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A B S T R A C T

The growing utilization of wind energy resources has been evidenced to have had substantial positive impacts
on mitigating climate change consequences. Unlike stationary wind turbines, mobile wind turbines (MWTs)
can travel along the local transportation system (TS) via a truck, supplying power to microgrids (MGs).
This spatiotemporal flexibility can provide significant benefits, including enhancing system resilience in the
aftermath of high-impact low-probability (HILP) events and contributing to energy system decarbonization.
In this paper, we propose a two-stage stochastic optimization model for the service restoration problem by
coordinating the routing and scheduling of MWTs with hydrogen storage systems (HSSs) in MGs. The first-stage
problem focuses on optimizing the deployment of MWTs based on the shortest-path information obtained
through Dijkstra’s algorithm. The second-stage problem aims to minimize the expected power outage costs
while accounting for wind energy uncertainties estimated through a Monte Carlo simulation approach. Case
studies on an integrated transportation and energy network 3 a central Alabama interstate TS and four IEEE
33-node test power systems 3 demonstrate the effectiveness of the proposed restoration scheme in boosting
MGs resilience and reducing carbon emissions.

1. Introduction

Climate change is driving global warming, resulting in a growing
prevalence of high-impact low-probability (HILP) events on a global
scale. Such HILP incidents 3 e.g., hurricanes, wildfires, winter storms
3 have led to excessive equipment damages, prolonged electricity out-
ages, significant economic losses, and disruptions in our modern soci-
ety [1]. Fig. 1 demonstrates the increasing frequency of extreme natural
disasters in the United States in 2021 and 2022 [2], most of which
resulted in extensive electricity outages. Power outages triggered by
climate change have inflicted substantial economic losses and posed
significant threats to human life, underscoring the critical need for im-
proving power grid resilience [3]. Global warming changes atmospheric
circulation and ocean currents, which could alter the location, timing,
track, and intensity of hurricanes [4]. For instance, Hurricane Maria in
Puerto Rico in 2017 caused disruptions in 31 major power-generating
units in 20 facilities and left the entire island without electricity [5].
The impact of Hurricane Sandy in 2012 was severe, with approximately
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10% of customers in New York and New Jersey experiencing a 10-

day power outage, resulting in economic losses estimated nearly $26

billion and tragically causing 50 deaths due to the prolonged lack

of electricity [6]. Moreover, climate change due to carbon emissions

leads to higher temperatures, amplifying the occurrence of wildfires in

forested regions characterized by high fuel aridity [7]. For example, the

Wine Country of Northern California was hit by a series of wildfires

that began in October 2017, resulting in insured damages of over

$9.4 billion and the loss of 44 lives [8]. In 2020, the United States

experienced the second-largest area impacted by wildfires in a single

year since 1960, with a total of 58,950 wildfire incidents burning

10.1 million acres [9]. Additionally, climate change can intensify and

alter the severity of winter storms by destabilizing weather patterns,

increasing moisture content in the atmosphere, and disrupting the polar

jet stream [10]. In February 2021, an extreme winter storm caused

a massive electricity generation failure in Texas, which led to more

than 4.5 million households without electricity at its peak for several

days and approximately $130 billion in economic losses [11]. The
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Nomenclature

Sets

ĉ Set of mobile wind turbines (MWTs).

ć Set of nodes in the transportation system
(TS).

Đ Set of time periods in the decision-making
horizon.

Ā Set of microgrids (MGs).

ą� Set of nodes in the MG �.

ąc
�
⊂ ą� Set of candidate nodes in the MG �.

ćd ⊂ ć Set of nodes hosting depots in the TS.

ď Set of scenarios.

Ą Set of hydrogen storage systems (HSSs).

Ĉ� Set of power lines in the MG �.

Parameters and Constants

�m Transportation cost coefficient of MWT m.

Ck Maximum number of MWTs allowed to be
connected to TS node k.

T r
kk̂

Travel time from TS nodes k to k̂.

�k�i Binary parameter equal to 1 if TS node k
is mapped to candidate node i of MG �, 0
otherwise.

�s Probability of scenario s.

a�i Interrupted energy assessment rate for node
i of MG �.

b�t Price of undelivered energy from electric
utility of MG � at time t.

PD
�it
, QD

�it
Real/Reactive power demand in node i of
MG � at time t.

PG
�
, QG

�
Real/Reactive power capacity of substation
at MG �.

�
�i
, ��i Lower/Upper bounds of power factor angle

at node i of MG �.

P F
�l
, QF

�l
Real/Reactive power flow capacity of line l
of MG �.

V
ref

�
Reference squared voltage magnitude at MG
�.

U Big M number.

��lt Binary parameter equal to 1 if the power
line l of MG � is energized at time t, 0
otherwise.

R�l , X�l Resistance/Reactance of power line l of MG
�.

V
sq

�i
, V

sq

�i
Minimum/Maximum squared voltage mag-
nitude at node i of MG �.

�ℎ�i Binary parameter equal to 1 if HSS ℎ is
located at node i of MG �, 0 otherwise.

Eini
ℎ
, E

ℎ
, Eℎ Initial/Minimum/Maximum hydrogen stor-

age level of HSS ℎ.

substantial economic losses and profound societal disruptions stemming
from these events have underscored the critical importance and urgent
need to address the consequences of climate change while fortifying
power grid resilience against such extremes.

It is important to recognize that the heavy reliance of the con-
ventional power system on fossil fuels, with high levels of carbon
emissions, is exacerbating climate change and contributing to the es-
calation of increasingly severe weather conditions [12]. Consequently,

�
p2ℎ

ℎ
, �
ℎ2p

ℎ
Power-to-hydrogen (P2H)/Hydrogen-
to-power (H2P) efficiency of HSS
ℎ.

�
p2ℎ

ℎ
, �

ℎ2p

ℎ
P2H/H2P conversion factor of HSS ℎ.

