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Abstract. Function approximation is widely used in reinforcement learning to handle 
the computational difficulties associated with very large state spaces. However, function 
approximation introduces errors that may lead to instabilities when using approximate 
dynamic programming techniques to obtain the optimal policy. Therefore, techniques such 
as lookahead for policy improvement and m-step rollout for policy evaluation are used in 
practice to improve the performance of approximate dynamic programming with function 
approximation. We quantitatively characterize the impact of lookahead and m-step rollout 
on the performance of approximate dynamic programming (DP) with function approxima-
tion. (i) Without a sufficient combination of lookahead and m-step rollout, approximate DP 
may not converge. (ii) Both lookahead and m-step rollout improve the convergence rate of 
approximate DP. (iii) Lookahead helps mitigate the effect of function approximation and 
the discount factor on the asymptotic performance of the algorithm. Our results are pre-
sented for two approximate DP methods: one that uses least-squares regression to perform 
function approximation and another that performs several steps of gradient descent of the 
least-squares objective in each iteration.
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1. Introduction
In many applications of reinforcement learning (RL), 
such as playing chess and Go, the underlying model is 
known, and so, the main challenge is in solving the 
associated dynamic programming problem in an effi-
cient manner. Policy iteration (PI) and variants of PI 
(Bertsekas and Tsitsiklis 1996; Bertsekas 2011, 2019) 
that solve dynamic programming problems rely on 
computations that are infeasible because of the sizes of 
the state and action spaces in modern reinforcement 
learning problems. As a remedy to this “curse of 
dimensionality,” several state-of-the-art algorithms 
(Mnih et al. 2016; Silver et al. 2017a, b) employ function 
approximation, lookahead for policy improvement, m- 
step rollout for policy evaluation, and gradient descent 
to compute the function approximation; see Section 2
for a definition of these terms.

In vanilla PI, one has to compute the value function 
associated with each state of a Markov decision pro-
cess (MDP). This is clearly infeasible for large state 
spaces; therefore, a number of techniques are used to 
mitigate the computational intractability of PI. Our 
goal in this paper is to understand the role of multistep 
lookahead for policy improvement (i.e., repeatedly 
applying the Bellman operator multiple times) and m- 
step rollout (which is a technique to approximately 
evaluate a policy by rolling out the dynamic program-
ming tree for a certain number of steps m; see Section 2
for definitions of these terms) on the accuracy of 
approximate PI techniques with linear value function 
approximation. The algorithms we study in this paper 
are closely related to least-squares policy iteration 
(LSPI) (Lagoudakis and Parr 2001, 2003; Buşoniu et al. 
2012) and approximate PI; see Bertsekas and Tsitsiklis 
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(1996) and Bertsekas (2019). In the analysis of approxi-
mate PI, it is assumed that the policy evaluation and 
improvement steps have bounded errors, and using 
these, an error bound is obtained for the algorithm that 
repeatedly uses approximate policy evaluation and 
improvement. We remark that vanilla PI is a special 
case of approximate PI where there are no errors in 
policy evaluation and improvement. LSPI is an algo-
rithm that builds on approximate PI where the policy 
evaluation step uses a least-squares algorithm to esti-
mate the value function for the entire state space using 
the value function evaluated at a few states. However, 
the bounds presented in Lagoudakis and Parr (2003) as 
well as the related studies in Lagoudakis and Parr 
(2001) and Buşoniu et al. (2012) are simply a special 
case of the bounds for generic approximate PI (Bertse-
kas and Tsitsiklis 1996, Bertsekas 2019), and they do 
not explicitly take into account the details of the imple-
mentation of least squares-based policy evaluation. 
When such details are taken into account, it turns out 
that the roles of the depth of lookahead (H) and rollout 
(m) become important, and their impact on the error 
bounds on the performance of approximate value iter-
ation has not been characterized in prior work.

The recent work in Efroni et al. (2019) considers a 
variant of PI that utilizes lookahead and approximate 
policy evaluation using an m-step rollout. As stated in 
the motivation in Efroni et al. (2019), it is well known 
that Monte Carlo tree search (MCTS) (Kocsis and Sze-
pesvári 2006, Browne et al. 2012, Świechowski et al. 
2023) works well in practice, even though the worst- 
case compute complexity can be exponential (Shah et al. 
2020a); see Munos (2014) for some analysis of MCTS in 
MDPs, where the number of states that can be visited 
from a given state is bounded. It is important to note 
that many prior works use lookahead and that the use 
of tree search as an enhancement of training RL algo-
rithms has become commonplace. For more on looka-
head, see Hong et al. (2019).

Motivated by PI, the algorithm in Efroni et al. (2019) 
estimates the value function associated with a policy 
and aims to improve the policy at each step. Policy 
improvement is achieved by obtaining the “greedy” 
policy in the case of PI or a lookahead policy in the 
work of Efroni et al. (2019), which involves applying 
the Bellman operator several times to the current iterate 
before obtaining the greedy policy. The idea is that the 
application of the Bellman operator several times gives 
a more accurate estimate of the optimal value function. 
Then, similarly to PI, the algorithm in Efroni et al. 
(2019) aims to evaluate the new policy. The algorithm 
in Efroni et al. (2019) uses an m-step rollout to compute 
the value function associated with a policy (i.e., it 
applies the Bellman operator associated with the policy 
m times). The work of Efroni et al. (2019) establishes 
that a lookahead can significantly improve the rate of 

convergence if one uses the value function computed 
using lookahead in the approximate policy evaluation 
step. However, like the works of Bertsekas and Tsitsik-
lis (1996), Lagoudakis and Parr (2001, 2003), Buşoniu 
et al. (2012), and Bertsekas (2019), the work of Efroni 
et al. (2019) does not study the use of function approxi-
mation, which is critical to handling large state spaces, 
nor does it quantify the effects of varying m in the con-
vergence of their algorithm. Our results show that the 
aforementioned results change drastically when least 
squares-based policy evaluation is incorporated. For a 
more detailed comparison of the works of Bertsekas 
and Tsitsiklis (1996), Lagoudakis and Parr (2001, 2003), 
Buşoniu et al. (2012), Bertsekas (2019), and Efroni et al. 
(2019) with our work, see Section 3.4. In this paper, we 
assume that policies are evaluated at a few states using 
an m-step rollout. The use of a partial rollout in our 
algorithm is similar to modified PI (Puterman and Shin 
1978), which is also called optimistic PI (Bertsekas and 
Tsitsiklis 1996). We remark that vanilla PI is a special 
case of modified PI where m �∞: However, motivated 
by Tsitsiklis and Roy (1994), we present an example 
that shows that the algorithm can diverge when func-
tion approximation is used. Therefore, our goal is to 
understand how to integrate linear value function 
approximation into the well-studied modified PI algo-
rithm. To the best of our knowledge, none of the prior 
works consider the impact of using gradient descent to 
implement an approximate version of least-squares 
policy evaluation within approximate PI. Thus, our 
algorithm and analysis can be viewed as a detailed 
look at approximate PI and modified PI when linear 
function approximation, least-squares policy evalua-
tion, and gradient descent are used to evaluate policies.

Our key contributions can be summarized as fol-
lows. We extend the analysis of approximate PI to 
allow for iteration-dependent policy evaluation and 
policy improvement errors. However, when we allow 
iteration-dependent errors, it is not clear that the accu-
mulation of errors over multiple iterations can be 
bounded. We show that under least-squares function 
approximation as well as gradient descent-based func-
tion approximation, these errors can be bounded if 
lookahead is sufficiently large. Combining this with 
the counterexample motivated by Tsitsiklis and Roy 
(1994), we believe that our result is why lookahead 
is important in approximate policy iteration with func-
tion approximation. Since RL training can be viewed 
as a version of approximate PI, our results show the 
importance of lookahead in RL training and not just in 
implementing an RL agent. In particular, our paper con-
tains the following results. 

• We examine the impact of lookahead and m-step 
rollout on approximate PI with linear function approxi-
mation. As is common in practice, we assume that we 
evaluate an approximate value function only for some 
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states at each iteration. We obtain performance bounds 
for our algorithm under the assumption that the sum 
of the lookahead and the number of steps in the m-step 
rollout is sufficiently large. We demonstrate through 
an extension of a counterexample in Tsitsiklis and Roy 
(1994) that such a condition is necessary, in general, for 
convergence with function approximation, unlike the 
tabular setting in the prior works. See Section 3.2 for 
our counterexample.

