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Abstract—Harvesting wind energy is constrained by its gener-
ation availability and variability. Energy storage systems (ESSs)
partly address this limitation by absorbing the generation volatil-
ity and curtailment. However, the conventional static ESSs may
lack the necessary reach and versatility to effectively support
large-scale power systems. This paper presents an innovative ap-
proach suggesting the use of battery-electric locomotives (BELs)
as mobile energy reserve tools. The BEL carries separable battery
railcars with enhanced storage capacity that offers a flexible and
far-reaching energy supply. We propose a new uncertainty-aware
optimization model that holistically integrates the operation of
power and railway systems. The proposed model is formulated
as a mixed-integer nonlinear stochastic programming (SMINLP)
problem that incorporates uncertainty through joint probabilis-
tic constraints (JPCs). Equivalent and tractable deterministic
mixed-integer linear programming (MILP) reformulations are
derived using the Boolean programming and the scenario-based
approaches. The numerical tests showcase the superior scalability
and computational efficiency of the Boolean method, especially
when many scenarios are involved. The model is validated on the
IEEE 6-bus test system and scaled up to the IEEE 118-bus test
system, where comparative analyses reveal the model’s ability
to deliver cost-saving and congestion relief, with a particular
emphasis on the responsiveness of separable battery railcars.

Index Terms—mobile power source; battery-electric locomotive
(BEL); routing and scheduling; security-constrained unit com-
mitment; joint probabilistic constraints; uncertainty.

NOMENCLATURE

Set of buses.

Set of generating units.

Set of buses connected to a wind farm.

Set of arcs in the time-space network (TSN).
Set of battery-electric locomotives (BEL).
Set of battery railcars.

Set of transmission lines.

Set of hours.

Set of transportation time intervals.

Set of arcs in a TSN starting from station i.
Set of arcs in a TSN ending at station j.
Set of buses coupled with a railway station.
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B. Parameters and Constants

Ay, by,r  Cost coefficients for generating unit w.

Qs B Start-up and shut-down costs of generating unit
u.

i, (i.5) Transportation cost of BEL k in arc (3, j).

Uk..,"g,  Initial and terminal state of BEL k at a station.

PR Maximum power exchange rate of BEL k.
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egmx,e‘,;‘i" Maximum and minimum energy capacity of
BEL k.

ey Terminal energy level in BEL k.

g, g™ Maximum and minimum generation capacity
of generating unit u.

PurP,, Ramp-up and ramp-down rate limits of gener-

ating unit .
x Maximum capacity of transmission line .
o Spinning reserve requirement at time ¢.

Tus Tu Minimum ON and OFF time requirements of
generating unit .

n Predefined global reliability level.

01 Reactance of transmission line [.

Mok ,w Energy capacity of battery railcar w in BEL k.

Yk Power exchange efficiency in BEL k.

C. Decision Variables

Py Power generation at bus ¢ at time .

P Wind power generation at bus ¢ at time ¢.

| Binary variable indicating the commitment sta-
tus of generating unit u at time t.

Yut, 2y, Binary variables indicating startup and shut-
down status of generating unit u at time ¢.

Ry, (i,j),s  Binary variable indicating travel status of BEL
k on arc (4, ) at time interval s.

P, Injected power of BEL k at bus 7 at time ¢.

Eklty Energy stored in BEL k at time ¢.

Eyy Power flow on transmission line [ at time ¢.

O Bus voltage angle difference at time ¢.

D. Réndam Variables

p;it Load demand at bus ¢ at time ¢.
P Wind power at bus ¢ at time .
Ki,s Available capacity at classification yard ¢ at

time interval s.
I. INTRODUCTION

HE significance of renewable power generation in elec-

tricity supply-demand balance cannot be overstated par-
ticularly considering the national push for electrification, de-
carbonization, and climate change mitigation [1]. The inte-
gration of renewable energy sources into power grids has the
potential to lower power generation costs during periods of
high demand. However, the accessibility to and variability of
renewable energy generation pose significant challenges [2].
Nonetheless, advancements in energy storage system (ESS)
technologies can effectively address spillage and fluctuations
in energy production and enhance overall accessibility, thereby
balancing electricity supply and demand. ESSs are designed
and used either as stationary or mobile sources of power.
Both stationary and mobile ESSs are promising sources for
establishing a reliable and sustainable energy supply, each



offering distinct advantages and limitations. Stationary ESSs,
such as large-scale battery systems and pumped hydro storage,
are typically designed to store and distribute energy over a
long period. On the other hand, mobile ESSs, such as portable
batteries and fuel cells, can be transported and used locally to
provide temporary or emergency power when needed.

A. Motivation and Background

The transportability of ESSs introduces an opportunity for
spatiotemporal flexibility exchange; during nighttime hours,
when electricity demand is typically low, wind speeds tend
to be higher, leading to increased power generation potential
from wind turbines. However, wind curtailment (spillage) may
occur since the electricity grid cannot fully absorb this excess
energy during the low-demand night hours. In such cases,
an opportunity arises to capture the curtailed energy and
utilize it for battery charging. With this excess energy stored
in batteries during periods of low demand, it can be later
discharged and supplied back to the grid during daytime peak
demand periods, thus maximizing the utilization of renewable
energy [3]. Mobile ESSs provide greater flexibility as they
can be transported across time and space to meet energy
demands. They also offer a more cost-effective solution for
energy supply in remote or inaccessible areas [4], as they
do not require the installation of complex and often costly
infrastructure. In addition, mobile ESSs can be employed in
emergency scenarios to provide power to critical facilities and
support disaster relief efforts [S]-[7]. An overview of the state-
of-the-art mobile power source technologies, sizes, capacities,
and costs is provided in [8], [9].

Acting as mobile ESSs, BELs serve as promising means of
transporting batteries; BELs can accommodate multiple con-
tainers of batteries, enabling the transportation of substantial
amounts of energy over extended distances. This makes BELs
a desirable strategy for energy transportation and distribution
through the railway system. Further, BELs offer advantages
such as the ability to transport batteries disregarding road
infrastructure or drivers’ incentives. In order to leverage the
advantages offered by BELs, it is important to recognize the
inherent uncertainty [10] associated with renewable energy
generation, demand patterns, and transportation. Embracing a
risk-averse approach becomes essential to ensure the reliability
of the power system [11], safeguard it against potential disrup-
tions, and optimize the utilization of mobile ESS capabilities.

