first plot, m � 3, and for the second plot, H � 3. As H increases, the final policy improves. With large-enough H, we obtain the opti-
mal policy. However, past a certain point, increasing m is not helpful for finding a better policy. (a) Varying H. (b) Varying m.

Winnicki et al.: Approximate Policy Iteration with Lookahead
12 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

Appendix A. Notation

Appendix B. Proof of Proposition 1
The work of Efroni et al. (2019) shows that

‖Jμk+1 � J∗‖∞ ≤ αH‖Jμk � J∗‖∞ + 2αHδ + εLA

1 � α : (B.1)

Iterating over k,

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHδ + εLA

(1 � α)(1 � αH) ,

which is a main result of Efroni et al. (2019). Suppose now
that δ depends on k, and we call the sequence δk:

Starting from (B.1), we substitute δk for δ, and we get the
following:

‖Jμk+1 � J∗‖∞ ≤ αH‖Jμk � J∗‖∞ + 2αHδk + εLA

1 � α : (B.2)

Iterating over k, we have

‖Jμk � J∗‖∞ ≤ αkH‖Jμ0 � J∗‖∞ + 2αH

1�α
Xk�1

��0

α(k���1)(H�1)2αHδ� + εLA

1�α

≤ α
kH

1�α+
Xk�1

��0

α(k���1)(H)2αHδ� + εLA

1�α

≤ α
kH

1�α+
Xk�1

��0

α(k���1)(H)2αHδ�
1�α + εLA

(1�α)(1�αH�1) :

(B.3)

Note that for the bound in (B.3) to be useful, we need for the
δk sequence to exhibit some properties that ensure that the
second term does not go to infinity as k →∞:

Table A.1. Notation

Notation Definition

MDP
α Discount factor
J∗ Optimal value function

Indices
k Iteration index
� Gradient descent iteration index
θk Provides estimate of optimal value function (i.e., Jk �Φθk)
Jk Estimate of optimal value function
d Dimension of θk (i.e., θk ∈ d)

Policies
μ Policy
Jμ Value function corresponding to a policy
μ∗ Optimal policy
μk Policy at iteration k

Value operators/maps
TμJ Bellman operator for μ,

(TμJ)(s) � r(s,μ(s)) +αP |S |
j�1 Psj(μ(s))J(j) ∀s ∈ S

TJ Bellman optimality operator,
(TJ)(s) � maxa∈A{r(s, a) +αP |S |

j�1 Psj(a)J(j)} ∀s ∈ S

Function approximation
φ(s) Feature vector for state s
Φ Matrix with rows that are the feature vectors
Dk States for which policy is evaluated at iteration k
ΦDk

Matrix with rows that are the feature vectors of the states in Dk

Pk Matrix of zeros and ones such that PkJ is a vector with elements that are a subset of the elements of Ĵ
μk corresponding to Dk

Mk Projection matrix (i.e., given Ĵ
μk (i), i ∈ Dk, Φθk � MkĴ

μk , where
θk � arg minθ

P
i∈Dk

((Φθ)(i)� J(i))2)
Error terms
δFV Feature vectors (i.e.,

δFV :� supk‖Mk‖∞ � supk‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞)

δapp Function approximation error (i.e., δapp :� supk,μk
‖MkJμk � Jμk ‖∞)

εLA ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA

εPE Noise in policy evaluation where ‖wk‖∞ ≤ εPE ∀k
Algorithm 4
η Number of steps of gradient descent
γ Gradient descent step size
αGD,γ αGD,γ :� supkmaxi |1� γλi(Φ�

Dk
ΦDk

) | ,
λi ith-largest eigenvalue of a matrix
σmin,Φ Smallest singular value in the singular value decomposition of Φ

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 13

The bound in (B.3) can be further simplified if

δk ≤ βkδ0 + μ for 0 < β < 1, 0 < μ: (B.4)

Starting from (B.2), where δk � βkδ0 +μ, we get the following:

‖Jμk � J∗‖∞ ≤ α
k(H)

1�α+
2αH

1�α
Xk�1

��0

α(k���1)(H)[β�δ0 +μ]

+ εLA

(1� α)(1�αH)

