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Supervised Learning in Model Reference Adaptive Sliding Mode Control
Omar Makke* ■ and Feng Lin ■

Abstract: The well known back-propagation algorithm has revolutionized machine learning and artificial intel-
ligence, particularly in neural network applications. Although gradient descent-based algorithms are utilized in
control applications, they are not as prevalent as in neural network applications. This discrepancy can be attributed
to the successful development of various adaptation laws which ensure system stability while meeting the required
design criteria. Many of these laws can be found in model reference adaptive control (MRAC) and adaptive sliding
mode control (ASMC). This paper investigates the applicability of the Brandt-Lin (B-L) learning algorithm, math-
ematically equivalent to the back-propagation algorithm, in adaptive control applications. We find that combining
the B-L learning algorithm with SMC yields a robust controller suitable for model reference adaptive sliding mode
control (MRA-SMC). The controller is applicable to linear and a class of nonlinear dynamic systems and is suitable
for efficient implementation. We derive the stability criteria for this controller and conduct simulations to study the
adaptation’s impact on chattering. Our work exemplifies one approach to adopt the back-propagation algorithm in
control applications.

Keywords: Adaptive Control, Online Learning Algorithms, Model Reference Adaptive Control (MRAC), adaptive
sliding mode control (ASMC), Chattering Reduction, Back-Propagation Algorithm

1. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML)
are increasingly being adopted in various scientific do-
mains and applications. Specifically, neural networks have
been gaining popularity and fame even among non-
technical audience due to Generative AI. Central to this
increase in popularity is the well known back-propagation
algorithm [1]. Supervised deep learning is one of the most
widely used methods in neural networks [2] [3]. Although
various learning algorithms1 have been proposed for neu-
ral networks, the back-propagation algorithm is probably
the most well known and widely used [4] [5] in supervised
learning. The back-propagation algorithm gained popular-
ity due to its ease of use, availability of fast computers, and
software which performs automatic differentiation such
as Autograd [6], which made training large and complex
neural networks easier. In comparison, in control applica-
tions, the application of the back-propagation algorithm
is not trivial. First, the errors have to be back-propagated
through a dynamic system, and second, the system stabil-
ity, including parameters’ convergence, must be guaran-
teed. Over the years, various adaptation algorithms have
been successfully developed for wide range of applica-

1“Learning” and “adaptation” will be used interchangeably.
The word “algorithm” is used here in a generalized sense
to mean a model or a mathematical description for updating
weights/parameters of neural networks or dynamic systems.

tions in model reference adaptive control (MRAC) and
adaptive sliding mode control (ASMC).

The aim of this paper is to (1) investigate the applica-
bility of the back-propagation algorithm in adaptive con-
trol due to its large success in supervised learning appli-
cations, and (2) design an adaptive controller that is based
on the back-propagation algorithm. It is known that slid-
ing mode control (SMC) can result in chattering which can
be harmful to physical components if not addressed [7]. It
is also known that MRAC requires the controlled plant to
match the reference model [8]. We find that combining the
back-propagation adaptation algorithm with sliding mode
control is applicable to model reference adaptive sliding
mode control (MRA-SMC), which benefits from the ro-
bustness of SMC and model matching from MRAC. An
adaptive controller can match a class of nonlinear plants
to a linear reference model where the dynamics of both
systems can differ. The controller parameters “learn" the
values of the plant’s coefficients which is also beneficial
in diagnostics and prognostics applications [9]. Further-
more, the parameter adaptation reduces the chattering phe-
nomenon. The controller can be implemented in analog
fashion since no dedicated backwards step is required.

The paper is organized as follows. In Section 2, we re-
view recent and relevant work in the literature. In Section
3, we give a brief review of the Brandt-Lin (B-L) learn-
ing algorithm for neural networks, chosen for the back-
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propagation algorithm implementation. Section 4 extends
B-L learning algorithm to general dynamic systems so that
it can be used in adaptive control. Section 5 applies the
extended B-L algorithm to adaptive PID control and dis-
cusses the rationale behind combining sliding mode con-
trol with the B-L learning algorithm for adaptive control.
In Section 6, the MRA-SMC reaching law is derived us-
ing Lyapunov method. Stability of the system and conver-
gence of the adaptation are also proved. Section 7 presents
Simulink simulations to demonstrate the controller’s ef-
fectiveness using both linear and nonlinear plants. Finally,
Section 8 concludes the paper.

