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On the Use of Battery-Electric Locomotive As A
Grid-Support Service in Electric Power Systems

Farid Kochakkashani, Student Member, IEEE, Payman Dehghanian, Senior Member, IEEE, and Miguel A. Lejeune

Abstract—Harvesting wind energy is constrained by its gener-
ation availability and variability. Energy storage systems (ESSs)
partly address this limitation by absorbing the generation volatil-
ity and curtailment. However, the conventional static ESSs may
lack the necessary reach and versatility to effectively support
large-scale power systems. This paper presents an innovative ap-
proach suggesting the use of battery-electric locomotives (BELs)
as mobile energy reserve tools. The BEL carries separable battery
railcars with enhanced storage capacity that offers a flexible and
far-reaching energy supply. We propose a new uncertainty-aware
optimization model that holistically integrates the operation of
power and railway systems. The proposed model is formulated
as a mixed-integer nonlinear stochastic programming (SMINLP)
problem that incorporates uncertainty through joint probabilis-
tic constraints (JPCs). Equivalent and tractable deterministic
mixed-integer linear programming (MILP) reformulations are
derived using the Boolean programming and the scenario-based
approaches. The numerical tests showcase the superior scalability
and computational efficiency of the Boolean method, especially
when many scenarios are involved. The model is validated on the
IEEE 6-bus test system and scaled up to the IEEE 118-bus test
system, where comparative analyses reveal the model’s ability
to deliver cost-saving and congestion relief, with a particular
emphasis on the responsiveness of separable battery railcars.

Index Terms—mobile power source; battery-electric locomotive
(BEL); routing and scheduling; security-constrained unit com-
mitment; joint probabilistic constraints; uncertainty.

NOMENCLATURE

A. Sets

I,J Set of buses.

G ¢ I Set of generating units.

Iw ¢ I Set of buses connected to a wind farm.

A Set of arcs in the time-space network (TSN).

K Set of battery-electric locomotives (BEL).

W Set of battery railcars.

L Set of transmission lines.

T Set of hours.

S Set of transportation time intervals.

A+
i Set of arcs in a TSN starting from station i.

A−
j Set of arcs in a TSN ending at station j.

H Set of buses coupled with a railway station.

B. Parameters and Constants

au, bu, ru Cost coefficients for generating unit u.

³u, ´u Start-up and shut-down costs of generating unit

u.

dk,(i,j) Transportation cost of BEL k in arc (i, j).

Èk,., È̃k,. Initial and terminal state of BEL k at a station.

pmax
k Maximum power exchange rate of BEL k.
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emax
k , emin

k Maximum and minimum energy capacity of

BEL k.

etek Terminal energy level in BEL k.

gmax
u , gmin

u Maximum and minimum generation capacity

of generating unit u.

Äu, Äu Ramp-up and ramp-down rate limits of gener-

ating unit u.

fmax
l Maximum capacity of transmission line l.
φt Spinning reserve requirement at time t.
Äu, Ä̃u Minimum ON and OFF time requirements of

generating unit u.

¸ Predefined global reliability level.

ϱl Reactance of transmission line l.
µk,w Energy capacity of battery railcar w in BEL k.

µk Power exchange efficiency in BEL k.

C. Decision Variables

Pi,t Power generation at bus i at time t.
Pw
i,t Wind power generation at bus i at time t.

Γu,t Binary variable indicating the commitment sta-

tus of generating unit u at time t.
Yu,t, Zu,t Binary variables indicating startup and shut-

down status of generating unit u at time t.
Rk,(i,j),s Binary variable indicating travel status of BEL

k on arc (i, j) at time interval s.
P ′
k,i,t Injected power of BEL k at bus i at time t.
Ek,t Energy stored in BEL k at time t.
Fl,t Power flow on transmission line l at time t.
Θ.,t Bus voltage angle difference at time t.

D. Random Variables

p
d

i,t Load demand at bus i at time t.
p
w

i,t Wind power at bus i at time t.
κi,s Available capacity at classification yard i at

time interval s.

I. INTRODUCTION

THE significance of renewable power generation in elec-

tricity supply-demand balance cannot be overstated par-

ticularly considering the national push for electrification, de-

carbonization, and climate change mitigation [1]. The inte-

gration of renewable energy sources into power grids has the

potential to lower power generation costs during periods of

high demand. However, the accessibility to and variability of

renewable energy generation pose significant challenges [2].

Nonetheless, advancements in energy storage system (ESS)

technologies can effectively address spillage and fluctuations

in energy production and enhance overall accessibility, thereby

balancing electricity supply and demand. ESSs are designed

and used either as stationary or mobile sources of power.

Both stationary and mobile ESSs are promising sources for

establishing a reliable and sustainable energy supply, each
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offering distinct advantages and limitations. Stationary ESSs,

such as large-scale battery systems and pumped hydro storage,

are typically designed to store and distribute energy over a

long period. On the other hand, mobile ESSs, such as portable

batteries and fuel cells, can be transported and used locally to

provide temporary or emergency power when needed.

A. Motivation and Background

The transportability of ESSs introduces an opportunity for

spatiotemporal flexibility exchange; during nighttime hours,

when electricity demand is typically low, wind speeds tend

to be higher, leading to increased power generation potential

from wind turbines. However, wind curtailment (spillage) may

occur since the electricity grid cannot fully absorb this excess

energy during the low-demand night hours. In such cases,

an opportunity arises to capture the curtailed energy and

utilize it for battery charging. With this excess energy stored

in batteries during periods of low demand, it can be later

discharged and supplied back to the grid during daytime peak

demand periods, thus maximizing the utilization of renewable

energy [3]. Mobile ESSs provide greater flexibility as they

can be transported across time and space to meet energy

demands. They also offer a more cost-effective solution for

energy supply in remote or inaccessible areas [4], as they

do not require the installation of complex and often costly

infrastructure. In addition, mobile ESSs can be employed in

emergency scenarios to provide power to critical facilities and

support disaster relief efforts [5]–[7]. An overview of the state-

of-the-art mobile power source technologies, sizes, capacities,

and costs is provided in [8], [9].

Acting as mobile ESSs, BELs serve as promising means of

transporting batteries; BELs can accommodate multiple con-

tainers of batteries, enabling the transportation of substantial

amounts of energy over extended distances. This makes BELs

a desirable strategy for energy transportation and distribution

through the railway system. Further, BELs offer advantages

such as the ability to transport batteries disregarding road

infrastructure or drivers’ incentives. In order to leverage the

advantages offered by BELs, it is important to recognize the

inherent uncertainty [10] associated with renewable energy

generation, demand patterns, and transportation. Embracing a

risk-averse approach becomes essential to ensure the reliability

of the power system [11], safeguard it against potential disrup-

tions, and optimize the utilization of mobile ESS capabilities.