• For ease of exposition, we first present the case 
where one solves a least-squares problem at each itera-
tion to obtain the weights associated with the feature 
vectors in the function approximation of the value 
function in Section 3.4. Our performance bounds in this 
case generalize the bounds in Bertsekas and Tsitsiklis 
(1996), Lagoudakis and Parr (2001, 2003), Buşoniu et al. 
(2012), Bertsekas (2019), and Efroni et al. (2019) for 
approximate PI.

• We then consider a more practical and widely 
used scheme, where several steps of gradient descent 
are used to update the weights of the value function 
approximation at each iteration. Obtaining perfor-
mance bounds for the gradient descent algorithm is 
more challenging, and these bounds can be found in 
Section 4.

• Our results show that the sufficient conditions 
on the hyperparameters (such as the amount of look-
ahead, rollout, and gradient descent parameters) of 
the algorithm required for convergence either do not 
depend on the size of the state space or depend only 
logarithmically on the size of the state space. Our 
results also illustrate the role of feature vectors in the 
amount of lookahead required.

• In addition to asymptotic performance bounds, 
we also provide finite-time guarantees for our algo-
rithms. Our finite-time bounds show that our algo-
rithm converges exponentially fast in the case of least 
squares as well as the case where a fixed number of 
gradient descent steps are performed in each iteration 
of the algorithm.

• We complement our theoretical results with 
experiments on the same grid world problem as in 
Efroni et al. (2019). These experiments are presented 
in Section 5.

1.1. Other Related Work
The role of lookahead and rollout in improving the per-
formance of RL algorithms has also been studied in a 
large number of papers, including Efroni et al. (2018b, 
2020), Deng et al. (2020), Moerland et al. (2020), Shah 
et al. (2020b), Springenberg et al. (2020), Tomar et al. 
(2020), and Winnicki and Srikant (2022, 2023). The 
works of Baxter et al. (1999), Veness et al. (2009), and 
Lanctot et al. (2014) explore the role of tree search in RL 
algorithms. However, to the best of our knowledge, the 
amount of lookahead and rollout needed as a function 

of the feature vectors has not been quantified in prior 
works.

The works of Bertsekas (2011, 2019) also study a vari-
ant of PI, wherein a greedy policy is evaluated approxi-
mately using feature vectors at each iteration. These 
papers also provide rates of convergence as well as a 
bound on the approximation error. However, our main 
goal is to understand the relations between function 
approximation and lookahead/rollout, which are not 
considered in these other works.

2. Preliminaries
We consider an MDP, which is defined to be a 5-tuple 
(S,A, P, r,α). The finite set of states of the MDP is S. 
There exists a finite set of actions associated with the 
MDP A. Let Pij(a) be the probability of transitioning 
from state i to state j when taking action a ∈ A. We 
denote by sk the state of the MDP and by ak the corre-
sponding action at time k. We associate with state sk 

and action ak a nondeterministic reward r(sk, ak) ∈ [0, 1]
∀sk ∈ S, ak ∈ A:

Our objective is to maximize the cumulative dis-
counted reward with discount factor α ∈ (0, 1): Toward 
this end, we seek to find a deterministic policy μ, which 
associates with each state s ∈ S an action μ(s) ∈ A. For 
every policy μ and every state s ∈ S, we define Jμ(s) as 
follows:

Jμ(s) :� E
X∞
i�0

αkr(sk,μ(sk))
�����s0 � s

" #
:

We define the optimal reward-to-go J∗ as J∗(s) :� maxμ

Jμ(s): The objective is to find a policy μ that maximizes 
Jμ(s) for all s ∈ S. Toward the objective, we associate 
with each policy μ a function Tμ :

|S | → |S | , where 
for J ∈ |S | , the sth component of TμJ is

(TμJ)(s) � r(s,μ(s)) + αX|S |

j�1

Psj(μ(s))J(j), 

for all s ∈ S. If function Tμ is applied m times to vector 
J ∈ |S | , then we say that we have performed an m- 
step rollout of the policy μ, and the result Tm

μ J of the 
rollout is called the return. It is well known that each 
time Tμ is applied to a vector J to obtain TμJ, the follow-
ing holds:

‖TμJ � Jμ‖∞ ≤ α‖J � Jμ‖∞, 

where ‖ · ‖∞ refers to the supremum norm or the largest 
component of a vector. Thus, applying Tμ to obtain TμJ 
gives a better estimate of the value function corre-
sponding to policy μ than J. Furthermore, it is easy to 
see that the result of an m-step rollout of policy μ gives 
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the following:

‖Tm
μ J � Jμ‖∞ ≤ αm‖J � Jμ‖∞, 

and hence, increasing m yields better estimates of Jμ:
Similarly, we define the Bellman operator T : |S | →
|S | with the sth component of TJ being

(TJ)(s) � max
a∈A

r(s, a) +α
X|S |

j�1

Psj(a)J(j)
8<
:

9=
;: (1) 

The policy corresponding to the T operator is defined 
as the greedy policy. If operator T is applied H times to 
vector J ∈ |S | , we call the result—THJ—the H-step 
“lookahead” corresponding to J. The greedy policy 
corresponding to THJ is called the H-step lookahead 
policy or the lookahead policy when H is understood. 
More precisely, given an estimate J of the value func-
tion, the lookahead policy is the policy μ such that 
Tμ(TH�1J) � T(TH�1J):

Similarly to Tμ, each time the Bellman operator is 
applied to a vector J to obtain TJ, the following holds:

‖TJ � J∗‖∞ ≤ α‖J � J∗‖∞:
Thus, applying T to obtain TJ gives a better estimate of 
the value function than J.

The Bellman equations state that the vector Jμ is the 
unique solution to the linear equation

Jμ � TμJμ: (2) 

Additionally, we have that J∗ is a solution to

J∗ � TJ∗:

Note that every greedy policy w.r.t. J∗ is optimal and 
vice versa (Bertsekas and Tsitsiklis 1996). More pre-
cisely, J∗ is the value function corresponding to an opti-
mal policy.

We will now state several useful properties of the 
operators T and Tμ. See Bertsekas and Tsitsiklis (1996) 
for more on these properties. Consider the vector e ∈

|S | where e(i) � 1 ∀i ∈ 1, 2, : : : , |S | : We have

T(J + ce) � TJ + αce, Tμ(J + ce) � TμJ + αce: (3) 

Operators T and Tμ are also monotone:

J ≤ J′ ⇒ TJ ≤ TJ′, TμJ ≤ TμJ′: (4) 

Finally, in this paper, we repeatedly use the following 
induced ∞-norm of a matrix A :

‖A‖∞ � sup
x≠0

‖Ax‖∞
‖x‖∞ :

For reference, we include the notation in Table A.1 in 
Appendix A.

Algorithm 1 (Approximate PI with Lookahead)
Input: θ0, m, H. 
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1 such that Ĵ

μk+1 satisfies the follow-
ing:

‖Ĵμk+1 � Jμk+1‖∞ ≤ δ:
4: Jk+1 � Ĵ

μk+1 :
5: Set k ← k+ 1: Go to (2).

3. Approximate PI with Linear Value 
Function Approximation

As mentioned in Section 1, the work of Efroni et al. 
(2019) extends the result of Bertsekas (2019) to incor-
porate the use of lookahead policies as opposed to 
one-step greedy policies as well as m-step returns. We 
outline the algorithm of Efroni et al. (2019) in Algo-
rithm 1. We then wish to incorporate linear value 
function approximation into the analysis. We will out-
line the approximate PI algorithm with lookahead and 
linear value function approximation and compare it 
with Algorithm 1.

Algorithm 2 (Least-Squares Function Approximation 
Algorithm)

Input: J0, m, H, feature vectors {φ(i)}i∈S ,φ(i) ∈ d, 
and subsets Dk ⊆ S, k � 0, 1, : : : : Here, Dk is the set of 
states at which we evaluate the current policy at 
iteration k. 
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1(i) � Tm

μk+1
TH�1(Jk)(i) +wk+1(i) for i ∈

Dk:
4: Choose θk+1 to solve

min
θ

X
i∈Dk

((Φθ)(i)� Ĵ
μk+1(i))2, (5) 

where Φ is a matrix whose rows are the feature 
vectors.