P
p2ℎ

ℎ
, P

ℎ2p

ℎ
Maximum capacity of consumed/generated
power of HSS ℎ in P2H/H2P mode.

W
Cap
m Wind power capacity of MWT m.

�w
�ts

Random parameter of predicted wind en-
ergy at MG � at time t in scenario
s.

Variables

�mkt Binary variable equal to 1 if MWT m

is connected to TS node k at time t, 0
otherwise.

�m�it Binary variable equal to 1 if MWT m is
connected to node i of MG � at time t, 0
otherwise.


mt Binary variable equal to 1 if MWT m is
traveling at time t, 0 otherwise.

�
p2ℎ

ℎts
, �

ℎ2p

ℎts
Binary variable equal to 1 if HSS ℎ is in
P2H/H2P mode at time t in scenario s, 0
otherwise.

pout
�its

, qout
�its

Real/Reactive power outage in node i of
MG � at time t in scenario s.

 m�its Power injection from individual MWT m to
node i of MG � at time t in scenario s.

pw
�its

Total power injection from all possible
MWTs to node i of MG � at time t in
scenario s.

v
sq

�its
Squared voltage magnitude at node i of MG
� at time t in scenario s.

p
p2ℎ

ℎts
, p
ℎ2p

ℎts
Consumed/Generated power of HSS ℎ in
P2H/H2P mode at time t in scenario s.

Eℎts Hydrogen storage level of HSS ℎ at time t
in scenario s.

p
g

�its
, q
g

�its
Total real/reactive power injection to node
i of MG � at time t in scenario s.

p
f

�lts
, q
f

�lts
Real/Reactive power flow in line l of MG �
at time t in scenario s.

pnet
ℎts

The net power output of HSS ℎ at time t in
scenario s.

the development of sustainable energy systems becomes imperative to
mitigate the impacts of climate change and the resulting HILP incidents.
In response to these environmental concerns, renewable and clean
energy resources have been widely adopted and integrated into mod-
ern power systems [13]. The rapid deployment of distributed energy
resources, including solar photovoltaics, wind turbines, and hydrogen
energy, can significantly reduce carbon emissions and enhance the
resilience of the power grid in the face of extreme events [14].

In the past decade, extensive research has been conducted on the
utilization of wind power for system restoration. Notably, in [15], the
authors demonstrate that incorporating wind power into the energy
dispatch model enables fast restoration procedures. Taking into account
the vulnerability of power grid elements, [16] presents an effective
restoration strategy that incorporates wind energy participation, aiming
to achieve an elevated level of grid resilience in the face of widespread
emergencies. Additionally, the study [17] explores the coordination of
wind farms and pumped-storage hydro units to enhance power system
resilience through a stochastic security-constraint unit commitment
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Fig. 1. Extreme natural disasters in the U.S. in 2021 and 2022 [2].

framework. The study [18] develops an adaptive robust optimiza-
tion model to facilitate a faster and more reliable self-healing process
by coordinating wind farms and pumped-storage hydro units. The
study [19] proposes an optimization method for loop-network recon-
figuration during the black-start process, considering the integration of
large-scale wind power. Furthermore, the study [20] presents a rolling
optimization model for power system restoration that incorporates a
hybrid wind-storage system and accounts for the uncertainty of wind
power using a chance-constrained approach. The study [21] introduces
a model predictive control-based voltage regulation strategy, enabling
wind farms to offer the black-start capability.

In addition to leveraging locally-sourced energy for power restora-
tion, the utilization of mobile power sources (MPSs) holds significant
promise for enabling spatiotemporal flexibility exchange within MGs.
This approach has garnered growing interest due to its potential to
enhance system resilience and improve overall system efficiency. For
instance, a joint post-disaster restoration scheme applying MPSs and
distributed generators tackling the transportation system (TS) con-
straints is proposed in [22]. The study in [23] introduced a rolling
integrated service restoration strategy for MPSs scheduling and routing,
which captures the uncertainty in the status of the roads and electric
branches in coupled transportation-power networks. A lexicographic
multi-objective model is applied in [24] to ensure a maximum re-
siliency plan during emergencies by the optimal scheduling of MPSs
with a rolling horizon operation model. Considering the integration
of the MPSs and repair crews dispatch, the study in [25] proposes a
co-optimization approach formulated as a mixed-integer second-order
cone programming model for distribution system resilience. The study
in [1] presents automated decision-making solutions for boosting the
resilience and operational endurance of mission-critical systems and
services during disasters, coordinating the utilization of MPSs with
schedules of repair crews, taking into account constraints in both
power and transportation networks. The study in [26] proposes a co-
optimization model including MPSs, repair crews, and soft-open-point
networked MGs for the power distribution system resilience improve-
ment. The study in [27] proposes a two-stage restoration scheme for
distribution system restoration harnessing the full potential of MPSs
dispatch jointly with the dynamic distribution system reconfiguration
under a suite of seismic force scenarios. A three-stage approach coor-
dinating MPSs dispatch and forced cut-off of wind power is proposed
in [28] to enhance the survivability and restoration of distribution
systems. The study in [29] develops a novel restoration mechanism in
distribution systems for deployment of MPSs, capturing the uncertainty
in renewable energy resources with joint probabilistic constraints. The
study in [30] considers decision-dependent uncertainty in the availabil-
ity of MPSs due to travel and waiting times to offer a more realistic
estimation of the MPSs’ contributions to distribution system resilience
enhancement. Focusing on the strategic deployment of MPSs, the re-
search presented in [31] introduces a risk-averse model that is designed
to formulate a public safety power-shutoff plan that effectively balances
the risks of wildfires with the incidence of power outages.