2. BACKGROUND

In this section we review some of the advancements
in learning and adaptation in relation to our work. In
[10], Adaptive Neural Networks PID controller structure
is proposed for control robot manipulators. Neural net-
works learn the Fourier series expansion of the signal and
the plant. This allows the errors to be back-propagated
through the learnt plant at the cost of added computa-
tional complexity. In [11] Bayesian optimization is pro-
posed to optimize PID controllers for aircraft maneuver-
ing control. In [12] an adaptive swarm learning process
is applied to auto-tune a PID controller. This learning al-
gorithm is based on gradient descent and it updates the
weights in discrete fashion. In [13], recursive least square
method is used to adapt a PID for DC motor control. In
[14], a PID with switching action controller is provided,
although this method is not adaptive. It demonstrates the
advantages of combining a PID controller with sliding
mode control. Other fuzzy adaptive tuning methods are
proposed to adapt PID controllers [15] [16]. In [7] [17],
non adaptive methods are proposed to reduce chattering.
In relation to adaptive sliding mode control (ASMC), sev-
eral recent methods have been proposed. In [18] [19] [20],
the proposed adaptive methods reduce chattering due to
the adaptation of parameters. These methods, however,
do not focus on model reference control. In [21], a new
adaptive method is proposed but it is not based on back-
propagation. In [22], the method is direct MRA for Single
Input Single Output Systems (SISO) as our work, but is
applicable only to linear systems.

In [23] [24] [25] [26], Brandt and Lin developed a learn-
ing algorithm (abbreviated as B-L algorithm below) that is
mathematically equivalent to the back-propagation algo-
rithm in neural networks. The algorithm does not require a
dedicated feedback step for error back-propagation, which
makes it suitable for online learning and for analog control
applications.

In comparison to the reviewed work, the intention of
our work is to show how the back-propagation algorithm
(using the B-L learning algorithm) can be utilized in adap-
tive control. We focus on model reference control and aim

to “learn” the plant’s coefficients.

3. B-L LEARNING ALGORITHM

Because the new learning algorithm to be proposed is
an extension of the B-L learning algorithm from neural
networks to general systems, let us briefly review the B-L
algorithm.

To describe a neural network (either hierarchical or
non-hierarchical), we enumerate all neurons in a neural
network as N = {1,2, ...,N}. We do not put any restric-
tions on connections among neurons. The weights of the
connection from the i-th neuron to the j-th neuron is de-
noted by wi j. The set of all connections is denoted by

Ψ = {wi j : i, j ∈N ∧ i is connected to j}.

Not all neurons have preceding neurons. If a neuron
does not have preceding neutrons, then we consider it as
an input neuron. The set of input neurons is denoted by

I = {n ∈N : (∀ j ∈N )w jn ̸∈ Ψ}.

The firing rates of input neurons rn, n ∈ I, are considered
as the inputs to the neural network.

The dynamics of non-input neuron n ∈ N −I are de-
scribed by its membrane potential pn and firing rate rn,
given by

pn = ∑
wmn∈Ψ

wmn rm, rn = σ(pn),

where σ(pn) = 1/(1+ e−pn) is the sigmoidal function.
The weights wi j can be adapted to minimize the follow-

ing least square error

E =
1
2 ∑

m∈O
(rm − r̃m)

2,

where O is the set of output neurons and r̃m is the de-
sired/target firing rate of the output neuron m ∈ O.

The following learning algorithm is proposed by Brandt
and Lin in [23, 26] to adapt the weights wi j ∈ Ψ.

ẇi j = σ
′(p j)

ri

r j
(−γr j(r j − r̃ j)+ ∑

w jm∈Ψ

w jm ẇ jm), (1)

where σ ′(p j) is the derivative of σ(p j).
It is proved in [23, 26] that the following is true for the

B-L algorithm of Equation (1).