5: Jk+1 � Φθk+1:
6: Set k ← k+ 1: Go to (2).

3.1. Approximate PI with Linear Value Function 
Approximation

Our main algorithm is described in Algorithm 2. We 
now explain our algorithm and the associated notation 
in detail. For more on the notations used, see Table A.1
in Appendix A. Because of the use of function approxi-
mation, our algorithm is an approximation to PI with 
lookahead. At each iteration index, say k, we have an 
estimate of the value function, which we denote by Jk. 
To obtain Jk+1, we perform a lookahead to improve the 
value function estimate at a certain number of states 
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(denoted by Dk), which can vary with each iteration. 
For example, Dk could be chosen as the states visited 
when performing a tree search to approximate the loo-
kahead process. During the lookahead process, we note 
that we will also obtain an H-step lookahead policy, 
which we denote by μk+1. As noted in Section 1, the 
computation of TH�1(Jk)(i) for i ∈ Dk in Step 3 of Algo-
rithm 2 may be computationally infeasible; however, as 
mentioned in Efroni et al. (2019), techniques such as 
MCTS are employed in practice to approximately esti-
mate TH�1(Jk)(i): In this paper, we model the fact that 
lookahead cannot be performed exactly because of the 
associated computational complexity by allowing an 
error in the lookahead process, which we denote by εLA 

in Step 2 of Algorithm 2. The use of εLA is similar to the 
work of Efroni et al. (2019).

We obtain estimates of Jμk+1 (i) for i ∈ Dk, which we 
call Ĵ

μk+1(i). To obtain an estimate of Jμk+1(i), we perform 
an m-step rollout with policy μk+1 and obtain a noisy 
version of Tm

μk+1
TH�1Jk(i) for i ∈ Dk: We also model the 

approximation error in the rollout by adding noise 
(denoted by wk+1(i) in Step 3 of Algorithm 2) to the 
return (result of the rollout; see Section 2) computed at 
the end of this step. In order to estimate the value func-
tion for states not in Dk, we associate with each state i ∈
S a feature vector φ(i) ∈ d, where typically, d < < |S | . 
The matrix composed of the feature vectors as rows is 
denoted by Φ. We use those estimates to find the best- 
fitting θ ∈ d: that is,

min
θ

X
i∈Dk

((Φθ)(i)� Ĵ
μk+1(i))2:

The solution to the minimization problem is denoted by 
θk+1. The algorithm then uses θk+1 to obtain Jk+1 �Φθk+1. 
The process then repeats. This step of our algorithm 
differs from the algorithm in Efroni et al. (2019) in that 
the algorithm in Efroni et al. (2019) does not assume 
any particular technique for computing the estimate of 
Jμk+1 . It merely assumes the existence of some δ such 
that the distance from the estimate of Ĵ

μk+1 to Jμk+1 is less 
than δ. We will show that the results of Efroni et al. 
(2019) change drastically when linear function approx-
imation is employed to estimate Jμk+1 . Additionally, 
note that to compute Ĵ

μk+1(i), we obtain noisy estimates 
of Tm

μk+1
TH�1Jk(i) for i ∈ Dk: Another alternative is to 

instead obtain noisy estimates of Tm
μk+1

Jk(i) for i ∈ Dk: It 
was shown in Efroni et al. (2019) that the former option 
is preferable. Thus, we have chosen to use this compu-
tation in our algorithm as well. However, we will 
show in Appendix D that the algorithm also has 
bounded error, which becomes small if m is chosen to 
be sufficiently large.

Remark 1. We note that μk+1(i) in Step 2 of Algorithm 2
does not have to be computed for all states i ∈ S: The 

actions μk+1(i) have to be computed only for those i ∈ S 
that are encountered in the rollout step of the algorithm 
(Step 3 of Algorithm 2).

3.1.1. Computational Considerations. We would like 
to note that m-step return and H-step lookahead are 
not algorithms that we propose to improve computa-
tional tractability. They are algorithms that are used in 
practice, and our goal is to point out why they are 
important in RL training. We will now attempt to 
explain why each of these ideas is used in practice. In 
the case of chess, for example, Shannon estimated the 
number of states to be approximately 10120: So, to 
implement the policy evaluation step exactly, one has 
to perform the inversion of matrix of size 10120 × 10120 

or perform a fixed-point iteration of an operator repre-
sented by a 10120 × 10120 matrix. Compared with this, 
even m of the order of several hundred steps (or even 
much more) is much more computationally efficient. 
Regarding H-step lookahead, this could indeed be a 
computational bottleneck. As mentioned earlier, the 
worst-case complexity can be exponential as shown in 
Shah et al. (2020a). However, there are practical imple-
mentations of lookahead that are efficient and perform 
well in practice. See Winnicki and Srikant (2023) for 
more on efficient implementations of lookahead. Our 
goal is not to argue the computational efficiency of 
these ideas but to understand why these ideas are 
important to ensure boundedness of errors given the 
fact that computationally efficient approximate imple-
mentations already exist in practice. In particular, in 
contrast to prior works, in our paper we have shown 
that, without these ideas, the algorithms used in prac-
tice may even fail to converge.

To analyze Algorithm 2, we make the following 
assumption, which states that we explore a sufficient 
number of states during the policy evaluation phase at 
each iteration and that the noise is bounded.

Assumption 1. For each k ≥ 0, rank {φ(i)}i∈Dk
� d. Addi-

tionally, assume that the noise wk is bounded. For some 
εPE > 0, the noise in policy evaluation satisfies ‖wk‖∞ ≤
εPE ∀k.

Using Assumption 1, Jk+1 can be written as

Jk+1 � Φθk+1 � Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Mk+1

Ĵ
μk+1 , (6) 

where ΦDk 
is a matrix whose rows are the feature vec-

tors of the states in Dk and Pk is a matrix of zeros and 
ones such that PkĴ

μk+1 is a vector whose elements are a 
subset of the elements of Ĵ

μk+1 corresponding to Dk. 
Note that Ĵ

μk+1(i) for i Dk does not affect the algorithm, 
so we can define Ĵ

μk+1(i) � Tm
μk+1

TH�1Jk(i) for i Dk:
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Written concisely, our algorithm is as follows:

Jk+1 � Mk+1(Tm
μk+1

TH�1Jk + wk), (7) 

where μk+1 is defined in Step 2 of Algorithm 2. Because 
wk(i) for i Dk does not affect the algorithm, we define 
wk(i) � 0 for i Dk:

We now present a counterexample to show that 
applying linear value function approximation to ap-
proximate PI is not a straightforward application of 
the bounds in Bertsekas (2019) and Efroni et al. (2019). 
In the counterexample, we give an MDP, which uses 
an m-step return to evaluate greedy policies at several 
states of the state space and linear value function 
approximation to estimate the value functions corre-
sponding to the greedy policy at the rest of the states. 
The iterates diverge, which shows that more work 
needs to be done to understand how to incorporate lin-
ear value function approximation into approximate PI.

3.2. Counterexample
Even though in practice, Jμk is what we are interested 
in, the values Jk computed as part of our algorithm 
should not go to ∞ as the algorithm uses the values of 
Jk to compute Jμk , so divergence of Jk can result in inac-
curate computations of values of Jμk . Additionally, 
divergence of Jk would result in a numerically unstable 
algorithm, which is also undesirable. Here, we show 
that Jk can become unbounded.

The example we use is depicted in Figure 1. There are 
two policies, μa and μb, and the transitions are deter-
ministic under the two policies. The rewards are deter-
ministic and only depend on the states. The rewards 
associated with states are denoted by r(x1) and r(x2), 
with r(x1) > r(x2). Thus, the optimal policy is μa. We 
assume scalar features φ(x1) � 1 and φ(x2) � 2:

We fix H� 1. The MDP follows policy μa when

Jk(x1) > Jk(x2) ⇒ θk > 2θk:

Thus, as long as θk > 0, the lookahead policy will be μb:
We will now show that θk increases at each iteration 

when 65α
m > 1: We assume that θ0 > 0 and Dk � {1, 2} ∀k:

At iteration k+ 1, suppose μk+1 � μb, and our Ĵ
μk+1(i) for 

i�1, 2 are as follows:

Ĵ
μk+1 (1) � r(x1) +

Xm�1

i�1

r(x1)αi + 2αmθk,

Ĵ
μk+1 (2) � r(x2) +

Xm�1

i�1

r(x2)αi + 2αmθk:

Thus, from Step 5 of Algorithm 2,

θk+1 � arg min
θ

X2

i�1

((Φθ)(i)� Ĵ
μk+1(i))2

⇒ θk+1 �
Pm�1

i�1 α
ir(x1)

5
+ 2

Pm�1
i�1 α

ir(x2)
5

+ 6αmθk

5

⇒ θk+1 >
6

5
αmθk:

Thus, because θ0 > 0, when 65α
mθk, θk goes to ∞:

It is worth noting that, even though Jμk is always 
bounded, the fact that Jk diverges means that the algo-
rithm cannot be implemented in a numerically stable 
manner. The discussion can be summarized in the fol-
lowing claim.