State-of-art literature exploring the utilization of MPSs for service
restoration primarily focuses on coal-consuming MPSs such as mobile
emergency generators [22,24326,30,31]. However, it is crucial to har-
ness the untapped potential of cleaner and renewable resources in MPSs
utilization. The introduction of mobile wind turbines (MWTs), which
are transportable small-scale units, offers a viable solution to reduce
carbon emissions while actively participating in the system restoration
process. Furthermore, existing studies [1,23] that have investigated the
routing and scheduling of MPSs, accounting for the interdependence of
the MG and the TS, have predominantly focused on urban areas. To the
best of our knowledge, the existing literature lacks analytical solutions
for MWT utilization and dispatch that account for the coupling between
the MG and the TS in rural localities. To fill in this knowledge gap,
this paper explores, for the first time, a two-stage stochastic optimiza-
tion model for the service restoration problem via MWTs routing and
scheduling in rural regions. In particular, we propose a novel two-stage
stochastic optimization model that integrates the dispatch of MWTs
with the operation of hydrogen storage systems (HSSs) in MGs. The
model takes into consideration the uncertainties associated with wind
energy forecasts by incorporating a Monte Carlo simulation approach.
The proposed model presents an effective integration of multiple MGs
and a TS into a unified framework, enabling the spatiotemporal uti-
lization of wind energy in rural areas. To enhance the efficiency and
cost-effectiveness of MWTs’ dispatch decisions, the model leverages the
shortest-path algorithm. Through extensive numerical experiments, the
proposed model demonstrates the significant benefits and efficacy in
enhancing the resilience of MGs, as well as promisingly achieving key
decarbonization objectives. Our findings also offer valuable managerial
insights on how to strike a balance between minimizing power outage
costs and reducing carbon emissions. This information can aid decision-
makers in making informed choices to optimize the sustainability and
resilience of MGs in the face of HILP incidents.

The rest of the paper is organized as follows. Section 2 presents
an overview of MWT technologies and hydrogen-accommodated MGs.
Section 3 describes the proposed service restoration framework. Sec-
tion 4 presents the proposed two-stage stochastic optimization formu-
lation. Case studies are analyzed in Section 5 and research findings are
summarized in Section 6.

2. Background

2.1. Mobile wind turbines (MWTs)

MWTs are small-scale wind turbines that are designed to be easily
transportable. Typically, these turbines are mounted on trailers or other
mobile platforms to facilitate their transport to the desired location for
power generation [32]. Fig. 2 illustrates a typical MWT [33], where
the turbine can be stored in a pickup trailer, allowing for convenient
transportation and setup.

MWTs are commonly used for off-grid power generation or to power
remote locations. Due to their clean and renewable energy generation
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Fig. 2. A typical mobile wind turbine setup [33].

capacity, MWTs are gaining popularity in various settings, including
disaster relief efforts, powering remote communities, temporary power
for events or construction sites, and other applications [32]. The ver-
satility of MWTs is a significant advantage, making them suitable for
use in different environments, including rural regions with low wind
speeds and urban areas with high wind speeds [34]. The study [35]
incorporates joint utilization of MWTs and electric thermal storage
units into the MG energy portfolio, which can shift the load profile
and prevent costs associated with peak demand. With spatiotempo-
ral flexibility, MWTs serve as an exceptional choice for providing
emergency power to damaged power systems in the face of extreme
weather conditions. They can improve the resilience of rural power
systems during emergencies and reduce carbon emissions, thus support-
ing environmentally-friendly energy generation to mitigate the adverse
effects of climate change.

2.2. Hydrogen-accommodated microgrids

Hydrogen-accommodated MGs are small-scale power systems that
incorporate hydrogen technologies to enable efficient storage and use
of renewable energy resources. The need to address climate change
has made it imperative to operate the power system in a low-carbon
manner. Hydrogen systems are increasingly being recognized as a
crucial means of storing renewable energy due to their carbon-neutral
nature and high-capacity storage capabilities that support long-term
energy regulation [36]. Fig. 3 illustrates the interconnection between
the operations of a power system and the HSS [37]. The HSS comprises
units of water electrolyzer, hydrogen storage, and fuel cell. This setup
allows excess power to be harnessed and stored in hydrogen storage
tanks. Later, when there is a demand for power, the stored hydrogen
can be converted into electricity using fuel cells.

2.3. Integration of MWTs in hydrogen-accommodated microgrids

In this research, we explore the integration of MWTs with hydrogen-
accommodated MGs to improve the resilience of the system following
disturbances. Essentially, this involves considering the combined oper-
ation of MWTs and HSSs in the context of service restoration. Fig. 4
provides a visual representation of the role played by MWTs and HSSs
in the MGs’ restoration efforts under varying conditions of wind power
availability and load requirements. In Region I, where there is abundant
wind power and high electricity demand, MWTs deliver a substantial
amount of power to the MGs. Concurrently, HSSs supply the additional
power needed to meet this high demand. During Region II, characterized
by ample wind power but a lower load demand, MWTs again provide
significant power to the MGs. The surplus power generated in this
scenario is directed for storage in the HSSs. Region III represents a
scenario with limited wind power availability and low demand. Here,
the power contribution of MWTs to the MGs is relatively low, and HSSs
inject the necessary power to fulfill the demand. Lastly, in Region IV,

Fig. 3. On the role of hydrogen systems in a renewable-integrated power grid.

Fig. 4. Joint operation of MWTs and HSSs in MGs under different wind availability
and load requirement conditions.

where wind power is scarce but the load requirement is high, MWTs
can only supply a small portion of the needed power to the MGs. In
this case, HSSs play a crucial role by injecting a considerably larger
amount of power, typically more than the other regions, to meet the
high demand.