B. Literature Survey

The concept of transporting mobile energy storage through
railways is first put forward by [12], where battery-based
energy storage transportation (BEST) is introduced. With the
goal of evaluating its contribution to the power grid oper-
ation, particularly in the security-constrained unit commit-
ment (SCUC) problem, a mixed-integer linear programming
(MILP) model is developed. The model takes into account
the train routing and dispatch decisions. The contribution of
such a technology is shown to be reflected in the system
operation cost and line congestion reduction. Addressing the
model scalability and computational complexities, [13] further
complements [12] by using the Lagrangian decomposition
method to solve the large-scale problem faster. Reference [14]

builds on top of the previous models by incorporating into
the model uncertainties in load, renewable generation forecast,
and failures in power and transportation networks. Further
addressing the mobile energy storage problem in railway
systems, reference [15] proposes a multi-objective stochastic
programming model to minimize the system operation cost and
greenhouse gas emissions taking into account the uncertainties
in renewable generation and load. Reference [16] develops a
robust optimization model for techno-economic assessment of
mobile battery ESSs in day-ahead scheduling of an integrated
power and railway network. Reference [17] introduces a two-
stage robust-stochastic model to analyze the BEST system in
a day-ahead market-clearing problem using information-gap
theory. Reference [18] provides a multi-objective two-stage
stochastic program for the railway-based storage system in a
unit commitment model, where 7% and 20% reductions in
system operation cost and carbon emissions, respectively, are
achieved. In [19], BESTs and stationary ESSs are used in
a transmission planning problem with a focus on line con-
gestions. Reference [20] proposes a multi-stage optimization
model to address the transportation and logistics of railway-
based batteries charged with renewable energy. Unlike the
previous studies focusing on system operation, this study
investigates the role of mobile ESSs from the transportation
system perspective and applies train transportation and car-
pooling strategies. A similar study in [21] develops a two-
stage optimization model that considers battery transportation
and evaluates its contribution to peak load shaving.

With the goal to transport battery storage systems through
railways, BEL scheduling and dispatch become critical deci-
sions to make, the research on which is under-explored in the
literature. Reference [22] proposes a stochastic programming
model for single-track train dispatching, where schedules are
optimized periodically over a rolling horizon while robust
meet-pass plans are selected and disseminated for each roll
period. Reference [23] develops a bi-objective stochastic pro-
gram to model a railway traffic scheduling problem where
optimal train sequencing and routing decisions are made in
conjunction with short-term maintenance plans. Reference
[24] delineates an MILP model to investigate the effect of
disruptions or congestion in railway transportation systems
on train routing decisions. In [25], railway transportation
scheduling and maintenance are integrated into an MILP
formulation. In [26], a multi-objective optimization model is
proposed to minimize passenger travel time and maintenance
costs. In order to optimize a train rescheduling problem with
track emergency maintenance, [27] introduces a mixed-integer
nonlinear programming model that reduces the system delay
and alleviates the track disruptions.

In the context of integrated railway and power networks,
a dominant conservative assumption in the literature is that
BELs, which are required to get charged or discharged, spend
an entire time span in a given station for power exchange.
Additionally, the existing literature did not consider the sepa-
rability of the railcars for spatiotemporal energy delivery. The
existing models are also reported to be computationally com-
plex particularly under real-world conditions where prevailing
uncertainties in both power and railway systems are present.



C. Problem Statement and Proposed Contributions

We study the daily operation of the power system through
the SCUC problem, where BEL is integrated as a large-scale
mobile ESS for power delivery across the power transmission
system. This allows for a spatiotemporal dispatch of batteries
during the day across a larger geographical region and features
maximum wind utilization. To the best of our knowledge,
this paper establishes a pioneering approach that introduces
probabilistic constraints to address the complex integration of
day-to-day power system operations with the transportation
of mobile power sources via railways. We design a risk-
averse approach promoting reliability through the incorpo-
ration of probabilistic constraints. In contrast to the exist-
ing power system models with individual chance constraints
(see review paper [28]), the proposed model incorporates a
Jjoint probabilistic constraint (JPC) that establishes a network-
wide reliability level. An equivalent reformulation approach is
introduced to convert the stochastic mixed-integer nonlinear
nonconvex problem into a deterministic MILP.

The core contributions of this paper are listed as follows.

o A novel stochastic optimization model with JPCs is
proposed for the integration of BEL in power system
operation that effectively captures the uncertainty in wind
generation, demand, and classification yards capacity.

o The proposed model captures the railway system’s critical
characteristics, including traffic, collision avoidance, and
the limited capacity of the classification yards. Also,
the battery railcars carried by the BELs are considered
separable as the BELs can detach battery railcars in any
classification yard and the remaining railcars can then
be dispatched to the next destination. The separability
feature enables the transportation system to be more
responsive and deliver the required power faster.

e The intricacy of the JPCs is addressed through a state-
of-the-art Boolean reformulation method with a computa-
tionally efficient formulation that is solved quickly even
when many scenarios are considered. This in turn enables
capturing a vast array of uncertainty features and gives a
more dependable problem representation.

The remainder of the paper is organized as follows. Section

II provides the problem formulation and section III presents
the reformulation method. Numerical case studies on the IEEE
6-bus and 118-bus test systems are conducted in Section IV.
Section V offers perspectives on framework applicability and
the conclusions are provided in Section VI.

II. PROBLEM FORMULATION

This section introduces a stochastic mixed-integer nonlinear
optimization model with JPCs (referred to as SMINLP-JPC)
that accounts for the integration of mobile power sources
through railways into the SCUC problem. The quadratic cost
objective function includes two components and reads:

min

Z Z [(aupjyt + buPu,t + ruru,t) +auYu,t + ﬁuZu,t
teT ueg
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The objective function (1) minimizes the sum of the power
generation costs from thermal generating units and the trans-
portation costs. The first term represents the power generation
and the unit startup and shutdown costs while the second one
is related to the railway transportation costs. The optimization
model considers multiple constraints associated with various
components, including the TSN, BELs, batteries, power sys-
tem operation, generating units, and transmission lines.