ẇi j =−γ
dE

dwi j
, (2)

where γ is the adaptation/learning rate, which is a design
parameter. The above equation shows that the gradient-
decent-based learning is achieved. Note that the signifi-
cance of the B-L algorithm is that the adaptation of the



Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE 3

weights is described as a function of time, which makes it
suitable for on-line learning.

The B-L algorithm is mathematically equivalent to
the back-propagation algorithm for neural networks, but
has several advantages over the back-propagation algo-
rithm that allows it to be generalized to other systems
[23, 26, 27]. In the next section, we extend the B-L algo-
rithm to general dynamic systems.

4. SUPERVISED LEARNING IN DYNAMIC
SYSTEMS

We extend the B-L algorithm to general dynamic sys-
tems by replacing neurons in a neuron network by subsys-
tems described by either an algebraic equation or a differ-
ential equation. We model a general dynamic system by
a generalized signal-flow graph (GSFG), which has all el-
ements of a conventional signal-flow graph (CSFG) [28].
In addition, some nodes in GSFG are super nodes as to be
discussed below.

Assume that a GSFG has N nodes. Denote a node by

n ∈N = {1,2, ...,N}.

Denote the branch (if exists) and its gain from node i to
node j by ωi j. The set of branches/gains is denoted by

Ω = {ωi j : i, j ∈N ∧ node i is connected to node j}.

The set Ω is partitioned into two sets:

Ω = Ωa ∪Ωna,

where Ωa is the set of adaptable branches/gains and Ωna
is the set of non-adaptable branches/gains. Non-adaptable
branches have gains which are constants, that is,

ωi j ∈ Ωna ⇔ ωi j = ω̄i j,

where ω̄i j are constants.
As mentioned above, some nodes in N are super nodes.

A super node consists of a pair of input and output, de-
noted by

(un,yn),

where un is the input to node n and yn is the output from
node n. Let U = {un : R → R} be a set of all inputs to
a super node n. The relationship between un and yn is de-
scribed by

yn = Gn[un]. (3)

where Gn
2 is a functional which maps every input function

of time to an output function of time. If the super node
is linear and time-invariant, then Gn is the convolution of

2Gn can be viewed as the model of a single-input-single-
output system starting at −∞.

the input with the impulse response of the super node. We
assume that the Fréchet derivative of Gn, denoted by G′

n,
exists3.

If a node n ∈ N is not a super node, then yn = un, that
is, Gn is an identity mapping: Gn[un(t)] = un(t).

As in CSFG, the input signal of node n is the sum of all
signals flowing to n:

un =
N

∑
m=1

ωmn ym. (4)

Our goal is to use on-line learning to learn/adapt the
gains ωi j ∈ Ωa so that some error is minimized. We as-
sume that the error is a function of outputs:

E = E(y1,y2, ...,yN).

Theorem 1: Consider an adaptive system described by
a generalized signal-flow graph with nodes n ∈ N and
branches ωi j ∈ Ω. Using the following new learning al-
gorithm

ω̇i j = G′
j[u j]

yi

y j
(−γy j

∂E
∂y j

+ ∑
ω jm∈Ωa

ω jm ω̇ jm + ∑
ω jm∈Ωna

ω̄ jm ω̇ jm),
(5)

where γ is the adaptation/learning rate, the gradient-
decent-based on-line learning is achieved as

ω̇i j =−γ
dE

dωi j
. (6)

Proof
The proof can be found in [27]. In comparison with

equation (1), equation (5) replaces σ ′ with the Fréchet
derivative G′, and considers branches which have fixed
(non-adaptable) parameters ω̄ jm.

Note that if node j is an output node, Equation (5) re-
duces to

ω̇i j =−γyiG′
j[u j]

∂E
∂y j

. (7)

5. ADAPTIVE CONTROL BY SUPERVISED
LEARNING

In this section, we investigate adaptive control using the
B-L algorithm from the previous section. We consider the
PID control of Figure 1, where the gains Kp, Ki, and Kd
are adapted to minimize the square of error e = y− ỹ, that
is,

E =
1
2

e2 =
1
2
(y− ỹ)2.