3. Problem description

3.1. General framework

The proposed optimization framework, as illustrated in Fig. 5, is
designed to address the challenges associated with the coordination
of MWTs and HSSs in MGs for power restoration. Step 1 involves
the collection of information. Following an HILP event at time tk−1,
when initial conditions on the power line failure in MGs and the
status of the transportation system (TS) roads are gathered at time tk.
This information, essential for decision-making in service restoration,
is considered deterministic. A shortest-path algorithm is employed to
determine the travel times for each TS road. However, the predicted
wind power for upcoming periods remains uncertain. To address this,
we use Monte Carlo simulation for generating wind power prediction



International Journal of Electrical Power and Energy Systems 159 (2024) 110047

5

J. Su et al.

Fig. 5. Overarching framework of the proposed two-stage restoration scheme.

scenarios, aiding in optimal decision-making. With the information
from Step 1, a two-stage stochastic optimization model is applied in
Step 2, guiding system operators in the restoration of MGs. The first
stage focuses on optimizing MWT deployment based on the current TS
status. As wind power, crucial for MWTs, is variable and uncertain, the
second stage aims to minimize the expected costs of power outages,
taking into account the wind power uncertainty. In Step 3, the assign-
ment for MWTs and HSSs operation is determined. Accordingly, system
operators can execute the optimal restoration decisions from time tk+1
to tk+T .

In this study, it is considered that MWTs can provide power to
rural areas affected by outages, facilitating the quicker restoration
and thereby reducing the costs associated with power outages. The
power output of an MWT depends not only on its capacity but also on
the amount of wind power available in the surrounding environment.
According to Fig. 5, the information on the predicted wind power is
characterized as the source of uncertainty. When the realizations of
predicted wind power in different scenarios are revealed in the second
stage, the cost of power outage in each scenario could be determined
due to the deployment of MWTs in the first stage. Therefore, the op-
timal decisions for routing and scheduling of MWTs under uncertainty
under a predicted wind power availability can be efficiently obtained
via a two-stage stochastic optimization problem.

3.2. Shortest-path algorithm

The shortest-path algorithm, a fundamental concept in graph theory
and network optimization, aims to identify the shortest route between
two nodes in a given graph. This algorithm has been widely em-
ployed in various applications, such as transportation, communication,
and logistics [38]. In the context of MWTs deployment, the use of
the shortest-path algorithm is crucial for maximizing efficiency and
cost-effectiveness. The primary rationale for employing this algorithm
is to optimize the MWTs’ travel time between different locations,
which is critical considering the dynamic and time-sensitive nature
of wind energy production. By minimizing the overall distance and
travel duration, MWTs can be effectively and rapidly deployed in
areas where wind conditions are optimal. Consequently, this approach

ensures maximum energy output while reducing fuel consumption and
carbon emissions associated with transportation. In this paper, the
travel time of MWTs is obtained by Dijkstra’s algorithm, which solves
the single-source shortest-path problem for a graph with non-negative
edge weights [39].

3.3. Wind forecast scenario generation

Modeling wind speed is critical to accurately predicting wind energy
production. In this regard, the Weibull distribution is often used due
to its ability to model uncorrelated wind speeds [40]. By estimat-
ing the parameters of the Weibull distribution, one can effectively
predict wind speed distributions, including the mean and standard
deviation [41]. In this study, we utilize the Monte Carlo simulation
to generate wind forecast scenarios based on the Weibull distribution.
Monte Carlo simulation produces a large number of scenarios for the
stochastic parameters, which are based on forecasted values and the
typical distribution of each parameter [42]. In order to reduce the
computational complexity and the number of scenarios to a tractable
size, we employ the Backward Scenario Reduction algorithm [43]. This
algorithm uses the Kantorovich distance to remove scenarios and assign
their probability to the closest remaining scenario. By generating a
tractable number of realistic wind forecast scenarios, we can facili-
tate the development of an effective optimization model for power
restoration in MGs.

4. Model formulation

To strengthen the resilience of hydrogen-based MGs in the con-
text of renewable-dominated mobility-as-a-service following extreme
weather events, a two-stage stochastic optimization model has been
developed that addresses uncertainties associated with wind energy.
The first-stage problem focuses on optimizing the routing and schedul-
ing of MWTs coordinated with the operation of multiple MGs and
the TS. In the second-stage problem, the objective is to minimize
the expected power outage costs while accounting for wind energy
uncertainties. The proposed model is formulated as a mixed-integer
linear programming (MILP) problem. To ease the notations, we define
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index sets Ā = {(m, k, �, i, t) ∶ m * ĉ, k * ć, � * Ā, i * ą�, t * Đ},
Ā̂ = {(m,�, i, l, t, s) ∶ m * ĉ, � * Ā, i * ą�, l * Ĉ�, t * Đ, s * ď}, and
Ā̃ = {(�, t, s) ∶ � * Ā, t * Đ, s * ď}.

4.1. First-stage problem: MWTs dispatch decisions

The first-stage problem concentrates on making decisions on the
assignment of MWTs based on the shortest-path information in the TS
(see Section 3.2). The objective function in the first-stage problem is
expressed as follows:

min
Ė*Ć

1

m*ĉ

1

t*Đ

�m
mt + f (Ė, ć) (1)

Ė = {�mkt, �m�it, 
mt|(m, k, �, i, t) * Ā} ⊆ {0, 1} (2)

where Ė represents the vector of the binary variables in the first-
stage problem. The first term denotes the transportation cost of MWTs
during the restoration phase, which is attributed to the trips they make.
The second term f (Ė, ć) represents the objective function in the second-
stage problem depending on the first-stage decisions Ė and the vector
of random variables ć. The first-stage decision variables are subject to
the following constraints:

Ć =

�mk(t+�) d 1 − �mk̂t, m * ĉ, k, k̂ * ć, � d T r
kk̂
, t d |Đ| − � (3)

�mk1 = 1, m * ĉ, k * ćd (4)
1

m*ĉ

�mkt d Ck, k * ć, t * Đ (5)

1

k*ć

�mkt d 1, m * ĉ, t * Đ (6)

�mkt e �k�i�m�it, k * ć, m * ĉ, i * ąc
�
, � * Ā, t * Đ (7)