A. BEL Constraints in TSN

Constraints (2a) and (2b) set the initial and terminal status
of the BELs in the TSN. Constraints (2c) indicate that each
BEL must be at one arc at each time span s. The collision
avoidance constraints (2d) assert that BELs cannot traverse
both arcs (¢,5) and (j,i) at the same time and define the
arc capacity, allowing for at most one BEL per arc. The
JPCs (2e) ensure that the number of trains at each station
with a classification yard does not exceed the capacity of
the yard with a predetermined probability. Unlike individual
probabilistic constraints, the JPC formulation ensures system-
wide reliability across all transportation nodes. Constraints (2f)
establish the arrival and departure balance for the BELs. That
is, if BEL k reaches station 7 at time ¢, the next station visited
by BEL £k at time ¢ + 1 must be a station connected to station
i. At the end of the operating horizon, the detached battery
railcars are gathered through an empty freight car schedule to
get recharged overnight for the next-day dispatch.

> Riga = e keK,icT (2a)

(i,5)€AT
Z Ry ig)1s] = Vre s keK,ieZ (2b)
(L)€ A5
Y Brggs =1 se S, kek (2)
(i,5)€A
EZ(RhuJ%s+1ﬁmmn§)§l,
ke (2d)
(i,7) € A:i #j,s € S\{|S|}
P(Z Ry (ij),s < Kiys, (1,§) € Ari= j) >n,s€S
kek
(2e)
Z Rk’(ifj)ﬁ‘i’l = Z Rk,(i,j),s7
(i.j)eAT (i,§)€AT (2f)

seS\{IS|},keK,ieZ

B. Battery Capacity and Discharging Constraints

The constraints (3a) govern the discharging of energy from
BELs at transmission buses, while (3b) define the acceptable
energy capacity range for each BEL. Constraints (3c) capture
the energy balance of the BELs during discharge. Due to
the separability of the battery railcars, the energy discharged
from any BEL must be a multiplier of the railcar capacity.
These constraints are nonconvex due to the roundup function.
Constraints (3d) set the terminal value for the energy stored
in BEL k at the last period.
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C. Power System Constraints

The proposed JPC (4a) contains three sets of stochastic
inequalities with random right-hand side vectors. These con-
straints establish the system’s power balance for meeting the
demand and impose limits for wind power generation based on
its predicted generation level. The source of uncertainty is due
to the imperfect prediction of load and wind energy generation.
The JPC requires the many stochastic inequalities to hold
jointly with probability at least equal to 7. Constraints (4b)
define the system spinning reserve limits and are nonconvex
due to the bilinear terms involving the multiplication of a
binary variable by a continuous one.
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D. Generating Unit Constraints

Each constraint (5a) specifies the capacity limit of the
corresponding generating unit. The ramp-up and ramp-down
limits of the generating units are enforced by (5b) and (5c).
Constraints (5d) and (5¢) define the minimum on and off time
of the generating units. Constraints (5f) establish the linkage
between the unit commitment and the startup or shutdown
indicator variables. Each constraint (5g) enforces that the
generating unit u cannot shut down and start up concomitantly.
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E. Transmission Line Constraints

Constraints (6a) and (6b) enforce the lower and upper
bounds on the power flow based on the capacity of the trans-
mission line. Note that transmission lines are often operated
below their full potential capacity, typically at around 70% of
their rated capacity, to ensure system reliability and avoid over-
loading. However, in the presence of reliable mobile power
sources, there may be an opportunity to leverage this flexibility
to increase the effective capacity of the transmission lines and
enhance the overall system performance and reliability.
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III. REFORMULATION METHOD

We first outline in Section III-A a set of reformulation tech-
niques that provide a linear reformulation of the nonconvex
terms in the deterministic constraints (3c) and (4b). Next,
in Section III-B, we delve into the exact and deterministic
reformulation of the JPCs (2e) and (4a).

A. Convexification of Nonlinear Deterministic Constraints
Constraint (4b) contains two types of bilinear terms which
are both nonlinear and nonconvex. Additionally, (3¢c) involves
the quasilinear roundup function, which is discontinuous and
nondifferentiable. We first linearize the bilinear terms in (4b).
We introduce the auxiliary variables @y ; j .+, €ach set equal
to Rk,i,j,sP;é,m via the McCormick inequalities [29]:
Qrijst < Piiy keKiieI,jeJ,scSteT (Ta)
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Qriigist = Pray — (1= Riijs)pi™™,
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Similarly, the McCormick inequalities (8a)-(8d) linearize each
bilinear term P, ;I', ; in (4b) and set each auxiliary variable
D, equal to P, ;I', ;:
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Let ¢ be an infinitesimal positive number. To linearize the
term in the roundup function in (3c), we follow the approach
proposed in [30] and introduce an auxiliary integer-valued
decision variable pk,i,t (9b) and the following constraints
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The above techniques applied to (3¢) and (4b) give us a mixed-
integer linear reformulation of the deterministic constraints.




B. Deterministic Reformulation of JPCs

In order to reformulate the JPCs (2¢) and (4a), two refor-
mulation techniques, i.e., the scenario-based and the Boolean
modeling approaches [31], are utilized. To present them, we
introduce a generic form of a JPC

P(hmX > €m, me M) >p , (10)

with an M-dimensional random right-hand side vector &
and reliability level p. The notation h represents a vector of
fixed parameters. The random vector &€ follows a joint |M|-
variate probability distribution with finite support. The set of
possible realizations is defined as 2. Each realization k € )
is represented by an |M|-dimensional deterministic vector
wh = [wh, ..., wk,] and defines a value that the random vector
can take with probability p*, such that Y, ., p* = 1. The no-
tation F(w") = P(& < w*) defines the cumulative distribution
function of the random vector while its marginal probability
distributions are F),(wk) = P(&,, <wk),me M.

The scenario-based reformulation associates a binary vari-
able A\* to each realization, and each constraint (11a) verifies
if the conditions imposed by the associated realization are
satisfied. If not, the corresponding decision variable Aj is
forced to take value 1. The joint reliability level is achieved
by upper-bounding to (1 — p) the sum of the probabilities of
the unsatisfied realizations (11b). The scenario-based reformu-
lation of JPC (10) is given next:

B X > wh (1 = \F), me M, ke (lla)
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ke
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Using the scenario approach, we obtain the following refor-
mulation for problem SMINLP-JPC:

MILP-SR:  min (1)
sto (2a) — (2d); (2) — (3d); (4) —
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The linear inequalities (12a)-(12b) and (12c)-(12f) refor-
mulate the JPCs (2e) and (4a), respectively. Needless to say,
the tractability of the reformulation is directly related to the
number of scenarios as one binary variable and one constraint
are added for each scenario.

