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Abstract—In the face of heightened societal interest in de-
carbonization, wind energy is emerging more and more as a
viable, low-emission source of clean power. Unlike stationary
wind turbines, mobile wind turbines (MWTs) possess the ability
to be transported by truck, supplying electricity to power
distribution systems (DSs). This spatiotemporal flexibility offers
notable advantages, especially in enhancing system resilience
following extreme natural disasters. However, the full potential
of these resources remains untapped, underscoring the need for
enhanced utilization strategies. In this paper, we develop an
optimal scheme for strategically dispatching MWTs to enhance
the resilience of the DS accounting for the uncertain predictions
of wind energy. A joint chance-constrained programming (JCCP)
model formulated as a mixed-integer nonlinear programming
(MINLP) problem is introduced to capture the uncertainty in
wind energy forecasts. We develop a linearization method that
are computationally feasible, allowing us to transform the MINLP
model into an equivalent mixed-integer linear programming
(MILP) formulation. Case studies conducted on the IEEE 123-
node test system illustrate the efficiency of the suggested service
restoration strategy in enhancing the resilience of the DS during
extreme events.

Index Terms—Mobile wind turbine (MWT); joint chance-
constrained programming (JCCP); wind energy forecasts; service
restoration.

NOMENCLATUREA. Sets

T Time periods.

I Nodes in the distribution system (DS).

L Lines in the DS.

S Segments in the DS.

Ic ⊂ I Candidate nodes in the DS.

Is ⊂ I Substation nodes in the DS.

M Mobile wind turbines (MWTs).

H Hydrogen storage units (HSUs).
B. Parameters

³i Value of lost load at node i.
´t Cost of energy not provided by the electric

utility at time t.
Ci Capacity of candidate node i for hosting

MWTs.

Da
it, D

r
it Amount of active/reactive power demand at

node i at time t.
Tm
ij Travel time from node i to j with MWT m.

¶is Indicator denoting whether candidate node i
belongs to segment s.

Wm Wind power capacity of MWT m.

¼lt Indicator denoting whether power line l is

energized at time t.
F a
l , F

r
l Active/Reactive power limit of line l.

Rl, Xl Resistance/Reactance of line l.
U Big M number.

V i, V i Minimum/Maximum squared voltage magni-

tude at node i.
Ga, Gr Active/Reactive power capacity of substation.

¶̂ih Indicator denoting whether HSU h is installed

at node i.
¹i, ¹i Lower/Upper bound of power factor angle at

node i.
Eh, Eh Lower/Upper bound of hydrogen storage level

(HEL) of HSU h.

¸h, ˜̧h Hydrogen-to-power (H2P)/Power-to-Hydrogen

(P2H) efficiency of HSU h.

Zh, Z̃h Limit of consumed/generated power of HSU h
in H2P/P2H mode.

C. Decision and Random Variables

xmit Binary variable equal to 1 if MWT m is

connected to candidate node i at time t.
yait, y

r
it Fraction of active/reactive power outage at

node i at time t.
wimt Power supplied by each MWT m to node i at

time t.
fa
lt, f

r
lt Active/Reactive power flow in line l at time t.

ϕa
it, ϕ

r
it Total active/reactive power delivery to node i

at time t.
vit Squared voltage magnitude at node i at time t.
zht, z̃ht Generated/Consumed power of HSU h in

H2P/P2H mode at time t.
Eht HEL of HSU h at time t.
µht, µ̃ht Binary variable equal to 1 if HSU h is in

H2P/P2H mode at time t.
Àst Random variable of predicted wind energy in

segment s at time t.
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I. INTRODUCTION

In recent years, the rise in extreme natural disasters like

wildfires, hurricanes, and floods has led to significant equip-

ment damage, extended power outages, considerable economic

losses, and widespread disruption to contemporary society [1].

For example, the United States witnessed more than 200,000

wildfire incidents between 2017 and 2020, which ravaged over

25 million acres of land [2]. In addition, the 2017 Hurricane

Harvey caused significant power outages ( 10,000 MW) and

left more than 291,000 people without electricity [3]. The

rising frequency of these extreme natural disasters can be

attributed to climate change, underscoring the importance of

establishing sustainable energy systems as a crucial measure to

alleviate the effects of climate change-induced extreme natural

disasters.

Taking into account environmental factors, there has been

extensive adoption and integration of renewable and eco-

friendly energy sources in current power systems [4]–[6]. The

swift integration of renewable energy resources substantially

achieves decarbonization and enhances the power grid re-

silience against extreme natural disasters [7]. For example, [8]

presents an adaptive robust optimization approach that aims to

expedite and ensure a self-healing process by synchronizing

the operations of wind farms and pumped-storage hydro units.

Reference [9] proposes a security-constrained economic dis-

patch model for seaport energy management via integrating

hydrogen resources.

Relative to statically-positioned renewable energy resources

such as wind turbines [10], photovoltaics [11], and hydrogen

storage units (HSUs) [12], [13], the application of mobile

power sources (MPSs) presents a notable opportunity to facili-

tate spatiotemporal flexibility exchange within the distribution

system (DS). This potential enhancement can contribute to

bolstering system resilience and optimizing overall efficiency.

For example, the research detailed in [14] suggests a two-stage

approach for restoring DSs, which fully utilizes the dispatch

of MPSs in combination with dynamic distribution network

reconfiguration across various seismic force scenarios. A novel

DS restoration mechanism for the use of MPSs jointly operated

with stochastic solar and wind energy sources, that captures the

corresponding uncertainties with joint probabilistic constraints

is developed in [15]. The study in [16] takes into account the

endogenous uncertainty related to the presence of MPSs, to

provide a more realistic assessment of how MPSs contribute

to enhancing the resilience of the DS. Reference [17] develops

a risk management model for the strategic placement of MPSs

and public safety power-shutoff actions, focusing on equi-

librating risks of wildfire and power-shutoff-induced power

interruption in the DS.

However, the investigation of MPSs in the literature [14]–

[17] reveals their reliance on traditional energy sources for

power supply, resulting in elevated operational expenses and

environmentally detrimental emissions. Mobile wind turbines

(MWTs), known for their compactness and portability, are

small-scale wind energy devices designed for easy trans-

portation, commonly used for power generation in areas not

connected to the grid or in isolated locations. Reference [18]

integrates the combined use of MWTs and electric thermal

storage into the energy portfolio, enabling load profile modi-

fication and avoiding costs linked to peak demand. With their

capacity for spatiotemporal adaptability, MWTs emerge as a

compelling option for delivering emergency energy to DSs in

the face of severe weather conditions. For example, the study

[19] develops a two-stage stochastic model to enhance system

resilience via pre-positioning of MWTs.

Fig. 1. A state-of-the-art mobile wind turbine setup [20].

As far as we are aware, analytical models are absent

in existing literature for the dispatch of MWTs for service

restoration. To bridge this gap, we introduce a new restora-

tion approach that encompasses the coordination of MWTs’

routing and scheduling, along with the management of HSUs.

A nonlinear joint chance-constrained programming (JCCP)

model is formulated to solve the proposed service restoration

scheme under uncertainty in predicted wind energy. The model

performance is tested and numerically verified on the IEEE

123-node test system.

The remainder of the paper is structured in the following

way: Section II introduces the proposed service restoration

model with JCCP formulation. Section III describes the

method to reformulate the proposed nonlinear formulation to

an equivalent linear model. Section IV presents the numerical

results, while Section V provides a conclusion of the research

findings.

II. PROPOSED METHODOLOGY

We here present a post-disaster service restoration model

(SRM), which accounts for the deployment of MWTs under

the uncertainty of wind energy and the operation of HSUs. The

introduced scheme is formulated as a stochastic mixed-integer

nonlinear programming (MINLP) problem with the following

objective function:

min
∑

i∈I

∑

t∈T

(³i + ´t)D
a
ity

a
it (1)

The goal of the objective function (1) is to reduce the overall

costs associated with power interruptions, encompassing both

the costs of disrupted energy for each node and energy not sold

by the electric utility at each time. The proposed optimization

model features a mixed-integer nonlinear framework, delin-

eated by the constraints outlined in subsequent subsections

II-A - II-D.
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A. MWTs Allocation and Operation Constraints

Constraint (2a) imposes a limitation on how many MWTs

can be assigned at each candidate node. Each MWT is allowed

to reside at only 1 node at any given period (see constraint

(2b)). Constraint (2c) denotes the deployment of MWTs.

Constraint (2d) implies the joint chance constraints in which

the probability that the available wind energy could be used

by MWTs in each DS segment satisfies a predefined reliability

level ϵ. Constraint (2e) stipulates that the power supplied by

MWT m in a candidate node does not surpass its designated

capacity when it is connected. There is no power output from

MWTs in non-candidate nodes (see constraint (2f)).
∑

m∈M

xmit ≤ Ci, i ∈ Ic, t ∈ T (2a)

∑

i∈Ic

xmit ≤ 1, m ∈ M, t ∈ T (2b)

xmi(t+τ) ≤ 1− xmjt,

m ∈ M, i, j ∈ I
c, Ä ≤ Tm

ij , t ≤ |T| − Ä (2c)

P
(

∑

m∈M

wmit¶is ≤ Àst, s ∈ S
)

≥ ϵ, i ∈ I
c, t ∈ T (2d)

0 ≤ wmit ≤ Wmxmit, m ∈ M, i ∈ I
c, t ∈ T (2e)

wmit = 0, m ∈ M, i ∈ I \ Ic, t ∈ T (2f)

B. Power Balance Constraints

Constraints (3a) and (3b) describe the active and reactive

power balance conditions at each DS node. Notations Θ(l) and

Γ(l) represent the parent and child nodes belonging to each

power line in the DS. Constraints (3c) and (3d) establish the

limits for active and reactive power injection at the substation

node of the DS. The setting of active and reactive power

delivery to nodes other than the substation is determined by

constraints (3e) and (3f).
∑

l∈Lφ;Θ(l)=i

fa
lt +Da

it(1− yait) =
∑

l∈Lφ;Γ(l)=i

fa
lt + ϕa

it,

i ∈ I, t ∈ T (3a)
∑

l∈Lφ;Θ(l)=i

fr
lt +Dr

it(1− yrit) =
∑

l∈Lφ;Γ(l)=i

fr
lt + ϕr

it,

i ∈ I, t ∈ T (3b)

0 ≤ ϕa
1t ≤ Ga, t ∈ T (3c)

0 ≤ ϕr
1t ≤ Gr, t ∈ T (3d)

ϕa
it =

∑

h∈H

(zht − z̃ht)¶̂ih +
∑

m∈M

wmit,

i ∈ I \ {1}, t ∈ T (3e)

ϕa
it tan ¹i ≤ ϕr

it ≤ ϕa
it tan ¹i, i ∈ I \ {1}, t ∈ T (3f)

C. Power Flow Constraints

Constraints (4a) and (4b) stipulate the active and reactive

power flows in the connected power lines, and force the value

of power flows to be 0 in disconnected power lines. Constraints

(4c) and (4d) denote the power flow equations where the

term U(¼lt − 1) or U(1 − ¼lt) guarantees the satisfaction

of the power flow condition across functional lines based on

the DistFlow model [15]. Constraint (4e) represents the limits

on the squared voltage magnitude of each node at any given

period.

− ¼ltF
a
l ≤ fa

lt ≤ ¼ltF
a
l , l ∈ L, t ∈ T (4a)

− ¼ltF
r
l ≤ fr

lt ≤ ¼ltF
r
l , l ∈ L, t ∈ T (4b)

vit − vjt ≤ 2(Rlf
a
lt +Xlf

r
lt) + U(1− ¼lt),

i, j ∈ I, l ∈ L, t ∈ T (4c)

vit − vjt ≥ 2(Rlf
a
lt +Xlf

r
lt) + U(¼lt − 1),

i, j ∈ I, l ∈ L, t ∈ T (4d)

V i ≤ vit ≤ V i, i ∈ I, t ∈ T (4e)

D. HSSs Operation Constraints

To enable efficient storage and use of renewable energy

resources, hydrogen storage units are considered in the restora-

tion process. The change in HELs of HSU h over time

is governed by their hydrogen-to-power (H2P) and power-

to-hydrogen (P2H) activities, as specified in constraint (5a).

Constraint (5b) sets the limits for the HEL in HSU h. The

output limits of HSUs in H2P and P2H modes are detailed

in constraints (5c) and (5d), respectively. Constraint (5e)

mandates that the H2P and P2H modes of HSU h cannot

operate simultaneously.

Eh(t+1) = Eht + (z̃ht ˜̧h − zht/¸h),

h ∈ H, t ∈ T \ {|T|} (5a)

Eh ≤ Eht ≤ Eh, h ∈ H, t ∈ T (5b)

0 ≤ zht ≤ Zhµht, h ∈ H, t ∈ T (5c)

0 ≤ z̃ht ≤ Z̃hµ̃ht, h ∈ H, t ∈ T (5d)

µht + µ̃ht ≤ 1, h ∈ H, t ∈ T (5e)

III. SOLUTION METHOD

The joint chance constraint introduced in equation (2d)

delineates a feasible region characterized by nonlinearity,

which implies that model SRM is not convex regardless of the

integrality restrictions on Several decision variables. We now

drive mixed-integer linear programming (MILP) reformulation

equivalent to model (5). Proposition 1 shows the process of

linearizing the nonlinear terms in the MINLP model when a

scenario-based reformulation is applied.

Proposition 1: Let µk ∈ {0, 1}k be the auxiliary decision

variables. The MILP reformulation problem R-SRM

min
∑

i∈I

∑

t∈T

(³i + ´t)D
a
ity

a
it (6a)

s.to. (2a) − (2c), (2e) − (5e) (6b)

−
∑

m∈M

wmit¶is ≥ Ék
st(1− µk),

k ∈ Ω, i ∈ I
c, s ∈ S, t ∈ T (6c)

∑

k∈Ω

pkµk ≤ 1− ϵ i ∈ I
c, t ∈ T (6d)

is equivalent to model SRM.

Proof. Consider a general JCCP model with a linear objec-

tive function as follows:
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min qTX (7a)

s.to. AX ≥ b (7b)

P(hjX ≥ Àj , j ∈ J) ≥ ϵ (7c)

X ≥ 0 (7d)

where Àj defines a vector of random variables following an

|J |-dimensional distribution with finite support and ϵ defines

a global reliability level for constraint (7c). Constraint (7b)

indicates the linear feasible region of the model (7). Based

on the scenario-based formulation presented in [21], the joint

chance constraint (7c) satisfies the constraints defined over set

J holistically with global reliability level p. Let notation Ω be

the set of scenarios, and Ék
j denote the realization of random

variable Àj in scenario k. The probability of each scenario is

denoted by pk. By defining a binary variable µk for each Ék
j ,

the reformulation model is described below:

min qTX (8a)

s.to. AX ≥ b (8b)

hjX ≥ Ék
j (1− µk), j ∈ J, k ∈ Ω (8c)

∑

k∈Ω

pkµk ≤ 1− ϵ (8d)

X ≥ 0. (8e)

Now, we introduce Ék
st to represent the realization of the

forecasted wind energy in DS segment s at time t in scenario

k. Derived by constraints (8c) and (8d), the nonlinear chance

constraint (2d) can be reformulated by constraints (6c) and

(6d).

The problem (objective function and all constraints) is then

linear, which provides the result we set out to prove. □

IV. NUMERICAL ANALYSES

A. System Description

The application of the introduced model and solution tech-

nique to the IEEE 123-node test system is presented in this

Section. The IEEE 123-node test system owns 1 substation,

123 nodes, and 122 lines (See Fig. 2), further information

on which is available in [22]. In this study, the IEEE 123-

node test system is assumed to host 15 candidate nodes and

6 HSUs. Six MWTs of 300 kW capacity are planned to be

used in the system restoration which is considered, in all tests,

to last for 12 hours in 48 periods of 15-minute duration. As

a medium-size DS [23], we partition the IEEE 123-node test

system into three segments, each featuring distinct realizations

of wind energy for the same period. Monte Carlo simulation is

utilized to generate 100 scenarios that capture the realizations

of wind energy in different segments of the DS following the

Weibull distribution [24].

The role of joint utilization of MWTs and HSUs on the DS

performance resilience is investigated through three different

cases described as follows:

• Case I: five lines are damaged by an incident;

• Case II: eight lines are damaged by an incident;

• Case III: twelve lines are damaged by an incident.

Fig. 2. The studied IEEE 123-node test system.

Numerical experiments were conducted on a PC with an Intel

i7-8700 processor and 32 GB of RAM. We used AMPL to

formulate the optimization problem, which was then solved

using the Gurobi 10.0.0 optimization solver.

B. Analysis and Discussions

In all cases, the damaged power lines are assumed to be

repaired within 12 hours, which is indicated by ¼lt. Figure

3 illustrates a comparative analysis of the percentage of

restored demand over 12 hours for three different cases,

both with and without the use of MWTs. In each case, the

inclusion of MWTs leads to a more rapid and higher portion

of demand restoration. For instance, Case I illustrates that

without MWTs, demand restoration remains at 5% throughout

the period, whereas with MWTs, it progressively increases

from 40% in the first hour to complete restoration by the 9th

hour. In Case II, there’s a consistent rise in DS restoration,

achieving full demand recovery by the 11th hour with MWTs.

Case III’s restoration trajectory is similar to Case I and Case

II with MWTs. Overall, each case achieves or approaches

full DS restoration with MWTs, contrasting sharply with the

scenarios without MWTs, where DS restoration is markedly

less efficient. This emphasizes the effectiveness of MWTs in

enhancing the DS restoration capacity over time, particularly

in scenarios that might represent different levels of initial

damage, available resources, or other varying conditions that

could affect restoration efforts.

Subsequently, we turn our attention to evaluating the impact

of MWTs on decarbonization efforts by contrasting their per-

formance with that of conventional transportable emergency

generators (TEGs). In particular, we scrutinize the efficacy of

six TEGs, each rated at 300 kW, in both restoring service

and facilitating decarbonization, while ensuring the conditions

remain constant across all the cases studied. Furthermore,

we explore a hybrid approach that leverages the combined

advantages of both MWTs and TEGs. In this scenario, we

integrate three MWTs with an equivalent number of TEGs,

adhering to the uniform settings applied in the previously

studied cases. This examination aims to discern the potential

synergies that may arise from the concurrent use of MWTs
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Fig. 3. The total restored load by the restoration horizon in different cases with and without MWTs.

and TEGs in enhancing DS service restoration while also

advancing decarbonization objectives. We calculate the carbon

dioxide (CO2) emissions produced by the operation of TEGs

during the restoration process, using data from the U.S.

Environmental Protection Agency report [25].

Table I illustrates the CO2 emissions and costs associated

with power outages when MWTs and TEGs are utilized. The

term ”No MPSs” in the table refers to the scenario without

considering any MPSs (i.e., MWTs and TEGs) for DS service

restoration in all studied cases. According to Table I, several

observations can be made:

• In all three cases, the utilization of different types of

MPS technologies leads to a significant reduction in total

outage costs when compared to scenarios without using

MPSs, with savings ranging from approximately 51% to

86%;

• CO2 emissions are eliminated when MWTs are used

alone, highlighting their environmental advantage, al-

though this approach, while reducing outage costs com-

pared to no MPSs scenario, is the less cost-effective

option among the strategies considered, with the smallest

reduction in outage costs.

• TEGs alone provide the most significant reduction in

outage costs across all cases but lead to the highest CO2

emissions.

• The hybrid approach (“Mix”) of combining MWTs and

TEGs yields a significant reduction in CO2 emissions

compared to using TEGs alone, cutting emissions by

roughly 54% to 57% across the studied cases. Although

it still results in CO2 emissions, it is more cost-effective

in service restoration than using MWTs alone.

Utilizing MWTs alone provides a desirable decarbonization

practice but is less cost-effective while using TEGs alone

offers the greatest cost savings but also the highest CO2

emissions. The hybrid approach balances both, cutting emis-

sions substantially while offering greater cost efficiency than

MWTs alone. Operators should weigh these considerations

against their specific priorities, whether they be financial,

environmental, or a balance of both, to make an informed

decision on the deployment of MPSs in disaster-struck areas.

TABLE I
PERFORMANCE OF MWTS, TYPICAL TEGS, AND THE HYBRID APPROACH

Case I Case II Case III

No MPSs 17,629k 17,996k 21,439k

Total Outage MWTs 8,443k 9,790k 11,610k

Costs ($) TEGs 2,485k 6,710k 7,791k

Mix 5,207k 7,521k 8,053k

CO2 MWTs 0 0 0

Emission TEGs 19.08 21.13 23.49

(ton) Mix 8.87 10.02 11.37

Next, we evaluate the impact of HSUs on DS service

restoration. Table II offers a summary of the results for all

investigated cases with and without consideration of using

HSUs. In the table, ”Non-Use” refers to scenarios where

neither MWTs nor HSUs are employed, while ”Both” denotes

scenarios where a combination of MWTs and HSUs is imple-

mented. Table II showcases the benefits of integrating MWTs

with HSUs in reducing unserved energy and wind curtailment

across three studied cases. The combined use of MWTs and

HSUs consistently results in the least energy not served, indi-

cating the hybrid strategy’s effectiveness in enhancing power

delivery. Moreover, the expected wind curtailment percentage

is dramatically higher when neither technology is utilized.

The integration of MWTs alone mitigates wind curtailment

substantially, but the most significant reduction is achieved

when MWTs and HSUs are used jointly. The results suggest

that the combination of MWTs and HSUs could provide a
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more resilient and efficient solution to energy challenges in

the DS particularly when facing extreme events.

TABLE II
SUMMARY OF THE IMPACT OF HSUS ON DS RESTORATION

Case I Case II Case III

Energy Not Non-Use 17,428 18,066 21,047

Served MWTs Only 12,756 13,778 16,721

(kWh) Both 9,925 11,209 13,102

Expected Wind Non-Use 100 100 100

Curtailment MWTs Only 56.52 55.31 54.87

Percentage (%) Both 32.18 30.77 29.12

V. CONCLUSION

We proposed a new service restoration mechanism that helps

improve the resilience of the DS by making informed decisions

on the dispatch of MWTs, jointly operating with HSUs. In

order to capture the uncertainty in wind energy prediction,

the introduced problem is formulated as a JCCP model and

takes the form of a stochastic MINLP optimization problem.

An efficient linearization method is designed to reformulate it

as an equivalent MILP formulation. Numerical results on the

IEEE 123-node test system emphasized the benefit and efficacy

of the proposed approach for the DS resilience improvement

against extreme natural disasters while reducing carbon emis-

sions. The analyses of the results provide insights into how

more informed decisions could be made on the joint utilization

of MWTs and TEGs based on considerations against specific

priorities, such as cost-effectiveness, environmental impact,

and a balance of both. Future research could enhance the

decision-making process by incorporating an assessment of

the transportation network’s condition and availability in the

aftermath of an extreme disaster.
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