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A B S T R A C T

Highlighting the increasing importance of demand elasticity in electricity markets and its impact on the
revenues of power generating companies, this paper proposes new profit-based unit commitment models
that effectively capture the uncertainty in the willingness-to-pay the price set for the elastic demand. To
develop a new revenue scheme for power generating companies, we use a coupling function to model
the willingness-to-pay response of the elastic demand as a decision-dependent source of uncertainty. The
coupling function reflects how power generating companies’ pricing decisions may influence the market
appeal (i.e., the buyer’s willingness-to-pay) and how it affects their revenues. The optimization models are
stochastic mixed-integer nonlinear problems with nonconvex continuous relaxations and are not amenable to
a numerical solution in their original forms. We devise a convexification reformulation method and derive valid
inequalities to strengthen the formulation. We propose a learning framework to parameterize the willingness-
to-pay functions and the concept of the value of the decision-dependent solution to quantify the value of the
uncertainty modeling approach. Numerical tests on power systems of various sizes, demand portfolios, and
price elasticity levels show (i) how the valid inequalities speed up the solution process, (ii) the benefits of
properly modeling decision-dependent uncertainty and demand elasticity, and (iii) how the incorporation of
decision-dependent uncertainty in demand elasticity can change the power generating companies’ decisions
and revenue estimation.
1. Introduction

1.1. Background and motivation

Unit commitment (UC) practices have been approached for decades
in the short-term operation of electric power systems with the ob-
jective of optimizing the power generating unit schedules to meet
the electricity demand. Depending on the purpose, the UC is solved
under centralized or competitive environments, from self-scheduling to
centralized auction-based market clearing, over a time horizon ranging
from one day to one week. There exist three main classes of UC
problems in practice, two of which are performed by power generating
companies (GENCOs) – i.e., the cost-based UC (CBUC) and profit-based
UC (PBUC) – and the other performed by the independent system
operator (ISO) – i.e., the security-constrained UC (SCUC).

• Of interest to ISOs is the SCUC: a decision-making problem that
is solved to minimize the cost of system operation by scheduling
the status of generating units. Different from the CBUC/PBUC
problems and in addition to the generating units’ constraints,
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SCUC takes into account the power network topology, captures
the transmission line security constraints, and involves day-ahead
and real-time market clearing processes.

• Of primary interest to individual GENCOs are the CBUC and
PBUC models. CBUC minimizes the cost of power generation
over the decision horizon by scheduling the status of generating
units while satisfying the generating units’ ramp up/down lim-
its, minimum/maximum generating capacity, minimum up/down
times, and reserve constraints. We refer the reader to Ackooij,
Lopez, Frangioni, Lacalandra, and Tahanan (2018) and Zheng,
Wang, and Liu (2015) for reviews of the extended literature. In
contrast, PBUC – the focus of this study – maximizes GENCO’s
profit over the scheduling horizon by taking into account the
price-dependent revenue and cost of power generation. Different
from the SCUC problem solved by the ISO capturing the network
constraints and involving market clearing processes, the GENCO
solves a day-ahead PBUC problem to decide how to bid in the
market so as to be more likely favored in the market and result
in the maximum profit for the GENCO.
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The demand for electricity encompasses the aggregate demand from
all end-users, including households, businesses, and industrial cus-
tomers, and is represented by the utility companies (or demand-serving
entities) in the wholesale electricity market. This demand is forecasted
by market participants, and it is used as a basis for determining the
supply of electricity that will be made available for purchase in the day-
ahead market. Market participants, including electric utilities, ISOs, and
power traders or their agents, use this demand forecast information
to make informed decisions about buying and selling electricity in
the market. In a deregulated environment, GENCO’s expected profit
in the PBUC problem is heavily driven by the price signals, including
the fuel purchase price, energy sale price, ancillary service sale price,
etc. More active participation of the elastic demand (through demand-
serving entities) in the wholesale electricity market can significantly
challenge GENCO’s own revenue management, i.e., scheduling opti-
mization and profit estimation. With the traditional setting in which
the energy sale price, set by a GENCO in the PBUC model, was assumed
to be acceptable by buyers (e.g., electric utility companies), the chal-
lenge stems from the fact that the GENCO’s price may or may not be
favored in the market, thereby resulting in an uncertain willingness-
to-pay (WTP) response to the seller’s (GENCO’s) offers. If the buyer’s
response to GENCO’s sale price is not properly modeled, this could
lead to misleading generating unit schedules and overestimation of
GENCO’s revenue and profit. We propose new stochastic models for
the day-ahead PBUC problem employing the concept of WTP function
to account for demand elasticity, the uncertainty about whether the
buyer accepts to pay the set price, and to provide new pricing schemes
for individual GENCO. Under a day-ahead market setting (Liu & Wu,
2007, 2008), we consider a GENCO that aims to fulfill a certain volume
of the elastic demand at a price set by the proposed model. Depending
on its set price and how it compares with the ones submitted by rival
GENCOs, the GENCO of interest will be able to make revenue on the
elastic demand conditional to its price being favored in the market.
Accordingly, this price-conditional elastic demand setting results in a
stochastic PBUC model described in Section 3.

We here provide an example that illustrates the day-ahead electric-
ity market setting we consider in this study. There are three parties in
the market (see Fig. 1): the GENCOs which sell the energy product; the
utility companies which buy the energy product; and the ISO which
matches the supply and demand through an auction and decides the
settled price. Through the example, we assume that GENCO-B uses
the proposed PBUC models to price its elastic supply. To illustrate
how the auction procedure works, let us assume that the ISO receives
offers including price and supply volume from four GENCOs: GENCO-A
(40MW at $41), GENCO-B (40MW at $44), GENCO-C (20MW at $42)
and GENCO-D (10MW at $45). On the buyers’ side, the total elastic
demand received by the ISO amounts to 100MW for the next day. To
meet the demand, ISO starts to accept offers with the lowest price at
first, moving to the second lowest one until the total electricity demand
is met (i.e., accepted supply volume equals the total demand). In this
example, offers from GENCOs A, C, and B are accepted sequentially,
and the offer from GENCO-D is declined. The settled wholesale price
is equal to the highest price among the accepted offers, which means
GENCOs A, B, and C would all be paid $44 per MW.

In the appended Supplementary Material H, we include three alter-
native examples that illustrate how changes in the bidding prices by
GENCO-B and rival GENCOs (i.e., GENCOs A, C, and D) could impact
the acceptance of offers and the final settlement prices.

The remainder of the paper is structured as follows. Section 2
presents a review of the literature on the PBUC problem, pricing
schemes, as well as demand elasticity models and algorithms. Section 3
presents the proposed SP PBUC models with DDU where several WTP
functions capture the demand elasticity to price signals. Section 4 is de-
voted to the reformulation of the proposed nonconvex MINLP problems
via a concavification approach. Section 5 introduces the learning frame-
work used to parameterize and fine-tune the WTP coupling functions.
Section 6 presents the valid inequalities and is followed by extensive
numerical tests and evaluations in Section 7. Section 8 summarizes the
findings.
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Fig. 1. Positioning of the proposed approach within a day-ahead electricity market
setting.

2. Literature review

We present in this section a review of the literature devoted to
the PBUC problem structured along two axes: pricing mechanisms and
demand elasticity models.

2.1. PBUC problem and pricing schemes

Research on the application and solutions of the PBUC problem has
been conducted over the past decades. GENCOs can be distinguished
either as price-taker or price-maker entities in the decision-making
process. In the former, the price-taker GENCO (i) participates in the
day-ahead electricity market, (ii) is small enough to have a negligible
influence in the market and clearing mechanisms, and (iii) the electric-
ity price is exogenous and a forecasted parameter in the PBUC models.
However, in the latter which is the focus of our research, a price-maker
GENCO (i) is big enough to be influential on the energy market and
the electricity price, and (ii) pursues strategic bidding strategies for its
own revenue management and affect the market clearing prices. The
literature is rich in both directions offering a variety of formulations
and solution techniques (Morales-España, Gentile, & Ramos, 2015; Tak-
tak & D’Ambrosio, 2017; Wang, Wang, & Guan, 2013a). An overview
of deterministic mathematical programs for the PBUC problem of a
GENCO is provided in Taktak and D’Ambrosio (2017). Since effective
revenue management within the PBUC problem requires knowledge of
the selling and buying price of energy at each time interval within the
scheduling horizon, a variety of forecast models have been proposed
to develop pricing strategies for GENCOs. The literature on GENCOs’
optimal pricing for PBUC optimization strategies under different market
structures is very rich. Amongst, bidding strategies using PBUC in a
deregulated electricity market are presented in Yamin and Shahideh-
pour (2004). Given the price quota curve, Torre, Arroyo, Conejo, and
Contreras (2002) present an MILP PBUC model for the self-scheduling
of a price-maker GENCO to achieve maximum profit in a pool-based
electricity market. Morales-España et al. (2015) propose tight MIP
formulations and apply them to the PBUC problem for GENCOs’ self-
scheduling. Wang et al. (2013a) utilize a sample average approximation
approach to solve a two-stage stochastic PBUC problem for price-taker
GENCOs with chance constraints considering the price and wind power
uncertainties. Note that there exists some two-stage stochastic opti-
mization models (e.g., De, Tan, Li, Huang, & Song, 2018; Zheng, Chen,
Xu, Liang, & Chen, 2020) and bi-level optimization models (e.g., Hobbs
& Helman, 2011; Shafiekhani, Badri, Shafie-khah, & Catalao, 2019; Wei
et al., 2018) for the UC problem (but mostly not the focused PBUC) or
involve strategic bidding problems.
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2.2. Demand elasticity models and algorithms