We now reformulate the JPCs with the Boolean pro-
gramming method which entails two major steps outlined

in pseudo-code 1 and provides a mixed-integer linear refor-
mulation of the feasible set defined by the JPCs.

We first introduce the p-sufficiency concept [31] which
plays a pivotal role. A realization w” is p-sufficient if F'(w*) >
p and is p-insufficient otherwise. Any p-sufficient realization
defines sufficient conditions for (10) to hold. Necessary con-
ditions to qualify as p-sufficient can be derived from the so-
called univariate-quantile inequalities, which require w® to
satisfy: F,(wF) > p,m = . M.

The next step is the construction of the set of recombinations
Q [32] defined as Q = Cy x Cy X ... x C|pq [31] with

={w}  Fp(wh)>pkeQ}, meM  (13)
representing the sets of values that &, can take and that are
larger than the p—quantile of F;,,. The set of recombinations
includes all vectors w® that satisfy the univariate-quantile
inequalities and can possibly be p-sufficient. The elements of
each set C),,m € M, called cut points [31], are thereafter
denoted by {cm,l, ey Cmo,, } € Cpy, where vy, is the number
of cut points for each random variable &,,. Without loss
of generality, we arrange the cut points in ascending order:
tm1 < Cm2 < ... < Cmu,,. The recombination set is
then split into two collectively exhaustive and disjoint subsets
Ot = {wh € Q: Fwk) > p}and O~ = {w* € O :
F(w*) < p}, respectively, denoting the sets of p-sufficient
and p-insufficient recombinations.

The next step is to binarize [31] the probability distribution
and the recombinations. The binarization process uses the cut
points to map each numerical recombination vector w¥, to
a binary vector of g¥ = [k ., Bk, ] and proceeds

m,1o -
. k _ : k _
as follows: mo — 1 if Wy > Cm,o and /Bm o 0

otherwise for all m € M,0=1,...,1,,. This means that the

o'" binary attribute (¥ o corresponding to random variable
&m in realization k takes value 1 if the value of Wk s
larger than or equal to the cut point ¢, ,. Since we have
Cm,o < Cm, O+1,0 < Uy, — 1, it follows from the binarization
that: f, , > Bk . keQme M1 <0<, —1

As shown in [32] and [33], the binarization process allows

for the derivation of a partially defined Boolean function
(pdBf) whose truth table represents exactly the feasible area
of the JPC (10) as long as the set of cut points used for
the binarization process is consistent. The sufficient-equivalent
set of cut points (13) fulfills this condition (see [31]); it is
injective over (), which guarantees that the sets QE and Q5
of p-sufficient and p-insufficient binarized recombinations are
disjoint: QE N Qg = 0. Using the properties of threshold
Boolean functions (see [32]), the following constraints can be
extracted from the pdBf representing the feasible area of (10)
to represent it with mixed-integer linear inequalities:

ZZB U < IM| 1, keQp (l4a)
meMn=1
> Upm =1, m € M (14b)
n=1
hX >3 emnUnmin, meM (l4c)
n=1
Ue{o,1}m" (14d)



The set of knapsack constraints (14a) ensures that no p-
insufficient realization in {23 is covered [32]. In other words,
the recombination defined by the binary vector U (14d)
is not p-insufficient, and is by corollary p-sufficient. The
partitioning constraints (14b) require that exactly one of the
Vp, binary variables U, , (14d) associated with the admis-
sible values for each &;,,m € M must be equal to 1.
The juxtaposition of (14a) and (14b) implies that the vector
et nUiny s 2on € nUjm|n] corresponds to a
p-sufficient recombination. Therefore, constraint (14c) requires
the satisfaction of all the conditions defined by a p-sufficient
recombination, which ensures that the JPC (10) holds true.

Using the above-described Boolean reformulation method,
we obtain the following MILP reformulation equivalent to
problem SMILP-JPC:

MILP-BR: min (1)
sto (2a) — (2 )'(f)*( d); (4b) — (90)
_I;CR]“(Z] >Zczns ©,M,59 (]Sa)

(,7) e Ari=j,s€S8
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ieZ,teT (159
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ieT¥ teT (15h)

(151)

Inequalities (15a)-(15c) and (15d)-(151) reformulate the JPC
(2e) and (4a), respectively, into deterministic forms.

IV. NUMERICAL RESULTS

We now evaluate the performance of the proposed model for
the rail-based ESS integrated into the daily operation of the
power system on two test systems. The proposed methodology
is first tested on an IEEE 6-bus test system [12] to simply
illustrate the effectiveness of the designed framework. The
IEEE 118-bus test system [14] is then used to demonstrate
the scalability of the approach. The formulation considers DC

Algorithm 1: Boolean Reformulation Method

Data: w*, F(w®), F, (wm) JPC (10)

Result: C,,, ﬁf,'w, Qp, QOF 5 15, MILP Reformulation
1 for {k € Q,m € M} do
if Fi,(wk,) > p then

‘ Crm — wk;
end

end
Q < Cl X CQ X ...
for k € Q do
if F(w") > p then
‘ OF « Wk,
else
‘ Q™ « wk;
end
if wk > CPm,n then
| BE .+ 1
else
| Bn <0
17 end
18 end
19 Binary projection : (Qg,Q%,0Q3) « (2,01,07)
20 MILP reformulation of feasible set of (10) with (14¢)-(14d)
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power flow model, while details on the use of AC power
flow formulation in the proposed framework are provided
in the electronic Appendix [34]. A comparison between two
exact reformulation methods is drawn based on runtime and
model size — the number of constraints and binary variables
—, all pivotal for model tractability. The stochastic models
are evaluated across cases of 100, 1,000, 2,000, and 10,000
scenarios. Unless specified, the results in this section pertain
to the 10,000-scenario instance. The optimization models are
solved on a PC with an Intel i7-7700 processor and 16GB
memory. The problems are formulated using AMPL and
solved with the optimization solver Gurobi 10.0.0.