≤ α
k(H)

1�α+
2αH

1�αδ0

Xk�1

��0

α(k���1)(H�1)β�

+ 2αHμ+ εLA

(1� α)(1�αH)

≤ α
k(H)

1�α+
2αH

1�αδ0

Xk�1

��0

max(αH�1
,β)k�1

+ 2αHμ+ εLA

(1� α)(1�αH)

� α
k(H)

1�α+
2αH

1�α k max(αH�1
,β)k�1δ0

+ 2αHμ+ εLA

(1� α)(1�αH) :

Taking limits on both sides, noting that 0 < β < 1, we have

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHμ+ εLA

(1� α)(1�αH) :

Appendix C. Obtaining � and � for Algorithm 1
Using Assumption 1, Jk+1 can be written as

Jk+1 �Φθk+1 �Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Mk+1

Ĵ
μk+1 ,

where ΦDk
is a matrix whose rows are the feature vectors of

the states in Dk and Pk is a matrix of zeros and ones such that
PkĴ

μk+1 is a vector whose elements are a subset of the ele-
ments of Ĵ

μk+1 corresponding to Dk. Note that Ĵ
μk+1 (i) for i Dk

does not affect the algorithm, so we can define Ĵ
μk+1 (i) �

Tm
μk+1

TH�1Jk(i) for i Dk:

Written concisely, our algorithm is as follows:

Jk+1 � Mk+1(Tm
μk+1

TH�1Jk + wk), (C.1)

where μk+1 is defined in Step 2 of Algorithm 1. Because wk(i)
for i Dk does not affect the algorithm, we define wk(i) � 0 for
i Dk:

Using contraction properties of Tμk
and T along with the tri-

angle inequality, we obtain δk as follows:

‖Jk � Jμk‖∞ � ‖Mk(Tm
μk

TH�1Jk�1 +wk)� Jμk‖∞
≤ ‖MkTm

μk
TH�1Jk�1 � Jμk‖∞ + ‖Mkwk‖∞

≤ ‖MkTm
μk

TH�1Jk�1 � Jμk‖∞ + ‖Mk‖∞‖wk‖∞
≤ ‖MkTm

μk
TH�1Jk�1 � Jμk‖∞ + δFVεPE

� ‖MkTm
μk

TH�1Jk�1 �MkJμk +MkJμk � Jμk‖∞
+ δFVεPE

≤ ‖MkTm
μk

TH�1Jk�1 �MkJμk‖∞ + ‖MkJμk � Jμk‖∞
+ δFVεPE

≤ ‖Mk‖∞‖Tm
μk

TH�1Jk�1 � Jμk‖∞ + ‖MkJμk � Jμk‖∞
+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � Jμk‖∞ + sup
k,μk

‖MkJμk � Jμk‖∞

+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � J∗ + J∗� Jμk‖∞ + δapp

+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � J∗‖∞ +αm‖Mk‖∞‖J∗� Jμk‖∞
+ δapp + δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � J∗‖∞ + α
m

1�α‖Mk‖∞ + δapp

+ δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � Jμk�1 + Jμk�1 � J∗‖∞
+ α

m

1�α‖Mk‖∞ + δapp + δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � Jμk�1‖∞

+α
m +αm+H�1

1�α ‖Mk‖∞ + δapp + δFVεPE

≤ αm+H�1δFV‖Jk�1 � Jμk�1‖∞ +α
m +αm+H�1

1�α δFV

+ δapp + δFVεPE:

Now, we have

‖Jk � Jμk‖∞|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δk

≤ αm+H�1δFV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≕β

‖Jk�1 � Jμk�1‖∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δk�1

+ α
m + αm+H�1

1 � α δFV + δapp + δFVεPE|ffl{zffl}
≕τ

:

Winnicki et al.: Approximate Policy Iteration with Lookahead
14 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

Iterating,

δk ≤ βkδ0 +
Xk�1

i�0

βiτ

≤ βkδ0 + τ

1 � β|fflffl{zfflffl}
≕μ

: (C.2)

Appendix D. A Modified Least-Squares Algorithm
Suppose Step 3 of Algorithm 2 is changed to Ĵ

μk+1 (i) � Tm
μk+1

(Jk)(i)
+ wk+1(i) for i ∈ Dk. Then, it is still possible to get bounds on the
performance of the algorithm when m is sufficiently large. With
this modification to the algorithm, we have the following.