3The Fréchet derivative [29] of Gn is defined as a functional
such that

lim
||ε||→0

||Gn[u+ ε]−Gn[u]−G′
n[u]ε||

||ε||
= 0.
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Using Theorem 1 and Equation (7), we have

K̇p =−γzpG′
j
∂E
∂y

=−γzpG′
je.

Approximating the Fréchet derivative G′ by a constant
(see [27]), absorbing it into γ , and doing the same for Ki,
and Kd , we obtain the following adaptation law

K̇p =−γzpe K̇i =−γzie K̇d =−γzde (8)

R

G+
zp

zi

zd

u3

u2

u1

u y

e =

u4
c

Fig. 1. Model reference adaptive PID control.

A simulation study is conducted to test the adapted con-
trol for a linear stable plant with the following transfer
function

G(s) =
5

s2 +2.4s+2.25
.

The reference model is given by

R(s) =
25s2 +50s+100

s3 +27.4s2 +52.25s+100
.

A perfect match of the controlled system with the refer-
ence model is possible when

Kp = 10, Ki = 20, Kd = 5 (9)

In the simulation, the initial gains are given by

Kp = 12, Ki = 18, Kd = 3 (10)

To provide adequate excitation [30] for gains to con-
verge, we first use input c(t) = sin(2πt) + sin(πt). The
results are shown in Figure 2, where the error goes to 0
and Kp,Ki,Kd converge to the true values.

However, if the frequency of the input is increased to
c(t)= sin(4πt)+sin(πt), the error does not go to 0. Figure
3a shows a phase shift between y and ỹ. This leads to a
constant error depending on the initial values of the gains
and causes the gains to not converge to a final value as
shown in Figure 3b.

Intuitively, adaptation using e(t) at time t is slow with
respect to the plant dynamics. To improve the adaptation,
we consider the “predicted” error e(t +h) for (small) h >

(a) Gains are adapting.

0 500 1000

seconds

-0.5

0

0.5 e

(b) Error is minimized.

Fig. 2. The error e is minimized and the gains in Equation
(10) approach those in Equation (9).

1139 1140 1141

seconds

-2

-1

0

1

2
y

r

(a) y is leading r (b) Parameters keep drifting.

Fig. 3. Performance deteriorates at higher frequencies.

0 and approximate e(t + h) by q(t) = e(t) + hė(t). The
adaptation laws are then modified to

K̇p =−γzpq K̇i =−γziq K̇d =−γzdq (11)

which can be obtained from Equation (7) with E = 1
2 q2.

With these modifications, the gains converge again as
shown in Figure 4. The performance is also better than the
one shown in Figure 2. Using q, the error is now smaller
by an order of magnitude. This suggests that combining
sliding mode control with the B-L learning algorithm is
beneficial, which will be done the following section.

(a) Parameters adapting.

0 500 1000

seconds

-0.5

0

0.5
e

(b) Error is minimized.

Fig. 4. Parameters converge to their desired values when e
is replaced with q.

One may notice that e(t+h) can be expanded to include
as many derivatives of e(t) as needed to match the plant’s
order, that is, (e(t + h))2 = (e(t)+ hė(t)+ h2

2 ë(t)+ ...)2.
This is the motivation to combine sliding mode control
with with the B-L learning algorithm.
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6. THE PROPOSED MRA-SMC METHOD

Consider a second order dynamic system described by
the following differential equation:

ÿ+
I

∑
i=1

aigi(ẏ,y) = u (12)

Similarly, consider the following second order reference
model driven by an input c.