The data are collected from the existing literature [12]—
[18]. The 6-bus system is assumed to be connected to a
railway network consisting of three railway stations, while the
118-bus test system is connected to an eight-station railway
network. The transportation cost between each pair of nodes
is considered to be $50. Due to the separable design of the
railcars, the BELs can detach the battery railcars quickly
and stay on-call for any possible request on the power grid.
The capacity of railway stations with classification yards
is exogenous and depends on other trains or BELs in the
yard. Moreover, collision avoidance and traffic considerations
are incorporated into the TSN. Based on the capacity of
battery railcars, each railcar can provide 20 MWh of energy
or an equivalent amount of 10 MW power. As a result of
recent technological advancements and the energy density of
presently available batteries, lithium-ion batteries exhibit a
high energy density of 250 watthour per kilogram (Wh/kg)
[35]. It is reported in some recent studies that their energy
density is as high as 300 watthour per kilogram (Wh/kg) [36].
Accordingly, the capacity of a standard railcar is 100 tons [37].
Hence, it can be determined that a train railcar could transport
a battery with 30 MWh in capacity. Our assumption of 20
MWh batteries for each battery railcar proves to be tenable and
in line with the evolving technology. The number of battery



TABLE I
OPTIMAL BEL DISPATCH IN Case I: IEEE 6-BUS TEST SYSTEM

Time span 1 2 3 4 5 6 7 8 9 10 11 12 Total
Route (Station i-Station j) | 1-4 4-4 44 44 44 44 44 44 44 44 44 41 | Operation Cost:
Required battery railcars 0 0 1 1 0 0 0 2 0 2 0 0 $95,326.75

railcars attached to BELs varies across the test cases.

Note that this work addresses the problem from its system
operator perspective. The BEL scheduling is carried out with
the oversight of railway dispatchers and regional control
centers who are in charge of train scheduling and traffic
management in the railway system [38]. An assumption is
made that the power system operator already owns a railway
infrastructure or can utilize the infrastructure of a third party
(with a high priority) to schedule the BELs. Either way, the
power system operator must come up with an initial optimal
itinerary for the BELs before assessing next the feasibility of
the schedule. The proposed model in this study provides the
initial schedule for the power system operator. The system
operator can replicate a customized study if their external
factors are different from the ones assumed in this work.
Such limitations can be expressed in the proposed model using
linear constraints imposing bounds on the availability of the
railroad arcs (Rg (; 5),s)-

A. Case I: IEEE 6-Bus Test System

The IEEE 6-bus test system consists of three generating
units, seven transmission lines, and three load points, and is
connected to a three-station railway system. One wind farm
with a generation capacity of 30 MW is connected to the
power grid at bus 1. The single BEL considered in this case
consists of six battery railcars with a capacity amounting to
60MW power or 120 MWh energy, on aggregate. A holistic
view of the integrated networks is shown in Fig. 1. The
optimal operation cost with the SMINLP-JPC model amounts
to $95,326.75. The BEL route and the required number of
battery railcars are shown in Table I. As evident from this
table, the BEL travels to bus 4 and stays there until the end of
the scheduling horizon when it travels back to the origin bus.
The railway system does not force BELs to move all the time.
In some cases, BELs can remain stationary and yet relieve the
transmission line congestion. Furthermore, the optimization
model generates the BEL schedule ahead of time. Hence, when
detaching the battery railcars is not required, the railcars can
stay attached to the BEL and get back to the origin at the
end of the scheduling horizon. The value of the proposed
framework is evident when comparing system performance
with and without the incorporation of BELs. The presence
of BELs results in a 5.2% saving in daily operational costs
compared to their absence ($100,553.58)—see Table 1.

B. Case II: IEEE 118-Bus Test System

The IEEE 118-bus test system (see Fig. 3) is used to verify
the scalability of the proposed model. This system includes 54
thermal generating units, 186 transmission lines, and 91 load
points. An eight-station railway system (Fig. 3(B)) overlaps
eight buses in the power system. In addition, four wind farms
are assumed to be connected to the power system (at buses 25,
38, 83, and 117) supplying a total power of 60 MW. Two tests,

. Stations with classification yards

Fig. 1. IEEE 6-bus power system integrated with a railway system. (A) The
railway system interacts with a TSN and both networks are linked to the
6-bus power system. (B) There are three railway stations with classification
yards that correspond to buses 1, 4, and 5. (C) All stations are connected as
represented in the TSN. (D) One-line diagram of the studied power system is
illustrated.

one with two BELs and another with three BELSs, are carried
out and the results are tabulated in Table II. In the two-BEL
experiment, each BEL accommodates 200 MWh of energy and
ten battery railcars. The three-BEL experiment involves 120
MWh per BEL, totaling six battery railcars.

Results from the first experiment in Table II depict the
optimal dispatch of the two BELs in the railway system.
In this context, BEL-1 commences its journey at node 117,
progressing to node 38. Node 38 functions as an interme-
diary, granting access to node 77. Once a battery railcar is
unloaded at this point, BEL-1 continues its route to node 92,
subsequently fulfilling energy needs between the time spans
of 4 and 5. Then, it travels back to the starting node and
procures the two remaining battery railcars. The second BEL
follows a distinct path by initiating from node 25 towards bus
83. It halts at node 83 to deliver the necessary energy before
returning to its origin node. The system optimal operation cost
amounts to $1,180,982.215 and allows for 2.43% daily saving
as compared to the case where BELs do not move and operate
as stationary ESSs. Fig. 2 displays the railway system status at
the conclusion of the sixth time span. This illustration clearly
showcases the separability characteristic of the battery railcars,
emphasizing their distinct performance within the system. The
BEL-1 trajectory is in yellow, while the BEL-2’s is in green.