B. Literature Survey

The concept of transporting mobile energy storage through

railways is first put forward by [12], where battery-based

energy storage transportation (BEST) is introduced. With the

goal of evaluating its contribution to the power grid oper-

ation, particularly in the security-constrained unit commit-

ment (SCUC) problem, a mixed-integer linear programming

(MILP) model is developed. The model takes into account

the train routing and dispatch decisions. The contribution of

such a technology is shown to be reflected in the system

operation cost and line congestion reduction. Addressing the

model scalability and computational complexities, [13] further

complements [12] by using the Lagrangian decomposition

method to solve the large-scale problem faster. Reference [14]

builds on top of the previous models by incorporating into

the model uncertainties in load, renewable generation forecast,

and failures in power and transportation networks. Further

addressing the mobile energy storage problem in railway

systems, reference [15] proposes a multi-objective stochastic

programming model to minimize the system operation cost and

greenhouse gas emissions taking into account the uncertainties

in renewable generation and load. Reference [16] develops a

robust optimization model for techno-economic assessment of

mobile battery ESSs in day-ahead scheduling of an integrated

power and railway network. Reference [17] introduces a two-

stage robust-stochastic model to analyze the BEST system in

a day-ahead market-clearing problem using information-gap

theory. Reference [18] provides a multi-objective two-stage

stochastic program for the railway-based storage system in a

unit commitment model, where 7% and 20% reductions in

system operation cost and carbon emissions, respectively, are

achieved. In [19], BESTs and stationary ESSs are used in

a transmission planning problem with a focus on line con-

gestions. Reference [20] proposes a multi-stage optimization

model to address the transportation and logistics of railway-

based batteries charged with renewable energy. Unlike the

previous studies focusing on system operation, this study

investigates the role of mobile ESSs from the transportation

system perspective and applies train transportation and car-

pooling strategies. A similar study in [21] develops a two-

stage optimization model that considers battery transportation

and evaluates its contribution to peak load shaving.

With the goal to transport battery storage systems through

railways, BEL scheduling and dispatch become critical deci-

sions to make, the research on which is under-explored in the

literature. Reference [22] proposes a stochastic programming

model for single-track train dispatching, where schedules are

optimized periodically over a rolling horizon while robust

meet-pass plans are selected and disseminated for each roll

period. Reference [23] develops a bi-objective stochastic pro-

gram to model a railway traffic scheduling problem where

optimal train sequencing and routing decisions are made in

conjunction with short-term maintenance plans. Reference

[24] delineates an MILP model to investigate the effect of

disruptions or congestion in railway transportation systems

on train routing decisions. In [25], railway transportation

scheduling and maintenance are integrated into an MILP

formulation. In [26], a multi-objective optimization model is

proposed to minimize passenger travel time and maintenance

costs. In order to optimize a train rescheduling problem with

track emergency maintenance, [27] introduces a mixed-integer

nonlinear programming model that reduces the system delay

and alleviates the track disruptions.

In the context of integrated railway and power networks,

a dominant conservative assumption in the literature is that

BELs, which are required to get charged or discharged, spend

an entire time span in a given station for power exchange.

Additionally, the existing literature did not consider the sepa-

rability of the railcars for spatiotemporal energy delivery. The

existing models are also reported to be computationally com-

plex particularly under real-world conditions where prevailing

uncertainties in both power and railway systems are present.
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C. Problem Statement and Proposed Contributions

We study the daily operation of the power system through

the SCUC problem, where BEL is integrated as a large-scale

mobile ESS for power delivery across the power transmission

system. This allows for a spatiotemporal dispatch of batteries

during the day across a larger geographical region and features

maximum wind utilization. To the best of our knowledge,

this paper establishes a pioneering approach that introduces

probabilistic constraints to address the complex integration of

day-to-day power system operations with the transportation

of mobile power sources via railways. We design a risk-

averse approach promoting reliability through the incorpo-

ration of probabilistic constraints. In contrast to the exist-

ing power system models with individual chance constraints

(see review paper [28]), the proposed model incorporates a

joint probabilistic constraint (JPC) that establishes a network-

wide reliability level. An equivalent reformulation approach is

introduced to convert the stochastic mixed-integer nonlinear

nonconvex problem into a deterministic MILP.
The core contributions of this paper are listed as follows.

• A novel stochastic optimization model with JPCs is

proposed for the integration of BEL in power system

operation that effectively captures the uncertainty in wind

generation, demand, and classification yards capacity.

• The proposed model captures the railway system’s critical

characteristics, including traffic, collision avoidance, and

the limited capacity of the classification yards. Also,

the battery railcars carried by the BELs are considered

separable as the BELs can detach battery railcars in any

classification yard and the remaining railcars can then

be dispatched to the next destination. The separability

feature enables the transportation system to be more

responsive and deliver the required power faster.

• The intricacy of the JPCs is addressed through a state-

of-the-art Boolean reformulation method with a computa-

tionally efficient formulation that is solved quickly even

when many scenarios are considered. This in turn enables

capturing a vast array of uncertainty features and gives a

more dependable problem representation.

The remainder of the paper is organized as follows. Section

II provides the problem formulation and section III presents

the reformulation method. Numerical case studies on the IEEE

6-bus and 118-bus test systems are conducted in Section IV.

Section V offers perspectives on framework applicability and

the conclusions are provided in Section VI.

II. PROBLEM FORMULATION

This section introduces a stochastic mixed-integer nonlinear

optimization model with JPCs (referred to as SMINLP-JPC)

that accounts for the integration of mobile power sources

through railways into the SCUC problem. The quadratic cost

objective function includes two components and reads:
min
∑

t∈T

∑

u∈G

[

(

auP
2
u,t + buPu,t + ruΓu,t

)

+³uYu,t + ´uZu,t

]

+
∑

k∈K

∑

s∈S

∑

(i,j)∈A

dk,(i,j)Rk,(i,j),s (1)

The objective function (1) minimizes the sum of the power

generation costs from thermal generating units and the trans-

portation costs. The first term represents the power generation

and the unit startup and shutdown costs while the second one

is related to the railway transportation costs. The optimization

model considers multiple constraints associated with various

components, including the TSN, BELs, batteries, power sys-

tem operation, generating units, and transmission lines.

A. BEL Constraints in TSN

Constraints (2a) and (2b) set the initial and terminal status

of the BELs in the TSN. Constraints (2c) indicate that each

BEL must be at one arc at each time span s. The collision

avoidance constraints (2d) assert that BELs cannot traverse

both arcs (i,j) and (j,i) at the same time and define the

arc capacity, allowing for at most one BEL per arc. The

JPCs (2e) ensure that the number of trains at each station

with a classification yard does not exceed the capacity of

the yard with a predetermined probability. Unlike individual

probabilistic constraints, the JPC formulation ensures system-

wide reliability across all transportation nodes. Constraints (2f)

establish the arrival and departure balance for the BELs. That

is, if BEL k reaches station i at time t, the next station visited

by BEL k at time t+1 must be a station connected to station

i. At the end of the operating horizon, the detached battery

railcars are gathered through an empty freight car schedule to

get recharged overnight for the next-day dispatch.
∑

(i,j)∈A+

i

Rk,(i,j),1 = Èk,i, k ∈ K, i ∈ I (2a)

∑

(i,j)∈A−
j

Rk,(i,j),|S| = È̃k,j , k ∈ K, i ∈ I (2b)

∑

(i,j)∈A

Rk,(i,j),s = 1, s ∈ S, k ∈ K (2c)

∑

k∈K

(Rk,(i,j),s +Rk,(j,i),s) f 1,

(i, j) ∈ A : i ̸= j, s ∈ S\{|S|}

(2d)

P

(

∑

k∈K

Rk,(i,j),s f κi,s, (i, j) ∈ A : i = j

)

g ¸, s ∈ S

(2e)
∑

(i,j)∈A+

i

Rk,(i,j),s+1 =
∑

(i,j)∈A−
i

Rk,(i,j),s,

s ∈ S\{|S|}, k ∈ K, i ∈ I

(2f)

B. Battery Capacity and Discharging Constraints

The constraints (3a) govern the discharging of energy from

BELs at transmission buses, while (3b) define the acceptable

energy capacity range for each BEL. Constraints (3c) capture

the energy balance of the BELs during discharge. Due to

the separability of the battery railcars, the energy discharged

from any BEL must be a multiplier of the railcar capacity.