¨̃y+
I

∑
i=1

ãiri( ˙̃y, ỹ) =
J

∑
j=1

b j f j(c, ċ) (13)

We assume that the reference model is stable, which
is reasonable for any practical application. To simplify
the notation, in the rest of the paper, we will write
∑

I
i=1,∑

J
j=1,gi(ẏ,y),ri( ˙̃y, ỹ) and f j(c, ċ) as ∑i,∑ j,gi,ri and

f j, respectively, if appropriate. Note that our method can
be extended to high-order systems, but with more complex
notations. Note further that f (.), g(.), and r(.) can differ,
and can be nonlinear. We assume that they are continuous
and bounded if their input is continuous and bounded. The
goal of adaptive control is to adapt the gains ωi and v j so
that the following error is minimized

E =
1
2

q2 =
1
2
(ė+λe)2,

where e = y − ỹ and q = ė + λe, and λ > 0. We use q
instead of s to avoid confusing s with the complex variable
s used in transfer functions. Define

xi = ωi +ai − ãi

z j = v j −b j,
(14)

and x = [x1, ...,xI ] and z = [z1, ...,zJ ].
When x = z = 0, the adapted parameters reach their de-

sired values and e = 0, q = 0.
By Theorem 1, the adaptation/learning is given by

ω̇i = γgiq, v̇ j =−γ f jq (15)

We treat equation (15) as part of the system dynamics
and design a model reference adaptive sliding mode con-
trol

u = ∑
j

v j f j −∑
i

ωigi −λ ė−∑
i

ãri +∑
i

ãgi +u2 (16)

where u2 will be given later. The control architecture is
shown in Figure 5. We prove that under this control, q→ 0,
x → xf and z → zf as t → ∞ for some constant values xf
and zf using Lyapunov Theorem. Consider the following
candidate Lyapunov function

V (q,x,z
)
=

1
2
(q2 +∑

i
x2

i +∑
j

z2
j) (17)



y

c

+

+
-
-

Plant

 q
e

1

I

g1

gI

f1

fJ

q

q

u

Reference Model

…

…

vJ

v1

MRA-SMC

u2

Fig. 5. Controller architecture. ω1, ω2, v1 and v2 adapt via
the B-L Algorithm.

It is clear that{
V
(
q,x,z

)
= 0 q = 0∧x = 0∧ z = 0

V
(
q,x,z

)
> 0 Otherwise

(18)

Suppose at t = 0 we know the worst case the initial val-
ues of q, x and z which maximize V (t = 0). Let Vmax be the
largest possible value of V (0). Furthermore, suppose we
know the worst case initial values of y, ẏ, c, and ċ which
maximize |g(t = 0)| and | f (t = 0)|. Let f ∗ and g∗ be the
maximum possible values of | f (t = 0)| and |g(t = 0)|. At
t > 0, f (.) and g(.) are known and can be computed. De-
fine

| f |max(t)=

{
| f ∗| t = 0
| f (t)| t > 0

|g|max(t)=

{
|g∗| t = 0
|g(t)| t > 0

(19)

*** Since f and g are functions of y, ẏ, c, and ċ, they are
known online. So, we can simply let | f |max(t) = | f (t)| and
|g|max(t)= |g(t)|. Therefore, I use | f (t)| and |g(t)| directly
and revised the above and umax as follows.

Suppose at t = 0 we know the worst case the initial val-
ues of q, x and z which maximize V at t = 0. Denote the
resulting maximum by Vmax. Define

sign(q) =


1 q > 0
0 q = 0
−1 q < 0

(20)

*** I changes 1+V to 1+2V in umax so that Lemma 1 in
your new version is no longer needed, because by Equa-
tion (17), x2

i ≤ 2V .
We have the following lemma.
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Lemma 1: Let u2 = (umax − |ε|)sign(q), where ε is a
(small) constant and

umax = (1− γ)(∑
i
(1+2Vmax)|gi|+∑

j
(1+2Vmax)| f j|)

(21)

with γ > 1. Then V̇ (q,x,z
)
= d

dt V
(
q,x,z

)
≤−|q||ε| ≤ 0.

Proof
We first prove the following.

|∑
j

z j f j −∑
i

xigi|

≤∑
i
|xi| |gi|+∑

j
|z j| | f j|

≤∑
i
(1+ x2

i )|gi|+∑
j
(1+ z2

j)| f j|

(because x2
i +1−|xi|= (|xi|−0.5)2 +0.75 ≥ 0)

≤∑
i
(1+2V )|gi|+∑

j
(1+2V )| f j|

(by Equation (17), x2
i ≤ 2V )

≤∑
i
(1+2Vmax)|gi|+∑

j
(1+2Vmax)| f j|.