In the second experiment, the introduction of a third BEL
results in two BELs functioning as stationary ESSs. The
optimal BEL dispatch and the number of detached battery
railcars are detailed in Table II. The optimal system operation



TABLE 11
OPTIMAL BEL DISPATCH IN Case II: IEEE 118-BUS TEST SYSTEM

First Experiment

Time span 1 2 3 4 5 6 7 8
BEL-1 [ Route (Station i~Station j) | 117-38 3877 7792 9292 9292 9283 8325 25-117
- - Total
Required battery railcars 0 1 0 2 3 2 2 0 .
— Operation Cost:
Time span 1 2 3 4 5 6 7 8 $1.180.982.215
BEL-2 | Route (Station :—Station ;) 25-83 83-83 83-83 83-83 83-83 83-83 83-83 83-25 T
Required battery railcars 0 0 3 1 0 1 2 3
Second Experiment
Time span 1 2 3 4 5 6 7 8
BEL-1 | Route (Station i-Station j) | 117-117 __117-117 __117-117 __117-117 _117-117__117-117 __117-117__117-117
Required battery railcars 0 0 0 0 0 0 2 4
- Total
Time span 1 2 3 4 5 6 7 8 Operation Cost:
BEL-2 | Route (Station :—Station 5) 25-83 83-92 92-92 92-92 92-92 92-92 92-83 83-25 P ’
Required battery railcars 0 0 2 3 0 1 0 0
Time span 1 2 3 4 5 6 7 8 $1,181,607.27
BEL-3 | Route (Station i—Station j) 92-92 92-92 92-92 92-92 92-92 92-92 92-92 92-92
Required battery railcars 0 0 0 0 0 0 3 3
Z Z] SMINLP-JPC formulation accounts for uncertainty while
s s effectively hedging against risk.
72}
5 5
é g D. Computational Efficiency of JPC Reformulations
o =]
P~ = A performance comparison of the two proposed refor-
mulation methods for the introduced JPCs is provided in
Table IV. To assess the computational time required for the
reformulation methods, a single BEL is utilized for both the
IEEE 6-bus and 118-bus test systems. The energy capacity of
§ 5 the BELs in the 6-bus and 118-bus test systems are considered
3 3| to be 120 MWh and 200 MWh, respectively. The superiority
‘g Stations with *g of the Boolean programming reformulation appears clearly
& fication yards 9| and becomes more pronounced as the number of considered
pgf|  Resutarstations ~2] scenarios || increases. We consider problem instances with

Fig. 2. The status of the railway system and the BELs trajectory (represented
by the darkness of the shades) and the number of detached battery railcars
(shown on them) at the end of the sixth time span (hour 18). This figure
corresponds to the first experiment in Case I1.

cost for this experiment is determined to be $1,181,607.27.
In this example, a cost saving of 1.35% can be achieved as
compared to the stationary BEL configuration. One can thus
conclude that BELs may bring about opportunities for cost
saving only if strategically deployed and operated.

C. Rationale Behind the Choice of JPC Formulation

In order to assess the superiority of the stochastic program-
ming model with JPCs, a comparative analysis is conducted
with a risk-neutral setting wherein the random variables are
replaced by their mean values. In order to construct this
analysis, 20 new scenarios are generated for the IEEE 6-bus
test system at ¢ = 8 (see Table III). The analysis demonstrates
the capability of the proposed approach to manage uncertainty
and risk in the power system, surpassing the capabilities of
the conventional risk-neutral method. Among the generated
scenarios, 16 scenarios would lead to an infeasible solution
when they are solved with the risk-neutral model. However,
none of the scenario realizations would lead to infeasibility
when JPCs are employed in the problem formulation. The
joint 98% reliability level selected for the JPCs ensures that
the system hedges against most adversarial events that could
possibly occur. Hence, it can be concluded that the proposed

a moderate number (100) of scenarios up to an extremely
large number (10,000). Table IV clearly indicates that as the
number of scenarios increases, the number of binary variables
required to reformulate the problem through scenario-based
reformulation rises with the number of scenarios (one binary
variable per scenario), resulting in longer computational times.
On the other hand, the number of binary variables utilized in
the reformulation of the problem using the Boolean method
does not vary monotonically with the number of scenarios.
This feature enables the model to converge unprecedentedly
fast and to achieve an exact solution.

An interesting observation is that, in the Boolean reformu-
lation of the model applied to the IEEE 6-bus test system,
the number of constraints and binary variables remains con-
stant regardless of the number of scenarios. However, this is
not the case for the scenario-based model which contains a
much larger number of constraints and binary variables as
the number of scenarios increases. For example, the number
of constraints for the 10,000-scenario instance is 77 times
greater than the number of constraints for the 100-scenario
instance. Similarly, the number of binary variables increases
by a factor of approximately 39 when moving from 100 to
10,000 scenarios in the case of the IEEE 6-bus test system.
This substantial increase in the number of constraints and
binary variables highlights the significant computational costs
associated with the scenario-based approach, which becomes
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Fig. 3. IEEE 118-bus power systems integrated with a railway system. (A) The 118-bus test system interacts with an eight-station railway system and its
associated TSN. (B) The railway system consists of eight railway stations, categorized as the ones with marshalling yards and the regular ones with a capacity
of one train. (C) The connections among the railway stations are shown in the TSN. The stations are not all connected and BELs may have to traverse to
intermediate stations to get to their final destinations. (D) The one-line diagram of the IEEE 118-bus test system is depicted and the railway stations matching

the buses are indicated.

untenable for chance-constrained optimization problems with
a moderate to large number of scenarios.

For the IEEE 118-bus test system, the Boolean reformu-
lation exhibits a remarkably low increase in the number of
constraints when more scenarios are considered. The number
of constraints for the 10,000-scenario instance is analogous
to the one for the 100-scenario instance, differing only by
17. In a similar vein, the number of binary variables in
the Boolean reformulation remains constant for the 100- and
10000-scenario instances. This is in direct contrast to the
scenario-based approach that requires the inclusion of 19,800
additional variables when switching from 100 to 10,000 sce-
narios. Transitioning from 100 to 10,000 scenarios in the IEEE
118-bus test system, the number of constraints in the scenario-
based reformulation of the problem grows from 393,441 to
1,739,840. Note also that the number of binary variables

required for the Boolean method in the case of the IEEE
118-bus test problem with 10,000 scenarios is 4,146, which
is fewer than the 4,328 binary variables used for the scenario-
based reformulation with only 100 scenarios.

Table IV showcases the solution times with the scenario-
based approach for up to 1,000 scenarios. The scenario ap-
proach cannot solve any of our instances comprising more
than 1,000 scenarios in 30 minutes. In contrast, the Boolean
reformulation is solved to optimality in less than 10 seconds
regardless the considered number of scenarios (up to 10,000).
E. Impacts of BELs on Transmission Line Congestion

The roles that BEL and transmission lines play in the
delivery of power across the network are intertwined. BELs
exert a significant influence on reducing the transmission line
congestion. In the proposed model, buses with high energy
demands that may exceed available transmission capacity are

TABLE III
FEASIBILITY ASSESSMENT OF A RISK-NEUTRAL FORMULATION IN THE PROPOSED MODEL
Scenario ¢ = (k,p%,pV) Feasible? | Scenario ¢ = (k,p9,p%) Feasible?
1 ((3, 1, 3),(71.1, 73, 67.1),(33)) No 11 (2, 3, 2),(68.5, 71.9, 74.1),(26.2)) No
2 (2, 2, 2),(69.5, 66.4, 67),(21.7)) Yes 12 (3, 1, 1),(64.7, 74, 71.4),(17.8)) No
3 ((1, 2, 3),(71.6, 64.9, 69.9),(18.2)) No 13 ((3, 1, 2),(71.2, 74.6, 71.5),(31.6)) No
4 ((3, 3, 3),(674, 75.6, 70.5),(28.3)) No 14 (2, 3, (71.1, 67.3, 70.4),(20.8)) No
5 (1, 1, 2),(68.8, 68.1, 62.7),(17)) No 15 ((3, 3, 3),(69.9, 69.3, 69.2),(38.5)) Yes
6 ((3, 3, 3),(65, 65.1, 66.8),(32.4)) Yes 16 (2, 3, 1),(72.8, 74.2, 71.2),(18.9)) No
7 ((3, 2, 2),(70.9, 72.8, 68.9),(24)) No 17 ((1, 3, 3),(70.6, 70.4, 76.1),(10.8)) No
8 (2, 1, 2),(66.4, 70.6, 79.6),(32.9)) No 18 (2, 2, 2),(69.8, 68.9, 69.9),(39.4)) Yes
9 (2, 2, 3),(75.9, 70.4, 71.4),(31.4)) No 19 ((3, 1, 2),(65.3, 73.2, 70.5),(32.5)) No
10 (2, 1, 2),(71.5, 70.2, 71.3),(29.1)) No 20 (3, 1, 1),(74.4, 73.8, 71.2),(20.7)) No




TABLE IV
COMPUTATIONAL PERFORMANCE COMPARISON OF THE REFORMULATION METHODS

Reformulation Methods Obiective Value
Test Systems || Boolean Programming Scenario-based J $
Constraints | Binary Variables | Runtime (s) | Constraints | Binary Variables Runtime (s) ®
100 4,196 328 0.1875 16,912 510 26.4688 93,215.94
IEEE 6-Bus 1,000 4,196 328 0.234375 133,012 2,310 N/A (2.45%%) 95,640.15
2,000 4,196 328 0.25 262,012 4,310 N/A (4.41%%*) 94,543.52
10,000 4,199 328 0.21875 1,294,010 20,310 N/A (6.83%%) 95,326.75
100 380,003 4,060 9.54688 393,441 4,242 37.5625 1,183,428.518
IEEE 118-Bus 1,000 380,005 4,060 10.0312 515,841 6,042 N/A (0.01%%*) 1,183,566.412
2,000 380,005 4,060 9.67188 651,841 8,042 N/A (0.08%%*) 1,183,687.016
10,000 380,020 4,060 9.90625 1,739,840 24,042 N/A (4.61%%) 1,183,812.279

*Optimality gap for scenario-based reformulation after 30 minutes

identified. These buses are often associated with elevated lo-
cational marginal prices, highlighting that there is a monetary
incentive to move BELs to supply energy in these locations
[14]. To showcase the impacts of BELs on transmission lines,
transmission line congestions with and without BELs are
compared for the IEEE 6-bus (Case I) and IEEE 118-bus (Case
I - second experiment) test systems as displayed in Fig. 4a
and Fig. 4b, respectively. In both systems, it is clear that the
transmission flow is reduced in highly congested transmission
lines. Specifically, in Fig. 4a, the congestion in transmission
line 2, connecting bus 1 to bus 4, is mitigated through the
BEL traveling to bus 4. The same indications are observed
in Fig. 4b where selected transmission lines of the system are
analyzed. Evidently, the BELs’ integration into the power grid
alleviates the burden on highly congested transmission lines
by redistributing the flow to lower-loaded lines.
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Fig. 4. Average transmission capacity use without BEL and the congestion
relief with BEL. Darker shades reflect higher congestion.

V. DISCUSSIONS

In this section, the practical aspects of the proposed ap-
proach are explored, and BEL’s applicability with current
technological capabilities is evaluated.

A. Investment Cost Recovery of BELs

The existing literature highlights the promising opportu-
nities provided by the integration of BELs with the power
system as a mobile grid-support service. Above all, reference
[39] draws a comparison between BEL utilization and other
feasible investments to enhance power system reliability. The
experiments indicate that the utilization of BELs results in
savings of $300 per kW-year compared to the establishment
of new transmission lines and a cost reduction of $85 per
kW-year compared to the use of stationary batteries. Study
[12] pinpoints the benefits that can be obtained from the
optimal utilization of BELs, including demand peak shaving
at the national level, increasing power system resiliency in the
face of catastrophic events, postponing significant investments
to establish new infrastructures, making use of variable re-
newable energy more efficiently, and reducing power system-
driven emissions. The results of their study indicate a reduction
in the system operation costs of up to 3.6%. Note that a
modest 2%-3% enhancement in system operation costs can
translate into millions of dollars in economic savings within
the multi-million dollar electric industry, exceeding the needed
investment for BEL integration.

To further justify the utilization of BELs in the day-to-
day operation of the power system, a cost-benefit analysis is
conducted. This analysis is carried out for the first experiment
of Case II. The optimal cost attained for this case with the
proposed model employing BELs is $1,180,982.215, whereas,
for the case where no BELs are used, the optimal objective
value rises to $1,232,590.223. The result of this study indicates
a reduction of approximately 4.34% in the operation costs of
the IEEE 118-bus test system when the BELs are employed
as a grid support service.

Comparing this value to the capital cost of lithium-ion
batteries allows us to conduct the actual cost-benefit analysis.
As indicated in [40], [41], it is safe to assume a cost of
$151/kWh for the batteries. Using this cost estimate in our
case study, where each BEL carries ten battery-railcars with a
capacity of 20MWh, results in a capital cost of $60,400,000.