�m�it = 0, m * ĉ, i * ą� ö ąc
�
, � * Ā, t * Đ (8)


mt = 1 −
1

k*ć

�mkt, m * ĉ, t * Đ (9)

The routing of MWTs is defined by constraint (3). For example, if
MWT m is at TS node k at time t = 1 (i.e., �mk1 = 1) and needs 2 time
periods to travel from node k to k̂ (i.e., T r

kk̂
= 2)4meaning that MWT

m is on its way from node k to k̂ at time periods t = 2 and t = 3,
then MWT m arrive at candidate node k̂ at t = 4 (i.e., �mk̂4 = 1), which
implies �mk̂1 = 0, �mk̂2 = 0, and �mk̂3 = 0. Constraint (4) specifies the
initial location of the MWT, while constraint (5) ensures that the total
number of MWTs located at TS node k at any time period does not
exceed the maximum number of vehicles that node k can host. Each
MWT m can stay in at most one node at any time period as enforced
by constraint (6). In an MG, candidate nodes are nodes equipped with
specific electrical facilities that allow MWTs to be connected to the MG.
There exists a correspondence between the MG candidate nodes and
the TS nodes, hereafter called coupling points/nodes [1]. Constraint (7)
ensures that the MG candidate node i can be served by MWT m only if it
reaches the coupling node k of the TS at time t. Constraint (8) stipulates
that an MWT cannot be dispatched to a non-candidate node in the MG.
It should be noted that an MWT can only be in one of the two states in
each time period: either connected to the MG or traveling on the TS,
reflected in constraint (9).

4.2. Second-stage problem: Service restoration in MGs

In the second-stage problem, the focus is on restoring MGs following
an event. The objective is to minimize the expected costs of power
outages, taking into account the decisions made in the first-stage prob-
lem regarding the dispatch of MWTs and the uncertainties associated
with wind energy. The objective function in the second-stage problem
is formulated below:

f (Ė, ć) = min
Ć,ė,Ę*�(Ė,ć)

1

s*ď

�s

1

�*Ā

1

i*ą�

1

t*Đ

(a�i + b�t)p
out
�its

(10)

Ć = {�
p2ℎ

ℎts
, �

ℎ2p

ℎts
|ℎ * Ą, t * Đ, s * ď} ⊆ {0, 1} (11)

ė = {pout
�its

, qout
�its

,  m�its, p
w
�its

, v
sq

�its
|(m,�, i, l, t, s) * Ā̂}

L {p
p2ℎ

ℎts
, p
ℎ2p

ℎts
, Eℎts|ℎ * Ą, t * Đ, s * ď} ⊆ R+ (12)

Ę = {p
g

�its
, q
g

�its
, p
f

�lts
, q
f

�lts
|(m,�, i, l, t, s) * Ā̂}

L {pnet
ℎts

|ℎ * Ą, t * Đ, s * ď} ⊆ R (13)

where Ć, ė, and Ę represent the vectors of binary variables, nonnegative
continuous variables, and continuous variables in the second-stage
problem, respectively. The objective function (10) aims to minimize
the expected costs of power outages including the interruption cost
imposed to customers (i.e., a�ip

out
�its
) and the revenue-loss imposed to

the electric utility (i.e., b�tp
out
�its
). The second-stage decision variables

are subject to the following constraints:

�(Ė, ć) =
1

l*Ĉ� ;

�(l)=i

p
f

�lts
−

1

l*Ĉ� ;

� (l)=i

p
f

�lts
= p

g

�its
− (PD

�it
− pout

�its
), i * ą�, (�, t, s) * Ā̃ (14)

1

l*Ĉ� ;

�(l)=i

q
f

�lts
−

1

l*Ĉ� ;

� (l)=i

q
f

�lts
= q

g

�its
− (QD

�it
− qout

�its
), i * ą�, (�, t, s) * Ā̃ (15)

0 d pout
�its

d PD
�it
, i * ą�, (�, t, s) * Ā̃ (16)

0 d qout
�its

d QD
�it
, i * ą�, (�, t, s) * Ā̃ (17)

0 d p
g

�1ts
d PG

�
, (�, t, s) * Ā̃ (18)

0 d q
g

�1ts
d QG

�
, (�, t, s) * Ā̃ (19)

p
g

�its
=

1

ℎ*Ą

�ℎ�ip
net
ℎts

+ pw
�its

, i * ą� ö {1}, (�, t, s) * Ā̃ (20)

p
g

�its
tan �

�i
d q

g

�its
d p

g

�its
tan ��i, i * ą� ö {1}, (�, t, s) * Ā̃ (21)

− P F
�l
��lt d p

f

�lts
d P F

�l
��lt, l * Ĉ�, (�, t, s) * Ā̃ (22)

−QF
�l
��lt d q

f

�lts
d QF

�l
��lt, l * Ĉ�, (�, t, s) * Ā̃ (23)

V
sq

�i
d v

sq

�its
d V

sq

�i
, i * ą�, (�, t, s) * Ā̃ (24)

v
sq

�its
− v

sq

�jts
d 2(R�lp

f

�lts
+X�lq

f

�lts
)∕V

ref

�
+ U (1 − ��lt),

i, j * ą�, l * Ĉ�, (�, t, s) * Ā̃ (25)

v
sq

�its
− v

sq

�jts
e 2(R�lp

f

�lts
+X�lq

f

�lts
)∕V

ref

�
+ U (��lt − 1),

i, j * ą�, l * Ĉ�, (�, t, s) * Ā̃ (26)

pnet
ℎts

= p
ℎ2p

ℎts
− p

p2ℎ

ℎts
ℎ * Ą, t * Đ, s * ď (27)

Eℎ(t+1)s = Eℎts +

(
p
p2ℎ

ℎts
�
p2ℎ

ℎ
�
p2ℎ

ℎ
−

p
ℎ2p

ℎts

�
ℎ2p

ℎ
�
ℎ2p

ℎ

)
,

ℎ * Ą, t * Đ ö {|Đ|}, s * ď (28)