Hence, for γ > 1, (1− γ)< 0 and

umax −|ε|
=(1− γ)(∑

i
(1+2Vmax)|gi|+∑

j
(1+2Vmax)| f j|)−|ε|

≤(1− γ)|∑
j

z j f j −∑
i

xigi|− |ε|

(22)

Therefore,

V̇ (q,x,z
)

=qq̇+∑
i

xiẋi +∑
j

z j ż j

=qq̇+∑
i

xiω̇i +∑
j

z j v̇ j

=q(q̇+∑
i

xiγgi −∑
j

z jγ f j)

(by Equation (15))

=q(ë+λ ė+∑
i

xiγgi −∑
j

z jγ f j)

=q(ÿ− ¨̃y+λ ė+∑
i

xiγgi −∑
j

z jγ f j)

=q(u−∑
i

aigi +∑
i

ãiri −∑
j

b j f j +λ ė

+∑
i

xiγgi −∑
j

z jγ f j)

(by Equations (12) and (13))

=q(∑
j

v j f j −∑
i

ωigi −λ ė−∑
i

ãri +∑
i

ãgi +u2

−∑
i

aigi +∑
i

ãiri −∑
j

b j f j

+λ ė+∑
i

xiγgi −∑
j

z jγ f j)

(by Equation (16))

=q(∑
j
(v j −b j) f j −∑

i
(ωi +ai − ã)gi +u2

+∑
i

xiγgi −∑
j

z jγ f j)

=q(∑
j

z j f j −∑
i

xigi +u2 +∑
i

xiγgi −∑
j

z jγ f j)

(by Equation (14))

=q(1− γ)(∑
j

z j f j −∑
i

xigi)+qu2

=q(1− γ)(∑
j

z j f j −∑
i

xigi)+q(umax −|ε|)sign(q)

=q(1− γ)(∑
j

z j f j −∑
i

xigi)+ |q|(umax −|ε|)

≤q(1− γ)(∑
j

z j f j −∑
i

xigi)

+ |q|(1− γ)|∑
j

z j f j −∑
i

xigi|− |q||ε|

(by Equation (22))

≤−|q||ε|
(because (1− γ)< 0 implies (1− γ)A

+(1− γ)|A| ≤ 0 for A = q(∑
j

z j f j −∑
i

xigi)).

Therefore{
d
dt V

(
q,x,z

)
< 0, if |q|> 0

d
dt V

(
q,x,z

)
= 0, if q = 0

(23)

Q.E.D.

Lemma 2: Suppose q is bounded. Then e and ė are
bounded.

Proof
Consider the linear system described by q= e+λ ė with

the input q and outputs e and ė. The system is stable be-
cause λ > 0. It is well-known that for any stable linear sys-
tem, bounded input cannot generate unbounded outputs.

Q.E.D.

Theorem 2: The parameters ωi and v j converge to
some final values. Furthermore, q(t) is asymptotically sta-
ble and converges to 0.

Proof
We first prove that q(t) is asymptotically stable.

Consider the candidate Lyapunov function Vq(q) =
V (q,0,0) = 1

2 q2(t). Clearly, Vq(0) = 0 if q = 0 and
Vq(t) > 0 otherwise. Also, from equation (23), V̇q(t) = 0
if q = 0 and V̇q(t) < 0 otherwise. Hence, Vq(t) is a Lya-
punov function. Therefore, q(t) is asymptotically stable
and converges to 0.
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Now, q is asymptotically stable ⇒ q is bounded ⇒ e
and ė are bounded (by Lemma 2) ⇒ y and ẏ are bounded
(because the reference model is stable implies ỹ and ˙̃y
are bounded) ⇒ gi and f j are bounded ⇒ limt→∞ ω̇i = 0
and limt→∞ v̇ j = 0 (by Equation (15) and limt→∞ q = 0).
Hence, the parameters ωi and v j converge to some final
values.

Q.E.D.
Remark 1: The convergence of the parameters to their

desired values (not just to some final values) highly de-
pends on the input characteristics and plant dynamics.
Simulations below show that with persistent excitation,
parameters do converge to their desired values.