These constraints are nonconvex due to the roundup function.

Constraints (3d) set the terminal value for the energy stored

in BEL k at the last period.
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0 f P ′
k,j,t f Rk,(i,j),s p

max
k ,

k ∈ K, i, j ∈ H, s ∈ S, t ∈ T
(3a)

emin
k f Ek,t f emax

k , k ∈ K, t ∈ T (3b)

Ek,t = Ek,t−1 −
∑

j∈H

⌈

P ′
k,j,t

µk,w

⌉

µk,w, k ∈ K, w ∈ W, t ∈ T

(3c)

Ek,|T | = etek , k ∈ K (3d)

C. Power System Constraints

The proposed JPC (4a) contains three sets of stochastic

inequalities with random right-hand side vectors. These con-

straints establish the system’s power balance for meeting the

demand and impose limits for wind power generation based on

its predicted generation level. The source of uncertainty is due

to the imperfect prediction of load and wind energy generation.

The JPC requires the many stochastic inequalities to hold

jointly with probability at least equal to ¸. Constraints (4b)

define the system spinning reserve limits and are nonconvex

due to the bilinear terms involving the multiplication of a

binary variable by a continuous one.

P















∑

(i,j)∈L

Fl,t −
∑

(j,i)∈L

Fl,t − Pi,t−

Pw
i,t −

∑

k∈K

µkP
′
k,i,t g p

d

i,t, i ∈ I

Pw
i,t f p

w

i,t, i ∈ Iw















g ¸, t ∈ T (4a)

∑

u∈G

Γu,t(g
max
u − Pu,t)+

∑

k∈K

∑

i∈H

∑

j∈H

Rk,(i,j),s(p
max
k − P ′

k,i,t) g φt, t ∈ T
(4b)

D. Generating Unit Constraints

Each constraint (5a) specifies the capacity limit of the

corresponding generating unit. The ramp-up and ramp-down

limits of the generating units are enforced by (5b) and (5c).

Constraints (5d) and (5e) define the minimum on and off time

of the generating units. Constraints (5f) establish the linkage

between the unit commitment and the startup or shutdown

indicator variables. Each constraint (5g) enforces that the

generating unit u cannot shut down and start up concomitantly.

Γu,t g
min
u f Pu,t f Γu,t g

max
u , u ∈ G, t ∈ T (5a)

Pu,t − Pu,t−1 f Äu(1− Yu,t) + gmin
u Yu,t,

u ∈ G, t ∈ T
(5b)

Pu,t−1 − Pu,t f Ä
u
(1− Zu,t) + gmin

u Zu,t,

u ∈ G, t ∈ T
(5c)

Yu,t f Γu,m, u ∈ G, t ∈ T ,m ∈ [t,min(Äu + t, |T |)] (5d)

Zu,t f 1− Γu,m,

u ∈ G, t ∈ T ,m ∈ [t,min(Ä̃u + t, |T |)]
(5e)

Yu,t − Zu,t f Γu,t − Γu,t−1, u ∈ G, t ∈ T (5f)

Yu,t + Zu,t f 1, u ∈ G, t ∈ T (5g)

E. Transmission Line Constraints

Constraints (6a) and (6b) enforce the lower and upper

bounds on the power flow based on the capacity of the trans-

mission line. Note that transmission lines are often operated

below their full potential capacity, typically at around 70% of

their rated capacity, to ensure system reliability and avoid over-

loading. However, in the presence of reliable mobile power

sources, there may be an opportunity to leverage this flexibility

to increase the effective capacity of the transmission lines and

enhance the overall system performance and reliability.

− fmax
l f Fl,t f fmax

l , l ∈ L, t ∈ T (6a)

Fl,t =
Θi,t −Θj,t

ϱl
, l, (i, j) ∈ L, t ∈ T (6b)

III. REFORMULATION METHOD

We first outline in Section III-A a set of reformulation tech-

niques that provide a linear reformulation of the nonconvex

terms in the deterministic constraints (3c) and (4b). Next,

in Section III-B, we delve into the exact and deterministic

reformulation of the JPCs (2e) and (4a).

A. Convexification of Nonlinear Deterministic Constraints

Constraint (4b) contains two types of bilinear terms which

are both nonlinear and nonconvex. Additionally, (3c) involves

the quasilinear roundup function, which is discontinuous and

nondifferentiable. We first linearize the bilinear terms in (4b).

We introduce the auxiliary variables Qk,i,j,s,t, each set equal

to Rk,i,j,sP
′
k,i,t via the McCormick inequalities [29]:

Qk,i,j,s,t f P ′
k,i,t, k ∈ K, i ∈ I, j ∈ J , s ∈ S, t ∈ T (7a)

Qk,i,j,s,t f pmax
k Rk,i,j,s,

k ∈ K, i ∈ I, j ∈ J , s ∈ S, t ∈ T
(7b)

Qk,i,j,s,t g P ′
k,i,t − (1−Rk,i,j,s)p

max
k ,

k ∈ K, i ∈ I, j ∈ J , s ∈ S, t ∈ T
(7c)

Qk,i,j,s,t g 0, k ∈ K, i ∈ I, j ∈ J , s ∈ S, t ∈ T (7d)

Similarly, the McCormick inequalities (8a)-(8d) linearize each

bilinear term Pu,tΓu,t in (4b) and set each auxiliary variable

Du,t equal to Pu,tΓu,t:

min[0, gmin
u ] f Du,t f gmax

u , u ∈ G, t ∈ T (8a)

gmin
u Γu,t f Du,t f gmax

u Γu,t, u ∈ G, t ∈ T
(8b)

Pu,t − (1− Γu,t)g
max
u f Du,t f

Pu,t − (1− Γu,t)g
min
u , u ∈ G, t ∈ T

(8c)

Du,t f Pu,t + (1− Γu,t)g
max
u , u ∈ G, t ∈ T (8d)

Let ϵ be an infinitesimal positive number. To linearize the

term in the roundup function in (3c), we follow the approach

proposed in [30] and introduce an auxiliary integer-valued

decision variable P k,i,t (9b) and the following constraints

P ′
k,i,t

µk,w

f P k,i,t f
P ′
k,i,t

µk,w

+ 1− ϵ,

k ∈ K, w ∈ W, i ∈ I, t ∈ T

(9a)

P k,i,t ∈ Z, k ∈ K, i ∈ I, t ∈ T (9b)

which ensure P k,i,t =
⌈

P ′
k,i,t

µk,w

⌉

, k ∈ K, w ∈ W, i ∈ I, t ∈ T .

The above techniques applied to (3c) and (4b) give us a mixed-

integer linear reformulation of the deterministic constraints.
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B. Deterministic Reformulation of JPCs

In order to reformulate the JPCs (2e) and (4a), two refor-

mulation techniques, i.e., the scenario-based and the Boolean

modeling approaches [31], are utilized. To present them, we

introduce a generic form of a JPC

P(hmX g ξm, m ∈ M) g p , (10)

with an M-dimensional random right-hand side vector ξ

and reliability level p. The notation h represents a vector of

fixed parameters. The random vector ξ follows a joint |M|-
variate probability distribution with finite support. The set of

possible realizations is defined as Ω. Each realization k ∈ Ω
is represented by an |M|-dimensional deterministic vector

Ék = [Ék
1 , . . . , É

k
M] and defines a value that the random vector

can take with probability pk, such that
∑

k∈Ω p
k = 1. The no-

tation F (Ék) = P(ξ f Ék) defines the cumulative distribution

function of the random vector while its marginal probability

distributions are Fm(wk
m) = P(ξm f Ék

m),m ∈ M.

The scenario-based reformulation associates a binary vari-

able ¼k to each realization, and each constraint (11a) verifies

if the conditions imposed by the associated realization are

satisfied. If not, the corresponding decision variable ¼k is

forced to take value 1. The joint reliability level is achieved

by upper-bounding to (1− p) the sum of the probabilities of

the unsatisfied realizations (11b). The scenario-based reformu-

lation of JPC (10) is given next:

hmX g Ék
m(1− ¼k), m ∈ M, k ∈ Ω (11a)

∑

k∈Ω

pk¼k f 1− p (11b)

¼ ∈ {0, 1}k (11c)

Using the scenario approach, we obtain the following refor-

mulation for problem SMINLP-JPC:

MILP-SR: min (1)

s.to (2a)− (2d); (2f)− (3d); (4b)− (9b)

−
∑

k′∈K

Rk′,(i,j),s g Ék
i,s(1− ¼ks),

k ∈ Ω, (i, j) ∈ A : i = j, s ∈ S

(12a)

∑

k∈Ω

pks¼
k
s f 1− p s ∈ S (12b)

∑

(i,j)∈L

Fl,t −
∑

(j,i)∈L

Fl,t − Pi,t − Pw
i,t −

∑

k′∈K

µk′P ′
k′,i,t

g Ék
i,t(1− Λk

t ), k ∈ Ω, i ∈ I, t ∈ T

(12c)

− Pw
i,t g Ék

i,t(1− Λk
t ), k ∈ Ω, i ∈ Iw, t ∈ T (12d)

∑

k∈Ω

pktΛ
k
t f 1− p t ∈ T (12e)

¼,Λ ∈ {0, 1}k (12f)

The linear inequalities (12a)-(12b) and (12c)-(12f) refor-

mulate the JPCs (2e) and (4a), respectively. Needless to say,

the tractability of the reformulation is directly related to the

number of scenarios as one binary variable and one constraint

are added for each scenario.

We now reformulate the JPCs with the Boolean pro-

gramming method which entails two major steps outlined

in pseudo-code 1 and provides a mixed-integer linear refor-

mulation of the feasible set defined by the JPCs.

We first introduce the p-sufficiency concept [31] which

plays a pivotal role. A realization Ék is p-sufficient if F (Ék) g
p and is p-insufficient otherwise. Any p-sufficient realization

defines sufficient conditions for (10) to hold. Necessary con-

ditions to qualify as p-sufficient can be derived from the so-

called univariate-quantile inequalities, which require Ék to

satisfy: Fm(Ék
m) g p,m = 1, . . . , |M|.

The next step is the construction of the set of recombinations

Ω [32] defined as Ω = C1 × C2 × . . .× C|M| [31] with

Cm = {Ék
m : Fm(Ék

m) g p, k ∈ Ω}, m ∈ M (13)

representing the sets of values that Àm can take and that are

larger than the p−quantile of Fm. The set of recombinations

includes all vectors Ék that satisfy the univariate-quantile

inequalities and can possibly be p-sufficient. The elements of

each set Cm,m ∈ M, called cut points [31], are thereafter

denoted by {cm,1, . . . , cm,νm
} ∈ Cm, where ¿m is the number

of cut points for each random variable ξm. Without loss

of generality, we arrange the cut points in ascending order:

cm,1 < cm,2 < . . . < cm,νm
. The recombination set is

then split into two collectively exhaustive and disjoint subsets

Ω+ := {Ék ∈ Ω : F (Ék) g p} and Ω− := {Ék ∈ Ω :
F (Ék) < p}, respectively, denoting the sets of p-sufficient

and p-insufficient recombinations.

The next step is to binarize [31] the probability distribution

and the recombinations. The binarization process uses the cut

points to map each numerical recombination vector Ék
m to

a binary vector of ´k
m = [´k

m,1, . . . , ´
k
m,νm

] and proceeds

as follows: ´k
m,o = 1 if Ék

m g cm,o and ´k
m,o = 0

otherwise for all m ∈ M, o = 1, . . . , ¿m. This means that the

oth binary attribute ´k
m,o corresponding to random variable

ξm in realization k takes value 1 if the value of Ék
m is

larger than or equal to the cut point cm,o. Since we have

cm,o < cm,o+1, o < ¿m − 1, it follows from the binarization

that: ´k
m,o g ´k

m,o+1, k ∈ Ω̄,m ∈ M, 1 f o < ¿m − 1.

As shown in [32] and [33], the binarization process allows

for the derivation of a partially defined Boolean function

(pdBf) whose truth table represents exactly the feasible area

of the JPC (10) as long as the set of cut points used for

the binarization process is consistent. The sufficient-equivalent

set of cut points (13) fulfills this condition (see [31]); it is

injective over Ω, which guarantees that the sets Ω+
B and Ω−

B

of p-sufficient and p-insufficient binarized recombinations are

disjoint: Ω+
B ∩ Ω−

B = ∅. Using the properties of threshold

Boolean functions (see [32]), the following constraints can be

extracted from the pdBf representing the feasible area of (10)

to represent it with mixed-integer linear inequalities:
∑

m∈M

νm
∑

n=1

´k
m,nUm,n f |M| − 1, k ∈ Ω−

B (14a)

νm
∑

n=1

Um,n = 1, m ∈ M (14b)

hmX g
νm
∑

n=1

cm,nUm,n, m ∈ M (14c)

U ∈ {0, 1}m×n (14d)
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The set of knapsack constraints (14a) ensures that no p-

insufficient realization in Ω−
B is covered [32]. In other words,

the recombination defined by the binary vector U (14d)

is not p-insufficient, and is by corollary p-sufficient. The

partitioning constraints (14b) require that exactly one of the

¿m binary variables Um,n (14d) associated with the admis-

sible values for each Àm,m ∈ M must be equal to 1.