Eℎ1s = Eini
ℎ
, ℎ * Ą, s * ď (29)

E
ℎ
d Eℎts d Eℎ, ℎ * Ą, t * Đ, s * ď (30)

0 d p
p2ℎ

ℎts
d P

p2ℎ

ℎ
�
p2ℎ

ℎts
, ℎ * Ą, t * Đ, s * ď (31)

0 d p
ℎ2p

ℎts
d P

ℎ2p

ℎ
�
ℎ2p

ℎts
, ℎ * Ą, t * Đ, s * ď (32)

�
p2ℎ

ℎts
+ �

ℎ2p

ℎts
d 1, ℎ * Ą, t * Đ, s * ď (33)

0 d  m�its d W Cap
m

�m�it, m * ĉ, i * ąc
�
, (�, t, s) * Ā̃ (34)

1

m*ĉ

 m�its d �w
�ts
, m * ĉ, i * ąc

�
, (�, t, s) * Ā̃ (35)

pw
�its

=
1

m*ĉ

 m�its, m * ĉ, i * ąc
�
, (�, t, s) * Ā̃ (36)

pw
�its

= 0, i * ąc
�
ö ą�, (�, t, s) * Ā̃ (37)

Constraints (14) and (15) describe the real and reactive power bal-
ance conditions at each node in each MG. The notations �(l) and � (l)
represent the source and terminal nodes of power line l, respectively.
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Constraints (16) and (17) define the limits for real and reactive power
outages at each node. Constraints (18) and (19) establish the lower and
upper limits for real and reactive power injection at the substation node
(i.e., node 1) of each MG. The real power injection at non-substation
nodes is generated by the installed HSSs and connected MWTs, which
is shown in constraint (20). The range of reactive power injection at
non-substation nodes is set by constraint (21). The real and reactive
power flows in online power lines are limited by their real and reactive
capacities in constraints (22) and (23), separately. Constraints (25) and
(26) represent the power flow equation considering the status of power
lines where the term U (1−��lt) or U (��lt−1) ensures that the power flow
condition is satisfied for connected lines [44]. Constraint (24) states
the boundaries for the squared voltage magnitudes at any node i of
MG �. Constraint (27) restricts the net real power output of HSS ℎ.
The variations in the hydrogen storage level of HSS ℎ over time are
determined by their power-to-hydrogen (P2H) and hydrogen-to-power
(H2P) operation modes, as denoted in constraint (28). Constraint (29)
defines the initial hydrogen storage level setting of HSS ℎ. Constraint
(30) specifies the range of the hydrogen storage level of HSS ℎ. Con-
straints (31) and (32) impose the limits for P2H and H2P outputs of
HSS ℎ, respectively. Constraint (33) indicates that P2H and H2P modes
of HSS ℎ are mutually exclusive. Constraint (34) guarantees that the
power output of MWT m does not exceed its capacity if it is connected.
The total power output of MWTs cannot be greater than the predicted
wind energy in MG � at time t, which is denoted by constraint (35).
Constraints (36) and (37) stipulate the total power injection from all
possible MWTs to each node of each MG.

5. Numerical results and discussions

5.1. Test system characteristics and assumptions

In this section, the effectiveness of the proposed service restoration
model is verified by application to a test case that integrates a TS
and multiple MGs 4 a central Alabama interstate transportation net-
work [45] (see Fig. 6), and four IEEE 33-node distribution systems [44].
The configuration of the test system is illustrated in Fig. 7, where
MGs and TS networks are integrated through several coupling nodes.
Detailed information on HSSs can be found in [46]. Six MWTs are
considered in the test system, each with 50 kW capacity [47]. Given the
information of the TS, the traveling time T r

kk̂
can be obtained through

the shortest-path algorithm described in Section 3.2. We initially gener-
ate 500 wind forecast scenarios based on the Weibull distribution using
the Monte Carlo simulation. We then employ the Backward Scenario
Reduction algorithm to obtain a final set of 20 wind forecast scenarios
(see Section 3.3). The entire restoration time horizon in all conducted
tests is assumed to be 24 periods of 30-minute duration (i.e. 12 h).
We investigate the impact of the joint operation of MWTs and HSSs on
power system resilience by studying three different cases on the test
system:

• Case I: Three-Line Damage Scenario in each MG.
• Case II: Five-Line Damage Scenario in each MG.
• Case III: Eight-Line Damage Scenario in each MG.

Numerical tests are conducted on a machine with an Intel i7-8700
processor and 32 GB RAM. The optimization problem is formulated
with AMPL and solved with the state-of-the-art optimization solver
Gurobi 10.0.0.

5.2. Spatiotemporal travel dynamics of MWTs

The detailed routing and scheduling decisions on MWTs 136 in each
studied case are exhibited in Fig. 8, and analyzed as follows.
Case I: MWT1 and MWT2 start at depot (i.e., TS node 14) and are

then scheduled to visit TS node 12 between t2 - t4, followed by TS node

Fig. 6. The central Alabama interstate transportation network [45].

13 from t9 - t10. MWT3 and MWT4 also start at the same depot and are

then scheduled to visit TS node 5 between t2 - t6. Afterwards, MWT3 is

scheduled to travel to TS node 2 from t12 - t13 and then to TS node 1

from t19 - t20, while MWT4 is scheduled to travel to TS node 4 from t10 -

t11, and then to TS node 2 from t14 - t15. MWT5 starts at the depot and

is scheduled to visit TS node 17 between t2 -t5, followed by TS node

21 from t7 - t9, and then TS node 23 from t13 - t16. MWT6 starts at the

depot and is scheduled to visit TS node 20 between t2 - t5, followed by

TS node 23 from t14 - t15.