Proposition D.1. Suppose that m satisfies m > log(δFV)=log
(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞:

Then, under Assumption 1, the following holds:

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH‖Jμ0 � J0‖∞

1 � α k max(αH
, β′)k�1|ffl{zffl}

finite-time component

+ 2αH τ′
1�β′ + εLA

(1 � αH)(1 � α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

,

where

τ′ :� αmδFV,

β′ :� α
mδFV

1 � α + δapp + δFVεPE,

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Proof of Proposition D.1. The proof of Theorem 2 is similar
to the proof of Theorem 1 and relies on contraction properties
and the triangle inequality. We thus give the following itera-
tion, which can be substituted in our proof of Theorem 1:

‖Jk � Jμk‖∞
� ‖Mk(Tm

μk
Jk�1 + wk)� Jμk‖∞

� ‖Mk(Tm
μk

Jk�1 + wk)� Jμk‖∞
≤ ‖MkTm

μk
Jk�1 � Jμk‖∞ + ‖Mkwk‖∞

≤ ‖MkTm
μk

Jk�1 � Jμk‖∞ + ‖Mk‖∞‖wk‖∞
≤ ‖MkTm

μk
Jk�1 � Jμk‖∞ + δFVεPE

� ‖MkTm
μk

Jk�1 � MkJμk + MkJμk � Jμk‖∞ + δFVεPE

≤ ‖MkTm
μk

Jk�1 � MkJμk‖∞ + ‖MkJμk � Jμk‖∞ + δFVεPE

≤ sup
k

‖Mk‖∞‖Tm
μk

Jk�1 � Jμk‖∞ + sup
k,μk

‖MkJμk � Jμk‖∞ + δFVεPE

≤ αmδFV‖Jk�1 � Jμk‖∞ + δapp + δFVεPE

� αmδFV‖Jk�1 � Jμk�1 + Jμk�1 � Jμk‖∞ + δapp + δFVεPE

≤ αmδFV‖Jk�1 � Jμk�1‖∞ + αmδFV‖Jμk�1 � Jμk‖∞ + δapp + δFVεPE

≤ αmδFV‖Jk�1 � Jμk�1‖∞ + α
mδFV

1 � α + δapp + δFVεPE:

Substituting

β′ :� αmδFV

and

τ′ :� α
mδFV

1 � α + δapp + δFVεPE,

in place of β and τ, respectively, in the proof of Theorem 1, we
obtain Proposition D.1. w

Appendix E. Bounds on Jk in Algorithm 2
In the following proposition, we present a bound on the dif-
ference between Jk and J∗:

Proposition E.1. When αm+H�1δFV < 1,

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1+ δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α)

� �
+ δapp + δFVεLA

1� δFVαm+H�1
,

where β and τ are defined in Theorem 1.
The proof is as follows.

Proof of Proposition E.1.

‖Jk+1 � J∗‖∞
� ‖Jk+1 � Jμk+1 + Jμk+1 � J∗‖∞
≤ ‖Jk+1 � Jμk+1‖∞ + ‖Jμk+1 � J∗‖∞
≤ ‖Mk+1Tm

μk+1
TH�1Jk � Jμk+1‖∞ + δFVεLA

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� ‖Mk+1Tm
μk+1

TH�1Jk � Mk+1Jμk+1 + Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ ‖Mk+1Tm
μk+1

TH�1Jk � Mk+1Jμk+1‖∞ + ‖Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ ‖Mk+1‖∞‖Tm
μk+1

TH�1Jk � Jμk+1‖∞ + ‖Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ δFVα
m‖TH�1Jk � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� δFVα
m‖TH�1Jk � J∗ + J∗ � Jμk+1‖∞ + δapp + ‖Jμk+1 � J∗‖∞