Claim 1. There exists an MDP with a linear feature vector 
representation for which modified PI diverges.

An interpretation of this result is that modified policy 
iteration in the presence of linear function approxima-
tion is not a straightforward extension of modified pol-
icy iteration with convergence guarantees. In fact, the 
algorithm may diverge unlike modified policy itera-
tion, which always converges. In Section 3.4, we intro-
duce lookahead as a remedy to this divergence.

3.3. Approximate PI with Time-Dependent Policy 
Evaluation Error

Algorithm 3 (Modified PI with Lookahead and Function 
Approximation)

Input: θ0, m, H. 
1: Let k� 0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

Figure 1. An Example Illustrating the Necessity of the Condition in Theorem 1

x1 x2 x1 x2

(a) (b)

Notes. (a) μa. (b) μb.
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3: Compute θk+1 such that Ĵ
μk+1 :�Φθk+1 satisfies the 

following:

‖Ĵμk+1 � Jμk+1‖∞ ≤ δk:

4: Jk+1 � Ĵ
μk+1 :

5: Set k ← k+ 1: Go to (2).

Before we present our main results, we first obtain 
bounds for modified PI with lookahead and time-varying 
bounds in the policy evaluation error. The algorithm we 
analyze in this section is described in Algorithm 3. The 
algorithm in Efroni et al. (2019) (Algorithm 1) is similar to 
Algorithm 3 except that at time k, the work of Efroni et al. 
(2019) assumes a constant bound in the policy evaluation 
error, δ, and in Algorithm 1, we assume that the policy 
evaluation error is upper bounded by time-dependent δk:
Then, we assume that δk is of the following form: δk ≤
βkδ0 +μ when 0 < β < 1. The bounds are given in Prop-
osition 1. In Section 3.4, we obtain values of β and μ corre-
sponding to Algorithm 2, approximate PI with linear 
value function approximation, and lookahead. We fur-
ther extend the results to incorporate the use of gradient 
descent in Section 4.

We now obtain a bound on the iterates in Algorithm 3
as follows.

Proposition 1.

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
Xk�1

��0

α(k���1)(H)2αHδ�
1 � α

+ εLA

(1 � α)(1 � αH�1) :

Furthermore, when

δk ≤ βkδ0 + μ for 0 < β < 1, 0 < μ: (8) 

Then,

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH

1 � α k max(αH�1
, β)k�1δ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ finite-time component

+ 2αHμ + εLA

(1 � α)(1 � αH)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≕ asymptotic component

:

Taking limits on both sides, when 0 < β < 1, we have

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHμ+ εLA

(1� α)(1� αH) :

3.4. Approximate PI with Linear Value Function 
Approximation and Lookahead

To apply Proposition 1 to Algorithm 2, we have to 
compute the parameters β and μ in the proposition. In 

Appendix C, we show that β and μ for Algorithm 2 are 
given by

β :� αm+H�1δFV

μ :� τ

1 � β , (9) 

where τ :� αm+αm+H�1

1�α δFV + δapp + δFVεPE:

Using (9) along with Proposition 1, we now state 
Theorem 1, which characterizes the role of lookahead 
(H) and return (m) on the convergence of approximate 
PI with function approximation.

Theorem 1. Suppose that m and H satisfy m+H � 1 >
log(δFV)=log(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞:

Then, under Assumption 1, the following holds for Algo-
rithm 2:

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH‖Jμ0 � J0‖∞

1 � α k max(αH
, β)k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite-time component

+ 2αH τ
1�β + εLA

(1 � αH)(1 � α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

, (10) 

where

τ :� α
m + αm+H�1

1 � α δFV + δapp + δFVεPE,

β :� αm+H�1δFV , 

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Remark 2. The tightness of the condition m+H � 1 >
log(δFV)=log(1=α) can be observed in our counterex-
ample in Section 3.2, where it can easily be shown 
that when m+H � 1 ≤ log(δFV)=log(1=α), the algorithm 
diverges.

The proof of Theorem 1 follows easily from Pro-
position 1. In Appendix E, we give corresponding 
bounds on the iterates Jk in the algorithm. We now 
provide an interpretation of Theorem 1. First, we pro-
vide an interpretation of several terms in Theorem 1, 
including δapp and δFV. δapp represents the maximum 
error over k when feature vectors corresponding to 
the states in Dk are used to construct an estimate of Jμk 

based on Jμk(s) for s ∈ Dk. In other words, δapp is error 
because of function approximation. δFV is a function 
of the feature vectors. Although it is not straight-
forward to characterize δFV for different choices of 
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function approximation, δFV can be quantified for sev-
eral choices of feature vectors. First, in the tabular set-
ting (i.e., one-hot encoded feature vectors), when all 
states are visited at each iteration, δFV � 1: Next, we 
consider the case of state aggregation in Bertsekas 
(2019, section 6.1). In this case, under Assumption 1, 
δFV � 1: To show this, we provide details for the special 
case of two “representative” states (i.e., the case where 
the feature vectors are [0, 1]� and [1, 0]�). The idea can 
be easily extended to cases with more than two repre-
sentative states. In the case of two representative states, 

it can be shown that (Φ�
DkΦDk)�1 �

h1=N1 0
0 1=N2

i
, 

where N1 is the number of items in Dk belonging to the 
first representative state and N2 is the number of items 
in Dk belonging to the second representative state. 
Note that because of Assumption 1, N1 and N2 are non-
zero. Hence, the ith row of Φ[Φ�

Dk
ΦDk

]�1 � φ(si) 1
Ni

, 
where si is the state corresponding to the ith row.

It is straightforward to show that the jth column of 
ΦDkPk is equal to φ(sj)1j∈Dk

, where sj is the state corre-
sponding to the jth column.

Thus, we have that

[Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk]ij � 1

Ni
1j∈Dk

:

Hence, every sum of row components of Φ(Φ�
Dk
ΦDk

)�1 

Φ�
Dk

Pk is equal to one, and thus, ‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk 

Pk‖∞ � 1:
In general, it is hard to characterize δFV. However, 

when the terms of (10) are written out, the coefficients 
of δFV are αm+H�1, 2αm+2H�1, 2 α

m+H+αm+2H�1

1�α , and 2αHδFV 

εPE, where εPE is noise from the rollout. Thus, appro-
priately chosen m and H can offset the effect of δFV.

In light of our interpretations of δapp and δFV, Theo-
rem 1 can then be used to make the following observa-
tion; how close Jμk is to J∗ depends on four factors— 
the representation power of the feature vectors and 
the feature vectors themselves (δapp,δFV), the amount of 
lookahead (H), the extent of the rollout (m), and the 
approximation in the policy determination and policy 
evaluation steps (εLA and εPE). Additionally, Theorem 1
shows that although ‖Jμk � J∗‖∞ depends on the func-
tion approximation error (δapp) and the feature vectors 
(δFV), the effect of these terms diminishes exponentially 
with increased H, with the exception of the tree search 
error (εLA). Further, it is easy to see that lookahead and 
rollout help mitigate the effect of feature vectors and 
their ability to represent the value functions.

3.4.1. Comparison with Prior Works. We observe that 
the models studied in Lagoudakis and Parr (2003), Bert-
sekas (2019), and Efroni et al. (2019) are all special cases 
of model studied in Theorem 1. 

• Specifically, if we set εPE � 0, m �∞, and H � 1 
and consider the tabular case, we get the models studied 

in Lagoudakis and Parr (2001) and Bertsekas (2019). We 
note that Lagoudakis and Parr (2001) is motivated by 
the linear value function approximation setting, but the 
errors because of function approximation are not explic-
itly modeled.