Inspired by the fast-growing demand response (DR) programs, elec-
tricity providers (i.e., GENCOs) strive to account for the demand behav-
ior and offer variable prices for serving different classes of customers.
DR models capture the demand elasticity, i.e., changes in the electricity
usage by customers from their normal consumption patterns for finan-
cial benefits and in response to incentives or variations in the electricity
price over time. If provided with sufficient incentives or acceptable
prices, customers are willing to change (reschedule or reduce) their
energy usage patterns and to trade off comfort and electricity bills.
Accordingly, price-elastic and price-inelastic demand are distinguished
as those that respectively do and do not participate in the DR programs.
While demand for electricity has traditionally exhibited little price
elasticity (Burke & Abayasekara, 2018; Farhar, 1996), the rapid deploy-
ment of DR programs and the existence of large and (aggregated) small
price-responsive commercial, industrial, residential, and agricultural
customers may bring about challenges and opportunities in short-term
commitment, operation, and decision-making around generating units.
A most recent comprehensive review of the literature on DR programs
is provided in Motta, Anjos, and Gendreau (2024). Su and Kirschen
(2009) propose a method to rigorously quantify the impact of the
increased demand-side participation in the electricity market and on
market participants. In particular, this study suggests a day-ahead
market clearing mechanism that allows buyers to submit complex bids.
The demand elasticity can affect the generation schedule, where a
more elastic demand is found to generally reduce GENCO’s profits.
Jhala, Natarajan, Pahwa, and Wu (2019) set up discrete-time nonlinear
autonomous system model to capture the interaction and dynamics of
the electricity prices and the total demand including the elastic sector
by deriving an equilibrium. Kirschen, Strbac, Cumperayot, and de Paiva
Mendes (2000) investigate the potential effects of market structure on
the elasticity of the electricity demand. Real-world examples also show
that neglecting the buyers’ response when setting electricity prices may
lead to some patently unfair scenarios. Zhao, Wu, and Song (2014)
study The impact of different DR price elasticity characteristics and DR
participation levels on the convergence of volatile power markets. Duan
(2016) considers a price-based DR scheduling problem in a day-ahead
electricity market and analyzes the impact of DR and price-responsive
demand on the gross surplus from load-serving entities. Bompard, Ma,
Napoli, and Abrate (2007) analyze the impact of demand elasticity
on the strategic bidding behavior of the electricity producers and on
the oligopoly market performance. A hierarchical model predictive
multi-period power dispatch and control strategy for modern power
systems with price-elastic controllable demand is presented in Shi, Wen,
Cao, and Yu (2019) with a price-elastic utility function incorporated
in a bilevel optimization model. The stochastic UC problem with un-
certain DR is addressed in Wang, Wang, and Guan (2013b). Baldick
(2016) studies the role of the demand WTP functions in the context
of mitigating the market power scenarios. Zoltowska (2016) proposes
clearing and pricing models suitable for demand-shifting bids in non-
convex pool-based auctions and develops guidelines on how responsive
demand can best participate in such auctions. We refer the reader
to Bernstein and G. (2005) and Burke and Abayasekara (2018) for
discussions on the price elasticity of the US electricity demand.

The state-of-the-art literature has primarily considered deterministic
PBUC models for inelastic electricity demand. In particular, strategic
bidding behaviors in the literature mostly considered the demand with
given curves (see, e.g., Kirschen et al., 2000; Li & Shahidehpour, 2005)
while only a few accounted for the influence of the demand elasticity
on the gaming behavior in the oligopoly electricity markets, in which
the effects of strategically changing the consumers’ load profile in
different trading intervals – characterized by the cross-price elasticity
of the demand – were the only focus of concern (Kirschen et al., 2000).
Game theory models have also been utilized by individual market
1054

participants (see, e.g., Devine, Gabriel, & Moryades, 2016; Ferrero, m
Rivera, & Shahidehpour, 1998) to simulate the bidding behaviors of
other GENCOs (and market participants) and develop Nash equilib-
rium bidding strategies. A few have proposed deterministic models
that take into account the impact of demand elasticity on electricity
markets (Su & Kirschen, 2009), on day-ahead scheduling of generating
units (Wu, Shahidehpour, & Khodayar, 2013), and on the strategic
behavior of electricity producers (Bompard et al., 2007). Wang et al.
(2013b) study the stochastic UC problem with endogenously-defined
demand response. To the best of the authors’ knowledge, accounting
for decision-dependent uncertainty (DDU) in the WTP response of the
elastic consumers has not been researched in general and in the context
of GENCO’s PBUC pricing in particular. This study is the first one that
considers an SP model with DDU represented with a WTP function.
In contrast, the related literature usually studies closed-form, uncon-
strained optimization formulations and derives closed-form optimal
policies. Such closed-form optimal policies cannot be used in the PBUC
problem due to the complexity of the constraint set. It, therefore, calls
for the development of tractable reformulations which can be solved
numerically for large instances.

3. Stochastic programming PBUC models with DDU

3.1. Stochastic programming PBUC-DDU models

Traditional SP problems, which deal with exogenous uncertainty
sources, are notoriously challenging to solve (see Lejeune & Prékopa,
2021; Prékopa, 2003). We present here risk-neutral SP models that
incorporate an additional layer of complexity since they account for
DDU which is modeled via a coupling function defining the impact of
decisions on random variables. We propose DDU SP problems with
decision-dependent probabilities, also called Type 1 DDU, in which de-
cisions impact the probability distribution of random variables. They
must be differentiated from problems with Type 2 DDU (i.e., problems
with decision-dependent information structure), where decisions affect
the time at which information is revealed and uncertainty gets resolved.
We refer the reader to Hellemo, Barton, and Tomasgard (2018) who
propose a taxonomy of DDU SP problems and to Section B in the Sup-
plementary Material which provides a more in-depth characterization
of the various forms of DDU.

We focus on the PBUC problem through which GENCOs seek to
maximize their profit by selling energy products in the electricity
market. A critical element, yet often overlooked, by the GENCOs is
the DR, or more precisely, the propensity of the price and supply
being accepted by the demand. This approach is related to price re-
sponsiveness (Kirschen et al., 2000; Wang et al., 2013b; Zhao et al.,
2014). We tackle this question by using a willingness-to-pay probability
or price acceptance probability function to model how buyers respond
o price signals. This approach has been used in revenue manage-
ent (Phillips, 2005, 2013) and price discrimination (Besbes & Zeevi,
015) for example.

.2. Willingness-to-pay function

From GENCO’s perspective who aims at strategic revenue manage-
ent to maximize profit by solving a day-ahead PBUC decision-making

ptimization, the buyers’ response to the price set for the elastic de-
and is obviously uncertain and not known, i.e., the GENCO’s offer
ay or may not be accepted by the buyers (i.e., price-conditional elastic
emand). The GENCO may, however, affect the likelihood of the price
eing favored in the market. This can be achieved by varying the price
ffered to the elastic demand, which is one of the decisions in the PBUC
roblem. The acceptance or not of the GENCO’s price is therefore a
DU that is affected by the pricing decisions.

Accordingly, the uncertainty as to whether the buyer will accept
o pay the price set by the GENCO for the elastic demand at time 𝑡 is

odeled with a Bernoulli random variable 𝜉𝑡.
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Definition 1. The Bernoulli random variable 𝜉𝑡

𝜉𝑡 =

{

1, with probability 𝑞𝑡
0, with probability 1 − 𝑞𝑡,

𝑡 ∈ 𝐓 (1)

here outcome 1 (resp. 0) signifies that the buyer accepts to pay
ENCO’s price for the elastic demand at time 𝑡. The Bernoulli random
ariable 𝜉𝑡 is defined by the parameter 𝑞𝑡 representing the probability
f acceptance that depends on the price 𝜋𝑡:

𝑡 = 𝛶 (𝜋𝑡) , 𝑡 ∈ 𝐓.

The function 𝛶 with argument 𝜋𝑡 is called the (WTP) coupling
unction and defines how the price 𝜋𝑡 affects the price acceptance
robability 𝑞𝑡.

The GENCO proposes to satisfy a volume 𝑑𝑒𝑡 of the elastic demand at
price 𝜋𝑡. The acceptance (WTP) by the market participants (demand

ntities) to pay the price 𝜋𝑡 is a monotone decreasing function of the
rice and is not set in stone. The WTP the price set by the GENCO is
herefore modeled as a Bernoulli random variable 𝜉𝑡 with the expected
alue 𝑞𝑡, which also represents the probability of acceptance. The use of
Bernoulli random variable is consistent with the auction mechanism

mployed in the wholesale market. To be more specific, a GENCO’s
ffer is either accepted or declined in its entirety (i.e., the whole supply
olume is accepted or declined) thus justifying the use of a binary
andom variable. The volume of elastic demand that the GENCO will
e able to sell on the market is, therefore, a random variable, called
rice-conditional elastic demand, taking value 𝑑𝑒𝑡 with probability 𝑞𝑡
nd equal to 0 with its complement (1-𝑞𝑡).

The coupling function represents the dependency of the endogenous
ncertainty (price accepted by the buyer) on the pricing decision and
akes the form in the proposed PBUC problem of a willingness-to-pay
unction. Two observations worth underlining follow from Definition 1.
irst, the price acceptance probability is not a fixed parameter but de-
ends on the price 𝜋𝑡. The acceptance probability varies with the price
nd is accordingly defined as a decision variable in the DDU SP formu-
ation. Second, the form of DDU is of Type 1 with decision-dependent
arameters.