+ δFVεLA

≤ δFVα
m‖TH�1Jk � J∗‖∞ + δFVα

m‖J∗ � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ δFVα
m+H�1‖Jk � J∗‖∞ + δFVα

m‖J∗ � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� δFVα
m+H�1‖Jk � J∗‖∞ + (1 + δFVα

m)‖J∗ � Jμk+1‖∞ + δapp

+ δFVεLA:

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 15

From Theorem 1, we have that

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αH τ
1�β + εLA

(1 � αH)(1 � α) :

Thus, for every ε′ > 0, there exists a k(ε′) such that for all
k > k(ε′),

‖Jμk � J∗‖∞ ≤ 2αH τ
1�β+ εLA

(1� αH)(1�α) + ε
′:

Thus, for all k > k(ε′), we have

‖Jk+1 � J∗‖∞ ≤ δFVα
m+H�1‖Jk � J∗‖∞

+ (1+ δFVα
m) 2αH τ

1�β+ εLA

(1� αH)(1� α) + ε
′

" #

+ δapp + δFVεLA:

Iterating over k gives us

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1 + δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α) + ε′
� �

+ δapp + δFVεLA

1 � δFVαm+H�1
:

Because this holds for all ε′,

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1+ δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α)

� �
+ δapp + δFVεLA

1� δFVαm+H�1
: w

Appendix F. Obtaining � and � for Algorithm 4
In order to derive β and μ for Algorithm 4, we define θ̃

μk for
any policy μk:

θ̃
μk :� arg min

θ

1

2
‖ΦDk

θ�Pk(Tm
μk

TH�1Jk�1 +wk)‖2
2:

Note that

Φθ̃
μk � Mk(Tm

μk
TH�1Jk�1 + wk), (F.1)

where Mk is defined in (6). Thus, θ̃
μk represents the function

approximation of the estimate of Jμk obtained from the m-step
return.

First, because θk is obtained by taking η steps of gradient
descent toward θ̃

μk beginning from θk�1, we show that the
following holds:

‖θk � θ̃μk‖2 ≤ αηGD,γ‖θk�1 � θ̃μk‖2,

where αGD,γ :� supk maxi |1� γλi(Φ�
Dk
ΦDk

) | , in which λi de-
notes the ith-largest eigenvalue of a matrix.

We note that because

0 < λi(Φ�
Dk
ΦDk

) ≤ ‖Φ�
Dk
ΦDk

‖2
2 ≤ d‖Φ�

Dk
ΦDk

‖2
∞

≤ d sup
k

‖Φ�
Dk
ΦDk

‖2
∞,

αGD,γ < 1 when γ < 1
d supk‖Φ�

Dk
ΦDk

‖2
∞

, which follows from
Assumption 2.

Recall that the iterates in Equation (11) can be written as
follows:

θk, � � θk, ��1 � γ∇θc(θ; Ĵμk) |θk, ��1

� θk, ��1 � γ(Φ�
Dk�1
ΦDk�1

θk, ��1

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1)):
Because

0 � ∇θc(θ; Ĵμk) | θ̃μk � Φ�
Dk�1
ΦDk�1

θ̃
μk

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1),
we have the following:

θk, � � θk, ��1 � γ(Φ�
Dk�1
ΦDk�1

θk, ��1 �Φ�
Dk�1
ΦDk�1

θ̃
μk

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1)
+Φ�

Dk�1
Pk�1(Tm

μk
TH�1Jk + wk�1))

� θk, ��1 � γΦ�
Dk�1
ΦDk�1

(θk, ��1 � θ̃μk):
Subtracting θ̃

μk from both sides gives

θk,� � θ̃μk � θk, ��1 � θ̃μk � γΦ�
Dk�1
ΦDk�1

(θk, ��1 � θ̃μk)
� (I � γΦ�

Dk�1
ΦDk�1

)(θk,��1 � θ̃μk):
Thus,

‖θk, � � θ̃μk‖2 � ‖(I � γΦ�
Dk�1
ΦDk�1

)(θk, ��1 � θ̃μk)‖2

≤ ‖I � γΦ�
Dk�1
ΦDk�1

‖2‖θk, ��1 � θ̃μk‖2

≤ max
i

|λi(I � γΦ�
Dk�1
ΦDk�1

) |‖θk, ��1 � θ̃μk‖2

≤ max
i

|1 � γλi(Φ�
Dk�1
ΦDk�1

) |‖θk, ��1 � θ̃μk‖2

≤ sup
k

max
i

|1 � γλi(Φ�
Dk
ΦDk

) ||ffl{zffl}
≕αGD,γ

‖θk, ��1 � θ̃μk‖2,

where λi denotes the ith-largest eigenvalue of a matrix.
Iterating over k, the following holds:

‖θk � θ̃μk‖2 � ‖θk, η � θ̃μk‖2

≤ αηGD,γ‖θk, 0 � θ̃μk‖2

� αηGD,γ‖θk�1 � θ̃μk‖2: (F.2)

Using (F.2) as well as equivalence and submultiplicative
properties of matrix norms, we have the following:

1

‖Φ‖∞ ‖Φθk �Φθ̃μk‖∞ ≤ ‖θk � θ̃μk‖∞
≤ ‖θk � θ̃μk‖2

≤ αηGD,γ‖θk�1 � θ̃μk‖2

≤ 1

σmin,Φ
αηGD,γ‖Φθk�1 �Φθ̃μk‖2

≤
ffiffiffiffiffiffiffi|S |√
σmin,Φ

αηGD,γ‖Φθk�1 �Φθ̃μk‖∞

⇒ ‖Jk �Φθ̃μk‖∞ ≤
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞,

Winnicki et al.: Approximate Policy Iteration with Lookahead
16 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

where σmin,Φ is the smallest singular value in the singular
value decomposition of Φ and the last line follows from the
fact that Jk :� Φθk:

This implies the following:

‖Jμk � Jk‖∞ ≤ ‖Φθ̃μk � Jμk‖∞ +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞

� ‖Mk(Tm
μk

TH�1Jk�1 + wk)� Jμk‖∞

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞, (F.3)

where the equality follows from (F.1).

Now, we bound ‖Jk�1 �Φθ̃μk‖∞ as follows:

‖Jk�1 �Φθ̃μk‖∞ ≤ ‖Jk�1 � Jμk�1‖∞ + ‖Jμk�1 � Jμk‖∞
+ ‖Jμk �Φθ̃μk‖∞

≤ ‖Jk�1 � Jμk�1‖∞ + 1

1�α+ ‖Jμk �Φθ̃μk‖∞

≤ ‖Jk�1 � Jμk�1‖∞ + 1

1�α
+ ‖Jμk �Mk(Tm

μk
TH�1Jk�1 +wk)‖∞,

(F.4)

where the last line follows from (F.1). We use our upper bound

on ‖Mk(Tm
μk

TH�1Jk�1 +wk)� Jμk‖∞ introduced in Appendix C

to put together with (F.3) and (F.4), and we get the following:

‖Jμk � Jk‖∞|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δk

≤ β ‖Jk�1 � Jμk�1‖∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δk�1

+τ,

β :� αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1),

and

τ :� 1+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ

� �
αm +αm+H�1

1�α δFV + δapp + δFVεPE

� �

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞

(1�α)σmin,Φ
αηGD,γ:

Thus, we get

μ � τ

1 � β
when 0 < β < 1, which follows from the assumptions in Prop-
osition 1 and Assumption 2.

References
Arora S, Du S, Hu W, Li Z, Wang R (2019) Fine-grained analysis of

optimization and generalization for overparameterized two-layer
neural networks. 36th Internat. Conf. Machine Learning, ICML 2019
(International Machine Learning Society), 477–502.

Baxter J, Tridgell A, Weaver L (1999) TDleaf(lambda): Combining
temporal difference learning with game-tree search. Clinical
Orthopaedics Related Res.

Bertsekas D (2011) Approximate policy iteration: A survey and some
new methods. J. Control Theory Appl. 9(3):310–335.

Bertsekas DP (2019) Reinforcement Learning and Optimal Control
(Athena Scientific, Belmont, MA).

Bertsekas D (2021) Lessons from alphazero for optimal, model predic-
tive, and adaptive control. Working paper, MIT, Cambridge, MA.

Bertsekas D, Tsitsiklis J (1996) Neuro-Dynamic Programming (Athena
Scientific, Belmont, MA).