• On the other hand, if we set εPE � 0 and m �∞ but 
allow an arbitrary H, we get the model in Efroni et al. 
(2019). Our work quantifies the effect of varying m on 
the convergence of Algorithm 1.

• The most important detail in our model that 
makes it different from the other models is the fact 
that we model the errors because of function approxi-
mation, which leads to convergence issues not noticed 
in the other papers.

In Bertsekas (2021), it is noted that in reinforcement 
learning, to play computer games or board games, it is 
not uncommon during training to get a relatively crude 
estimate of the value function, which is improved by 
lookahead and m-step return during actual game play. 
Our analysis would also apply to this situation; we 
have not explicitly differentiated between training and 
game play in our analysis.

4. Extension to Gradient Descent
Algorithm 4 (Gradient Descent Algorithm)

Input: θ0, m, H, feature vectors {φ(i)}i∈S ,φ(i) ∈ d, 
and Dk, which is the set of states for which we eval-
uate the current policy at iteration k. 
1: k � 0, J0 �Φθ0.

2: Let μk+1 be such that ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA.

3: Compute Ĵ
μk+1(i) � Tm

μk+1
TH�1Jk(i) +wk+1(i) for i ∈

Dk:
4: θk+1, 0 :� θk: For � � 1, 2, : : : ,η, iteratively compute 

the following:

θk+1, � � θk+1, ��1 � γ∇θc(θ; Ĵμk+1) |θk+1, ��1
, (11) 

where

c(θ; Ĵμk+1 ) :� 1

2

X
i∈D

((Φθ)(i)� Ĵ
μk+1(i))2, 

and Φ is a matrix whose rows are the feature 
vectors.

5: Define

θk+1 � θk+1, η, 

and set

Jk+1 � Φθk+1:

6: Set k ← k+ 1: Go to (2).

Solving the least-squares problem in Algorithm 2
involves a matrix inversion, which can be computa-
tionally difficult. So, this step is often replaced by a 
few steps of gradient descent that are performed on 
the least-squares objective. Here, we assume that we 
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perform η steps of gradient descent with step size γ at 
each iteration k, where the gradient is the gradient of 
the least-squares objective in (5).

The gradient descent-based algorithm is presented in 
Algorithm 4. When γ is sufficiently small and η is suffi-
ciently large, we have convergence to an asymptotic 
error, assuming that m and H are sufficiently large. 
When we increase η, our asymptotic error becomes 
smaller until it reaches the asymptotic error of the least- 
squares algorithm (i.e., when η→∞, we recover the 
asymptotic error of Algorithm 2).

To apply Proposition 1 to Algorithm 4, we have to 
first identify the parameters β and μ for this algorithm. 
We make the following assumption.

Assumption 2. γ, m,η, and H satisfy

γ <
1

d infk‖Φ�
Dk
ΦDk

‖2
∞

,

m+H > 1+ log(2δFV)=log(1=α), 
and

η > log
3

ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

� �
=log(1=αGD,γ), 

where αGD,γ :� supk maxi |1� γλi(Φ�
Dk
ΦDk

) | , in which λi 

denotes the ith-largest eigenvalue of a matrix and σmin,Φ is 
the smallest singular value in the singular value decomposi-
tion of Φ.

Under Assumption 2, we can obtain β and μ for 
Algorithm 4. In Appendix F, we show that β and μ are 
given by

β � αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1),

μ � τ

1 � β , (12) 

where τ :�
�

1+
ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

σmin,Φ
αηGD,γ

��
αm+αm+H�1

1�α δFV + δapp +
δFVεPE

�
+

ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

(1�α)σmin,Φ
αηGD,γ:

Using (12) along with Proposition 1, we now state 
our theorem, which characterizes the error in using gra-
dient descent in approximate PI with linear value func-
tion approximation and lookahead. We remark that any 
term undefined in Theorem 2 is assumed to have the 
same definition as in Theorem 1.

Theorem 2. Suppose that m and H satisfy m+H � 1 >
log(2δFV)=log(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞, 

in which the norm is the induced matrix norm defined in 

Section 2. Then, under Assumptions 1 and 2, the following 
holds:

‖Jμk � J∗‖∞ ≤ αkH

1� α+
2αH‖Jμ0 � J0‖∞

1� α k max(αH
,β)k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite-time component

+ 2αH τ
1�β+ εLA

(1� αH)(1� α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

, (13) 

where

τ :� 1+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ

� �

αm + αm+H�1

1� α δFV + δapp + δFVεPE

� �

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞

(1� α)σmin,Φ
αηGD,γ,

β :� αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1), 

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Theorem 2 follows directly from Proposition 1 when 
β and μ are defined in (12).

Remark 3. Note that as η→∞, (i.e., the number of 
steps of gradient descent becomes very large), the 
error becomes the same as that of Algorithm 2.

Remark 4. Consider any ε such that 0 < ε < 1: It is 
straightforward to see that when

m >
log 8δFV

1�α
	 


=ε
	 


log(1=α)

η >
log

4
ffiffiffiffiffiffi
|S |

√
‖Φ‖∞

σmin,Φ(1�α)

� �
=ε

� �
log(1=αGD,γ) , 

and

H >

log
32
7 α

H 5
4

1
4+δapp+δFVεPE( )+1

4[ ]
(1�α)2 =ε

� �
log(1=α) , 

ignoring the error because of lookahead, the asymptotic 
error will be less than or equal to ε: Notice that the 
parameters η, H, and m depend on log |S | instead of 
|S | or 

ffiffiffiffiffiffiffiffi|S |√
:
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5. Numerical Results
We test our algorithms on a grid world problem using 
the same grid world problem as in Efroni et al. (2018a, 
2019).

For our simulations, we assume a deterministic grid 
world problem played on an N×N grid. The states are 
the squares of the grid, and the actions are {’up’, 
’down’, ’right’, ’left’, and ’stay’}, which move the agent 
in the prescribed direction, if possible. In each experi-
ment, a goal state is chosen uniformly at random to have 
a reward of one, whereas each other state has a fixed 
reward drawn uniformly from [�0:1, 0:1]. Unless other-
wise mentioned, for the duration of this section, n�25 
and α � 0:9.

In order to perform linear function approximation, 
we prescribe a feature vector for each state. In this sec-
tion, we focus on three particular choices. 

1. Random feature vectors. Each entry of the matrix 
Φ is an independent N (0, 1) random variable.

2. Designed feature vectors. The feature vector for 
a state with coordinates (x, y) is [x, y, d, 1]T, where d is 
the number of steps required to reach the goal from 
state (x, y).

3. Indicator vectors. The feature vector for each state 
i is an N2-dimensional indicator vector where only the 
ith entry is nonzero.

Recall that our theorems suggest that the amount of 
lookahead and return depends on the choice of the fea-
ture vectors. Our experiments support this observation 
as well. The amount of lookahead and m-step return 
required is high (often over 30) for random feature vec-
tors, but we are able to significantly reduce the amount 
required by using the designed feature vectors, which 
better represent the states.

We test Algorithm 2 in each of our experiments using 
a starting state of J0 � θ0 � 0. All plots in this section 
graph an average over 20 trials, where each trial has 
a fixed random choice of Dk, the set of states used for 

Figure 2. (Color online) Value of Jk as m and H Increase for Various Feature Vectors 

Notes. (Upper panels) For random feature vectors, as m and H increase, the value Jk eventually stops diverging. (Lower panels) For designed fea-
ture vectors, smaller amounts of lookahead and m-step return are needed to prevent Jk from diverging.
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policy evaluation. Error bars show the standard devia-
tion of the mean.

5.1. The Effect of m and H on Convergence
In Figure 2, we showed how H and m affect conver-
gence of the iterates Jk to J∗. When m and H are small, 
the value of Jk sometimes diverges. If the value diverges 
for even one trial, then the average over trials of ‖Jk �
J∗‖∞ also increases exponentially with k. However, 
if the average converges for all trials, then the plot is 
relatively flat. The m or H required for convergence 
depends on the parameter δFV defined in Theorem 1. 
Over 20 trials, the average values of δFV for each of our 
choices of feature vectors are 30:22, 16:29, and 1.0, 
respectively. As shown in our counterexample, in gen-
eral, one needs m+H � 1 > log(δFV)=log(1=α) for con-
vergence. However, in specific examples, it is possible 
for convergence to occur for smaller values of m+H:
For example, in our grid word model, log(16:29)

log(1=0:9) ≈ 26:5, 
but we will observe that such a large amount of m+H 
is not required for convergence.