Case II: MWT1 is assigned to visit TS node 5 between t2 - t6 and TS

node 2 from t9 - t10. MWT2 is assigned to visit TS node 17 between t2
- t5 and TS node 21 from t13 - t15. MWT3 is assigned to visit TS node 2

between t2 - t7, TS node 4 from t13 - t14, and then TS node 2 from t19 -

t20. MWT4 is assigned to visit TS node 12 between t2 - t4, TS node 16

from t15 - t16, and then TS node 21 from t18 - t21. MWT5 and MWT6 are

both assigned to visit TS node 10 between t2 - t4 and TS node 7 from

t13 to t14.

Case III: MWT1 travels from depot to TS node 2 between t2 -t7.

MWT2 moves from its depot to TS node 17 between t2 - t5, and is

then sent to TS node 21 from t13 - t15. MWT3 travels from its depot

to TS node 5 between t2 - t6. MWT4 moves from its depot to TS node

4 between t2 - t6, and is then sent to TS node 2 from t8 - t9. MWT5

travels from its depot to TS node 20 between t2 - t5, and is then sent

to TS node 23 from t13 - t14. MWT6 moves from its depot to TS node 5

between t2 - T5, and is then sent to TS node 2 from t17 - t19.

5.3. Analysis of MWTs contribution to service restoration

The results presented in Fig. 9 illustrate the percentage of restored

demand across multiple MGs under different studied cases (i.e., damage

scenarios). As shown in the figure, the use of MWTs results in a

significantly higher percentage of restored demand compared to the

scenarios without MWTs. This indicates that incorporating MWTs into

the restoration process can facilitate faster and more efficient recovery

of power. Specifically, as depicted in Figs. 9(a) and 9(b), the utilization

of MWTs enables the complete restoration of the total power outage one

hour earlier than the case in the absence of MWTs. Table 1 indicates

that incorporating MWTs can lead to a reduction of approximately 16%

($31,834k vs. $37,898k) in total costs of power outages for Case I,

16.29% ($32,571k vs. $38,908k) for Case II, and 12.66% ($39,537k

vs. $45,268k) for Case III. The results presented in both Fig. 9 and

Table 1 demonstrate that incorporating MWTs can have a substantial

positive impact on improving the resilience of rural communities and

critical infrastructures during HILP events.
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Fig. 7. An integrated test system with a central Alabama interstate transportation network and four MGs.

Table 1
Total costs of power outages with and without MWTs.

Case I Case II Case III

With MWTs ($) 31,834k 32,571k 39,537k
Without MWTs ($) 37,898k 38,908k 45,268k
Saving (%) 16 16.29 12.66

5.4. Impact analysis of the number of available MWTs

In this subsection, we assess the effectiveness of the proposed model
by examining the capacity utilization rate (CUR) of MWTs throughout
the restoration process and the corresponding power outage costs for
varying numbers of MWTs. This evaluation allows us to determine the
optimal number of MWTs to use in order to achieve the best balance
between resource utilization and cost efficiency. In this study, the CUR
of MWTs is defined as follows:

CUR =

1
s*ď �s

1
�*Ā

1
i*ą�

1
t*Đ p

w
�,i,t,s

|Đ|
1
m*ĉW

Cap
m

Fig. 10 presents a comprehensive analysis of the expected power
outage costs, MWTs’ investment costs, total costs, and CUR values for
four MWTs under various scenarios. The quantity of MWTs considered
in this analysis is 6, 10, 12, and 15. The results provide valuable
insights into the relationship between the number of MWTs utilized and
the associated costs and CUR. Fig. 10 demonstrates that the value of

CUR decreases significantly from 6 MWTs to 10 MWTs, with reductions
from 72% to 55% in Case I, 62% to 50% in Case II, and 63% to 53%
in Case III. However, when the number of MWTs increases from 10
to 15, the CUR decreases at a slower pace. Additionally, it is observed
that an increase in the number of MWTs corresponds to a decrease in
the expected power outage costs, albeit at the cost of higher MWTs
investments. Total costs, defined as the sum of the expected power
outage costs and the MWTs’ investment costs, are therefore influenced
by the balance between these two factors. Based on a cost3benefit
analysis, it is evident that utilizing 15 MWTs is not the most cost-
effective option when considering the total costs. In Case I, the optimal
solution is found to be 12 MWTs, with a cost of $35M. In Case II and
Case III, the cheapest option is 10 MWTs, with total costs of $35.89M
and $42.58M, respectively. Therefore, the choice of the optimal number
of MWTs depends on the specific priorities and constraints of the
restoration process. If priority is given to achieving higher values of
CUR, then 6 MWTs are recommended. On the other hand, if minimizing
the expected power outage costs is the primary objective, 15 MWTs
would be the preferred option. However, if a balance between these
two factors is sought, then 10 MWTs emerge as the most cost-effective
solution.

5.5. Impact analysis of collected information to service restoration

In this subsection, we conduct a sensitivity analysis on various types
of collected information, as depicted in Fig. 5. This includes analyses
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Fig. 8. MWTs assignments for response and recovery in different damage scenarios.

Fig. 9. Percentage of total restored demand over time under different cases.

of travel time information, line failure information, and wind power
prediction.

Firstly, to assess the role of MWTs in reducing power outage costs,
regardless of line failure specifics, we generate 100 random line failure
scenarios in each MG using Monte Carlo Simulation. Each scenario is in-
dependently analyzed using the proposed two-stage optimization model
to evaluate the performance. These results are summarized in Table 2,
showing the maximum, minimum, mean, and standard deviation values
of the total costs associated with power outages. Comparing the results
in Table 2 with Table 1, the reductions in power outage costs for the
considered study cases align well within the range of the 100 scenarios.
For instance, the cost reduction percentages in Case I and Case II are
around 16%, close to the mean value reported in Table 2 (17.42%). The
reduction percentage in Case III exceeds the minimum value in Table 2
(12.66% vs. 10.49%).

