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Abstract—In the face of heightened societal interest in de-
carbonization, wind energy is emerging more and more as a
viable, low-emission source of clean power. Unlike stationary
wind turbines, mobile wind turbines (MWTs) possess the ability
to be transported by truck, supplying electricity to power
distribution systems (DSs). This spatiotemporal flexibility offers
notable advantages, especially in enhancing system resilience
following extreme natural disasters. However, the full potential
of these resources remains untapped, underscoring the need for
enhanced utilization strategies. In this paper, we develop an
optimal scheme for strategically dispatching MWTs to enhance
the resilience of the DS accounting for the uncertain predictions
of wind energy. A joint chance-constrained programming (JCCP)
model formulated as a mixed-integer nonlinear programming
(MINLP) problem is introduced to capture the uncertainty in
wind energy forecasts. We develop a linearization method that
are computationally feasible, allowing us to transform the MINLP
model into an equivalent mixed-integer linear programming
(MILP) formulation. Case studies conducted on the IEEE 123-
node test system illustrate the efficiency of the suggested service
restoration strategy in enhancing the resilience of the DS during
extreme events.

Index Terms—Mobile wind turbine (MWT); joint chance-
constrained programming (JCCP); wind energy forecasts; service
restoration.

A. Sets NOMENCLATURE
T Time periods.
I Nodes in the distribution system (DS).
L Lines in the DS.
S Segments in the DS.
I‘cl Candidate nodes in the DS.
Fcl Substation nodes in the DS.
M Mobile wind turbines (MWTSs).
H Hydrogen storage units (HSUs).
B. Parameters
o Value of lost load at node <.
Bt Cost of energy not provided by the electric
utility at time ¢.
C; Capacity of candidate node ¢ for hosting
MWTs.
D, D, Amount of active/reactive power demand at

node ¢ at time ¢.
77 Travel time from node ¢ to j with MWT m.
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Big M number.

Minimum/Maximum squared voltage magni-
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Active/Reactive power capacity of substation.
Indicator denoting whether HSU £ is installed
at node 1.

Lower/Upper bound of power factor angle at
node i.

Lower/Upper bound of hydrogen storage level
(HEL) of HSU h.

Hydrogen-to-power (H2P)/Power-to-Hydrogen
(P2H) efficiency of HSU h.

Limit of consumed/generated power of HSU h
in H2P/P2H mode.

C. Decision and Random Variables

Tmit

a T
Yits Yit
Wimt

Jits T

a T
ity Pt

Vit
Zhty Zht

Eyy
hts [t

Est

Binary variable equal to 1 if MWT m is
connected to candidate node ¢ at time ¢.
Fraction of active/reactive power outage at
node ¢ at time ¢.

Power supplied by each MWT m to node ¢ at
time ¢.

Active/Reactive power flow in line [ at time ¢.
Total active/reactive power delivery to node %
at time t¢.

Squared voltage magnitude at node ¢ at time ¢.
Generated/Consumed power of HSU A in
H2P/P2H mode at time ¢.

HEL of HSU #h at time ¢.

Binary variable equal to 1 if HSU A is in
H2P/P2H mode at time ¢.

Random variable of predicted wind energy in
segment s at time ¢.
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I. INTRODUCTION

In recent years, the rise in extreme natural disasters like
wildfires, hurricanes, and floods has led to significant equip-
ment damage, extended power outages, considerable economic
losses, and widespread disruption to contemporary society [1].
For example, the United States witnessed more than 200,000
wildfire incidents between 2017 and 2020, which ravaged over
25 million acres of land [2]. In addition, the 2017 Hurricane
Harvey caused significant power outages ( 10,000 MW) and
left more than 291,000 people without electricity [3]. The
rising frequency of these extreme natural disasters can be
attributed to climate change, underscoring the importance of
establishing sustainable energy systems as a crucial measure to
alleviate the effects of climate change-induced extreme natural
disasters.

Taking into account environmental factors, there has been
extensive adoption and integration of renewable and eco-
friendly energy sources in current power systems [4]-[6]. The
swift integration of renewable energy resources substantially
achieves decarbonization and enhances the power grid re-
silience against extreme natural disasters [7]. For example, [8]
presents an adaptive robust optimization approach that aims to
expedite and ensure a self-healing process by synchronizing
the operations of wind farms and pumped-storage hydro units.
Reference [9] proposes a security-constrained economic dis-
patch model for seaport energy management via integrating
hydrogen resources.

Relative to statically-positioned renewable energy resources
such as wind turbines [10], photovoltaics [11], and hydrogen
storage units (HSUs) [12], [13], the application of mobile
power sources (MPSs) presents a notable opportunity to facili-
tate spatiotemporal flexibility exchange within the distribution
system (DS). This potential enhancement can contribute to
bolstering system resilience and optimizing overall efficiency.
For example, the research detailed in [14] suggests a two-stage
approach for restoring DSs, which fully utilizes the dispatch
of MPSs in combination with dynamic distribution network
reconfiguration across various seismic force scenarios. A novel
DS restoration mechanism for the use of MPSs jointly operated
with stochastic solar and wind energy sources, that captures the
corresponding uncertainties with joint probabilistic constraints
is developed in [15]. The study in [16] takes into account the
endogenous uncertainty related to the presence of MPSs, to
provide a more realistic assessment of how MPSs contribute
to enhancing the resilience of the DS. Reference [17] develops
a risk management model for the strategic placement of MPSs
and public safety power-shutoff actions, focusing on equi-
librating risks of wildfire and power-shutoff-induced power
interruption in the DS.

However, the investigation of MPSs in the literature [14]—
[17] reveals their reliance on traditional energy sources for
power supply, resulting in elevated operational expenses and
environmentally detrimental emissions. Mobile wind turbines
(MWTs), known for their compactness and portability, are
small-scale wind energy devices designed for easy trans-

portation, commonly used for power generation in areas not
connected to the grid or in isolated locations. Reference [18]
integrates the combined use of MWTs and electric thermal
storage into the energy portfolio, enabling load profile modi-
fication and avoiding costs linked to peak demand. With their
capacity for spatiotemporal adaptability, MWTs emerge as a
compelling option for delivering emergency energy to DSs in
the face of severe weather conditions. For example, the study
[19] develops a two-stage stochastic model to enhance system
resilience via pre-positioning of MWTs.

Fig. 1. A state-of-the-art mobile wind turbine setup [20].

As far as we are aware, analytical models are absent
in existing literature for the dispatch of MWTs for service
restoration. To bridge this gap, we introduce a new restora-
tion approach that encompasses the coordination of MWTSs’
routing and scheduling, along with the management of HSUs.
A nonlinear joint chance-constrained programming (JCCP)
model is formulated to solve the proposed service restoration
scheme under uncertainty in predicted wind energy. The model
performance is tested and numerically verified on the IEEE
123-node test system.

The remainder of the paper is structured in the following
way: Section II introduces the proposed service restoration
model with JCCP formulation. Section III describes the
method to reformulate the proposed nonlinear formulation to
an equivalent linear model. Section IV presents the numerical
results, while Section V provides a conclusion of the research
findings.

II. PROPOSED METHODOLOGY

We here present a post-disaster service restoration model
(SRM), which accounts for the deployment of MWTs under
the uncertainty of wind energy and the operation of HSUs. The
introduced scheme is formulated as a stochastic mixed-integer
nonlinear programming (MINLP) problem with the following
objective function:

minZZ(ai + Bt)Diyysy (L

icl teT

The goal of the objective function (1) is to reduce the overall
costs associated with power interruptions, encompassing both
the costs of disrupted energy for each node and energy not sold
by the electric utility at each time. The proposed optimization
model features a mixed-integer nonlinear framework, delin-
eated by the constraints outlined in subsequent subsections
II-A - II-D.
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A. MWTs Allocation and Operation Constraints

Constraint (2a) imposes a limitation on how many MWTs
can be assigned at each candidate node. Each MWT is allowed
to reside at only 1 node at any given period (see constraint
(2b)). Constraint (2c) denotes the deployment of MWTs.
Constraint (2d) implies the joint chance constraints in which
the probability that the available wind energy could be used
by MWTs in each DS segment satisfies a predefined reliability
level e. Constraint (2e) stipulates that the power supplied by
MWT m in a candidate node does not surpass its designated
capacity when it is connected. There is no power output from
MWTs in non-candidate nodes (see constraint (2f)).
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B. Power Balance Constraints

Constraints (3a) and (3b) describe the active and reactive
power balance conditions at each DS node. Notations ©(l) and
T'(1) represent the parent and child nodes belonging to each
power line in the DS. Constraints (3c) and (3d) establish the
limits for active and reactive power injection at the substation
node of the DS. The setting of active and reactive power
delivery to nodes other than the substation is determined by
constraints (3e) and (3f).

Z fie + D (1 —yiy) = Z fit + &5ty
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C. Power Flow Constraints

Constraints (4a) and (4b) stipulate the active and reactive
power flows in the connected power lines, and force the value
of power flows to be 0 in disconnected power lines. Constraints
(4c) and (4d) denote the power flow equations where the
term U(N\; — 1) or U(1 — \;;) guarantees the satisfaction
of the power flow condition across functional lines based on

the DistFlow model [15]. Constraint (4e) represents the limits
on the squared voltage magnitude of each node at any given
period.
— e < S < A FY leLteT (4a)
— el < fly < Ak leL,teT (4b)
vie — vje < 2(Rifjp + Xoffy) + U(1 = Aig),
,jelleLiteT (4c)
vie — vje > 2(Rifiy + Xoffy) + U\ — 1),
i,jeLLleL,teT (4d)

V,<wvy <V, ieLteT (4e)

D. HSSs Operation Constraints

To enable efficient storage and use of renewable energy
resources, hydrogen storage units are considered in the restora-
tion process. The change in HELs of HSU h over time
is governed by their hydrogen-to-power (H2P) and power-
to-hydrogen (P2H) activities, as specified in constraint (5a).
Constraint (5b) sets the limits for the HEL in HSU h. The
output limits of HSUs in H2P and P2H modes are detailed
in constraints (5¢) and (5d), respectively. Constraint (5e)
mandates that the H2P and P2H modes of HSU & cannot
operate simultaneously.

Eh(t+1) = FEnt + (ghtﬁh - th/nh)a

heHteT\{|T|} (5a)
E, < Ep < Ey, heH,teT (5b)
0 < zpe < Znpint, heH,teT (5¢)
0 < Zn < Znfine, heH,teT (5d)
Bht + fpe <1, heH,teT (5e)

III. SOLUTION METHOD

The joint chance constraint introduced in equation (2d)
delineates a feasible region characterized by nonlinearity,
which implies that model SRM is not convex regardless of the
integrality restrictions on Several decision variables. We now
drive mixed-integer linear programming (MILP) reformulation
equivalent to model (5). Proposition 1 shows the process of
linearizing the nonlinear terms in the MINLP model when a
scenario-based reformulation is applied.

Proposition 1: Let 4% € {0,1}* be the auxiliary decision
variables. The MILP reformulation problem R-SRM

min Z Z(Ozi + Bt) Dyt (6a)
i€l teT
s.to. (2a) — (2¢), (2e) — (5e) (6b)

- Z wmit(sis Z w§t(1 - ’yk)a

meM
keQ,iclseS teT (6¢)
prg—e ieI®teT (6d)
keQ

is equivalent to model SRM.
Proof. Consider a general JCCP model with a linear objec-
tive function as follows:
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min g7 X (7a)
sto. AX >b (7b)
P(hjX >¢, j€J)>e (7¢)
X >0 (7d)

where §; defines a vector of random variables following an
| 7|-dimensional distribution with finite support and e defines
a global reliability level for constraint (7c). Constraint (7b)
indicates the linear feasible region of the model (7). Based
on the scenario-based formulation presented in [21], the joint
chance constraint (7¢) satisfies the constraints defined over set
J holistically with global reliability level p. Let notation €2 be
the set of scenarios, and wf denote the realization of random
variable &; in scenario k. The probability of each scenario is
denoted by p*. By defining a binary variable * for each w¥,
the reformulation model is described below:

min ¢7 X (8a)
s.to. AX >0 (8b)
hiX > wh(1—+%), jeJ ke (8¢)
o<1 (8d)
keQ
X >0. (8e)

Now, we introduce w¥, to represent the realization of the

forecasted wind energy in DS segment s at time ¢ in scenario
k. Derived by constraints (8c) and (8d), the nonlinear chance
constraint (2d) can be reformulated by constraints (6¢) and
(6d).