Browne C, Powley E, Whitehouse D, Lucas S, Cowling P, Rohlfshagen
P, Tavener S, Perez Liebana D, Samothrakis S, Colton S (2012) A
survey of Monte Carlo tree search methods. IEEE Trans. Comput.
Intelligence AI Games 4(1):1–43.

Buşoniu L, Lazaric A, Ghavamzadeh M, Munos R, Babuška R, Schut-
ter BD (2012) Least-squares methods for policy iteration. Wiering
M, van Otterlo M, eds. Reinforcement Learning. Adaptation, Learn-
ing, and Optimization, vol. 12 (Springer, Berlin), 75–109.

Cao Y, Gu Q (2019) Generalization bounds of stochastic gradient
descent for wide and deep neural networks. Adv. Neural Inform.
Processing Systems 32:10836–10846.

Deng H, Yin S, Deng X, Li S (2020) Value-based algorithms optimi-
zation with discounted multiple-step learning method in deep
reinforcement learning. 2020 IEEE 22nd Internat. Conf. High
Performance Comput. Comm. IEEE 18th Internat. Conf. Smart City
IEEE 6th Internat. Conf. Data Sci. Systems (HPCC/SmartCity/
DSS) (IEEE, Piscataway, NJ), 979–984.

Du SS, Zhai X, Poczos B, Singh A (2019) Gradient descent provably
optimizes over-parameterized neural networks. Internat. Conf.
Learn. Representations (OpenReview.net).

Efroni Y, Ghavamzadeh M, Mannor S (2020) Online planning with
lookahead policies. Adv. Neural Inform. Processing Systems 33.

Efroni Y, Dalal G, Scherrer B, Mannor S (2018a) Beyond the one step
greedy approach in reinforcement learning. Preprint, submitted
July 30, https://arxiv.org/abs/1802.03654.

Efroni Y, Dalal G, Scherrer B, Mannor S (2018b) Multiple-step
greedy policies in online and approximate reinforcement
learning. NIPS’18: Proc. 32nd Internat. Conf. Neural Inform.
Processing Systems (Curran Associates Inc., Red Hook, NY),
5244–5253.

Efroni Y, Dalal G, Scherrer B, Mannor S (2019) How to combine tree-
search methods in reinforcement learning. Thirty-Third AAAI
Conf. Artificial Intelligence (AAAI-19) (AAAI Press, Palo Alto,
CA), 3494–3501.

Hong ZW, Pajarinen J, Peters J (2019) Model-based lookahead rein-
forcement learning. Preprint, submitted August 15, https://arxiv.
org/pdf/1908.06012.

Jacot A, Gabriel F, Hongler C (2018) Neural tangent kernel: Con-
vergence and generalization in neural networks. Preprint,
submitted June 20, https://arxiv.org/abs/1806.07572.

Ji Z, Telgarsky M (2019) Polylogarithmic width suffices for gradient
descent to achieve arbitrarily small test error with shallow ReLu
networks. Internat. Conf. Learn. Representations (OpenReview.net).

Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning.
Fürnkranz J, Scheffer T, Spiliopoulou M, eds. Machine Learning:
ECML 2006, Lecture Notes in Computer Science, vol. 4212
(Springer, Berlin), 282–293.

Lagoudakis MG, Parr R (2001) Model-free least-squares policy itera-
tion. Adv. Neural Inform. Processing Systems, vol. 14 (MIT Press,
Cambridge, MA).

Lagoudakis MG, Parr R (2003) Least-squares policy iteration. J.
Machine Learn. Res. 4:1107–1149.

Lanctot M, Winands MHM, Pepels T, Sturtevant NR (2014) Monte
Carlo tree search with heuristic evaluations using implicit mini-
max backups. 2014 IEEE Conf. Comput. Intelligence Games (IEEE,
Piscataway, NJ), 1–8.

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver
D, Kavukcuoglu K (2016) Asynchronous methods for deep rein-
forcement learning. Preprint, submitted June 16, https://arxiv.
org/abs/1602.01783.