In Figure 2, it is difficult to see how H and m affect 
the probability of divergence as a function of the rep-
resentative states chosen to be sampled. Therefore, we 
introduce Figure 3. These plots show the proportion of 
trials in which the distance ‖Jk � J∗‖∞ exceeded 105 

after 30 iterations of our algorithm. As expected, the 
algorithm never diverges for indicator vectors as our 
algorithm is then equivalent to the tabular setting. The 
designed feature vectors clearly require a much smal-
ler amount of lookahead or m-step return, well below 
the amount predicted by the average δFV of 16.29. 
However, no matter the choice of feature vectors, we 

will eventually prevent our algorithm from diverging 
with a large-enough value of H+m.

5.2. Convergence to the Optimal Policy
In Theorem 1, we show that as H increases, we converge 
to a policy μk that is closer to the optimal policy. In this 
section, we experimentally investigate the role of m and 
H on the final value of ‖Jμk � J∗‖∞. The results can be 
found in Figure 4. As predicted by theory, we do get 
closer to the optimal policy as H increases. However, 
increasing m does not help past a certain point, which is 
also consistent with the theory. Indeed, although μk is 
approaching the optimal policy μ∗ as H increases, the 
iterates Jk are not converging to J∗ because of error 
induced by function approximation. Increasing m im-
proves the policy evaluation, but it cannot correct for 
this inherent error from approximating the value func-
tion. The figures also show the importance of good fea-
ture selection. In practice, this feature selection is done 
using neural networks, but analyzing this is beyond the 
scope of the paper. However, it should be noted that 
δFV somewhat captures this effect in our analysis.

Note that, in Figure 4, the plots corresponding to 
indicator feature functions converge very fast. This is 
because the indicator features correspond to no func-
tion approximation. Further, we note that m plays only 
a small role in controlling the error, whereas H plays a 
much larger role. This is consistent with the perfor-
mance bounds in Theorem 1.

6. Conclusion
Practical RL algorithms that deal with large state spaces 
implement some form of approximate PI. In traditional 

Figure 3. (Color online) We Plot the Probability That ‖Jk � J∗‖∞ Diverges as a Function of H and m 

Notes. For the first plot, m � 3, and for the second plot, H � 3. In both cases, the algorithm never diverges after H + m is large enough, although a 
smaller amount of lookahead or m-step return is needed for the designed feature vectors. (a) Varying H. (b) Varying m.
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analyses of approximate PI (for example, in Bertsekas 
2019), it is assumed that there is an error in the policy 
evaluation step and an error in the policy improvement 
step. The work of Efroni et al. (2019) extends this analy-
sis to incorporate lookahead policies, which mitigate the 
effects of function approximation. We provide a counter-
example to show that incorporating linear value func-
tion into approximate PI is not straightforward as the 
iterates may diverge. In this paper, we seek to under-
stand the role of linear value function approximation in 
the policy evaluation step and the associated changes 
that one has to make to the approximate PI algorithm 
(such as lookahead) to counteract the effect of function 
approximation. Our main conclusion is that lookahead 
mitigates the effects of function approximation, rollout, 
and the choice of specific feature vectors.

Possible directions for future work include the 
following. 

• In game-playing applications, gradient descent is 
commonly used to estimate the value function, but tem-
poral difference (TD) learning is used in other applica-
tions. It would be interesting to extend our results to the 
case of TD learning-based policy evaluation.

• Although neural networks are not linear function 
approximators, recent results on the neural tangent 
kernel (NTK) analysis of neural networks suggest 
that they can be approximated as linear combinations 
of basis functions (Jacot et al. 2018, Arora et al. 2019, 
Cao and Gu 2019, Du et al. 2019, Ji and Telgarsky 
2019). Thus, to the extent that the NTK approximation 
is reasonable, our results can potentially shed light on 
why the combination of the representation capability 
of neural networks and tree search methods works 
well in practice, although further work is necessary to 
make this connection precise.
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Figure 4. (Color online) We Plot the Final Value of ‖Jμk � J∗‖∞ After 30 Iterations 

Notes. For the first plot, m � 3, and for the second plot, H � 3. As H increases, the final policy improves. With large-enough H, we obtain the opti-
mal policy. However, past a certain point, increasing m is not helpful for finding a better policy. (a) Varying H. (b) Varying m.
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Appendix A. Notation

Appendix B. Proof of Proposition 1
The work of Efroni et al. (2019) shows that

‖Jμk+1 � J∗‖∞ ≤ αH‖Jμk � J∗‖∞ + 2αHδ + εLA

1 � α : (B.1) 

Iterating over k,

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHδ + εLA

(1 � α)(1 � αH) , 

which is a main result of Efroni et al. (2019). Suppose now 
that δ depends on k, and we call the sequence δk:

Starting from (B.1), we substitute δk for δ, and we get the 
following:

‖Jμk+1 � J∗‖∞ ≤ αH‖Jμk � J∗‖∞ + 2αHδk + εLA

1 � α : (B.2) 

Iterating over k, we have

‖Jμk � J∗‖∞ ≤ αkH‖Jμ0 � J∗‖∞ + 2αH

1�α
Xk�1

��0

α(k���1)(H�1)2αHδ� + εLA

1�α

≤ α
kH

1�α+
Xk�1

��0

α(k���1)(H)2αHδ� + εLA

1�α

≤ α
kH

1�α+
Xk�1

��0

α(k���1)(H)2αHδ�
1�α + εLA

(1�α)(1�αH�1) :

(B.3) 

Note that for the bound in (B.3) to be useful, we need for the 
δk sequence to exhibit some properties that ensure that the 
second term does not go to infinity as k →∞:

Table A.1. Notation

Notation Definition

MDP
α Discount factor
J∗ Optimal value function

Indices
k Iteration index
� Gradient descent iteration index
θk Provides estimate of optimal value function (i.e., Jk �Φθk)
Jk Estimate of optimal value function
d Dimension of θk (i.e., θk ∈ d)

Policies
μ Policy
Jμ Value function corresponding to a policy
μ∗ Optimal policy
μk Policy at iteration k

Value operators/maps
TμJ Bellman operator for μ, 

(TμJ)(s) � r(s,μ(s)) +αP |S |
j�1 Psj(μ(s))J(j) ∀s ∈ S

TJ Bellman optimality operator, 
(TJ)(s) � maxa∈A{r(s, a) +αP |S |

j�1 Psj(a)J(j)} ∀s ∈ S

Function approximation
φ(s) Feature vector for state s
Φ Matrix with rows that are the feature vectors
Dk States for which policy is evaluated at iteration k
ΦDk

Matrix with rows that are the feature vectors of the states in Dk

Pk Matrix of zeros and ones such that PkJ is a vector with elements that are a subset of the elements of Ĵ
μk corresponding to Dk

Mk Projection matrix (i.e., given Ĵ
μk (i), i ∈ Dk, Φθk � MkĴ

μk , where 
θk � arg minθ

P
i∈Dk

((Φθ)(i)� J(i))2)
Error terms
δFV Feature vectors (i.e.,

δFV :� supk‖Mk‖∞ � supk‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞)

δapp Function approximation error (i.e., δapp :� supk,μk
‖MkJμk � Jμk ‖∞)

εLA ‖THJk �Tμk+1
TH�1Jk‖∞ ≤ εLA

εPE Noise in policy evaluation where ‖wk‖∞ ≤ εPE ∀k
Algorithm 4
η Number of steps of gradient descent
γ Gradient descent step size
αGD,γ αGD,γ :� supkmaxi |1� γλi(Φ�

Dk
ΦDk

) | ,
λi ith-largest eigenvalue of a matrix
σmin,Φ Smallest singular value in the singular value decomposition of Φ
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The bound in (B.3) can be further simplified if

δk ≤ βkδ0 + μ for 0 < β < 1, 0 < μ: (B.4) 

Starting from (B.2), where δk � βkδ0 +μ, we get the following:

‖Jμk � J∗‖∞ ≤ α
k(H)

1�α+
2αH

1�α
Xk�1

��0

α(k���1)(H)[β�δ0 +μ]