.3. Formulation

The proposed SP model for PBUC with decision-dependent price
cceptance probability determines the optimal generation output and
he schedules of the generating units as well as the optimal price for
he elastic demand so as to maximize GENCO’s profit. The problem
akes the form of the stochastic mixed-integer nonlinear programming
MINLP) model GF::

F: 𝑚𝑎𝑥 E(𝝅𝐭 )

[

∑

𝑡∈𝐓
𝜉𝑡𝜋𝑡𝑑

𝑒
𝑡

]

+
∑

𝑡∈𝐓
𝜌𝑡𝑑

𝑓
𝑡 +

∑

𝑔∈𝐆

∑

𝑡∈𝐓
(𝑙𝑠𝑡 𝑟

𝑠
𝑔,𝑡 + 𝑙𝑛𝑡 𝑟

𝑛
𝑔,𝑡)

−
∑

𝑔∈𝐆

∑

𝑡∈𝐓
(𝑎𝑔𝜆2𝑔,𝑡 + 𝑏𝑔𝜆𝑔,𝑡 + 𝑐𝑔𝛼𝑔,𝑡 + 𝐶𝑢

𝑔𝑦𝑔,𝑡 + 𝐶𝑑
𝑔 𝑧𝑔,𝑡) (2a)

s.to 𝑞𝑡 = 𝛶𝑡(𝜋𝑡) 𝑡 ∈ 𝐓 (2b)

0 ≤ 𝑞𝑡 ≤ 1 𝑡 ∈ 𝐓 (2c)

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡 𝑡 ∈ 𝐓 (2d)

𝐱 ∈  (2e)

The objective function maximizes GENCO’s total profit. The terms in
he first line of the objective function (2a) represent the total revenue
rom selling energy products. The first term represents the expected
evenue stemming from the elastic demand 𝑑𝑒𝑡 whose price 𝜋𝑡 is a
ecision variable. The Bernoulli random variable 𝜉𝑡 indicates that it is
nsure if the GENCO’s set price appeals to the buyers in the market. The
econd term reflects the GENCO’s income generated by the inelastic
emand 𝑑𝑓𝑡 for which the forecasted price 𝜌𝑡 is fixed. The last two
1055

erms on the first line of Eq. (2a) represent the revenue generated f
rom the spinning and non-spinning reserve products for which 𝑙𝑠𝑡 and
𝑛
𝑡 are the corresponding forecasted market prices. The terms in the
econd line of (2a) represent the total costs of power generation by the
ENCO’s generating units. The first three terms represent the quadratic
ower generation costs, while the last two terms are the start-up and
hut-down costs for operating the generating units, respectively.

The equality linking constraint (2b) enforces the dependence of 𝜉𝑡 on
𝑡. More precisely, it can be seen from (2b) how 𝑞𝑡, which specifies the
istribution of 𝜉𝑡, depends on the pricing decision 𝜋𝑡, which shows that
he DDU is of Type 1 with decision-dependent parameter. Constraint
2c) forces 𝑞𝑡 to take a value between 0 and 1 as it denotes the
robability of acceptance. Note that (2c) is redundant as its satisfaction
s implicitly guaranteed from the definition of the WTP function 𝛶 (𝜋𝑡)
see Section 3.4). Constraint (2d) does not allow the price set for
he elastic demand to differ by more than a certain percentage 𝛾, set
y the GENCO, from the price for the fixed demand. GENCOs may
trive for an increase in prices with respect to the competitive values,
roviding higher producer surplus at the expense of market efficiency.
s a mitigation approach to avoid any potential market power behavior
f the GENCOs, we bound the prices not to exceed the competitive
evels (Baldick, 2016). Accordingly, the price set for the elastic demand
annot differ by more than a certain percentage 𝛾 from that of the fixed
emand (2d). The notation 𝐱 denotes the aggregated decision vector
hich is the concatenation of all decision variables (with the exception
f 𝜋𝑡 and 𝑞𝑡) in the PBUC problem (see Supplementary Material A).
onstraint (2e) states that the aggregated vector 𝐱 of decision variables
ust belong to the mixed-integer linear feasible set 

= 𝐵 ∩ 𝑅 ∩ 𝑀 ∩ 𝐸 (3)

efined as the intersection of 𝐵 ,𝑅,𝑀 , and 𝐸 respectively re-
erring to the feasible sets defined by the power flow balance, the
enerating units’ ramp rate, the min-up/min-down time, and the re-
erve constraints presented in details in Supplementary Material C. The
bove model is a stochastic MINLP problem whose key properties will
e analyzed in the next section.

.4. DDU modeling and coupling functions

The proper modeling of DDU relies on a coupling function (Dupa-
ová, 2006) that defines the dependency of the probability distribution
f the random variables on (some of) the decisions. It is an encom-
assing concept that has been employed to model DDUs in multiple
ontexts, such as oil field exploitation (Jonsbråten, Wets, & Woodruff,
998), network survivability (Peeta, Salman, Gunnec, & Viswanath,
010), military medical evacuation (Lejeune & Margot, 2018), etc. In
he PBUC context studied here, the coupling function takes the form
f a WTP function. Definition 2 presents the key properties of the
TP functions. To ease the notation, we drop the subscript 𝑡 and use
= (1− 𝛾)𝜌 and 𝑢 = (1+ 𝛾)𝜌 to refer to the lower and upper bounds (see
2d)) on 𝜋.

efinition 2. Any willingness-to-pay function 𝛶 (𝜋) ∶ [𝑙, 𝑢] ⊂ R++ ↦
0, 1] used in the PBUC problem must have the following properties:

1. Bounded with range [0, 1].
2. Continuous on [𝑙, 𝑢].
3. Antitone (monotone decreasing) 𝜋: 𝜋1 ≤ 𝜋2 ⇒ 𝛶 (𝜋1) ≥ 𝛶 (𝜋2).

We consider three WTP functions used previously in the literature
nd in practice (Besbes, Phillips, & Zeevi, 2010; Besbes & Zeevi, 2015;
au & Lau, 2003).

efinition 3. Let 𝜏 > 0 denote the price elasticity and 𝜋 ∈ [𝑙, 𝑢]. Three

unctional forms are considered for the WTP function:
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1. Linear WTP function:

𝛶 1(𝜋) = 1 − 𝜏𝜋 (4)

for 𝜏 ≤ 1∕𝑢 with 𝑢 denoting the largest admissible price.
2. Exponential WTP function:

𝛶 2(𝜋) = 𝑒−𝜏𝜋 . (5)

3. Logit WTP function:

𝛶 3(𝜋) = 𝑒𝜈−𝜏𝜋

1 + 𝑒𝜈−𝜏𝜋
. (6)

ee an example of each function in Figure 5, 6, and 7 in Section G
f the Supplement Material. A larger value for 𝜏 indicates a higher
rice elasticity, which implies that the buyer is more sensitive to the
rice. The parameter 𝜈 is the intercept of the log odds ratios defined as
𝑜𝑔[ 𝛶 3(𝜋)

1−𝛶 3(𝜋) ].

.5. Specific WTP formulations

Having defined the specific functional forms of the considered WTP
unctions, we derive the explicit formulation of the MINLP problem
orresponding to each of them that can be obtained by successively
ubstituting 𝛶 1(𝜋), 𝛶 2(𝜋), and 𝛶 3(𝜋) for the generic WTP notation 𝛶 (𝜋)

in GF (2a). The three resulting formulations differ in their objective
functions but have the same feasible set.

We recall that 𝐱 denotes the aggregated vector of decision vari-
ables. To further ease the notation, we introduce 𝑠(𝐱) to refer to the
deterministic part of the objective function (2a):

𝑠(𝐱) =
∑

𝑡∈𝐓
𝜌𝑡𝑑

𝑓
𝑡 +

∑

𝑔∈𝐆

∑

𝑡∈𝐓
(𝑙𝑠𝑡 𝑟

𝑠
𝑔,𝑡+𝑙

𝑛
𝑡 𝑟

𝑛
𝑔,𝑡−𝑎𝑔𝜆

2
𝑔,𝑡−𝑏𝑔𝜆𝑔,𝑡−𝑐𝑔𝛼𝑔,𝑡−𝐶

𝑢
𝑔𝑦𝑔,𝑡−𝐶

𝑑
𝑔 𝑧𝑔,𝑡) .

(7)

roposition 1. The SP formulations for the PBUC problem with linear
TP function 𝛶 1(𝜋𝑡), exponential WTP function 𝛶 2(𝜋𝑡), and logit WTP
unction 𝛶 3(𝜋𝑡) can be reformulated as the MINLP problems M1, M2, and
3, respectively:

𝟏 ∶

{

max
𝜋𝑡 ,𝐱

∑

𝑡∈𝐓
𝜋𝑡𝑑

𝑒
𝑡 −

∑

𝑡∈𝐓
𝜏𝑑𝑒𝑡 𝜋

2
𝑡 + 𝑠(𝐱) ∶

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡, 𝑡 ∈ 𝐓 , 𝐱 ∈ 
}

(8)

𝐌𝟐 ∶

{

max
𝜋𝑡 ,𝐱

∑

𝑡∈𝐓
𝑒−𝜏𝜋𝑡𝜋𝑡𝑑

𝑒
𝑡 + 𝑠(𝐱) ∶

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡, 𝑡 ∈ 𝐓 , 𝐱 ∈ 
}

(9)

𝐌𝟑 ∶

{

max
𝜋𝑡 ,𝐱

∑

𝑡∈𝐓

𝑒𝜈−𝜏𝜋𝑡
1 + 𝑒𝜈−𝜏𝜋𝑡

𝜋𝑡𝑑
𝑒
𝑡 + 𝑠(𝐱) ∶

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡, 𝑡 ∈ 𝐓 , 𝐱 ∈ 
}

(10)

Since 𝜉𝑡 in GF is a Bernoulli random variable, we can replace its
expected value by 𝑞𝑡 which is the probability of acceptance, and, which,
due to (2b), can then be replaced by the considered willingness-to-pay
functional form. The detailed proof is given in the Supplementary Mate-
rial D.1. The next step is to analyze the computational challenges posed
by the three MINLP formulations derived. In particular, Proposition 2
analyzes whether the continuous relaxation of each of these MINLP
formulations is a convex programming problem.

Proposition 2. The continuous relaxation of the MINLP problem M1 (8)
is convex. The continuous relaxations of the MINLP problems M2 (9) and
M3 (10) are nonconvex.

The proof is given in Supplementary Material D.2. While one can
be reasonably hopeful to solve the convex quadratic MINLP problem
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M1 with state-of-the-art solvers, the solution of the nonconvex MINLP
problems M2 and M3 for practice-sized instances poses severe com-
putational challenges. In the next section, we derive computationally
efficient reformulations for M2 and M3.

4. Concavification

In this section, we design a concavification method to derive equiv-
alent convex programming reformulations (i.e., convex continuous re-
laxation) of the nonconvex MINLP problems M2 and M3.

We will next show that the nonlinear nonconcave functions ℎ2(𝜋𝑡) =
𝜋𝑡𝑒−𝜏𝜋𝑡 and ℎ3(𝜋𝑡) =

𝜋𝑡𝑒𝜈−𝜏𝜋𝑡
1+𝑒𝜈−𝜏𝜋𝑡 in the objective functions ofM2 andM3 are

concavifiable, i.e., can be transformed into concave functions. Section 4.1
gives an overview of the concavifiability concept while Section 4.2
presents the convex reformulations of M2 and M3 obtained using this
concept.

4.1. Overview

Concavification is the transformation of a nonconcave function
into a concave one. In this study, we use a domain transformation
approach (Boyd & Vandenberghe, 2004) which involves a combination
of both range and domain transformations (Li, Wu, Lee, Yang, & Zhang,
2005). First, it proceeds to a one-to-one transformation of the domain
of a function so that its upper sets are transformed into convex ones,
which implies that the ‘‘transformed’’ function is quasi-concave. Sec-
ond, a monotone increasing range transformation of the quasi-concave
function is carried out in order to obtain a concave function.

It is well known that a concave monotonic transformation of a
concave function is itself concave. While such results for convex-
ity – or concavity – preservation via a monotone increasing func-
tion are well known, much less is known about concavity-inducing
(or convexity-inducing) functions, in which we are particularly in-
terested here since the nonlinear components in the objective func-
tions of problems M2 and M3 are not concave. The challenge here
is not to find a concavity-preserving transformation, but to uncover a
concavity-inducing one.

We shall now determine whether there exists a concavity-inducing
transformation 𝐹 ∶ R → R for the nonlinear components ℎ2(𝜋𝑡) and
ℎ3(𝜋𝑡) of the objective functions of M2 and M3 such that 𝐹 (ℎ2(𝜋𝑡))
and 𝐹 (ℎ3(𝜋𝑡)), 𝑡 ∈ T are concave and provide equivalent convex refor-
mulations for the continuous relaxations of M2 and M3. To determine

hether ℎ2(𝜋𝑡) and ℎ3(𝜋𝑡) are concavifiable, we shall examine whether
hey are endowed with the 𝑔-concavity and quasi-concavity properties.

efinition 4. Let 𝑓 ∶ 𝐶 → R be defined on 𝐶 ⊆ R𝑛 and with range
𝑓 (𝐶). The function 𝑓 is said to be 𝑔-concave if there is a continuous
eal-valued monotone increasing function 𝐹 ∶ 𝐼𝑓 (𝐶) → R such that
(𝑓 (𝑥)) is concave over 𝐶. This is the case if

(𝑓 (𝜆𝑥1 + (1 − 𝜆)𝑥2)) ≥ 𝜆𝐹 (𝑓 (𝑥1)) + (1 − 𝜆)𝐹 (𝑓 (𝑥2)) (11)

olds for any 𝑥1, 𝑥2 ∈ 𝐶, 0 ≤ 𝜆 ≤ 1.

The 𝑔-concavity property is a sufficient condition for the concavifi-
ation of a function. As 𝑔-concavity is a demanding property and may
e difficult to prove, we shall also look at the quasi-concavity of the
unctions. We note in that respect that every 𝑔-concave function 𝑓 on
convex set 𝐶 is quasi-concave, but the converse is not true (Avriel,
iewert, Schaible, & Ziang, 2010); not every quasi-concave function 𝑓

s 𝑔-concave.

efinition 5. Let 0 < 𝜆 < 1 and 𝑥1, 𝑥2 be two arbitrary points in 𝐶.
A function 𝑓 ∶ 𝐶 → R is quasi-concave if and only if

(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ min(𝑓 (𝑥1), 𝑓 (𝑥2)) . (12)
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The function 𝑓 is strictly quasi-concave if the inequality is strict when-
ver 𝑥1 ≠ 𝑥2.

A strictly quasi-concave function is such that it has a unique global
aximum on any compact convex domain. Strict quasi-concavity is a
ecessary condition for the concavification of a function; quasi-concave
unctions that are not strictly quasi-concave are never concavifiable. We
ow determine the key features (Proposition 3 with proof in Supple-
entary Material D.3) of the nonlinear functions ℎ2(𝜋𝑡) = 𝑒−𝜏𝜋𝑡𝜋𝑡 and
3(𝜋𝑡) =

𝜋𝑡𝑒𝜈−𝜏𝜋𝑡
1+𝑒𝜈−𝜏𝜋𝑡 , and especially whether they are strictly quasi-concave.

Proposition 3. The univariate functions ℎ2(𝜋𝑡) = 𝑒−𝜏𝜋𝜋 and ℎ3(𝜋𝑡) =
𝜋𝑒𝜈−𝜏𝜋

1+𝑒𝜈−𝜏𝜋 are non-monotone and strictly quasi-concave.

Taking the monotone logarithmic transformation of ℎ2(𝜋𝑡) and
3(𝜋𝑡) gives a concave function, thereby proving that ℎ2(𝜋𝑡) and ℎ3(𝜋𝑡)

that ℎ2(𝜋𝑡) = 𝑒−𝜏𝜋𝑡𝜋𝑡 and ℎ3(𝜋𝑡) =
𝜋𝑡 𝑒𝜈−𝜏𝜋𝑡
1+𝑒𝜈−𝜏𝜋𝑡 are 𝑔-concave and concavifi-

able.

4.2. Convex reformulations

We now derive the convex MINLP reformulations of the nonconvex
MINLP problems M2 and M3. The results are presented in Theorems 1
and 2. The equivalence relationship is demonstrated using the log-
arithmic transformation of the epigraphic formulations of M2 and
M3.

Theorem 1. Let 𝑤𝑡, 𝑡 ∈ 𝐓 be a set of continuous decision variables.
(i) The MINLP problem RM2

𝐑𝐌𝟐 ∶ max
∑

𝑡∈𝐓
𝑤𝑡 + 𝑠(𝐱) (13a)

s.to − 𝜏𝜋𝑡 + 𝑙𝑛(𝜋𝑡𝑑𝑒𝑡 ) ≥ 𝑤𝑡 𝑡 ∈ 𝐓 (13b)

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡 𝑡 ∈ 𝐓 (13c)

𝐱 ∈  (13d)

is equivalent to M2 and has a convex continuous relaxation.
(ii) The optimal solution(s) (𝐱∗, 𝜋∗, 𝑤∗) of RM2 is identical to the optimal
solution(s) of M2.
(iii) There is a one-to-one mapping between the optimal values of RM2 and
M2. The optimal value 𝑧∗𝐌𝟐 of M2 is: 𝑧

∗
𝐌𝟐 =

∑

𝑡∈𝐓 𝑒𝑤
∗
𝑡 + 𝑠(𝐱∗).

The proof is provided in Supplementary Material D.4.

Theorem 2. Let 𝑣𝑡, 𝑡 ∈ 𝐓 be a set of continuous decision variables.
(i) The MINLP problem RM3 is equivalent to M3:

𝐑𝐌𝟑 ∶ max
∑

𝑡∈𝐓
𝑣𝑡 + 𝑠(𝐱) (14a)

s.to 𝑙𝑛(𝜋𝑡𝑑𝑒𝑡 ) + 𝜈 − 𝜏𝜋𝑡 − 𝑙𝑛(1 + 𝑒𝜈−𝜏𝜋𝑡 ) ≥ 𝑣𝑡 𝑡 ∈ 𝐓 (14b)

(1 − 𝛾)𝜌𝑡 ≤ 𝜋𝑡 ≤ (1 + 𝛾)𝜌𝑡 (14c)

𝐱 ∈  (14d)

(ii) The continuous relaxation of the MINLP problem RM3 is a convex
programming problem.
(iii) The optimal solution(s) (𝐱∗, 𝜋∗, 𝑣∗) of RM3 is identical to the optimal
solution(s) of M3.
(iv) There is a one-to-one mapping between the optimal values of RM3 and
M3. The optimal value 𝑧∗𝐌𝟑 of M3 is: 𝑧

∗
𝐌𝟑 =

∑

𝑡∈𝐓 𝑒𝑣
∗
𝑡 + 𝑠(𝐱∗).

The proof is similar to the one given for Theorem 1.

5. Learning the WTP function

In this section, we design a data-driven learning approach to specify
the parameters of the WTP functions. The suggested learning approach
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is particularly beneficial to GENCOs’ decision-making in two ways:
(i) the GENCO could be guided on the choice of the WTP function
– and accordingly, the PBUC-DDU model – as the power system and
electricity market structures evolve and the varying (typically increas-
ing) participation rate of the elastic demand may potentially require
different choices of the WTP function over time; (ii) the GENCO could
continuously fine-tune the parameters of a selected WTP function over
time and as new data on the buyer behavior and market response
become available. The proposed PBUC-DDU analytics are intended to
be used in practice by GENCOs when they could employ their historical
data to train the learning algorithm and dynamically fine-tune the WTP
parameters.

We employ the least square estimation method to learn the pa-
rameters of the WTP functions. The WTP function 𝛶 (𝜋) depends, in
some fashion (i.e., linear, exponential, logit form), on the price 𝜋 which
is the explanatory or predictor variable in the proposed least square
estimation models (see Proposition 4). The least-square estimation
models are nonlinear optimization problems that each minimize the
sum of the squared residual values between the observed and the
predicted WTP. The unknowns or decision variables in the nonlinear
optimization problems are the parameters 𝜏 and 𝜈 of the WTP functions.
Proposition 4 analyzes the convexity (or not) nature of the optimization
problems that allow us to learn the value of the parameters of the WTP
functions.

Proposition 4. Let 𝐾 be the training set of data points, 𝜋(𝑘) ∈ [𝑙, 𝑢] be
the observed price, and 𝛶 (𝑘) the observed WTP probability for data point 𝑘.

1. The parameter 𝜏 of the linear WTP function (4) can be found by
solving the quadratic convex optimization problem L1:

L1 ∶ min
𝜏

∑

𝑘∈𝐾

(

𝛶 (𝑘) − (1 − 𝜏𝜋(𝑘))
)2 (15)

s.to 0 ≤ 𝜏 ≤ 1
𝑢

(16)

with 𝑢 denoting the largest price in the training set: 𝑢 = max𝑘∈𝐾 𝜋(𝑘).
2. The parameter 𝜏 of the exponential WTP function (5) can be found
by solving the nonlinear optimization problem L2:

L2 ∶ min
𝜏≥0

∑

𝑘∈𝐾

(

𝛶 (𝑘) − 𝑒−𝜏𝜋
(𝑘)
)2

. (17)

Problem L2 is convex for low elasticity levels

𝜏 ≤ min
𝑘∈𝐾

𝑙𝑛(2∕𝛶 (𝑘))
𝜋(𝑘)

(18)

and is nonconvex otherwise.
3. The parameters 𝜈 and 𝜏 of the logit WTP function (6) can be found by
solving the unconstrained nonlinear nonconvex optimization problem
L3:

L3 ∶ min
𝜏≥0,𝜈

∑

𝑘∈𝐾

(

𝛶 (𝑘) − 𝑒𝜈−𝜏𝜋(𝑘)

1 + 𝑒𝜈−𝜏𝜋(𝑘)

)2

. (19)

The proof is given in Supplementary Material D.5.

6. Valid inequalities

In this section, we derive several families of valid inequalities to
strengthen the continuous relaxation of the MINLP problems M1, RM2,
and RM3 (see Sections Section 3.5, and 4) and speed up their solution.
In preliminary computational experiments, we considered a number of
possible valid inequalities. We refer the reader to Huang, Pan, and Guan
(2021) and the references therein for a recent review of the related
literature. The valid inequalities described next are those that have the
strongest impact on the solution of the problem instances considered in
this study.

Let 𝛼𝑔,0 be a variable representing whether the generating unit 𝑔 was
online the day before the start of the last period, which we referred to
by the subscript 0.
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The first two types of valid inequalities (20) stipulate that any unit
𝑔 can start up and shut down at most once over the minimal duration
𝑆𝑔 + 𝑆𝑔 of a cycle.

roposition 5. Let 𝑉𝑡 = min
(

|𝑇 |, 𝑡 + 𝑆𝑔 + 𝑆𝑔 − 1
)

. The linear constraints

𝑉𝑡
∑

𝑘=𝑡
𝑦𝑔,𝑘 ≤ 1 and

𝑉𝑡
∑

𝑘=𝑡
𝑧𝑔,𝑘 ≤ 1 𝑡 ∈ 𝐓 ⧵ {1}, 𝑔 ∈ 𝐆 (20)

re valid inequalities for problems M1, RM2, and RM3.

The valid inequalities (21) and (22) use logical relationships be-
ween the decisions to use, start-up, and shut down a generating unit 𝑔
o derive a valid upper bound on: (i) the decision to turn on generating
nit 𝑔 over a number (𝑆𝑔 + 1) of consecutive periods (21) and (ii) the
ecision to shut down generating unit 𝑔 at a specific period 𝑡 (22).

Proposition 6. The linear constraints

𝛼𝑔,𝑡 ≥
𝑡

∑

𝑘=𝑡−𝑆𝑔+1

𝑦𝑔,𝑘 𝑡 = 𝑆𝑔 + 1,… , |𝐓|, 𝑔 ∈ 𝐆 (21)

𝑆𝑔𝑧𝑔,𝑡 ≤ 𝑡 −
𝑡

∑

𝑘=1
𝛼𝑔,𝑘 𝑡 ∈ 𝐓, 𝑔 ∈ 𝐆 (22)

are valid inequalities for problems M1, RM2, and RM3.

The valid inequalities (23) stipulate that non-spinning reserves from
ffline generating units cannot be activated if a generating unit was
tarted more times than it was shut down.

roposition 7. The linear constraints

𝛽𝑔,𝑡 ≤ 1 −
𝑡

∑

𝑘=1
(𝑦𝑔,𝑘 − 𝑧𝑔,𝑘) − 𝛼𝑔,0 𝑡 ∈ 𝐓, 𝑔 ∈ 𝐆 (23)

re valid inequalities for problems M1, RM2, and RM3.

The valid inequalities provide tighter and equivalent formulations
or M1, RM2, and RM3. They are equivalent in the sense that they do
ot eliminate any integer feasible solution. They are tighter since they
liminate fractional solutions that would be otherwise feasible for the
ontinuous relaxations of the problems. The above valid inequalities
ill be included up-front in the formulations of the mixed-integer
roblems M1, RM2, and RM3, thereby providing the strengthened
ormulations SM1, SRM2, and SRM3:

𝐌𝟏 ∶

{

max
𝜋𝑡 ,𝐱

∑

𝑡∈𝐓
𝜋𝑡𝑑

𝑒
𝑡 −

∑

𝑡∈𝐓
𝜏𝑑𝑒𝑡 (𝜋𝑡)

2 + 𝑠(𝐱) ∶ (2d)–(2e); (20)–(23)
}

(24)

𝐒𝐑𝐌𝟐 ∶

{

max
𝜋𝑡 ,𝐱,𝑤

∑

𝑡∈𝐓
𝑤𝑡 + 𝑠(𝐱) ∶ (13b)–(13d) ; (20)–(23)

}

(25)

𝐒𝐑𝐌𝟑 ∶

{

max
𝜋𝑡 ,𝐱,𝑣

∑

𝑡∈𝐓
𝑣𝑡 + 𝑠(𝐱) ∶ (14b)–(14d) ; (20)–(23)

}

(26)

The strengthened formulation by introducing the above valid in-
equalities is pivotal in the solution process. The computational benefits
of the valid inequalities are evaluated in Section 7.3.

7. Numerical experiments

In this section, numerical results are presented to verify the ef-
fectiveness of the proposed SP models for PBUC. We compare the
performance of the proposed MINLP models with the conventional
PBUC model (MILP) without DDU and demand elasticity under a va-
riety of WTP functions and operation scenarios. Section 7.1 describes
1058
the testing environment, the data, and the several IEEE benchmark test
systems used in our analysis of the numerical experiments. Section 7.2
presents the parameterization of the WTP functions with the proposed
data-driven learning approach. Section 7.3 is devoted to the compu-
tational efficiency tests to verify the scalability and computational
tractability of our approach. Section 7.4 discusses in detail the test
scenarios employed to (i) numerically demonstrate the performance
of the proposed analytics under a variety of conditions, (ii) analyze
their performance compared to the traditional PBUC practices with no
elasticity considerations and to price the value of DDU considerations,
and (iii) evaluate different WTP functions and the corresponding PBUC
decisions. We also interpret the results and provide insights into the
numerical tests and observations.

7.1. Data and testing environment

7.1.1. Test system description and data
In this study, the performance of the proposed models is tested on

four different IEEE benchmark systems, including the IEEE 6-bus, IEEE
24-bus, IEEE 39-bus, and IEEE 118-bus test systems. Table 1 presents
the general information of the four test systems, while the system
configuration and detailed data of the generation cost coefficients,
generating unit parameters, fixed and elastic demand at each time
period, etc. are provided in Dehghanian (2021). The proposed model
is generic enough to accommodate any proportion between elastic and
inelastic demand. In our numerical analyses, we assume that 20% of the
total demand in the studied systems is elastic (price-responsive) and the
remaining 80% is fixed (inelastic).

We consider that the price for the fixed demand and the market
prices for the spinning and non-spinning reserves at each time period
are known (forecasted) parameters in all test systems, the data on
which are provided in Dehghanian (2021). This assumption is rea-
sonable as the focused PBUC problem is intended to be performed
by GENCOs. Additionally, market operators and participants typically
provide forecasts and historical pricing data for planning and trading
purposes. These forecasts are often based on historical market behavior
and current supply and demand conditions. A test case on the impact
of uncertainties in the day-ahead price for energy is introduced in
Supplementary Material I. The GENCO of interest, that manages all
generating units in each test system, aims at maximizing its profit from
the energy products. The GENCO utilizes the proposed PBUC models
and participates in a day-ahead market, where other GENCOs submit
their bids. The PBUC scheduling time horizon is set to 24 h in all
tests. All optimization problems are coded with AMPL. The quadratic
integer problems are solved with the Gurobi 9.0.3 solver while the
nonlinear and nonquadratic optimization problems are solved with the
Baron 20.10.16 solver on a PC with an Intel Core i7-6700 CPU
3.40 GHz processor and 32 GB memory.

7.1.2. WTP parameter learning and characterization: Data and assump-
tions

In order to characterize the proposed WTP functions, the data-
driven learning approach presented in Section 5 is applied. Recall
that the parameters to be specified include the price elasticity (𝜏) for
the linear (4) and exponential (5) WTP functions and 𝜏 and 𝜈 for
the logit (6) WTP function. Historical data on the price set by the
GENCO and the corresponding WTP response of the elastic demand (in
terms of price acceptance probability) are hence needed to train the
data-driven learning models. Since such information could decode and
reveal the strategic pricing and bidding strategies of the profit-seeking
GENCOs in the electricity market, such data are typically confidential
and not available to the public, as it otherwise could sacrifice the
GENCO’s competitiveness in the electricity market. Constrained by the
unavailability (to the authors) of such data needed to fine-tune the
WTP parameters, our approach is accordingly – and without loss of
generality – geared toward the generation of a synthetic dataset that is
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Table 1
IEEE benchmark test systems used in numerical experiments.
Test # # Generating # Transmission Total capacity Maximum demand
system Buses units lines (MW) (MW)

IEEE 6-Bus 6 3 7 360 260
IEEE 24-Bus 24 12 39 3375 2650.5
IEEE 39-Bus 39 10 47 1990 1455
IEEE 118-Bus 118 19 185 6859 5746
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Table 2
WTP functions: Estimated parameters values and 𝑅2.

WTP functions 𝜏 𝜈 𝑅2

Linear – L1 0.0117 NA 0.941
Exponential – L2 0.0197 NA 0.894
Logit – L3 0.0967 4.83 0.986

informed by real-world data. Accordingly, we have utilized data on the
day-ahead electricity market prices of the PJM electricity market during
the 1-year period of 12/01/2019–11/30/2020 (PJM Data Miner 2,
2021) taken in place of the day-ahead price set by the GENCO. We have
generated three different datasets by sampling from the distribution
corresponding to the relationships (linear, exponential, logit) between
price and WTP probability. For each WTP function, we use 200 price
data points (of the PJM market data) equally spaced between $18 to
$77. For each price point, the WTP probability is calculated using the
proposed WTP function (Definition 3) plus a randomly generated noise
that follows a normal distribution. The fitted functions are estimated
with the models presented in Proposition 4. From the 365 data points
retrieved, 292 samples (80%) are utilized for training and 73 samples
(20%) are used for testing the results of the learned model.

Note that the synthetic data generation approach is taken here
solely to fill in the confidential data unavailability gap and to demon-
strate the applicability of the proposed learning methods to estimate a
WTP function for a given dataset that a GENCO could have access to.
However, GENCOs could perform exploratory data analysis and employ
their historical data to select the right choice of the WTP function, and
dynamically learn and fine-tune the WTP parameters.

7.2. Learning parameters of WTP functions

In this section, we describe the results associated with the learning-
driven parameter estimation of the WTP functions and the solution of
the associated nonlinear least-square optimization models presented in
Proposition 4. As above-explained, since real-life historical data are not
available, we use synthetic data to conduct our numerical experiments
and in particular to learn the parameter values of each WTP function
through the solution of the least-square optimization problems 𝐋𝟏, 𝐋𝟐,
nd 𝐋𝟑. The convex problem 𝐋𝟏 is solved with Gurobi in 0.05 s. The
onconvex problems 𝐋𝟐 and 𝐋𝟑 are solved with BARON. For 𝐋𝟐, BARON
inds the optimal solution in 1.72 s, while for L3, a high-quality feasible
olution (i.e., small optimality gap) is found in 0.14 seconds.

To evaluate the result, we use the 𝑅2 coefficient of determination
hich ranges from 0 to 1 and measures how much variance in the
ependent variable 𝛶 can be explained by the independent variable 𝜋.
able 2 reports the estimates and corresponding 𝑅2 values. In addition,
igures 1–3 (in Supplementary Material G) display the‘‘synthetically’’
bserved WTP probabilities (red dots) and those estimated with the
earning models L1, L2, and L3 (blue lines).

The values of the 𝑅2 coefficients displayed in Table 2 and Figures
–3 attest that the fitted WTP probabilities are extremely close to the
bserved ones and, each estimated WTP function is able to capture very
ell the overall trend in the dataset. The estimated values given in
able 2 are used to conduct the numerical tests in the next subsections.
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Table 3
CPU Time for IEEE 6-, 24-, 39-, and 118-Bus test system.

Test System Average CPU time over six instances (Seconds)

Linear WTP Exponential WTP Logit WTP

M1 SM1 RM2 SRM2 M3 SRM3

IEEE 6-Bus 0.12 0.10 0.09 0.10 0.09 0.11
IEEE 24-Bus 3.27 2.38 3.00 2.35 2.95 2.43
IEEE 39-Bus 43.39 18.32 42.93 20.45 44.57 20.15
IEEE 118-Bus 1.51 1.11 1.69 1.14 1.79 1.16

7.3. Computational efficiency

To investigate the computational tractability of the proposed ap-
proach, we conduct a battery of tests for the three proposed PBUC
models with respectively linear, exponential, and logit WTP functions
and with two formulations, i.e., with valid inequalities (SM1, SRM2,
RM3) and without (M1, RM2, RM3) — therefore six formulations. We
onsider five test power systems (IEEE 6-Bus, 24-Bus, 39-Bus, 118-Bus
est systems as well as the Illinois 200-Bus power network) and generate
or each six problem instances, giving us a total of 30 instances. We
olve the 30 problem instances with six formulations and analyze below
he results obtained for the solutions of the 180 resulting optimization
roblems. For each problem, we allow one hour of CPU time and
se one single thread. As shown below, the problem instances for the
00-Bus power system are very challenging to solve. Therefore, we
ecompose the analysis of the results into two parts.

Table 3 reports the average CPU time per instance type for the
EEE 6-, 24-, 39-, and 118-Bus test systems. All instances for each WTP
unction and formulation (with or without valid inequalities) are solved
n less than 50 s. The average solution time for the IEEE 6-, 24-, and
18-Bus instances is marginal and varies between 1 and 2 s with or
ithout valid inequalities. Adding the valid inequalities decreases the

olution time for the IEEE 24- and 118-Bus instances. The added value
temming from the valid inequalities is most apparent for the IEEE 39-
us instances. Over these 18 instances, the valid inequalities reduce the
olution time by 55%.

The benefits of the valid inequalities are even more visible for the
ost complex instances of the 200-Bus test system. Table 4 reports the

lower approximation of the) solution time with the two approaches,
.e., with and without valid inequalities. We use the term ‘‘approxima-
ion’’ since when optimality could not be proven in one hour, we report
‘3600’’ i.e., the total time allowed.

The use of valid inequalities permits solving to optimality twelve of
he eighteen problem instances for the 200-Bus test system. The average
ptimality gap over the six instances not solved to optimality is 0.058%.
hen valid inequalities are not used, only five instances can be solved

o optimality. In these five instances, the speedup provided is of the
rder of 2.3 as the average solution with and without valid inequalities
s 1154 and 2660 s, respectively. For the thirteen other instances,
e notice that, by using the valid inequalities, we can systematically

ind better feasible integer solutions as well as better bounds (when
ptimality is not proven).

In general, the valid inequalities considerably reduce the solution
ime and enable finding the optimal solutions within the one-hour
imit for problems that were otherwise not solvable. This shows the
calability and efficiency of the proposed framework for modeling
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Table 4
Computational results for different problem instances on the Illinois 200-bus test system

Instance CPU time (Seconds)

Linear WTP Exponential WTP Logit WTP

M1 SM1 RM2 SRM2 RM3 SRM3

Instance 0 3600 1908 3600 1806 3600 1795
Instance 1 3155 2063 3600 2674 3000 2473
Instance 2 3600 3600 3600 3600 3600 3600
Instance 3 2321 318 2392 510 2434 407
Instance 4 3600 2544 3600 2672 3600 2102
Instance 5 3600 3600 3600 3600 3600 3600

DDU in the WTP the price set by GENCOs. Although the models are
extremely complex in their original forms (MINLP problems with non-
convex continuous relaxations), our approach solves efficiently large
instances. Indeed, the PBUC models with DDU in the WTP can be solved
as quickly, if not quicker, as instances of the same size formulated with
the traditional deterministic PBUC model (Supplementary Material E)
which does not account for elasticity and uncertainty. The computa-
tional results are invariant for the three functions (linear, exponential,
and logit), which underlines the wide applicability and robustness of
our approach. The ability to handle a variety of WTP functions gives
the latitude to decision-makers to account for variant price sensitivity
and risk attitude.

7.4. Industry insights

We analyze the performance of the PBUC-DDU models via several
IEEE benchmark test systems:

• Test Case I (Section 7.4.1) through which the proposed PBUC-
DDU models with different WTP functions are solved where the
total demand served by the GENCO is composed of fixed and
elastic proportions. The results demonstrate the value for the
GENCO to account for the demand elasticity and the uncertainty
as to whether its price set for the elastic demand is favored in
the market when compared to the traditional deterministic PBUC
setting.

• Test Case II (Section 7.4.2) through which the impact of elastic
demand volume on the performance of the proposed PBUC-DDU
models is evaluated.

• Test Case III (Section 7.4.3) through which the impact of price
elasticity of the demand on the performance of the proposed
PBUC-DDU models is evaluated.

.4.1. Test case I: Value quantification of PBUC-DDU models
With the growing proportion of flexible price-responsive demand

n the electric power industry, the traditional, deterministic (Supple-
entary Material E) PBUC model may lead to an inaccurate estimation

f the GENCO’s profit, primarily due to its simplifying assumption
hat the entire demand is fixed and will be sold at a given price.

e postulate that there is value to be gained if GENCOs consider the
emand elasticity in pricing and use a WTP-based pricing approach
or the elastic demand in the PBUC context. Next, we carry out two
nalyses to ascertain this assumption.
(𝟏) 𝐕𝐚𝐥𝐮𝐞 𝐨𝐟 𝐃𝐞𝐜𝐢𝐬𝐢𝐨𝐧 − 𝐃𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐬(𝐕 − 𝐃𝐃𝐒) ∶ We refer to

the added value of using a WTP pricing model for the elastic demand as
the value of the decision-dependent solution V-DDS and propose a formal
pproach to quantify it. We calculate the added value (i.e., additional
rofit) of endogenizing the decision and the likelihood that buyers will
ccept to pay the set price. Accordingly, we compare the proposed
BUC-DDU models that account for demand elasticity with two variants
f the deterministic PBUC model (Supplementary Material E) that
ssumes no elasticity in the demand and that buyers will pay the price
1060
set by the GENCOs. More precisely, the price for the demand considered
to be elastic in the deterministic PBUC models is set to the:

• Price 𝜌𝑡 applied to the fixed (non-elastic) demand in the first
variant called D-PBUC-N. This is justified since GENCOs would
price the demand indifferently given the assumption that the
entire demand is fixed. This can be viewed as a risk-neutral
attitude of GENCO.

• Highest admissible price 𝑢𝑡 in the second variant D-PBUC-T. This
relies on the assumption that there is no elasticity and it thus
indicates, from a profit maximization perspective, to set the price
as high as possible. This can be viewed as a risk-taker attitude of
GENCO.

We proceed as follows to quantify the value of modeling DDU when
part of the demand is elastic:

1. Solve the PBUC models M1, RM2, and RM3 with DDU in which
the demand elasticity is effectively accounted for via the expo-
nential, and logit WTP functions.
Let 𝑍∗

1 , 𝑍∗
2 , and 𝑍∗

3 be the optimal value of M1, RM2, and
RM3, respectively, and (𝐱∗, 𝜋∗), (𝐱∗, 𝜋∗, 𝑤∗), and (𝐱∗, 𝜋∗, 𝑣∗) be
the optimal solution of M1, RM2, and RM3, respectively.

2. Consider the deterministic PBUC models D-PBUC-N and D-
PBUC-T where the elastic demand is set as inelastic. In (𝐱∗, 𝜋∗),
(𝐱∗, 𝜋∗, 𝑤∗), and (𝐱∗, 𝜋∗, 𝑣∗) of M1, RM2, and RM3:

• Replace 𝜋𝑡, 𝑡 ∈ 𝐓 by: (i) 𝜌𝑡 and (ii) 𝑢𝑡.
• Calculate the objective values of the three PBUC-DDU mod-

els M1, RM2, and RM3. Denote the resulting values of
their objective as: 𝑊 𝑗

𝑖 with the index 𝑖 = 1, 2, 3 designating
the type (M1, RM2, RM3) of PBUC-DDU model and the su-
perscript 𝑗 = 𝑁, 𝑇 identifying the two variants (D-PBUC-N,
D-PBUC-T) of the deterministic PBUC model.

3. Calculate the value of the decision-dependent solution which
quantifies the profit increase brought by accounting for the
elasticity of the demand and the DDU regarding whether the
buyers will accept to pay the price set by the GENCO:

V-DDS(𝜋) = 𝑍∗
𝑖 −𝑊 𝑗

𝑖 , 𝑖 = 1, 2, 3 , 𝑗 = 𝑁, 𝑇 (27)

Table 5 reports the results of this analysis for the first risk-neutral
ariant D-PBUC-N of the deterministic approach in which the same
rice 𝜌𝑡 is applied to the entire demand. For each test instance, 𝑍∗

𝑖
is larger than 𝑊 𝑁

𝑖 , which confirms the need to account for DDU and
demand elasticity. Taking the IEEE 24-Bus test system as an example,
the daily additional expected profits, represented by V-DDS, amount
to $9,480, $2,859, $26,489 for the linear, exponential, and logit WTP
functions, respectively, which is equivalent to $3.46, $1.04 and $9.66
millions per year.

Table 6 summarizes the same results for the risk-taker variant D-
PBUC-T of the deterministic approach in which the price for the elastic
demand is set to the alternative largest admissible price. Similar to
Table 5, GENCO’s daily expected profits are larger when DDU and
demand elasticity are properly accounted for (i.e, 𝑍∗

𝑖 > 𝑊 𝑁
𝑖 and

∗
𝑖 > 𝑊 𝑇

𝑖 for each 𝑖). For the IEEE 24-Bus test system, the daily
xpected profits V-DDS reach $19,770, $2,499, $47,017 for the linear,
xponential, and logistic WTP functions, respectively, amounting to
7.21, $0.91 and $17.16 millions per year.

The results show that, in the case of elasticity in the demand, not
ccounting for DDU has negative impacts on the profit and leads to
odels whose results cannot be trusted. The V-DDS analysis shows that
ENCOs can increase their expected profits by incorporating DDU in
ontrast to the standard PBUC models that assume no uncertainty and
o demand elasticity
(𝟐) 𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐀𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞 (𝐖𝐓𝐏) 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐢𝐞𝐬 𝐚𝐧𝐝 𝐄𝐥𝐚𝐬𝐭𝐢𝐜 𝐃𝐞𝐦𝐚𝐧𝐝

𝐑𝐞𝐯𝐞𝐧𝐮𝐞𝐬 𝐰𝐢𝐭𝐡 𝐃𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐢𝐬𝐭𝐢𝐜 𝐏𝐫𝐢𝐜𝐢𝐧𝐠 𝐒𝐜𝐡𝐞𝐦𝐞𝐬 ∶ Another way to assess
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Table 5
Value of decision-dependent solutions (V-DDS): D-PBUC-N formulation.

Test system 𝑍∗
1 𝑊 𝑁

1 V-DDS 𝑍∗
2 𝑊 𝑁

2 V-DDS 𝑍∗
3 𝑊 𝑁

3 V-DDS

IEEE 6-Bus 154,545 153,593 953 152,877 152,594 283 158,283 155,630 2,653
IEEE 24-Bus 1,720,470 1,710,990 9,480 1,703,589 1,700,730 2,859 1,758,407 1,731,918 26,489
IEEE 39-Bus 931,782 926,510 5,272 922,313 920,591 1,722 953,073 938,600 14,473
IEEE 118-Bus 3,458,520 3,440,074 18,446 3,428,113 3,422,399 5,714 3,526,046 3,476,822 49,224
Table 6
Value of decision-dependent solutions (V-DDS): D-PBUC-T formulation.

Test system 𝑍∗
1 𝑊 𝑇

1 V-DDS 𝑍∗
2 𝑊 𝑇

2 V-DDS 𝑍∗
3 𝑊 𝑇

3 V-DDS

IEEE 6-Bus 154,545 152,535 2,010 152,877 152,621 256 158,283 153,557 4,726
IEEE 24-Bus 1,720,470 1,700,700 19,770 1,703,589 1,701,090 2,499 1,758,407 1,711,390 47,017
IEEE 39-Bus 931,782 921,443 10,339 922,313 921,007 1,306 953,073 928,429 24,644
IEEE 118-Bus 3,458,520 3,421,350 37,170 3,428,113 3,423,260 4,853 3,526,046 3,442,800 83,246
Table 7
Price, probability of acceptance, and elastic demand revenues with WTP pricing models.
WTP function Average price Probability of acceptance Elastic demand revenue

Linear $41.96 50.91% $12804.37
Exponential $41.46 44.92% $11213.58
Logit $44.02 60.85% $15658.16
Table 8
Price, probability of acceptance, and elastic demand revenues with deterministic pricing models.
Deterministic Average Probability of acceptance Elastic demand revenue

pricing model price Linear Exponential Logit Linear Exponential Logit

D-PBUC-N $41.46 47.40% 43.02% 57.51% $11851.74 $11004.74 $13888.56
D-PBUC-T $44.02 39.52% 38.18% 46.40% $10793.65 $11051.84 $11881.05
(

t
o
m

the value of incorporating a WTP function in the PBUC context is to
compute the data-driven WTP probability (and the resulting revenue)
corresponding to the price of the elastic demand set by the two
deterministic pricing schemes D-PBUC-N and D-PBUC-T introduced
bove. We proceed as follows:

1. We solve the optimization problems for the two deterministic
pricing schemes D-PBUC-N and D-PBUC-T that do not include a
WTP function.