Winnicki et al.: Approximate Policy Iteration with Lookahead
Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 17

Moerland TM, Broekens J, Jonker CM (2020) A framework for rein-
forcement learning and planning. Working paper, AAAI Press,
Palo Alto, CA.

Munos R (2014) From bandits to Monte-Carlo tree search: The opti-
mistic principle applied to optimization and planning. Founda-
tions Trends Machine Learn. 7(1):1–129.

Puterman M, Shin MC (1978) Modified policy iteration algorithms for
discounted Markov decision problems. Management Sci. 24(11):
1127–1137.

Shah D, Xie Q, Xu Z (2020a) Non-asymptotic analysis of Monte Carlo
tree search. ACM SIGMETRICS Performance Evaluation Review,
vol. 48 (ACM, New York), 31–32.

Shah D, Somani V, Xie Q, Xu Z (2020b) On reinforcement learning for
turn-based zero-sum Markov games. Preprint, submitted Febru-
ary 25, https://arxiv.org/abs/2002.10620.

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
Lanctot M, et al. (2017a) Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. Preprint, sub-
mitted December 5, https://arxiv.org/abs/1712.01815.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez
A, Hubert T, et al. (2017b) Mastering the game of go without
human knowledge. Nature 550(7676):354–359.

Springenberg JT, Heess N, Mankowitz D, Merel J, Byravan A, Abdol-
maleki A, Kay J, et al. (2020) Local search for policy iteration in
continuous control. Preprint, submitted October 12, https://
arxiv.org/abs/2010.05545.

Świechowski M, Godlewski K, Sawicki B, Mańdziuk J (2023) Monte
Carlo tree search: A review of recent modifications and applica-
tions. Artificial Intelligence Rev. 56(3):2497–2562.

Tomar M, Efroni Y, Ghavamzadeh M (2020) Multi-step greedy rein-
forcement learning algorithms. Internat. Conf. Machine Learning
(PMLR, New York), 9504–9513.

Tsitsiklis JN, Roy BV (1994) Feature-based methods for large scale
dynamic programming. Machine Learn. 22(1):59–94.

Veness J, Silver D, Blair A, Uther W (2009) Bootstrapping from game
tree search. Bengio Y, Schuurmans D, Lafferty J, Williams C,
Culotta A, eds. Adv. Neural Inform. Processing Systems, vol. 22
(Curran Associates, Inc., Red Hook, NY), 1937–1945.

Winnicki A, Srikant R (2022) Reinforcement learning with unbiased
policy evaluation and linear function approximation. 2022 IEEE
61st Conf. Decision Control (CDC) (IEEE, Piscataway, NJ), 801–806.

Winnicki A, Srikant R (2023) A new policy iteration algorithm for
reinforcement learning in zero-sum Markov games. Preprint,
submitted March 17, https://arxiv.org/abs/2303.09716.

Anna Winnicki is a PhD candidate in electrical and computer engi-
neering at the University of Illinois Urbana-Champaign. Her research
interests lie in stochastic control, reinforcement learning, and electricity
markets. She is a finalist in the 2023 INFORMS Applied Probability
Society Best Student Paper Competition.

Joseph Lubars is a technical staff member at Sandia National
Laboratories, where his research is focused on modeling of complex
systems.

Michael Livesay is a technical staff member at Sandia National
Laboratories, where he does research in formal methods, automated
control, and modeling in complex systems.

R. Srikant is with the University of Illinois Urbana-Champaign,
where he is the Co-Director of the c3.ai Digital Transformation Insti-
tute, a Grainger Distinguished Chair in Engineering, and a professor
in the Department of Electrical and Computer Engineering and the
Coordinated Science Laboratory. His research interests include
applied probability, machine learning, stochastic control, and com-
munication networks. Dr. Srikant is the recipient of the 2015 INFO-
COM Achievement Award, the 2019 IEEE Koji Kobayashi Computers
and Communications Award, the 2021 ACM SIGMETRICS Achieve-
ment Award, the 2015 INFOCOM Best Paper Award, the 2017
Applied Probability Society Best Publication Award, and the 2017
WiOpt Best Paper Award.

Winnicki et al.: Approximate Policy Iteration with Lookahead
18 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS

