
Complex Event Recognition From Discrete
Sensor Data With a Discrete Event System

Framework ⋆

Yu Liu ∗ , Shaolong Shu ∗ , Feng Lin ∗∗

∗ School of Electronics and Information Engineering, Tongji
University, Shanghai, China (e-mail: yuliu199711@tongji.edu.cn,

shushaolong@tongji.edu.cn).
∗∗ Department of Electrical and Computer Engineering, Wayne State

University, Detroit, MI 48202, USA (e-mail: flin@wayne.edu)

Abstract: Recognizing complex events revealed by sensor readings is an increasingly crucial
task that serves as the foundation for system monitoring and decision-making. In this paper, we
investigate the recognition problem for one class of complex events that can be represented by
a sequence of discrete sensor outputs. We call the outputs of discrete sensors as sensor events.
We use an automaton to describe all the sequences of sensor events that can be generated in
the given system. The complex events to be recognized is a set of sequences of events and can
be represented by the marked language of automaton. For a given sensor event sequence, we
introduce the notation “partition” to stand for a possible complex event sequence. Then the
problem is translated to find all the possible partitions for the given sensor event sequence. By
constructing an augmented automaton that includes all the possible partitions, we find sufficient
and necessary conditions for the existence of solutions. We then find an algorithm to verify the
conditions. Finally, an online complex event recognition procedure is proposed to determine the
occurred complex events when the complex event problem is solvable.

Keywords: Discrete event systems, Complex event recognition, Discrete sensor data,
Augmented automaton, State pair.

1. INTRODUCTION

In recent years, complex event recognition has received
increasing attention from researchers in different fields.
A successful and accurate complex event recognition ap-
proach is important for practical applications including
health monitoring (Wu et al. (2016)), social networks (Shi
et al. (2019)), power grid (Wiot (2004)), etc. Recognizing
and comprehending the complex events revealed by sensor
readings is a crucial task that serves as the foundation for
system monitoring and decision-making.

Techniques for complex event recognition are classified into
two primary categories depending on the type of com-
plex events: data-based approaches and model-based ap-
proaches. Researchers favor data-based approaches when
they do not have a priori knowledge of the complex events
to be recognized or the generation mechanisms of com-
plex events are not evident. This type of complex event
detection is also known as anomaly detection (Chandola
et al. (2008)), which aims at identifying unspecific complex
events from raw data. Due to the inherent lack of labeled
data, anomaly detection is typically treated as an unsu-
pervised machine-learning task. Li et al. (2019) propose
an unsupervised multivariate anomaly detection method,
using the LSTM-RNN as the base model in the GAN
framework to capture the temporal correlation of time
⋆ The authors of this paper are supported by the National Natural
Science Foundation of China under Grants 62073242 and 61773287.

series. Zong et al. (2018) employ Auto-Encoder (AE) as a
deep learning model for anomaly detection by inspecting
its reconstruction errors. Dai and Gao (2013) mentioned
the K-Nearest Neighbor algorithm and derived anomaly
scores based on average distance. The data-based method
provides a feasible recognition method for complex event
recognition of unknown patterns, but its high resource con-
sumption and extended detection time limit its application
in many scenarios.

Model-based approaches can well address the complex
event recognition problem when the generation pattern of
the complex events to be identified is well characterized.
Although data-based approaches can also accomplish the
complex event recognition problem when the pattern is
explicit, model-based approaches have the advantages of
low resource consumption, high interpretability and accu-
racy, and better recognition speed, and are widely used
in many resource-constrained scenarios, such as complex
event recognition in the sensor domain. The detection of
complex events that feature evident patterns can be trans-
lated into the detection of sequences of events. Brenna
et al. (2009) gives an evaluation of alternative approaches
for distributing an event processing system that is based on
NFAs. Ozer et al. (2011) demonstrate how utilizing Petri
net can assist us to model and recognize complex events in
large 3D scientific data sets. Sadoghi and Jacobsen (2011)
proposed a tree-based approach that achieves superiority
in comparison with previous index structures designed for

matching expressions, and graph-based alternatives have
been examined intensively as well. (Chakravarthy and
Mishra (1994), Gruber et al. (1999)).

In this study, we focus on complex events which can be
revealed by discrete sensor readings. We call the outputs
of discrete sensors as sensor events. A complex event is
represented by a sequence of sensor events. The occur-
rence of sequences of sensor events is constrained by the
dynamics of practical systems. Hence we use an automaton
to describe all the sequences of sensor events that can
be generated in the given system. The complex events
to be recognized is a set of sequence of events and can
be represented by the marked language of automaton.
The problem to be investigated becomes to determine the
occurred complex event sequence from the observed sensor
event sequence. For a given sensor event sequence, there
may be multiple possible complex event sequences. We
introduce the notation “partition” to stand for a possible
complex event sequence. Then the problem is translated
to find all the possible partitions for the given sensor event
sequence. By constructing an augmented automaton that
includes all the possible partitions, we find the sufficient
and necessary conditions under which the complex event
recognition problem has solutions. We then construct an
automaton in which each state is a state pair of the
augmented automaton and successfully find an algorithm
to verify the conditions. Finally, we propose an online
complex event recognition procedure to determine the
occurred complex events when the complex event problem
is solvable.

In discrete event systems, related work is summarized
as follows. Genc and Lafortune (2006), and Jeron et al.
(2006) considered the pattern diagnosis problem. They
modeled fault patterns as sequences of events. The goal
is to determine the occurrence of faults or predict their
occurrence in advance. They propose algorithms to verify
the solvability of the pattern diagnosis problem. Ye and
Dague (2012) extended the results of Genc and Lafortune
(2006) and Jeron et al. (2006) into distributed discrete
event systems. Jin et al. (2008) investigated the recognition
problem of complex event generated in the RFID data
stream and the main contribution is to find an algorithm
to determine the occurrence of complex events online from
the sequence of sensor events. Saives et al. (2015) adopted
a similar algorithm as Jin et al. (2008) to determine the
occurrence of activities of inhabitants in the smart home
which is modeled as sequences of sensor events online.
Viard et al. (2020) considered the probability of occurrence
of events and solved the same problem in a probabilistic
automaton framework.

Compared with the aforementioned related work, the
work of this paper is different and novel in the following
aspects. 1. Our problem is to find the unique occurred
complex event sequence for any observed sensor events
while the problem introduced in Genc and Lafortune
(2006), Ye and Dague (2012), and Jeron et al. (2006) is to
determine whether patterns (similar to complex events)
occur or not. 2. We propose an algorithm to verify the
existence of solutions for our problem. Our algorithm is
implemented by constructing an augmented automaton
Gc which is proposed for the first time. 3. The online
complex event recognition procedure is more effective than

these algorithms in Jin et al. (2008), Saives et al. (2015)
and Viard et al. (2020) by adopting the property that the
occurred complex event is unique.

The rest of the paper is organized as follows. Section II
introduces the discrete event system and some necessary
notations. Section III formally states the complex event
recognition problem. Section IV finds an algorithm to
check the existence of solutions, and Section V proposes an
online complex event recognition procedure to determine
the occurred complex events. Finally, we conclude the
paper in Section VI.

2. DISCRETE EVENT SYSTEMS

A discrete event system is modeled by a deterministic
automaton as

G = (Q,Σ, δ, q0, Qm)

where Q is the finite state set, Σ is the finite event set,
δ : Q×Σ → Q is the state transition function that defines
the dynamics of the automaton. The transition function δ
is extended to δ : Q×Σ∗ → Q in the usual way, where Σ∗

denotes the Kleene closure of Σ. Γ(q) denotes the set of
events generated at state q ∈ Q. The initial state is q0. Qm

is the marked state set. If we do not care for the marked
states, we can re-write G as G = (Q,Σ, δ, q0).

We use δ(q, s)! to denote that δ(q, s) is defined. The
language generated by G is defined as:

L(G) = {s ∈ Σ∗ : δ(q0, s)!}
The language marked by G is

Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm}

As usual, we extend an deterministic automaton into a
nondeterministic automaton as

Gnd = (Q,Σ, δnd, q0, Qm)

where the state transition function is defined as δnd : Q×
Σ → 2Q. The language generated by Gnd is defined as:

L(Gnd) = {s ∈ Σ∗ : δ(q0, s)!}
The language marked by Gnd is

Lm(Gnd) = {s ∈ L(Gnd) : δ(q0, s) ∩Qm ̸= ∅}

For a string s, s′ and t in Σ∗, if s′t = s, we say s′ is a
prefix of s and t is a suffix of s. The set of all prefixes of s
is denoted as

Pre(s) = {s′ ∈ Σ∗ : (∃t ∈ Σ∗)s′t = s}
Especially, we define the set Pre+(s) as

Pre+(s) = Pre(s)− {ε}
The set of all suffixes of s is denoted as

Suff(s) = {s′ ∈ Σ∗ : (∃t ∈ Σ∗)s′t = s}
Especially, we define the set Suff+(s) as

Suff+(s) = Suff(s)− {ε}

For a string s = σ1σ2σ3 · · ·σm, we use sk to denote
the prefix consisting of the first k events, that is, sk =
σ1σ2 · · ·σk. We use s−k to denote the suffix composed of
the last k events, that is, s−k = σm−k+1σm−k+2 · · ·σm.

For a string s = σ1σ2σ3 · · ·σm and a prefix s′ =
σ1σ2 · · ·σk, we use s/s′ to denote the suffix obtained by
removing the prefix s′, that is, s/s′ = σk+1 · · ·σm.

With a slight abuse of notations, for a string like s, we
use |s| to denote its length. For a set like Q, we use |Q| to
denote its cardinality.

3. PROBLEM STATEMENT

3.1 Sensor events

Assume that there are k discrete sensors. The set of sensors
is denoted as

SN = {sn1, ..., snk}

A discrete sensor may have multiple discrete outputs. Let
us take the photoelectric switch as an example. It has two
discrete outputs. One is for the case when the switch is
turned on and the other is for the case when the switch
is turned off. Without loss of generality, we use a label
to represent a discrete output and call it a sensor event.
Hence for a sensor sni, we can define the set of all its sensor
events as

Σsni = {σ1, σ2, ..., σj}
The set of all sensor events is then denoted as

ΣSN =
⋃

sni∈SN

Σsni

The occurrence of sensor events is constrained by the
dynamics of the system. It means not all the strings in
Σ∗

SN can occur, but a subset will be generated. We assume
the subset can be generated by an automaton GSN as

GSN = (QSN ,ΣSN , δSN , q0,SN)

where QSN is the finite state set; ΣSN is the finite sensor
event set; δSN : QSN ×ΣSN → QSN is the state transition
function that defines the dynamics of the automaton. The
transition function δ is extended to δSN : QSN × Σ∗

SN →
QSN in the usual way. The initial state is q0,SN .

The language generated by the automaton is defined as

L(GSN) = {s ∈ Σ∗
SN : δSN (q0,SN , s)!}

where δSN (q0,SN , s)! means that δSN (q0,SN , s) is defined.

3.2 Complex events

In this paper, we consider a class of complex events of
which each is represented by a sequence of sensor events.

We assume there are l complex events to be recognized
and denote the set of complex events as

E = {e1, e2, ..., el}

For each complex event ei, it is a sequence of sensor events
and is denoted as

ei = σ1σ2...σm

Note that E is a set of complex events and a language on
Σ.

Here, we assume that complex events in E satisfy

(∀ei, ej ∈ E)ei ̸∈ Pre(ej)

which ensures that for any two complex events, they can be
distinguished by observing the occurrence of their sensor
events.

3.3 Complex event recognition

In practice, as the given system runs, we will observe
the occurrence of sensor events one by one. For the
observed sensor event sequence, we wish to determine
which complex event sequence has occurred.

In order to simplify the complex event recognition prob-
lem, we make the following two assumptions.

Assumption 1. The occurrence of complex events can not
be overlapped. That is, at any time, at most one complex
event can occur.

Assumption 2. When a complex event ei occurs, only the
corresponding sensor events in the sequence σ1σ2...σm(=
ei) can be observed in the same order.

Let us introduce some notations. For given two strings
s1, s2 ∈ Σ∗, we say s1 is a substring of s2 and denote it as
s1 ⊆ s2 if

s2 = s′s1s
′′

where s′, s′′ ∈ Σ∗.

For a given sensor event sequence s ∈ L(G), if it can be
re-written as

s = s1ek1
s2ek2

...snekn
sn+1

where

sj ∈ Σ∗ ∧ (∀ei ∈ E)ei ̸⊆ sj j = 1, 2, ..., n+ 1

We say (s1, ek1 , s2, ek2 , ..., sn, ekn , sn+1) is a partition pt of
s. We use a set Π(s) to denote all partitions as

Π(s) ={(s1, ek1 , s2, ek2 , ..., sn, ekn , sn+1) :

s = s1ek1
s2ek2

...snekn
sn+1

∧ (∀j ∈ {1, · · · , n+ 1})sj ∈ Σ∗

∧ (∀ei ∈ E)ei ̸⊆ sj}

For a partition pt = (s1, ek1
, s2, ek2

, ..., sn, ekn
, sn+1) of s,

the corresponding complex event is

CE(pt) = ek1
...ekn

With the above knowledge, we can formally state the
complex event recognition problem as

Complex Event Recognition Problem of Discrete
Event Systems (CERP-DES): Given an automaton GSN

driven by sensor events and a set of complex events E,
for any observed sensor event sequence s ∈ L(GSN), we
want to uniquely determine the occurred complex event
sequence, that is, to uniquely determine the partition pt
of s.

Note that for any string s ∈ L(GSN), partitions always
exist. if the problem is solvable, we have |Π(s)| = 1.

Let us use an example to illustrate these results.

Example 1. For a given system, the sensor event sequences
which may be observed are described by automaton
GSN = (QSN ,ΣSN , δSN , q0,SN), which is shown in Fig.
1.

The set of complex events is E = {e1, e2}, where e1 = σ1σ2

and e2 = σ2σ3. E can be re-written as E = {σ1σ2, σ2σ3}.
Suppose that the observed sensor event sequence is
s = σ1σ2σ3σ4σ1σ3σ2σ2σ3, with complex event set E, s
could be re-written as s = e1σ3σ4σ1σ3σ2e2 and s =

1 4

0







2

3







5


Fig. 1. Sensor event automaton GSN

σ1e2σ4σ1σ3σ2e2. Hence we can find two partitions for
string s, that is

pt1 = (ε, e1, σ3σ4σ1σ3σ2, e2, ε)

pt2 = (σ1, e2, σ4σ1σ3σ2, e2, ε)

It means the complex event recognition problem is not
solvable.

In fact, we can find two possible complex event sequences
CE(pt1) = e1e2 and CE(pt2) = e2e2 from the partitions.
We have no ways to determine which complex event
sequence is the one that really occurred.

4. EXISTENCE OF SOLUTIONS

This section considers the existence of solutions. That is,
we want to check the following statement

(∀s ∈ L(GSN))|Π(s)| = 1

holds or not.

Let us first introduce the following lemma.

Lemma 1. For given string s ∈ L(GSN), if there exists a
complex event ei such that

(∃s′, s′′ ∈ Σ∗)s = s′eis
′′,

we then can find a partition for s

(s1, ek1
, s2, ek2

, · · · , ekm−1
, sm, ei, sm+1, ekm

, · · · , sn+1)

such that

(s1, ek1
, s2, ek2

, · · · , ekm−1
, sm) ∈ Π(s′)

(sm+1, ekm , · · · , sn+1) ∈ Π(s′′)

Proof. Surely, we can find at least a partition for strings
s′ and s′′, respectively. We write one partition for s′ as

(s1, ek1
, s2, ek2

, · · · , ekm−1
, sm)

and one partition for s′′ as

(sm+1, ekm
, · · · , sn+1)

Now we want to show

(s1, ek1
, s2, ek2

, · · · , ekm−1
, sm, ei, sm+1, ekm

, · · · , sn+1)

is a partition of s.

Indeed, we have

(∀si ∈ {s1, · · · , sn+1})(∀ei ∈ E)ei ̸⊆ sj
⇒(s1, ek1

, · · · , ekm−1
, sm, ei, sm+1, ekm

, · · · , sn+1) ∈ Π(s)

Let us use an automaton GE

GE = (Y,ΣSN , δy, y0, Ym)

to represent complex event set E, such that

Lm(GE) = E

Our idea is to combine GE and G into an automaton that
includes all the information on complex events and the
dynamics of sensors.

We denote the combination as

Gc =(X,ΣSN , δc, x0, Xm)

=CoAc(QSN × Y,ΣSN , δc, (q0, y0), QSN × Ym)

which is constructed as follows.

For each state (q, y) in QSN × Y and sensor event σ in
ΣSN , we define its transition for the following two cases.

Case 1: y = y0 ∨ y ∈ Ym. In this case, σ may be the
first event of a complex event or is a disturbance. Here we
define δc((q, y), σ) as (1) on the top of this page.

Case 2: y ̸= y0 ∧ y /∈ Ym. In this case, a complex event is
occurring, σ should be a part of the complex event. Here
we define δc((q, y), σ) as (2) on the top of this page.

After we define all the transitions, we remove those tran-
sitions which are not in the paths from the initial state
x0 to a marked state xm ∈ Xm by the operation CoAc(·).
We then obtained Gc. We extend the transition function
δc to δc : X ×Σ∗ → X in the usual way. Note that Gc is a
non-deterministic automaton and has the same dynamics
of GSN as L(Gc) = L(GSN).

Let us use an example to illustrate how to construct Gc.

Example 2. We continue to consider the sensor event au-
tomaton GSN shown in Fig. 1. For the complex event set
E = {σ1σ2, σ2σ3}, the corresponding automaton GE is
shown in Fig. 2 and the marked state set is Ym = {y2, y4}.

We demonstrate the construction of the combination Gc

as follows. The initial state of Gc is (0, y0). At initial
state, event σ1 can occur, which satisfies Case 1. Hence
we have δc((0, y0), σ1) = {(1, y0), (1, y1)}. At state (1, y1),
event σ2 can occur, which satisfies Case 2. Hence we have
δc((1, y1), σ2) = (2, y2).

By performing the same operation for each state, we
can obtain the complete automaton. Note that after the
operation CoAc(·), all the states that are not on the paths
from the initial state to marked states will be deleted. The
obtained automaton is shown as in Fig. 3

Because automatonGc is non-deterministic, for each string
s = σ1σ2 · · ·σl generated by it, s has multiple paths. Each
path is denoted as

Path = x0σ1xk1
σ2xk2

· · ·σlxkl
(3)

For any prefix s′ ∈ Pre(s), the state reachable in the path
Path is

StaPath(s
′) = xk|s′| (4)

Note that StaPath(ε) = x0. We further define the string
generated by the path Path as

Str(Path) = σ1σ2 · · ·σl (5)

Each state x in X is a doubleton. We use SR1(x) to denote
its first element and SR2(x) to denote its second element.
Automaton Gc has the following properties.

Proposition 1. For each path Path and the string s =
Str(Path) generated by it, we can find a partition

StaPath(s) ∈ Xm ⇒ (∃s′ ∈ Σ∗)(∃ei ∈ E)s = s′ei

δc((q, y), σ) =


{(δ(q, σ), δy(y, σ)), (δ(q, σ), y0)} if δ(q, σ)! ∧ δy(y, σ)!

{(δ(q, σ), y0)} if δ(q, σ)! ∧ ¬δy(y, σ)!
undefined if ¬δ(q, σ)! ∧ ¬δy(y, σ)!

(1)

δc((q, y), σ) =

{
{(δ(q, σ), δy(y, σ))} if δ(q, σ)! ∧ δy(y, σ)!

undefined if ¬δ(q, σ)! ∨ ¬δy(y, σ)!
(2)



 

 

 

 

Fig. 2. Complex event automaton GE

Fig. 3. Combination automaton Gc

Proof. By StaPath(s) ∈ Xm, s can be divided as s =
s′′s′′′ such that

StaPath(s
′′) = x0 ∧ (∀s′′′′ ∈ Pre+(s′′′))StaPath(s

′′′′) ̸= x0

⇒(∀s′′′′ ∈ Pre(s′′′))δy(y0, s
′′′′)! ∧ δy(y0, s

′′′) ∈ Ym

(By the definition of δc)

⇒s′′′ ∈ Lm(GE)

⇒(∃ei ∈ E)s′′′ = ei

⇒(∃s′ ∈ Σ∗)(∃ei ∈ E)s = s′ei

(Let s′ = s′′)

Proposition 2. For each string s and each partition pt of
it as

pt = (s1, ek1
, s2, ek2

, ..., sn, ekn
, sn+1),

we can find a path Path(s = Str(Path)) such that, for
any si in pt,

(∀s′ ∈ Pre+(si))StaPath(s1ek1
· · · s′)

= (δSN (q0, s1ek1 · · · s′), y0)
and for any eki in pt,

(∀s′ ∈ Pre+(eki))StaPath(s1ek1 · · · s′)
= (δSN (q0, s1ek1

· · · s′), δy(y0, s′))

Proof. By the definition of δc for Case 1, for s1 =
σk1

σk2
...σk|s1| , we can find a path for it as

(q0, y0)
σk1−→ (δSN (q0, σk1), y0)

σk2−→ (δSN (q0, σk1σk2), y0) · · ·

σk|s1|−→ (δSN (q0, s1), y0)

By the definition of δc for Case 2, for ek1
= σk′

1
σk′

2
...σk′

|ek1
|
,

we can find a path for it as

δSN (q0, s1), y0)
σk′

1−→ (δSN (q0, s1σk′
1
), y0)

σk′
2−→ · · ·

σk′
|ek1

|
−→ (δSN (q0, s1ek1

), y0)

Consequently, we can find paths for s2, ek2 , ...si, eki For
si = σl1σl2 ...σl|si|

, the path is

δSN (q0, s1ek1
...eki−1

), y0)
σl1−→ (δSN (q0, s1ek1

...σl1), y0)
σl2−→ · · ·

σl|si|−→ (δSN (q0, s1ek1
...si), y0)

For eki = σl1σl′2
...σl′|eki

|
, the path is

δSN (q0, s1ek1
...si), y0)

σl′
1−→ (δSN (q0, s1ek1

...σl′1
), y0)

σl′
2−→ · · ·

σl′
|eki

|
−→ (δSN (q0, s1ek1

...sieki
), y0)

The concatenation of these paths with the order of its
corresponding string in pt is a path of s such that

(∀s′ ∈ Pre+(si))StaPath(s1ek1
· · · s′)

= (δSN (q0, s1ek1
· · · s′), y0)

and

(∀s′ ∈ Pre+(eki
))StaPath(s1ek1

· · · s′)
= (δSN (q0, s1ek1

· · · s′), δy(y0, s′))

We then have the following theorem to show when CERP-
DES is solvable.

Theorem 1. CERP-DES has solutions if and only if, there
does not exist string s = s′s′′ ∈ L(GSN) such that

(∃y, y′ ∈ Y − Ym)(∃y′′, y′′′ ∈ Ym){y, y′′} ∈ SR2(δc(x0, s
′))

∧ {y′, y′′′} ∈ SR2(δc(x0, s
′s′′)) ∧ (∃ei ∈ E)s′′

∈ Suff+(ei) \ {ei} ∧ δy(y, s
′′) = y′′′

∧ δy(y
′′, s′′) = y′ (6)

Proof. Note that CERP-DES is not solvable if and only
if there exists a string s ∈ L(GSN) which has no less than
two partitions. With it, let us prove Theorem 1.

(IF) When equation (6) holds, we have

y′′ ∈ Ym ∧ y′′ ∈ SR2(δc(x0, s
′))

⇒there exists one path Path such that

SR2(StaPath(s
′)) = y′′

⇒(∃ei ∈ E)s′ = s′′′ei
(By Proposition 1)

⇒we can find a partition for s′ as

(s1, ek, ..., sn+1, ei)

(By Lemma 1)

⇒we can find a partition pt1 for s as

pt1 = (s1, ek1
, ..., sn+1, ei, s

′′)

(Because (∃ei ∈ E)s′′ ∈ Suff+(ei) \ {ei})
For equation (6), we further know that

y′′′ ∈ Ym ∧ y′′′ ∈ SR2(δc(x0, s))

⇒(∃ej ∈ E)s = s′′′ej
(By Proposition 1)

⇒we can find a partition pt2 for s as

pt2 = (s, ek1 , ..., sn, ej)

(By Lemma 1)

Because s′′ ̸= ε, pt1 ̸= pt2. It means that we can find at
least two different partitions for s, hence CERP-DES is
not solvable.

(ONLY IF) If CERP-DES is not solvable, we can find two
different partitions pt1 and pt2 for string s as

pt1 = (s1, ek1
, s2, ek2

, ..., ekn
, sn+1) (7)

pt2 = (s′1, em1
, s′2, em2

, ..., emn′ , s
′
n′+1) (8)

such that

(s1, ..., ekn) ∈ Pre+(s′1, ..., emn′)

∧s′1...emn′/s1...ekn ⊂ Suff+(emn′)

Let

s′ = s1...ekn
,

s′′ = s′1...emn′/s1...ekn ,

s′′′ = ekn
/(s|s|−|em

n′ |/s′|s
′|−|ekn |).

By proposition 2, we have

δy(y0, s
′′′) ∈ SR2(δc(x0, s

′))∧
δy(y0, ekn

) ∈ SR2(δc(x0, s
′))∧

δy(y0, emn′) ∈ SR2(δc(x0, s
′s′′))∧

δy(y0, s
′′) ∈ SR2(δc(x0, s

′s′′))

⇒(∃y, y′ ∈ Y − Ym)(∃y′′, y′′′ ∈ Ym)

{y, y′′} ∈ SR2(δc(x0, s
′)) ∧ {y′, y′′′} ∈ SR2(δc(x0, s

′s′′))

∧ (∃ei ∈ E)s′′ ∈ Suff+(ei) \ {ei} ∧ δy(y, s
′′) = y′′′

∧ δy(y
′′, s′′) = y′

(Let y = δy(y0, s
′′′), y′ = δy(y0, s

′′),

y′′ = δy(y0, ekn
) and y′′′ = δy(y0, emn′))

The demonstration of states y, y′, y′′, y′′′ and strings
s′, s′′, s′′′ are shown in Fig. 4.

𝑦′′

𝑦0 𝑦0

𝜎3
𝑒0 = 𝜎1𝜎2𝜎3

Sensor event
sequence

𝑒1𝑒2 𝑒3

𝑒𝑘𝑛

𝑒4

𝑦

𝑠′

𝑠′′
𝑒𝑚𝑛′

𝑠′′′

𝑠

𝑦′′′

𝑦′

𝑠1𝑒𝑘1 … 𝑠𝑛

𝑠′1𝑒𝑚1
… 𝑠′𝑛′

𝑠𝑛+1

𝑠′𝑛′+1

Fig. 4. Demonstration of proof of Theorem 1

Theorem 1 shows the state pairs in Gc should be consid-
ered. The following procedure is to construct an automa-
ton GA which includes all the state pairs we are interested
in.

The automaton GA is

GA = (Z,ΣSN , δz, z0, Zm)

= Ac(X ×X,ΣSN , δz, (x0, x0), Xm ×X ∪X ×Xm)

For state (x, x′), and event σ ∈ Σ, we calculate their
reachable states as

Reach(x, σ) = δc(x, σ)

Reach(x′, σ) = δc(x
′, σ)

we then define the transition for state z = (x, x′) and event
σ as (9) on the top of the next page.

With GA, we have Algorithm 1 to check whether CERP-
DES has solutions or not.

Algorithm 1: Checking Existence of Solutions

Input: Automaton

GA = (Z,Σ, δz, z0, Zm)

Output: YES or NO
1 Set Ent = ∅
2 For any two states z1, z2 ∈ Zm and any complex event

ei ∈ E, check whether GA can reach z2 from z1 via a
string s ∈ Suff+(ei)/{ei}. If it is true, we set

Ent = Ent ∪ {(z1, z2, s)}
3 if Ent = ∅ then
4 Go To Line 6

5 OUTPUT NO, END
6 OUTPUT YES, END

Algorithm 1 is correct as shown in the following theorem.

Theorem 2. If Algorithm 1 outputs YES, then CERP-DES
is solvable. Else, Algorithm 1 outputs NO and CERP-DES
has no solutions.

Proof. By Algorithm 1, we know

Ent ̸= ∅
⇔(∃z1, z2 ∈ Zm)(∃s ∈ Σ∗)(z1, z2, s) ∈ Ent

⇔(∃z1, z2 ∈ Zm)(∃s ∈ Σ∗) ∧ s ∈ Suff+(ei)/{ei}
∧ δz(z1, s) = z2

⇔(∃((q, y), (q′′, y′′)), ((q′′′, y′′′), (q′, y′)) ∈ Zm)(∃s′′ ∈ Σ∗)

δz(((q, y), (q
′′, y′′)), s′′) = ((q′′′, y′′′), (q′, y′))

∧ (∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei}
⇔(∃((q, y), (q′′, y′′)), ((q′′′, y′′′), (q′, y′)) ∈ Zm)

(∃s′′ ∈ Σ∗)δc((q, y), s) = (q′′′, y′′′)

∧ δc((q
′′, y′′), s′′) = (q′, y′)

∧ (∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei}
⇔[(∃(q′′, y′′), (q′′′, y′′′) ∈ Xm)(∃(q, y), (q′, y′) ∈ X−

Xm)(∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei} ∧ δc((q, y), s
′′)

= (q′′′, y′′′) ∧ δc((q
′′, y′′), s′′) = (q′, y′)]

∨ [(∃(q′′, y′′), (q′′′, y′′′) ∈ Xm)(∃(q, y), (q′, y′) ∈ X−
Xm)(∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei} ∧ δc((q, y), s

′′)

= (q′, y′) ∧ δc((q
′′, y′′), s′′) = (q′′′, y′′′)]

(By Zm = Xm ×X ∪X ×Xm)

⇔(∃(q′′, y′′), (q′′′, y′′′) ∈ Xm)(∃(q, y), (q′, y′) ∈ X−
Xm)(∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei} ∧ δc((q, y), s

′′)

= (q′′′, y′′′) ∧ δc((q
′′, y′′), s′′) = (q′, y′)

δz((x, x
′), σ) =

{
Reach(x, σ)×Reach(x′, σ) if Reach(x, σ) ̸= ∅ ∧Reach(x′, σ) ̸= ∅
undefined else

(9)

(By (∀ei, ej ∈ E)ei ̸⊆ ej)

⇔(∃y′′, y′′′ ∈ Ym)(∃y, y′ ∈ Y − Ym)(∃s′, s′′ ∈ Σ∗)

{y, y′′} ∈ SR2(δc(x0, s
′))

∧ {y′, y′′′} ∈ SR2(δc(x0, s
′s′′))

∧ δy(y
′′, s′′) = y′ ∧ δy(y, s

′′) = y′′′

∧ (∃ei ∈ E)s′′ ∈ Suff+(ei)/{ei}
⇔CERP-DES has no solutions

(By Theorem 1)

Example 3. We continue to consider the system and com-
plex events shown in Fig. 1 and Fig. 2. The set of complex
events is E = {e1, e2}, where e1 = σ1σ2 and e2 = σ2σ3.
Automaton GA is constructed as follows. The initial state
is z0 = ((0, y0), (0, y0)). From the initial state, for event
σ1, we have

δz(z0, σ1) = {((1, y0), (1, y0)), ((1, y0), (1, y1)),
((1, y1), (1, y0)), ((1, y1), (1, y1))}

At state z1 = ((1, y0), (1, y1)), for event σ2, we have

δz(z1, σ2) = {((2, y3), (2, y2)), ((2, y0), (2, y2))}
We demonstrate part of GA as in Fig. 5.

Fig. 5. Part of automaton GA

We now check if there exists a solution by Algorithm 1.
Initially, Ent = ∅. For marked states z1 = ((2, y3), (2, y2))
and z2 = ((3, y4), (3, y0)), we have δz(z1, σ3) = z2. Since
σ3 ∈ Suff+(e2)/{e2}, the set Ent is updated as

Ent = {(((2, y3), (2, y2)), ((3, y4), (3, y0)), σ3)}
In Line 3 of Algorithm 1, Ent ̸= ∅ and the output of
Algorithm 1 is NO. Thus, CERP-DES is not solvable.

5. ONLINE COMPLEX EVENT RECOGNITION

Theorem 2 tells us when CERP-DES is solvable. We know
if CERP-DES is solvable, for any string generated by
L(GSN), there is only one partition and we can determine
the complex event sequence uniquely. This section will
develop one effective algorithm to calculate the unique
complex event sequence for each observed sensor event se-
quence, which is performed online. Note that our algorithm
works when CERP-DES is solvable.

For a complex event, before the sensor event sequence is
observed, we should store its prefix which has occurred.
Hence we have the following procedure to calculate the
complex event sequence.

Initially, the observed sequence is ε and the prefix set is
an empty set as PreSet = ∅. The output is nothing which
means no complex event has occurred.

Assume a sensor event sequence s has occurred and the
prefix set is PreSet = {s1, s2, · · · , sn}.
When a new sensor event σi occurs, we revise the prefix
set as

TempSet = {s1σi, s2σi, · · · , snσi, σi}
Note that σi may be the first sensor event of a complex
event.

Check if there is a string in TempSet which is a complex
event. If it is true, we know a complex event has occurred.
The output is the occurred complex event. The prefix set
should be updated as ∅. Else, we check if these strings are
prefixes of complex events. If a string in TempSet is a
prefix, we then put it in PreSet as

PreSet = {si ∈ TempSet : (∃ej ∈ E)si ∈ Pre+(ej)}
and output nothing.

Example 4. We continue to consider the system shown in
Fig.1, the complex event set is E = {e1, e2} as e1 = σ1σ2σ3

and e2 = σ2σ2σ3, automaton GE is shown in Fig. 6.
We can verify CERP-DES is solvable with the approach
proposed in the previous section.

Fig. 6. Complex event automaton GE

Now let us consider how to determine the occurred com-
plex event sequence online. Assuming that the observed
sensor event sequence is σ1σ2σ3σ4σ1σ3σ2σ2σ3.

Initially, no sensor event occurs and the prefix set is
PreSet = {ε}.

After sensor event σ1 is observed, we have σ1 ∈ Pre+(e1).
We then update the prefix set as PreSet = {σ1} and
output nothing.

The next observed sensor event is σ2, we have TempSet =
{σ1σ2, σ2}. Because σ1σ2 ∈ Pre+(e1) and σ2 ∈ Pre+(e2),
PreSet is updated as PreSet = {σ1σ2, σ2} and we still
output nothing.

When σ3 is observed, TempSet = {σ1σ2σ3, σ2σ3}. Since
σ1σ2σ3 = e1, complex event e1 is recognized and the
output is e1. PreSet is then updated as empty set.

The complete recognition process is shown in Table 1.
We can see that for the observed sensor event sequence

Table 1. Recognize complex events online

Observed

sensor events
Occurred sensor event sequence Preset Output

Occurred complex

event sequence

ε ε {ε} None None

σ1 σ1 {σ1} None None

σ2 σ1σ2 {σ1σ2, σ2} None None

σ3 σ1σ2σ3 ∅ e1 e1

σ4 σ1σ2σ3σ4 ∅ None e1

σ1 σ1σ2σ3σ4σ1 {σ1} None e1

σ3 σ1σ2σ3σ4σ1σ3 ∅ None e1

σ2 σ1σ2σ3σ4σ1σ3σ2 {σ2} None e1

σ2 σ1σ2σ3σ4σ1σ3σ2σ2 {σ2σ2, σ2} None e1

σ3 σ1σ2σ3σ4σ1σ3σ2σ2σ3 ∅ e2 e1e2

σ1σ2σ3σ4σ1σ3σ2σ2σ3, the occurred complex event se-
quence is e1e2.

6. CONCLUSIONS

This paper investigates complex event recognition from
discrete sensor data. The main contributions are summa-
rized as follows: 1) We formally state the complex event
recognition problem in a discrete event system framework.
2) We propose an algorithm to verify if there exists a
solution for the complex event recognition problem. 3)
An effective online recognition approach is designed to
handle the sensor event stream when the complex event
recognition problem is solvable. With these results, the
complex event recognition problem is successfully solved.

REFERENCES

Brenna, L., Gehrke, J., Hong, M., and Johansen, D.
(2009). Distributed event stream processing with non-
deterministic finite automata. In Proceedings of the
Third ACM International Conference on Distributed
Event-Based Systems, DEBS ’09. Association for Com-
puting Machinery.

Chakravarthy, S. and Mishra, D. (1994). Snoop:
An expressive event specification language for active
databases. Data Knowl. Eng., 14, 1–26.

Chandola, V., Mithal, V., and Kumar, V. (2008). Com-
parative evaluation of anomaly detection techniques for
sequence data. In 2008 Eighth IEEE International Con-
ference on Data Mining, 743–748.

Dai, X. and Gao, Z. (2013). From model, signal to knowl-
edge: A data-driven perspective of fault detection and
diagnosis. IEEE Transactions on Industrial Informatics,
9(4), 2226–2238.

Genc, S. and Lafortune, S. (2006). Diagnosis of patterns
in partially-observed discrete-event systems. In Pro-
ceedings of the 45th IEEE Conference on Decision and
Control, 422–427. doi:10.1109/CDC.2006.377450.

Gruber, R., Krishnamurthy, B., and Panagos, E. (1999).
The architecture of the ready event notification service.
In Proceedings. 19th IEEE International Conference on
Distributed Computing Systems. Workshops on Elec-
tronic Commerce and Web-based Applications. Middle-
ware, 108–113.

Jeron, T., Marchand, H., Pinchinat, S., and Cordier,
M.O. (2006). Supervision patterns in discrete event

systems diagnosis. In 2006 8th International Work-
shop on Discrete Event Systems, 262–268. doi:
10.1109/WODES.2006.1678440.

Jin, X., Lee, X., Kong, N., and Yan, B. (2008). Efficient
complex event processing over rfid data stream. In
Seventh IEEE/ACIS International Conference on Com-
puter and Information Science (icis 2008), 75–81. doi:
10.1109/ICIS.2008.60.

Li, D., Chen, D., Jin, B., Shi, L., Goh, J., and Ng, S.K.
(2019). Mad-gan: Multivariate anomaly detection for
time series data with generative adversarial networks. In
I.V. Tetko, V. Kůrková, P. Karpov, and F. Theis (eds.),
Artificial Neural Networks and Machine Learning –
ICANN 2019: Text and Time Series, 703–716. Springer
International Publishing, Cham.

Ozer, S., Silver, D., Bemis, K., Martin, P., and Takle, J.
(2011). Activity detection for scientific visualization.
In 2011 IEEE Symposium on Large Data Analysis and
Visualization, 117–118.

Sadoghi, M. and Jacobsen, H.A. (2011). Be-tree: An
index structure to efficiently match boolean expressions
over high-dimensional discrete space. In Proceedings of
the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, 637–648.

Saives, J., Pianon, C., and Faraut, G. (2015). Activity
discovery and detection of behavioral deviations of an
inhabitant from binary sensors. IEEE Transactions on
Automation Science and Engineering, 12(4), 1211–1224.
doi:10.1109/TASE.2015.2471842.

Shi, L.L., Liu, L., Wu, Y., Jiang, L., Kazim, M., Ali, H.,
and Panneerselvam, J. (2019). Human-centric cyber
social computing model for hot-event detection and
propagation. IEEE Transactions on Computational
Social Systems, 6(5), 1042–1050.

Viard, K., Fanti, M.P., Faraut, G., and Lesage, J.J. (2020).
Human activity discovery and recognition using prob-
abilistic finite-state automata. IEEE Transactions on
Automation Science and Engineering, 17(4), 2085–2096.
doi:10.1109/TASE.2020.2989226.

Wiot, D. (2004). A new adaptive transient monitoring
scheme for detection of power system events. IEEE
Transactions on Power Delivery, 19(1), 42–48.

Wu, J., Xia, M., and Shu, S. (2016). Location tracking of a
single inhabitant in smart home: A discrete event system
approach. In 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Comput-

ing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 615–620.

Ye, L. and Dague, P. (2012). A general algorithm for
pattern diagnosability of distributed discrete event sys-
tems. In 2012 IEEE 24th International Conference on
Tools with Artificial Intelligence, volume 1, 130–137. doi:
10.1109/ICTAI.2012.26.

Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C.,
Cho, D., and Chen, H. (2018). Deep autoencoding gaus-
sian mixture model for unsupervised anomaly detection.
In International conference on learning representations.