The juxtaposition of (14a) and (14b) implies that the vector
[
∑ν1

n=1 c1,nU1,n, . . . ,
∑ν|M|

n=1 c|M|,nU|M|,n

]

corresponds to a

p-sufficient recombination. Therefore, constraint (14c) requires

the satisfaction of all the conditions defined by a p-sufficient

recombination, which ensures that the JPC (10) holds true.

Using the above-described Boolean reformulation method,

we obtain the following MILP reformulation equivalent to

problem SMILP-JPC:

MILP-BR: min (1)

s.to (2a)− (2d); (2f)− (3d); (4b)− (9b)

−
∑

k∈K

Rk,(i,j),s g
νi
∑

n=1

ci,n,sUi,n,s,

(i, j) ∈ A : i = j, s ∈ S

(15a)

∑

i∈H

νi
∑

n=1

´1,k
i,n,s Ui,n,s f |I| − 1, s ∈ S, k ∈ Ω−

B (15b)

νi
∑

n=1

Ui,n,s = 1, i ∈ RS, s ∈ S (15c)

∑

(i,j)∈L

Fl,t −
∑

(j,i)∈L

Fl,t − Pi,t − Pw
i,t−

∑

k∈K

µkP
′
k,i,t g

ν′
i
∑

n=1

c′i,n,tU
′
i,n,t, i ∈ I, t ∈ T

(15d)

− Pw
i,t g

νi
∑

n=1

ci,n,tU i,n,t, i ∈ Iw, t ∈ T (15e)

∑

i∈I

ν′
i
∑

n=1

´2,k′

i,n,t U
′
i,n,t +

∑

i∈Iw

νi
∑

n=1

´3,k′

i,n,t U i,n,t f

|I|+ |Iw| − 1, t ∈ T , k′ ∈ Ω−
B

(15f)

ν′
i
∑

n=1

U ′
i,n,t = 1, i ∈ I, t ∈ T (15g)

νi
∑

n=1

U i,n,t = 1, i ∈ Iw, t ∈ T (15h)

U,U ′, U ∈ {0, 1}i×n (15i)

Inequalities (15a)-(15c) and (15d)-(15i) reformulate the JPC

(2e) and (4a), respectively, into deterministic forms.

IV. NUMERICAL RESULTS

We now evaluate the performance of the proposed model for

the rail-based ESS integrated into the daily operation of the

power system on two test systems. The proposed methodology

is first tested on an IEEE 6-bus test system [12] to simply

illustrate the effectiveness of the designed framework. The

IEEE 118-bus test system [14] is then used to demonstrate

the scalability of the approach. The formulation considers DC

Algorithm 1: Boolean Reformulation Method

Data: ωk, F (ωk), Fm(ωk
m), JPC (10)

Result: Cm, βk
m,n, ΩB , Ω+

B , Ω−
B , MILP Reformulation

1 for {k ∈ Ω,m ∈M} do

2 if Fm(ωk
m) ≥ p then

3 Cm ← ωk
m;

4 end
5 end

6 Ω← C1 × C2 × ...× C|M|

7 for k ∈ Ω do

8 if F (ωk) ≥ p then

9 Ω+ ← ωk;
10 else

11 Ω− ← ωk;
12 end

13 if ωk
m ≥ cpm,n then

14 βk
m,n ← 1;

15 else

16 βk
m,n ← 0;

17 end
18 end

19 Binary projection : (ΩB ,Ω
+

B ,Ω
−
B)← (Ω,Ω+,Ω−)

20 MILP reformulation of feasible set of (10) with (14c)-(14d)

power flow model, while details on the use of AC power

flow formulation in the proposed framework are provided

in the electronic Appendix [34]. A comparison between two

exact reformulation methods is drawn based on runtime and

model size – the number of constraints and binary variables

–, all pivotal for model tractability. The stochastic models

are evaluated across cases of 100, 1,000, 2,000, and 10,000

scenarios. Unless specified, the results in this section pertain

to the 10,000-scenario instance. The optimization models are

solved on a PC with an Intel i7-7700 processor and 16GB

memory. The problems are formulated using AMPL and

solved with the optimization solver Gurobi 10.0.0.

The data are collected from the existing literature [12]–

[18]. The 6-bus system is assumed to be connected to a

railway network consisting of three railway stations, while the

118-bus test system is connected to an eight-station railway

network. The transportation cost between each pair of nodes

is considered to be $50. Due to the separable design of the

railcars, the BELs can detach the battery railcars quickly

and stay on-call for any possible request on the power grid.

The capacity of railway stations with classification yards

is exogenous and depends on other trains or BELs in the

yard. Moreover, collision avoidance and traffic considerations

are incorporated into the TSN. Based on the capacity of

battery railcars, each railcar can provide 20 MWh of energy

or an equivalent amount of 10 MW power. As a result of

recent technological advancements and the energy density of

presently available batteries, lithium-ion batteries exhibit a

high energy density of 250 watthour per kilogram (Wh/kg)

[35]. It is reported in some recent studies that their energy

density is as high as 300 watthour per kilogram (Wh/kg) [36].

Accordingly, the capacity of a standard railcar is 100 tons [37].

Hence, it can be determined that a train railcar could transport

a battery with 30 MWh in capacity. Our assumption of 20

MWh batteries for each battery railcar proves to be tenable and

in line with the evolving technology. The number of battery
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TABLE I
OPTIMAL BEL DISPATCH IN Case I: IEEE 6-BUS TEST SYSTEM

Time span 1 2 3 4 5 6 7 8 9 10 11 12 Total

Operation Cost:

$95,326.75

Route (Station i–Station j) 1-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-1

Required battery railcars 0 0 1 1 0 0 0 2 0 2 0 0

railcars attached to BELs varies across the test cases.

Note that this work addresses the problem from its system

operator perspective. The BEL scheduling is carried out with

the oversight of railway dispatchers and regional control

centers who are in charge of train scheduling and traffic

management in the railway system [38]. An assumption is

made that the power system operator already owns a railway

infrastructure or can utilize the infrastructure of a third party

(with a high priority) to schedule the BELs. Either way, the

power system operator must come up with an initial optimal

itinerary for the BELs before assessing next the feasibility of

the schedule. The proposed model in this study provides the

initial schedule for the power system operator. The system

operator can replicate a customized study if their external

factors are different from the ones assumed in this work.

Such limitations can be expressed in the proposed model using

linear constraints imposing bounds on the availability of the

railroad arcs (Rk,(i,j),s).

A. Case I: IEEE 6-Bus Test System

The IEEE 6-bus test system consists of three generating

units, seven transmission lines, and three load points, and is

connected to a three-station railway system. One wind farm

with a generation capacity of 30 MW is connected to the

power grid at bus 1. The single BEL considered in this case

consists of six battery railcars with a capacity amounting to

60MW power or 120 MWh energy, on aggregate. A holistic

view of the integrated networks is shown in Fig. 1. The

optimal operation cost with the SMINLP-JPC model amounts

to $95,326.75. The BEL route and the required number of

battery railcars are shown in Table I. As evident from this

table, the BEL travels to bus 4 and stays there until the end of

the scheduling horizon when it travels back to the origin bus.

The railway system does not force BELs to move all the time.

In some cases, BELs can remain stationary and yet relieve the

transmission line congestion. Furthermore, the optimization

model generates the BEL schedule ahead of time. Hence, when

detaching the battery railcars is not required, the railcars can

stay attached to the BEL and get back to the origin at the

end of the scheduling horizon. The value of the proposed

framework is evident when comparing system performance

with and without the incorporation of BELs. The presence

of BELs results in a 5.2% saving in daily operational costs

compared to their absence ($100,553.58)–see Table I.

B. Case II: IEEE 118-Bus Test System

The IEEE 118-bus test system (see Fig. 3) is used to verify

the scalability of the proposed model. This system includes 54

thermal generating units, 186 transmission lines, and 91 load

points. An eight-station railway system (Fig. 3(B)) overlaps

eight buses in the power system. In addition, four wind farms

are assumed to be connected to the power system (at buses 25,

38, 83, and 117) supplying a total power of 60 MW. Two tests,

1

4 5

Stations with classification yards

(A) (B)

(D)

(C)

4

1

5

0 1 2 STime

Space

1

3

21 2 3

4 5 6

Fig. 1. IEEE 6-bus power system integrated with a railway system. (A) The
railway system interacts with a TSN and both networks are linked to the
6-bus power system. (B) There are three railway stations with classification
yards that correspond to buses 1, 4, and 5. (C) All stations are connected as
represented in the TSN. (D) One-line diagram of the studied power system is
illustrated.

one with two BELs and another with three BELs, are carried

out and the results are tabulated in Table II. In the two-BEL

experiment, each BEL accommodates 200 MWh of energy and

ten battery railcars. The three-BEL experiment involves 120

MWh per BEL, totaling six battery railcars.

Results from the first experiment in Table II depict the

optimal dispatch of the two BELs in the railway system.

In this context, BEL-1 commences its journey at node 117,

progressing to node 38. Node 38 functions as an interme-

diary, granting access to node 77. Once a battery railcar is

unloaded at this point, BEL-1 continues its route to node 92,

subsequently fulfilling energy needs between the time spans

of 4 and 5. Then, it travels back to the starting node and

procures the two remaining battery railcars. The second BEL

follows a distinct path by initiating from node 25 towards bus

83. It halts at node 83 to deliver the necessary energy before

returning to its origin node. The system optimal operation cost

amounts to $1,180,982.215 and allows for 2.43% daily saving

as compared to the case where BELs do not move and operate

as stationary ESSs. Fig. 2 displays the railway system status at

the conclusion of the sixth time span. This illustration clearly

showcases the separability characteristic of the battery railcars,

emphasizing their distinct performance within the system. The

BEL-1 trajectory is in yellow, while the BEL-2’s is in green.

In the second experiment, the introduction of a third BEL

results in two BELs functioning as stationary ESSs. The

optimal BEL dispatch and the number of detached battery

railcars are detailed in Table II. The optimal system operation
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TABLE II
OPTIMAL BEL DISPATCH IN Case II: IEEE 118-BUS TEST SYSTEM

First Experiment

BEL-1

Time span 1 2 3 4 5 6 7 8

Total

Operation Cost:

$1,180,982.215

Route (Station i–Station j) 117-38 38-77 77-92 92-92 92-92 92-83 83-25 25-117

Required battery railcars 0 1 0 2 3 2 2 0

BEL-2

Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 25-83 83-83 83-83 83-83 83-83 83-83 83-83 83-25

Required battery railcars 0 0 3 1 0 1 2 3

Second Experiment

BEL-1

Time span 1 2 3 4 5 6 7 8

Total

Operation Cost:

$1,181,607.27

Route (Station i–Station j) 117-117 117-117 117-117 117-117 117-117 117-117 117-117 117-117

Required battery railcars 0 0 0 0 0 0 2 4

BEL-2

Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 25-83 83-92 92-92 92-92 92-92 92-92 92-83 83-25

Required battery railcars 0 0 2 3 0 1 0 0

BEL-3

Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 92-92 92-92 92-92 92-92 92-92 92-92 92-92 92-92

Required battery railcars 0 0 0 0 0 0 3 3
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Fig. 2. The status of the railway system and the BELs trajectory (represented
by the darkness of the shades) and the number of detached battery railcars
(shown on them) at the end of the sixth time span (hour 18). This figure
corresponds to the first experiment in Case II.

cost for this experiment is determined to be $1,181,607.27.

In this example, a cost saving of 1.35% can be achieved as

compared to the stationary BEL configuration. One can thus

conclude that BELs may bring about opportunities for cost

saving only if strategically deployed and operated.

C. Rationale Behind the Choice of JPC Formulation

In order to assess the superiority of the stochastic program-

ming model with JPCs, a comparative analysis is conducted

with a risk-neutral setting wherein the random variables are

replaced by their mean values. In order to construct this

analysis, 20 new scenarios are generated for the IEEE 6-bus

test system at t = 8 (see Table III). The analysis demonstrates

the capability of the proposed approach to manage uncertainty

and risk in the power system, surpassing the capabilities of

the conventional risk-neutral method. Among the generated

scenarios, 16 scenarios would lead to an infeasible solution

when they are solved with the risk-neutral model. However,

none of the scenario realizations would lead to infeasibility

when JPCs are employed in the problem formulation. The

joint 98% reliability level selected for the JPCs ensures that

the system hedges against most adversarial events that could

possibly occur. Hence, it can be concluded that the proposed

SMINLP-JPC formulation accounts for uncertainty while

effectively hedging against risk.

D. Computational Efficiency of JPC Reformulations

A performance comparison of the two proposed refor-

mulation methods for the introduced JPCs is provided in

Table IV. To assess the computational time required for the

reformulation methods, a single BEL is utilized for both the

IEEE 6-bus and 118-bus test systems. The energy capacity of

the BELs in the 6-bus and 118-bus test systems are considered

to be 120 MWh and 200 MWh, respectively. The superiority

of the Boolean programming reformulation appears clearly

and becomes more pronounced as the number of considered

scenarios |Ω| increases. We consider problem instances with

a moderate number (100) of scenarios up to an extremely

large number (10,000). Table IV clearly indicates that as the

number of scenarios increases, the number of binary variables

required to reformulate the problem through scenario-based

reformulation rises with the number of scenarios (one binary

variable per scenario), resulting in longer computational times.

On the other hand, the number of binary variables utilized in

the reformulation of the problem using the Boolean method

does not vary monotonically with the number of scenarios.

This feature enables the model to converge unprecedentedly

fast and to achieve an exact solution.

An interesting observation is that, in the Boolean reformu-

lation of the model applied to the IEEE 6-bus test system,

the number of constraints and binary variables remains con-

stant regardless of the number of scenarios. However, this is

not the case for the scenario-based model which contains a

much larger number of constraints and binary variables as

the number of scenarios increases. For example, the number

of constraints for the 10,000-scenario instance is 77 times

greater than the number of constraints for the 100-scenario

instance. Similarly, the number of binary variables increases

by a factor of approximately 39 when moving from 100 to

10,000 scenarios in the case of the IEEE 6-bus test system.

This substantial increase in the number of constraints and

binary variables highlights the significant computational costs

associated with the scenario-based approach, which becomes
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Fig. 3. IEEE 118-bus power systems integrated with a railway system. (A) The 118-bus test system interacts with an eight-station railway system and its
associated TSN. (B) The railway system consists of eight railway stations, categorized as the ones with marshalling yards and the regular ones with a capacity
of one train. (C) The connections among the railway stations are shown in the TSN. The stations are not all connected and BELs may have to traverse to
intermediate stations to get to their final destinations. (D) The one-line diagram of the IEEE 118-bus test system is depicted and the railway stations matching
the buses are indicated.

untenable for chance-constrained optimization problems with

a moderate to large number of scenarios.

For the IEEE 118-bus test system, the Boolean reformu-

lation exhibits a remarkably low increase in the number of

constraints when more scenarios are considered. The number

of constraints for the 10,000-scenario instance is analogous

to the one for the 100-scenario instance, differing only by

17. In a similar vein, the number of binary variables in

the Boolean reformulation remains constant for the 100- and

10000-scenario instances. This is in direct contrast to the

scenario-based approach that requires the inclusion of 19,800

additional variables when switching from 100 to 10,000 sce-

narios. Transitioning from 100 to 10,000 scenarios in the IEEE

118-bus test system, the number of constraints in the scenario-

based reformulation of the problem grows from 393,441 to

1,739,840. Note also that the number of binary variables

required for the Boolean method in the case of the IEEE

118-bus test problem with 10,000 scenarios is 4,146, which

is fewer than the 4,328 binary variables used for the scenario-

based reformulation with only 100 scenarios.
Table IV showcases the solution times with the scenario-

based approach for up to 1,000 scenarios. The scenario ap-

proach cannot solve any of our instances comprising more

than 1,000 scenarios in 30 minutes. In contrast, the Boolean

reformulation is solved to optimality in less than 10 seconds

regardless the considered number of scenarios (up to 10,000).

E. Impacts of BELs on Transmission Line Congestion

The roles that BEL and transmission lines play in the

delivery of power across the network are intertwined. BELs

exert a significant influence on reducing the transmission line

congestion. In the proposed model, buses with high energy

demands that may exceed available transmission capacity are

TABLE III
FEASIBILITY ASSESSMENT OF A RISK-NEUTRAL FORMULATION IN THE PROPOSED MODEL

Scenario ξ = (κ,pd,pw) Feasible? Scenario ξ = (κ,pd,pw) Feasible?

1 ((3, 1, 3),(71.1, 73, 67.1),(33)) No 11 ((2, 3, 2),(68.5, 71.9, 74.1),(26.2)) No

2 ((2, 2, 2),(69.5, 66.4, 67),(21.7)) Yes 12 ((3, 1, 1),(64.7, 74, 71.4),(17.8)) No

3 ((1, 2, 3),(71.6, 64.9, 69.9),(18.2)) No 13 ((3, 1, 2),(71.2, 74.6, 71.5),(31.6)) No

4 ((3, 3, 3),(67.4, 75.6, 70.5),(28.3)) No 14 ((2, 3, 1),(71.1, 67.3, 70.4),(20.8)) No

5 ((1, 1, 2),(68.8, 68.1, 62.7),(17)) No 15 ((3, 3, 3),(69.9, 69.3, 69.2),(38.5)) Yes

6 ((3, 3, 3),(65, 65.1, 66.8),(32.4)) Yes 16 ((2, 3, 1),(72.8, 74.2, 71.2),(18.9)) No

7 ((3, 2, 2),(70.9, 72.8, 68.9),(24)) No 17 ((1, 3, 3),(70.6, 70.4, 76.1),(10.8)) No

8 ((2, 1, 2),(66.4, 70.6, 79.6),(32.9)) No 18 ((2, 2, 2),(69.8, 68.9, 69.9),(39.4)) Yes

9 ((2, 2, 3),(75.9, 70.4, 71.4),(31.4)) No 19 ((3, 1, 2),(65.3, 73.2, 70.5),(32.5)) No

10 ((2, 1, 2),(71.5, 70.2, 71.3),(29.1)) No 20 ((3, 1, 1),(74.4, 73.8, 71.2),(20.7)) No
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TABLE IV
COMPUTATIONAL PERFORMANCE COMPARISON OF THE REFORMULATION METHODS

Test Systems |Ω|
Reformulation Methods

Objective Value

($)
Boolean Programming Scenario-based

Constraints Binary Variables Runtime (s) Constraints Binary Variables Runtime (s)

IEEE 6-Bus

100 4,196 328 0.1875 16,912 510 26.4688 93,215.94

1,000 4,196 328 0.234375 133,012 2,310 N/A (2.45%*) 95,640.15

2,000 4,196 328 0.25 262,012 4,310 N/A (4.41%*) 94,543.52

10,000 4,199 328 0.21875 1,294,010 20,310 N/A (6.83%*) 95,326.75

IEEE 118-Bus

100 380,003 4,060 9.54688 393,441 4,242 37.5625 1,183,428.518

1,000 380,005 4,060 10.0312 515,841 6,042 N/A (0.01%*) 1,183,566.412

2,000 380,005 4,060 9.67188 651,841 8,042 N/A (0.08%*) 1,183,687.016

10,000 380,020 4,060 9.90625 1,739,840 24,042 N/A (4.61%*) 1,183,812.279

*Optimality gap for scenario-based reformulation after 30 minutes

identified. These buses are often associated with elevated lo-

cational marginal prices, highlighting that there is a monetary

incentive to move BELs to supply energy in these locations

[14]. To showcase the impacts of BELs on transmission lines,

transmission line congestions with and without BELs are

compared for the IEEE 6-bus (Case I) and IEEE 118-bus (Case

II - second experiment) test systems as displayed in Fig. 4a

and Fig. 4b, respectively. In both systems, it is clear that the

transmission flow is reduced in highly congested transmission

lines. Specifically, in Fig. 4a, the congestion in transmission

line 2, connecting bus 1 to bus 4, is mitigated through the

BEL traveling to bus 4. The same indications are observed

in Fig. 4b where selected transmission lines of the system are

analyzed. Evidently, the BELs’ integration into the power grid

alleviates the burden on highly congested transmission lines

by redistributing the flow to lower-loaded lines.
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(a) IEEE 6-bus test system
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(b) IEEE 118-bus test system

Fig. 4. Average transmission capacity use without BEL and the congestion
relief with BEL. Darker shades reflect higher congestion.

V. DISCUSSIONS

In this section, the practical aspects of the proposed ap-

proach are explored, and BEL’s applicability with current

technological capabilities is evaluated.

A. Investment Cost Recovery of BELs

The existing literature highlights the promising opportu-

nities provided by the integration of BELs with the power

system as a mobile grid-support service. Above all, reference

[39] draws a comparison between BEL utilization and other

feasible investments to enhance power system reliability. The

experiments indicate that the utilization of BELs results in

savings of $300 per kW-year compared to the establishment

of new transmission lines and a cost reduction of $85 per

kW-year compared to the use of stationary batteries. Study

[12] pinpoints the benefits that can be obtained from the

optimal utilization of BELs, including demand peak shaving

at the national level, increasing power system resiliency in the

face of catastrophic events, postponing significant investments

to establish new infrastructures, making use of variable re-

newable energy more efficiently, and reducing power system-

driven emissions. The results of their study indicate a reduction

in the system operation costs of up to 3.6%. Note that a

modest 2%-3% enhancement in system operation costs can

translate into millions of dollars in economic savings within

the multi-million dollar electric industry, exceeding the needed

investment for BEL integration.