TABLE V
OPERATION TIMETABLE OF THE ADDITIONAL FREIGHT TRAINS IN THE RAILWAY SYSTEM

Train-1 Time span 1 2 3 4 5 6 7 8
Route (Station i-Station j) | 38-47 47-69 47-69 69-77 7792 92-77 77-38  38-38
Train-2 Time span 1 2 3 4 5 6 7 8
Route (Station i-Station j) | 92-92 92-92 92-83 83-25 25-83 83-92 92-92 92-92
TABLE VI
OPTIMAL BEL DISPATCH WITH TRAFFIC CONSIDERATIONS: IEEE 118-BUS TEST SYSTEM
BEL-1 Tm‘le span i ‘ 1 2 3 4 5 6 7 8 Total
Route (Station i—Station j) | 117-38 38-77 77-92 92-92 92-92 92-77 77-38 38-117 .
. Operation Cost:
BEL-2 Time span 1 2 3 4 5 6 7 8 $1.181.086.097
Route (Station i—Station j) 25-83 83-92 9292 92-92  92-92  92-92 92-83 83-25 e

Given that the transportation costs are already accounted for
in the mathematical model and a 15-year life-span for the
lithium-ion batteries [19], [42], the discounted revenue of the
system amounts to $195,520,788.09 (a 5% yearly interest rate
and a 5% yearly battery degradation rate is assumed in our
calculations): Discounted revenue = Daily Revenue * 365
(days) * I(P/A,i=5%,n=15).

The comparison between the discounted revenue and the
capital cost justifies the application of BELs in monetary
terms. This analysis does not necessarily suggest that the
utilization of BELs is profitable for every power system
regardless of their geographical settings and characteristics,
but it showcases the potential of this framework to generate
significant cost savings. Moreover, the effect of battery tech-
nology advancements on battery price reduction should not
be underestimated. As reported in [41], the price of lithium-
ion batteries experienced around 80% reduction from 2013 to
2022. This cost reduction is expected to continue (and grow)
in the future which, in turn, will further enhance the cost-
effectiveness of using battery storage solutions such as BELs.

B. Railway Traffic and Itinerary Conflicts

The railway dispatchers have the day-ahead schedule of
the other trains [43]. If the schedule of the BELs is to be
added to the packed timetable, some readjustments in BELs
scheduling are needed. To this aim, we conduct a study to
showcase the impact of traffic in the railway system and its
ramifications on BELs as well as power system operations.
The test is conducted on the first experiment of Case II. The
optimal itinerary of BELs without traffic considerations is
shown in Table II. Should other trains with distinct routes
be considered in the railway system, there will be conflicts
between BELs and the other trains. Suppose the eight-station
railway system is already scheduled for two trains with the
routing and schedule in Table V. Assigning the TSN arcs to the
scheduled trains, and fixing their routing in the optimization
problem would result in another dispatch schedule for BELs
and lead to a slight rise in the optimal system operation costs,
as indicated in Table VI. The speed of trains can also be
incorporated into the model by adjusting the TSN and adding
artificial nodes between the stations.

C. BELs Connection to the Power Grid

In contrast to the typical train classification operations, the
BELs and battery railcars are required to undergo a different
process that takes much less time. The time it takes to detach

the required battery railcars from the BEL is negligible and
the BELs can get dispatched to the next stop immediately after
the battery railcars are detached. The process of moving the
battery railcars through the classification yard and connecting
them to the grid may be time-consuming. It is worth mention-
ing that classification yards and railway stations are already
connected to the electrical grid as many switching locomotives
(classifier locomotives) operate on electricity. The process of
connecting the battery railcar to the grid is also expected
to be carried out smoothly without taking considerable time
as it does not require blocking processes. In the worst-case
scenario, if the classification yard is congested, it can be
considered that the connection process for battery railcars
could take an entire hourly time period [44] (to account for
the length of the connection process, the variable P, , , in JPC
(4a) is replaced with P,g;iyt 41)- The optimal operatio,n’ costs of
the modified power system models still show great potential
in terms of cost reduction and economic savings. Table VII
indicates the cost-effectiveness of the proposed approach even
after consideration of the worst-case latency in connecting the
battery railcars to the power grid.

VI. CONCLUSION

In this paper, we develop a new joint probabilistically
constrained optimization model for the optimal integration of
BELs in power system operation. In line with the national push
toward decarbonization and for enhancing renewable energy
utilization, BELs play their role as mobile ESSs and absorb
the spillage and volatility in renewable energy generation. In
the proposed model, the battery railcars attached to the BELs
are considered separable which enables a more responsive
scheduling of BELs. In addition, the uncertainty in wind
generation, load demand, and capacity of the classification
yards are explicitly accounted for through the introduction of
JPCs. The combination of JPCs and other nonlinear constraints
in the proposed SMINLP problem formulation posed severe
computational challenges. We have reformulated the SMINLP
problem into a tractable deterministic MILP counterpart using
a pioneering Boolean programming reformulation method.
This reformulation technique allows for the consideration of
extremely large numbers of scenarios, thereby providing a
more accurate description of uncertainty, while considerably
reducing the solution time. The model was applied to and
tested on the IEEE 6-bus and IEEE 118-bus test systems
to evaluate its efficacy and adaptability. The results showed



TABLE VII

COMPARISON OF THE OPTIMAL SYSTEM OPERATION COSTS IN THE PRESENCE OF THE WORST-CASE LATENCY IN CONNECTING BATTERY RAILCARS
TO THE POWER GRID.

Optimal Cost

System #of BELs # of Scenarios Original Model =~ Modified Model =~ No BEL Model

IEEE 6-bus Test System 1 10,000 $95,326.75 $95,730.9 $100,553.58
IEEE 118-bus Test System 1 10,000 $1,183,812.279  $1,190,417.806  $1,232,590.223
IEEE 118-bus Test System 2 10,000 $1,180,982.215  $1,187,526.551 $1,232,590.223
IEEE 118-bus Test System 3 10,000 $1,181,607.27 $1,188,110.438  $1,232,590.223

promising cost savings achieved when adopting BELs in power
systems proliferated with renewable resources.

Future research could explore the implementation of the
proposed framework on the use of BELs for improving the
resilience of power grids during extreme events and assess
the impact of such technologies on service restoration under
challenging operation conditions. In terms of methodology,
future research could also explore the ability of Al-based
methods to handle nonconvex SMINLP-JPC models.
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