2. Based on the data used in this study, we calculate with the three
proposed WTP functions the acceptance probability of the price
charged for the elastic part of the demand with the D-PBUC-N
and D-PBUC-T models.

3. We compare the acceptance (WTP) probability and the price
obtained with the D-PBUC-N and D-PBUC-T models to those
obtained with the three WTP functions and models.

4. We calculate the revenues that would be generated with the
D-PBUC-N and D-PBUC-T models based on the data-driven es-
timate of the acceptance (WTP) probabilities and compare the
resulting revenues with those obtained with the three WTP
pricing models.

e provide the results of the above procedure for the IEEE 6-bus test
ystem. Table 7 reports the average price (over 24 periods) charged for
he elastic portion of the demand, the WTP probability, and the revenue
enerated by the elastic portion of the demand with the WTP models.

Table 8 reports the average price (over the 24 periods) charged for
he elastic portion of the demand, with the deterministic pricing models
-PBUC-N and D-PBUC-T, as well as the data-driven estimated WTP
robabilities and generated revenues corresponding to these models.

Obviously, the comparison between the D-PBUC-N and D-PBUC-T
odels shows that the average price is larger and the average WTP
robability is lower (since monotone decreasing in price) with D-PBUC-
. However, the difference in the three types of WTP probabilities
aries quite significantly – ranging from 4.84% for the exponential WTP
unction, 7.88% for the linear WTP function, to 11.11% for the logit
1061
WTP function – which also translates into markedly different revenues
generated from the elastic portion of the demand.

For the linear and logit WTP function, the larger price of the D-
PBUC-T is not sufficient to compensate for the lower WTP probability
and the D-PBUC-N model gives respectively 9.80% and 16.90% addi-
tional elastic demand revenues. Otherwise, for the exponential WTP
function, the price difference between the D-PBUC-T and D-PBUC-
N models is just sufficient to make the D-PBUC-T more beneficial
i.e., 0.43% additional revenue from elastic demand).

The last part of the analysis highlights the benefits of incorporating
he WTP function in the PBUC model. Using the data-driven estimate
f the WTP probabilities corresponding to the deterministic pricing
odels D-PBUC-N and D-PBUC-T, we compare their resulting revenues

for the elastic portion of the demand with those obtained with the
three proposed PBUC models with decision-dependent uncertain WTP
probabilities. While the difference between the deterministic pricing
approaches and the WTP pricing approaches is limited for the expo-
nential WTP function (i.e., 1.90% and 1.46% additional benefits with
WTP model as compared to the D-PBUC-N and D-PBUC-T models, re-
spectively), the additional revenues with the WTP pricing approach are
significant for the linear WTP function (8.04% and 11.63% additional
benefits with respect to D-PBUC-N and D-PBUC-T) and particularly
exacerbated with the logit WTP function, culminating to 12.74% and
31.79% additional benefits with respect to D-PBUC-N and D-PBUC-T.

7.4.2. Test case II: Impact of elastic demand volume
Here, we aim to analyze the performance of the proposed PBUC-

DDU analytics under variations in the elastic demand volume in the
system and investigate the decisions suggested by various WTP func-
tions in the PBUC-DDU problem. We analyze five scenarios in which
the elastic demand volume has varied from a base level in the studied
networks (the data of which is provided in Dehghanian, 2021) by
factors of −20% (S1), -10% (S2), 0% (S3), +10% (S4), and +20%

(S5). Table 9 (in Supplementary Material F) reports the GENCO’s profit
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Fig. 2. Hourly WTP Probability of Price under Different Proportions of Elastic Demand and Different PBUC-DDU Models: IEEE 24-Bus System.
Fig. 3. Hourly Price Signals for Fixed and Elastic Demands under Different Elastic Demand Proportions and PBUC-DDU Models: IEEE 24-Bus System.
Fig. 4. Hourly WTP Probability of Price Set for Elastic Demand under Different Price Elasticity Levels and PBUC-DDU Models: IEEE 24-Bus System.
(objective function) achieved when the proposed PBUC-DDU models
are applied to each of the studied test systems.

Across all test systems, one key observation prevails: as the elastic
demand volume increases (from S1 to S5), the GENCO’s estimated
profit from PBUC models decreases. Further investigating this observa-
tion, one can see that as the elastic demand volume increases (e.g., from
S1 to S2), the cost increments (i.e, last term in (2a)) for generating
the additional volume surpasses the revenue increase (i.e., first term in
(2a)). It is worth noting that the profit decrease consecutive to a larger
demand volume is a unique characteristic of elastic demand. The elastic
demand is the only portion of the demand (versus the fixed portion)
that can be declined in the market while the GENCOs still need to pay
the generating cost regardless of the market response.

We focus on the IEEE 24-Bus test system, and analyze further the
observations made when the elastic proportion of the demand varies.
Fig. 2 illustrates the WTP probability of the price set for the elastic
demand in the studied scenarios and when different WTP functions
are applied. The results demonstrate that the WTP probability is, as
expected, higher in off-peak hours (e.g., hours 1–7, 21–24) and gets
lower as the price increases (e.g., hours 15–19). One can also observe
from Fig. 2 that the price acceptance (WTP) probability at each hour
is invariant and not correlated with the changes in the volume of
the elastic demand, i.e., as the proportion of the elastic demand in
the system increases (from S1 to S5), the WTP probability remains
unchanged.
1062
Fig. 3 provides some insights into the hourly price signals for the
elastic and fixed portions of the demand under different scenarios of
elastic demand volume (S1–S5) and different PBUC-DDU models. The
results presented in Fig. 3 illustrate that the price signals for the fixed
and elastic demands remain constant at each hour as the volume of the
elastic demand changes in the studied scenarios. Additionally, one can
observe that the hourly price signals generally follow a similar trend
when different PBUC-DDU models are applied. The price for the fixed
demand is generally higher than that of the elastic demand during the
peak hours while the price set for the elastic demand exceeds that of
the fixed demand during off-peak hours.

7.4.3. Test case III: Impact of price elasticity of the demand
Here, we aim to analyze the performance of the proposed PBUC-

DDU analytics under variations in the price elasticity of the demand
and investigate the effect of the various WTP functions on the final
decisions. We analyze five scenarios in which the price elasticity of the
demand changes, from a base value presented in Section 7.2, by -20%
(S1), -10% (S2), 0% (S3), +10% (S4), and +20% (S5). Table 10 (in
Supplementary Material F) demonstrates the GENCO’s profit (objective
function) achieved when the proposed PBUC-DDU models are applied
to each of the studied test systems. Across all tested power systems, one
can observe that as the price elasticity of the demand increases (from
S1 to S5), GENCO’s estimated profit achieved from the PBUC models
decreases.
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Again, we focus on the IEEE 24-Bus test system and provide a
detailed analysis of the observations made when the price elasticity of
demand varies. Fig. 4 illustrates the acceptance probability of the price
set for the elastic demand in the studied scenarios among the three
WTP models. The results demonstrate that the WTP probability is, as
expected, higher during off-peak hours when a lower price is set for
the elastic demand. Fig. 4 shows that the WTP probability at each hour
generally decreases as the price elasticity increases and the minimum
WTP probability is typically achieved in S5 which features the highest
price elasticity (+20%).

Figures 8–10 (in Supplementary Material G) illustrate the hourly
rice signals decided for the elastic and fixed portions of the demand
nder different scenarios of price elasticity levels (S1–S5) and the
BUC-DDU models with three WTP functions. When the linear and
xponential WTP models are used, results show that the hourly price
or elastic demand changes as the price elasticity levels vary. Different
rom the other two models, the logit WTP model has price signals for
lastic and fixed portions of the demand that are not influenced by
he changes in the price elasticity levels (S1–S5) — see Figure 10. As
xpected, the price for fixed demand is generally higher than that of
he elastic demand during peak hours. Figures 8–10 (in Supplementary
aterial G) provide a closer look at the correlations of the hourly WTP

robability and the price signals set for the elastic demand as the price
lasticity increases and when the PBUC-DDU models are used.

. Conclusion

This study proposes new stochastic PBUC optimization problem
ormulations that effectively capture the demand elasticity and the
orresponding DDU in the WTP the price set for energy and can be used
or pricing decisions by GENCOs. The resulting PBUC-DDU problems,
riginally taking the form of stochastic non-convex MINLP models, are
onverted into equivalent convex deterministic reformulations through
concavification approach. The continuous relaxations of the reformu-

ations are tightened with valid inequalities. Parameterizing the WTP
unctions via a learning framework and introducing a new concept of
he value of the decision-dependent solution, we test the performance
nd computational tractability of the suggested PBUC-DDU models
n different test systems and under a variety of scenarios. Extensive
umerical results demonstrate that (i) taking into account the partici-
ation of elastic demand in the PBUC models and whether they accept
he price set by the GENCOs would enable a strategic revenue manage-
ent practice that affects the GENCO’s decisions regarding pricing and

he schedule of the generating units during peak/off-peak hours and
he estimated profits, (ii) different PBUC models proposed to account
or the WTP response of buyers result in different profit estimations,
apturing different risk attitudes of the decision maker, (iii) the valid
nequalities considerably strengthen the continuous relaxation of the
odels and speed up their solutions, and (iv) the suggested approach

n quantifying the value of DDU considerations about the WTP provides
nsights for the GENCO to account for buyers’ responses and to select
he right PBUC-DDU model and pricing scheme. Future research could
xplore risk-averse models for GENCO’s decision-making and the use of
tate-of-the-art machine learning techniques for constraint learning in
he context of the proposed optimization problems.
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