Secondly, in evaluating the effectiveness of MWTs in lowering
power outage costs under various levels of wind power availability,
we adjust the location parameter of the Weibull distribution. This ad-
justment creates scenarios representing both insufficient and sufficient

Table 2
Power outage costs reported by the proposed model with 100 randomly-generated
failure scenarios.

Max. Min. Mean Standard deviation

With MWTs ($) 54,294k 17,916k 33,623k 8095k
Without MWTs ($) 60,659k 22,707k 40,696k 9499k
Saving (%) 22.95 10.49 17.42 2.47

wind power availability. For each of these scenarios, we implement

the proposed model under the three study cases previously described.

Table 3 provides insights into this relationship. It shows that the

availability of sufficient wind power in the surrounding environment

significantly enhances the contribution of MWTs in reducing power

outage costs. This finding highlights the critical role of wind power

availability in maximizing the cost-saving potential of MWTs. As wind

power availability increases, MWTs become more effective in mitigat-

ing power outage expenses, underlining the importance of considering
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Fig. 10. Costs and CUR under variable availability of MWT units.

Table 3
Total costs of power outages under different levels of wind power availability.

Wind With Without Saving (%)
power MWTs ($) MWTs ($)

Insufficient
Case I 33,527k 37,898k 11.53
Case II 34,171k 38,908k 12.17
Case III 40,116k 45,268k 11.38

Sufficient
Case I 31.385k 37,898k 17.18
Case II 32,580k 38,908k 16.26
Case III 39,199k 45,268k 13.41

environmental wind conditions in the strategic deployment of MWTs
for power restoration.

Lastly, to evaluate the impact of MWTs on reducing power outage
costs in relation to travel time information, we account for two distinct
levels of damage severity in the TS 4 low and high. Using the shortest-
path algorithm, we calculate the travel times corresponding to each

Table 4
Total costs of power outages under different levels of damage severity in the TS.

Severity With Without Saving (%)
level MWTs ($) MWTs ($)

Low
Case I 31,898k 37,898k 16.61
Case II 32,597k 38,908k 16.22
Case III 38,673k 45,268k 14.57

High
Case I 33,287k 37,898k 12.17
Case II 33,954k 38,908k 12.73
Case III 41,794k 45,268k 7.67

severity level. Subsequently, the proposed model is executed for each
travel time scenario within our designated three study cases. Table 4
details the total power outage costs under varying damage severity
levels in the TS. An analysis of Table 4 reveals that the reduction in
outage costs is less pronounced in scenarios with a higher level of
damage severity compared to those with a lower level. This indicates
that lower severe damage in the TS can improve the effectiveness of
MWTs in reducing outage costs, emphasizing the importance of TS
conditions in the overall efficiency of the proposed restoration strategy.
This insight underscores the interdependency between TS integrity and
the effectiveness of MWT deployment in emergency power restoration
scenarios.

5.6. Analysis of MWTs contribution to decarbonization

In this subsection, we assess the role and contributions of MWTs to
decarbonization targets, by comparing it to the conventional approach
of using mobile emergency generators (MEGs) for service restoration.
Specifically, we investigate the performance of different numbers of
MEGs, under the same settings as in all studied cases earlier. We
estimate the carbon dioxide (CO2) emissions resulting from the use of
MEGs during the restoration process based on the report by the U.S.
Environmental Protection Agency [48]. This evaluation allows us to
compare the environmental impacts of using MWTs versus MEGs in the
power restoration processes.

Table 5 presents a comparison of the CO2 emissions and power
outage costs resulting from the utilization of different numbers of
MWTs and MEGs. Our analysis reveals that, when compared to MWTs,
MEGs can lead to lower power outage costs but higher CO2 emissions.
Across all studied cases, we observe that the use of 10 MEGs can reduce
power outage costs more significantly than MWTs, with a reduction
of nearly 8.7%. On the other hand, with 6 MWTs, power outage costs
are similar for both MWTs and MEGs. However, it is important to note
that the use of more MEGs results in higher CO2 emissions. Therefore,
our analysis indicates that the utilization of MWTs represents a more
environmentally friendly approach to service restoration compared to
MEGs. This is particularly true when a limited number of MWTs are
used, as it enables the achievement of zero CO2 emissions while keeping
power outage costs as low as possible. These findings demonstrate
the potential of MWTs in promoting sustainable power restoration
processes, which are crucial in mitigating the negative impact of power
outages on both the environment and society.

6. Conclusion

This paper proposed a novel service restoration scheme to enhance
the resilience of hydrogen-accommodated MGs through optimal deci-
sions on the routing and scheduling of MWTs. The proposed approach
employs the shortest-path algorithm to obtain the traveling time re-
quired for MWTs to reach the desired location along the TS, facilitating
the development of a more efficient and sustainable power restoration
process. The proposed problem takes the form of a two-stage stochas-
tic optimization model and captures the uncertainty of wind power
prediction, which is captured by generating scenarios using Monte
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Table 5
Performance comparison of MWTs and MEGs.

Technology Test Available Outage CO2

case units costs ($) emission (ton)

MWT

I
6 31,834k 0
10 29,509k 0

II
6 32,571k 0
10 30,897k 0

III
6 39,537k 0
10 36,578k 0

MEG

I
6 31,648k 7.27
10 26,549k 12.19

II
6 32,267k 7.62
10 28,467k 13.48

III
6 38,701k 8.28
10 33,476k 14.75

Carlo simulation following a Weibull distribution. Numerical results on
an integrated transportation and energy network 3 a central Alabama
interstate transportation network and four IEEE 33-node distribution
systems 3 highlighted the benefit and efficacy of the proposed approach
in boosting MGs resilience against HILP extremes while achieving
decarbonization targets. The analyses of the results provided insights
into the optimal selection of the number of MWTs, considering trade-
offs among the expected power outage costs, CUR values, and CO2

emission.
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