The problem (objective function and all constraints) is then
linear, which provides the result we set out to prove. (]

IV. NUMERICAL ANALYSES
A. System Description

The application of the introduced model and solution tech-
nique to the IEEE 123-node test system is presented in this
Section. The IEEE 123-node test system owns 1 substation,
123 nodes, and 122 lines (See Fig. 2), further information
on which is available in [22]. In this study, the IEEE 123-
node test system is assumed to host 15 candidate nodes and
6 HSUs. Six MWTs of 300 kW capacity are planned to be
used in the system restoration which is considered, in all tests,
to last for 12 hours in 48 periods of 15-minute duration. As
a medium-size DS [23], we partition the IEEE 123-node test
system into three segments, each featuring distinct realizations
of wind energy for the same period. Monte Carlo simulation is
utilized to generate 100 scenarios that capture the realizations
of wind energy in different segments of the DS following the
Weibull distribution [24].

The role of joint utilization of MWTs and HSUs on the DS
performance resilience is investigated through three different
cases described as follows:

o Case I: five lines are damaged by an incident;
o Case II: eight lines are damaged by an incident;
o Case III: twelve lines are damaged by an incident.

A Candidate Nodes [] HSUs Connected Nodes

Segments
Fig. 2. The studied IEEE 123-node test system.

Numerical experiments were conducted on a PC with an Intel
i7-8700 processor and 32 GB of RAM. We used AMPL to
formulate the optimization problem, which was then solved
using the Gurobi 10.0.0 optimization solver.

B. Analysis and Discussions

In all cases, the damaged power lines are assumed to be
repaired within 12 hours, which is indicated by A;. Figure
3 illustrates a comparative analysis of the percentage of
restored demand over 12 hours for three different cases,
both with and without the use of MWTs. In each case, the
inclusion of MWTs leads to a more rapid and higher portion
of demand restoration. For instance, Case I illustrates that
without MWTs, demand restoration remains at 5% throughout
the period, whereas with MWTs, it progressively increases
from 40% in the first hour to complete restoration by the 9th
hour. In Case II, there’s a consistent rise in DS restoration,
achieving full demand recovery by the 11th hour with MWTs.
Case III’s restoration trajectory is similar to Case I and Case
II with MWTs. Overall, each case achieves or approaches
full DS restoration with MWTs, contrasting sharply with the
scenarios without MWTs, where DS restoration is markedly
less efficient. This emphasizes the effectiveness of MWTs in
enhancing the DS restoration capacity over time, particularly
in scenarios that might represent different levels of initial
damage, available resources, or other varying conditions that
could affect restoration efforts.

Subsequently, we turn our attention to evaluating the impact
of MWTs on decarbonization efforts by contrasting their per-
formance with that of conventional transportable emergency
generators (TEGs). In particular, we scrutinize the efficacy of
six TEGs, each rated at 300 kW, in both restoring service
and facilitating decarbonization, while ensuring the conditions
remain constant across all the cases studied. Furthermore,
we explore a hybrid approach that leverages the combined
advantages of both MWTs and TEGs. In this scenario, we
integrate three MWTs with an equivalent number of TEGs,
adhering to the uniform settings applied in the previously
studied cases. This examination aims to discern the potential
synergies that may arise from the concurrent use of MWTs
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Fig. 3. The total restored load by the restoration horizon in different cases with and without MWTs.

and TEGs in enhancing DS service restoration while also
advancing decarbonization objectives. We calculate the carbon
dioxide (C'O5) emissions produced by the operation of TEGs
during the restoration process, using data from the U.S.
Environmental Protection Agency report [25].

Table I illustrates the C'O5 emissions and costs associated
with power outages when MWTs and TEGs are utilized. The
term "No MPSs” in the table refers to the scenario without
considering any MPSs (i.e., MWTs and TEGs) for DS service
restoration in all studied cases. According to Table I, several
observations can be made:

o In all three cases, the utilization of different types of
MPS technologies leads to a significant reduction in total
outage costs when compared to scenarios without using
MPSs, with savings ranging from approximately 51% to
86%:;

e CO5 emissions are eliminated when MWTs are used
alone, highlighting their environmental advantage, al-
though this approach, while reducing outage costs com-
pared to no MPSs scenario, is the less cost-effective
option among the strategies considered, with the smallest
reduction in outage costs.

o TEGs alone provide the most significant reduction in
outage costs across all cases but lead to the highest C'O,
emissions.

o The hybrid approach (“*Mix”) of combining MWTs and
TEGs yields a significant reduction in CO2 emissions
compared to using TEGs alone, cutting emissions by
roughly 54% to 57% across the studied cases. Although
it still results in C O, emissions, it is more cost-effective
in service restoration than using MWTs alone.

Utilizing MWTSs alone provides a desirable decarbonization
practice but is less cost-effective while using TEGs alone
offers the greatest cost savings but also the highest C'Os

emissions. The hybrid approach balances both, cutting emis-
sions substantially while offering greater cost efficiency than
MWTs alone. Operators should weigh these considerations
against their specific priorities, whether they be financial,
environmental, or a balance of both, to make an informed
decision on the deployment of MPSs in disaster-struck areas.

TABLE I
PERFORMANCE OF MWTS, TYPICAL TEGS, AND THE HYBRID APPROACH
Case I Case II Case III
No MPSs 17,629k 17,996k 21,439k
Total Outage MWTs 8,443k 9,790k 11,610k
Costs ($) TEGs 2,485k 6,710k 7,791k
Mix 5,207k 7,521k 8,053k
COq MWTs 0 0 0
Emission TEGs 19.08 21.13 23.49
(ton) Mix 8.87 10.02 11.37

Next, we evaluate the impact of HSUs on DS service
restoration. Table II offers a summary of the results for all
investigated cases with and without consideration of using
HSUs. In the table, ”"Non-Use” refers to scenarios where
neither MWTs nor HSUs are employed, while “Both™ denotes
scenarios where a combination of MWTs and HSUs is imple-
mented. Table II showcases the benefits of integrating MWTs
with HSUs in reducing unserved energy and wind curtailment
across three studied cases. The combined use of MWTs and
HSUs consistently results in the least energy not served, indi-
cating the hybrid strategy’s effectiveness in enhancing power
delivery. Moreover, the expected wind curtailment percentage
is dramatically higher when neither technology is utilized.
The integration of MWTs alone mitigates wind curtailment
substantially, but the most significant reduction is achieved
when MWTs and HSUs are used jointly. The results suggest
that the combination of MWTs and HSUs could provide a
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more resilient and efficient solution to energy challenges in
the DS particularly when facing extreme events.

TABLE II
SUMMARY OF THE IMPACT OF HSUS ON DS RESTORATION
Case I Case I Case III
Energy Not Non-Use 17,428 18,066 21,047
Served MWTs Only 12,756 13,778 16,721
(kWh) Both 9,925 11,209 13,102
Expected Wind Non-Use 100 100 100
Curtailment MWTs Only  56.52 55.31 54.87
Percentage (%) Both 32.18 30.77 29.12

V. CONCLUSION

We proposed a new service restoration mechanism that helps
improve the resilience of the DS by making informed decisions
on the dispatch of MWTs, jointly operating with HSUs. In
order to capture the uncertainty in wind energy prediction,
the introduced problem is formulated as a JCCP model and
takes the form of a stochastic MINLP optimization problem.
An efficient linearization method is designed to reformulate it
as an equivalent MILP formulation. Numerical results on the
IEEE 123-node test system emphasized the benefit and efficacy
of the proposed approach for the DS resilience improvement
against extreme natural disasters while reducing carbon emis-
sions. The analyses of the results provide insights into how
more informed decisions could be made on the joint utilization
of MWTs and TEGs based on considerations against specific
priorities, such as cost-effectiveness, environmental impact,
and a balance of both. Future research could enhance the
decision-making process by incorporating an assessment of
the transportation network’s condition and availability in the
aftermath of an extreme disaster.
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