+ εLA

(1� α)(1�αH)

≤ α
k(H)

1�α+
2αH

1�αδ0

Xk�1

��0

α(k���1)(H�1)β�

+ 2αHμ+ εLA

(1� α)(1�αH)

≤ α
k(H)

1�α+
2αH

1�αδ0

Xk�1

��0

max(αH�1
,β)k�1

+ 2αHμ+ εLA

(1� α)(1�αH)

� α
k(H)

1�α+
2αH

1�α k max(αH�1
,β)k�1δ0

+ 2αHμ+ εLA

(1� α)(1�αH) :

Taking limits on both sides, noting that 0 < β < 1, we have

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αHμ+ εLA

(1� α)(1�αH) :

Appendix C. Obtaining � and � for Algorithm 1
Using Assumption 1, Jk+1 can be written as

Jk+1 �Φθk+1 �Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Mk+1

Ĵ
μk+1 , 

where ΦDk 
is a matrix whose rows are the feature vectors of 

the states in Dk and Pk is a matrix of zeros and ones such that 
PkĴ

μk+1 is a vector whose elements are a subset of the ele-
ments of Ĵ

μk+1 corresponding to Dk. Note that Ĵ
μk+1 (i) for i Dk 

does not affect the algorithm, so we can define Ĵ
μk+1 (i) �

Tm
μk+1

TH�1Jk(i) for i Dk:

Written concisely, our algorithm is as follows:

Jk+1 � Mk+1(Tm
μk+1

TH�1Jk + wk), (C.1) 

where μk+1 is defined in Step 2 of Algorithm 1. Because wk(i)
for i Dk does not affect the algorithm, we define wk(i) � 0 for 
i Dk:

Using contraction properties of Tμk 
and T along with the tri-

angle inequality, we obtain δk as follows:

‖Jk � Jμk‖∞ � ‖Mk(Tm
μk

TH�1Jk�1 +wk)� Jμk‖∞
≤ ‖MkTm

μk
TH�1Jk�1 � Jμk‖∞ + ‖Mkwk‖∞

≤ ‖MkTm
μk

TH�1Jk�1 � Jμk‖∞ + ‖Mk‖∞‖wk‖∞
≤ ‖MkTm

μk
TH�1Jk�1 � Jμk‖∞ + δFVεPE

� ‖MkTm
μk

TH�1Jk�1 �MkJμk +MkJμk � Jμk‖∞
+ δFVεPE

≤ ‖MkTm
μk

TH�1Jk�1 �MkJμk‖∞ + ‖MkJμk � Jμk‖∞
+ δFVεPE

≤ ‖Mk‖∞‖Tm
μk

TH�1Jk�1 � Jμk‖∞ + ‖MkJμk � Jμk‖∞
+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � Jμk‖∞ + sup
k,μk

‖MkJμk � Jμk‖∞

+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � J∗ + J∗� Jμk‖∞ + δapp

+ δFVεPE

≤ αm‖Mk‖∞‖TH�1Jk�1 � J∗‖∞ +αm‖Mk‖∞‖J∗� Jμk‖∞
+ δapp + δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � J∗‖∞ + α
m

1�α‖Mk‖∞ + δapp

+ δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � Jμk�1 + Jμk�1 � J∗‖∞
+ α

m

1�α‖Mk‖∞ + δapp + δFVεPE

≤ αm+H�1‖Mk‖∞‖Jk�1 � Jμk�1‖∞

+α
m +αm+H�1

1�α ‖Mk‖∞ + δapp + δFVεPE

≤ αm+H�1δFV‖Jk�1 � Jμk�1‖∞ +α
m +αm+H�1

1�α δFV

+ δapp + δFVεPE:

Now, we have

‖Jk � Jμk‖∞|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δk

≤ αm+H�1δFV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≕β

‖Jk�1 � Jμk�1‖∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δk�1

+ α
m + αm+H�1

1 � α δFV + δapp + δFVεPE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕τ

:
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Iterating,

δk ≤ βkδ0 +
Xk�1

i�0

βiτ

≤ βkδ0 + τ

1 � β|fflffl{zfflffl}
≕μ

: (C.2) 

Appendix D. A Modified Least-Squares Algorithm
Suppose Step 3 of Algorithm 2 is changed to Ĵ

μk+1 (i) � Tm
μk+1

(Jk)(i)
+ wk+1(i) for i ∈ Dk. Then, it is still possible to get bounds on the 
performance of the algorithm when m is sufficiently large. With 
this modification to the algorithm, we have the following.

Proposition D.1. Suppose that m satisfies m > log(δFV)=log 
(1=α), where

δFV :� sup
k

‖Mk‖∞ � sup
k

‖Φ(Φ�
Dk
ΦDk

)�1Φ�
Dk

Pk‖∞:

Then, under Assumption 1, the following holds:

‖Jμk � J∗‖∞ ≤ α
k(H)

1 � α +
2αH‖Jμ0 � J0‖∞

1 � α k max(αH
, β′)k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite-time component

+ 2αH τ′
1�β′ + εLA

(1 � αH)(1 � α)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymptotic component

, 

where

τ′ :� αmδFV,

β′ :� α
mδFV

1 � α + δapp + δFVεPE, 

and

δapp :� sup
k,μk

‖MkJμk � Jμk‖∞:

Proof of Proposition D.1. The proof of Theorem 2 is similar 
to the proof of Theorem 1 and relies on contraction properties 
and the triangle inequality. We thus give the following itera-
tion, which can be substituted in our proof of Theorem 1:

‖Jk � Jμk‖∞
� ‖Mk(Tm

μk
Jk�1 + wk)� Jμk‖∞

� ‖Mk(Tm
μk

Jk�1 + wk)� Jμk‖∞
≤ ‖MkTm

μk
Jk�1 � Jμk‖∞ + ‖Mkwk‖∞

≤ ‖MkTm
μk

Jk�1 � Jμk‖∞ + ‖Mk‖∞‖wk‖∞
≤ ‖MkTm

μk
Jk�1 � Jμk‖∞ + δFVεPE

� ‖MkTm
μk

Jk�1 � MkJμk + MkJμk � Jμk‖∞ + δFVεPE

≤ ‖MkTm
μk

Jk�1 � MkJμk‖∞ + ‖MkJμk � Jμk‖∞ + δFVεPE

≤ sup
k

‖Mk‖∞‖Tm
μk

Jk�1 � Jμk‖∞ + sup
k,μk

‖MkJμk � Jμk‖∞ + δFVεPE

≤ αmδFV‖Jk�1 � Jμk‖∞ + δapp + δFVεPE

� αmδFV‖Jk�1 � Jμk�1 + Jμk�1 � Jμk‖∞ + δapp + δFVεPE

≤ αmδFV‖Jk�1 � Jμk�1‖∞ + αmδFV‖Jμk�1 � Jμk‖∞ + δapp + δFVεPE

≤ αmδFV‖Jk�1 � Jμk�1‖∞ + α
mδFV

1 � α + δapp + δFVεPE:

Substituting

β′ :� αmδFV 

and

τ′ :� α
mδFV

1 � α + δapp + δFVεPE, 

in place of β and τ, respectively, in the proof of Theorem 1, we 
obtain Proposition D.1. w

Appendix E. Bounds on Jk in Algorithm 2
In the following proposition, we present a bound on the dif-
ference between Jk and J∗:

Proposition E.1. When αm+H�1δFV < 1,

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1+ δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α)

� �
+ δapp + δFVεLA

1� δFVαm+H�1
, 

where β and τ are defined in Theorem 1.
The proof is as follows.

Proof of Proposition E.1.

‖Jk+1 � J∗‖∞
� ‖Jk+1 � Jμk+1 + Jμk+1 � J∗‖∞
≤ ‖Jk+1 � Jμk+1‖∞ + ‖Jμk+1 � J∗‖∞
≤ ‖Mk+1Tm

μk+1
TH�1Jk � Jμk+1‖∞ + δFVεLA

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� ‖Mk+1Tm
μk+1

TH�1Jk � Mk+1Jμk+1 + Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ ‖Mk+1Tm
μk+1

TH�1Jk � Mk+1Jμk+1‖∞ + ‖Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ ‖Mk+1‖∞‖Tm
μk+1

TH�1Jk � Jμk+1‖∞ + ‖Mk+1Jμk+1 � Jμk+1‖∞
+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ δFVα
m‖TH�1Jk � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� δFVα
m‖TH�1Jk � J∗ + J∗ � Jμk+1‖∞ + δapp + ‖Jμk+1 � J∗‖∞

+ δFVεLA

≤ δFVα
m‖TH�1Jk � J∗‖∞ + δFVα

m‖J∗ � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

≤ δFVα
m+H�1‖Jk � J∗‖∞ + δFVα

m‖J∗ � Jμk+1‖∞ + δapp

+ ‖Jμk+1 � J∗‖∞ + δFVεLA

� δFVα
m+H�1‖Jk � J∗‖∞ + (1 + δFVα

m)‖J∗ � Jμk+1‖∞ + δapp

+ δFVεLA:
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From Theorem 1, we have that

lim sup
k→∞

‖Jμk � J∗‖∞ ≤ 2αH τ
1�β + εLA

(1 � αH)(1 � α) :

Thus, for every ε′ > 0, there exists a k(ε′) such that for all 
k > k(ε′),

‖Jμk � J∗‖∞ ≤ 2αH τ
1�β+ εLA

(1� αH)(1�α) + ε
′:

Thus, for all k > k(ε′), we have

‖Jk+1 � J∗‖∞ ≤ δFVα
m+H�1‖Jk � J∗‖∞

+ (1+ δFVα
m) 2αH τ

1�β+ εLA

(1� αH)(1� α) + ε
′

" #

+ δapp + δFVεLA:

Iterating over k gives us

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1 + δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α) + ε′
� �

+ δapp + δFVεLA

1 � δFVαm+H�1
:

Because this holds for all ε′,

lim sup
k→∞

‖Jk � J∗‖∞

≤
(1+ δFVαm) 2αH τ

1�β+εLA

(1�αH)(1�α)

� �
+ δapp + δFVεLA

1� δFVαm+H�1
: w 

Appendix F. Obtaining � and � for Algorithm 4
In order to derive β and μ for Algorithm 4, we define θ̃

μk for 
any policy μk:

θ̃
μk :� arg min

θ

1

2
‖ΦDk

θ�Pk(Tm
μk

TH�1Jk�1 +wk)‖2
2:

Note that

Φθ̃
μk � Mk(Tm

μk
TH�1Jk�1 + wk), (F.1) 

where Mk is defined in (6). Thus, θ̃
μk represents the function 

approximation of the estimate of Jμk obtained from the m-step 
return.

First, because θk is obtained by taking η steps of gradient 
descent toward θ̃

μk beginning from θk�1, we show that the 
following holds:

‖θk � θ̃μk‖2 ≤ αηGD,γ‖θk�1 � θ̃μk‖2, 

where αGD,γ :� supk maxi |1� γλi(Φ�
Dk
ΦDk

) | , in which λi de-
notes the ith-largest eigenvalue of a matrix.

We note that because

0 < λi(Φ�
Dk
ΦDk

) ≤ ‖Φ�
Dk
ΦDk

‖2
2 ≤ d‖Φ�

Dk
ΦDk

‖2
∞

≤ d sup
k

‖Φ�
Dk
ΦDk

‖2
∞, 

αGD,γ < 1 when γ < 1
d supk‖Φ�

Dk
ΦDk

‖2
∞

, which follows from 
Assumption 2.

Recall that the iterates in Equation (11) can be written as 
follows:

θk, � � θk, ��1 � γ∇θc(θ; Ĵμk ) |θk, ��1

� θk, ��1 � γ(Φ�
Dk�1
ΦDk�1

θk, ��1

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1)):
Because

0 � ∇θc(θ; Ĵμk ) | θ̃μk � Φ�
Dk�1
ΦDk�1

θ̃
μk

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1), 
we have the following:

θk, � � θk, ��1 � γ(Φ�
Dk�1
ΦDk�1

θk, ��1 �Φ�
Dk�1
ΦDk�1

θ̃
μk

�Φ�
Dk�1

Pk�1(Tm
μk

TH�1Jk + wk�1)
+Φ�

Dk�1
Pk�1(Tm

μk
TH�1Jk + wk�1))

� θk, ��1 � γΦ�
Dk�1
ΦDk�1

(θk, ��1 � θ̃μk ):
Subtracting θ̃

μk from both sides gives

θk,� � θ̃μk � θk, ��1 � θ̃μk � γΦ�
Dk�1
ΦDk�1

(θk, ��1 � θ̃μk )
� (I � γΦ�

Dk�1
ΦDk�1

)(θk,��1 � θ̃μk ):
Thus,

‖θk, � � θ̃μk‖2 � ‖(I � γΦ�
Dk�1
ΦDk�1

)(θk, ��1 � θ̃μk )‖2

≤ ‖I � γΦ�
Dk�1
ΦDk�1

‖2‖θk, ��1 � θ̃μk‖2

≤ max
i

|λi(I � γΦ�
Dk�1
ΦDk�1

) |‖θk, ��1 � θ̃μk‖2

≤ max
i

|1 � γλi(Φ�
Dk�1
ΦDk�1

) |‖θk, ��1 � θ̃μk‖2

≤ sup
k

max
i

|1 � γλi(Φ�
Dk
ΦDk

) ||fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕αGD,γ

‖θk, ��1 � θ̃μk‖2, 

where λi denotes the ith-largest eigenvalue of a matrix.
Iterating over k, the following holds:

‖θk � θ̃μk‖2 � ‖θk, η � θ̃μk‖2

≤ αηGD,γ‖θk, 0 � θ̃μk‖2

� αηGD,γ‖θk�1 � θ̃μk‖2: (F.2) 

Using (F.2) as well as equivalence and submultiplicative 
properties of matrix norms, we have the following:

1

‖Φ‖∞ ‖Φθk �Φθ̃μk‖∞ ≤ ‖θk � θ̃μk‖∞
≤ ‖θk � θ̃μk‖2

≤ αηGD,γ‖θk�1 � θ̃μk‖2

≤ 1

σmin,Φ
αηGD,γ‖Φθk�1 �Φθ̃μk‖2

≤
ffiffiffiffiffiffiffi|S |√
σmin,Φ

αηGD,γ‖Φθk�1 �Φθ̃μk‖∞

⇒ ‖Jk �Φθ̃μk‖∞ ≤
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞, 
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where σmin,Φ is the smallest singular value in the singular 
value decomposition of Φ and the last line follows from the 
fact that Jk :� Φθk:

This implies the following:

‖Jμk � Jk‖∞ ≤ ‖Φθ̃μk � Jμk‖∞ +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞

� ‖Mk(Tm
μk

TH�1Jk�1 + wk)� Jμk‖∞

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ‖Jk�1 �Φθ̃μk‖∞, (F.3) 

where the equality follows from (F.1).

Now, we bound ‖Jk�1 �Φθ̃μk‖∞ as follows:

‖Jk�1 �Φθ̃μk‖∞ ≤ ‖Jk�1 � Jμk�1‖∞ + ‖Jμk�1 � Jμk‖∞
+ ‖Jμk �Φθ̃μk‖∞

≤ ‖Jk�1 � Jμk�1‖∞ + 1

1�α+ ‖Jμk �Φθ̃μk‖∞

≤ ‖Jk�1 � Jμk�1‖∞ + 1

1�α
+ ‖Jμk �Mk(Tm

μk
TH�1Jk�1 +wk)‖∞,

(F.4) 

where the last line follows from (F.1). We use our upper bound 

on ‖Mk(Tm
μk

TH�1Jk�1 +wk)� Jμk‖∞ introduced in Appendix C

to put together with (F.3) and (F.4), and we get the following:

‖Jμk � Jk‖∞|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δk

≤ β ‖Jk�1 � Jμk�1‖∞|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δk�1

+τ, 

β :� αm+H�1δFV +
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ(αm+H�1δFV + 1), 

and

τ :� 1+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞
σmin,Φ

αηGD,γ

� �
αm +αm+H�1

1�α δFV + δapp + δFVεPE

� �

+
ffiffiffiffiffiffiffi|S |√ ‖Φ‖∞

(1�α)σmin,Φ
αηGD,γ:

Thus, we get

μ � τ

1 � β
when 0 < β < 1, which follows from the assumptions in Prop-
osition 1 and Assumption 2.
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