To further justify the utilization of BELs in the day-to-

day operation of the power system, a cost-benefit analysis is

conducted. This analysis is carried out for the first experiment

of Case II. The optimal cost attained for this case with the

proposed model employing BELs is $1,180,982.215, whereas,

for the case where no BELs are used, the optimal objective

value rises to $1,232,590.223. The result of this study indicates

a reduction of approximately 4.34% in the operation costs of

the IEEE 118-bus test system when the BELs are employed

as a grid support service.

Comparing this value to the capital cost of lithium-ion

batteries allows us to conduct the actual cost-benefit analysis.

As indicated in [40], [41], it is safe to assume a cost of

$151/kWh for the batteries. Using this cost estimate in our

case study, where each BEL carries ten battery-railcars with a

capacity of 20MWh, results in a capital cost of $60,400,000.
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TABLE V
OPERATION TIMETABLE OF THE ADDITIONAL FREIGHT TRAINS IN THE RAILWAY SYSTEM

Train-1
Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 38-47 47-69 47-69 69-77 77-92 92-77 77-38 38-38

Train-2
Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 92-92 92-92 92-83 83-25 25-83 83-92 92-92 92-92

TABLE VI
OPTIMAL BEL DISPATCH WITH TRAFFIC CONSIDERATIONS: IEEE 118-BUS TEST SYSTEM

BEL-1
Time span 1 2 3 4 5 6 7 8

Total

Operation Cost:

$1,181,086.097

Route (Station i–Station j) 117-38 38-77 77-92 92-92 92-92 92-77 77-38 38-117

BEL-2
Time span 1 2 3 4 5 6 7 8

Route (Station i–Station j) 25-83 83-92 92-92 92-92 92-92 92-92 92-83 83-25

Given that the transportation costs are already accounted for

in the mathematical model and a 15-year life-span for the

lithium-ion batteries [19], [42], the discounted revenue of the

system amounts to $195,520,788.09 (a 5% yearly interest rate

and a 5% yearly battery degradation rate is assumed in our

calculations): Discounted revenue = Daily Revenue * 365

(days) * I(P/A,i=5%,n=15).

The comparison between the discounted revenue and the

capital cost justifies the application of BELs in monetary

terms. This analysis does not necessarily suggest that the

utilization of BELs is profitable for every power system

regardless of their geographical settings and characteristics,

but it showcases the potential of this framework to generate

significant cost savings. Moreover, the effect of battery tech-

nology advancements on battery price reduction should not

be underestimated. As reported in [41], the price of lithium-

ion batteries experienced around 80% reduction from 2013 to

2022. This cost reduction is expected to continue (and grow)

in the future which, in turn, will further enhance the cost-

effectiveness of using battery storage solutions such as BELs.

B. Railway Traffic and Itinerary Conflicts

The railway dispatchers have the day-ahead schedule of

the other trains [43]. If the schedule of the BELs is to be

added to the packed timetable, some readjustments in BELs

scheduling are needed. To this aim, we conduct a study to

showcase the impact of traffic in the railway system and its

ramifications on BELs as well as power system operations.

The test is conducted on the first experiment of Case II. The

optimal itinerary of BELs without traffic considerations is

shown in Table II. Should other trains with distinct routes

be considered in the railway system, there will be conflicts

between BELs and the other trains. Suppose the eight-station

railway system is already scheduled for two trains with the

routing and schedule in Table V. Assigning the TSN arcs to the

scheduled trains, and fixing their routing in the optimization

problem would result in another dispatch schedule for BELs

and lead to a slight rise in the optimal system operation costs,

as indicated in Table VI. The speed of trains can also be

incorporated into the model by adjusting the TSN and adding

artificial nodes between the stations.

C. BELs Connection to the Power Grid

In contrast to the typical train classification operations, the

BELs and battery railcars are required to undergo a different

process that takes much less time. The time it takes to detach

the required battery railcars from the BEL is negligible and

the BELs can get dispatched to the next stop immediately after

the battery railcars are detached. The process of moving the

battery railcars through the classification yard and connecting

them to the grid may be time-consuming. It is worth mention-

ing that classification yards and railway stations are already

connected to the electrical grid as many switching locomotives

(classifier locomotives) operate on electricity. The process of

connecting the battery railcar to the grid is also expected

to be carried out smoothly without taking considerable time

as it does not require blocking processes. In the worst-case

scenario, if the classification yard is congested, it can be

considered that the connection process for battery railcars

could take an entire hourly time period [44] (to account for

the length of the connection process, the variable P ′

k,i,t in JPC

(4a) is replaced with P ′

k,i,t+1). The optimal operation costs of

the modified power system models still show great potential

in terms of cost reduction and economic savings. Table VII

indicates the cost-effectiveness of the proposed approach even

after consideration of the worst-case latency in connecting the

battery railcars to the power grid.

VI. CONCLUSION

In this paper, we develop a new joint probabilistically

constrained optimization model for the optimal integration of

BELs in power system operation. In line with the national push

toward decarbonization and for enhancing renewable energy

utilization, BELs play their role as mobile ESSs and absorb

the spillage and volatility in renewable energy generation. In

the proposed model, the battery railcars attached to the BELs

are considered separable which enables a more responsive

scheduling of BELs. In addition, the uncertainty in wind

generation, load demand, and capacity of the classification

yards are explicitly accounted for through the introduction of

JPCs. The combination of JPCs and other nonlinear constraints

in the proposed SMINLP problem formulation posed severe

computational challenges. We have reformulated the SMINLP

problem into a tractable deterministic MILP counterpart using

a pioneering Boolean programming reformulation method.

This reformulation technique allows for the consideration of

extremely large numbers of scenarios, thereby providing a

more accurate description of uncertainty, while considerably

reducing the solution time. The model was applied to and

tested on the IEEE 6-bus and IEEE 118-bus test systems

to evaluate its efficacy and adaptability. The results showed
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TABLE VII
COMPARISON OF THE OPTIMAL SYSTEM OPERATION COSTS IN THE PRESENCE OF THE WORST-CASE LATENCY IN CONNECTING BATTERY RAILCARS

TO THE POWER GRID.

System # of BELs # of Scenarios
Optimal Cost

Original Model Modified Model No BEL Model

IEEE 6-bus Test System 1 10,000 $95,326.75 $95,730.9 $100,553.58

IEEE 118-bus Test System 1 10,000 $1,183,812.279 $1,190,417.806 $1,232,590.223

IEEE 118-bus Test System 2 10,000 $1,180,982.215 $1,187,526.551 $1,232,590.223

IEEE 118-bus Test System 3 10,000 $1,181,607.27 $1,188,110.438 $1,232,590.223

promising cost savings achieved when adopting BELs in power

systems proliferated with renewable resources.
Future research could explore the implementation of the

proposed framework on the use of BELs for improving the

resilience of power grids during extreme events and assess

the impact of such technologies on service restoration under

challenging operation conditions. In terms of methodology,

future research could also explore the ability of AI-based

methods to handle nonconvex SMINLP-JPC models.
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