Clearly, the worst case conditions give direction on how
to set the adaptation rate γ . If there is certainty that the ini-
tial values are all small, then γ can be practically large. If
γ is made large, then there is increased chattering initially.
However, as the parameters adapt, |q| gets smaller. We
can take advantage of q and the parameters convergence
to reduce chattering. When |q| is permanently small, the
parameters approach their final values, and therefore, the
worst case umax can be reduced. We accept a small error
and set u2 to

u2 = (kumax|q|−
1
k
)sign(q) k ≫ 0 (24)

Note that kumax|q| > umax and V̇ (t) ≤ 0 when |q| > 1
k .

Equation (24) may cause V̇ (t) > 0 when |q| < 1
k . We

set ω̇i = 0 and v̇ j = 0 when |q| < 1
k to avoid parameter

drift. This is not a problem because |q| ≈ 0 anyway. If
V̇ (t) > 0 remains true, then |q| > 1

k will occur and then
V̇ (t)< 0. Therefore, to reduce chattering, we made q sta-
ble (not asymptotically stable) and bounded by 1

k . We re-
duced chattering but acquired a very small error, which is
a very practical approach for many applications.

7. SIMULATION RESULTS

7.1. LINEAR PLANT WITH LINEAR REFER-
ENCE MODEL

Consider the following plant G(s) and reference R(s):

R(s) =
20

s2 +20s+20
and G(s) =

1
s2 −15s+5

(25)

*** Please specify gi, ri, and f j.
Assume that the plant’s initial condition is y(0) = 1.

Let λ = 100, γ = 10, k = 100, and initially, ω2(0) = 2,
ω1(0) = −2, v1(0) = 5. The desired final values for the
parameters are ω1 = 15, ω2 = 35 and v1 = 20 to satisfy
Equation (14). We first run the simulation using a DC
input. The results are shown in Figure 6. In this exam-
ple no chattering is observed. Even though the parameters
did not converge to their desired values in Figure 6a, they
did converge to some final values. The same simulation is

(a) Parameters converging to
their final values.

(b) Error approaches 0 with no
chattering.

0 10 20 30 40

seconds

0

0.5

1

r

y

(c) Tracking performance.

10 20 30 40

Seconds

5

5.0002

5.0004

5.0006

5.0008 u

(d) Control effort u.

Fig. 6. Controller performance using DC input for unsta-
ble linear plant.

repeated using three sinusoidal inputs of 10Hz, 1Hz and
0.4Hz to provide persistent excitation. The parameters did
converge to their desired values as shown in Figure 7a.
Also, Figure 7 shows that chattering is present yet is small
after the parameters converged on their values, and there
are no at the input or the error.

7.2. NONLINEAR PLANT WITH LINEAR REFER-
ENCE MODEL

In this example, for the same input, The plant and ref-
erence are set to

ÿ = u+10ẏ2y−5|sin(y)|

R(s) =
20

s2 +20s+20

(26)

In this case, g1 = |sin(y)|, g2 = ẏy2, r1 = ỹ, r2 = ˙̃y, and
f1 = 1. The desired final values for the parameters are v1 =
20, ω1 = 15 and ω2 = 30.

Figure 8d shows that even for nonlinear plant, the pa-
rameters converged to their desired values. This conver-
gence gives visibility into the parameters of the system
and can help in applications where diagnostics are impor-
tant, as the plant’s coefficients can be monitored.

As can be seen through both examples, and similar to
[20] and [18], parameter adaptation reduces chattering.
This is achieved by reducing the terms (−ai−ωi+ ãi) and
(v j −b j) in equation (14), and therefore, the amplitude of
the discontinuous switching action can be reduced.
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(a) Parameters converging to
their desired values.

(b) Chattering is negligible after
parameter convergence.

(c) Control u showing small
chattering.

234.3 234.302234.304234.306

seconds

4

6

8

10

12
u

(d) Control u showing small
chattering.

Fig. 7. Controller performance using 3 sinusoidal inputs
superimposed for unstable linear plant

(a) Parameters converging to
their desired values.

(b) Error is minimized with no
spikes.

(c) Error changes due to chatter-
ing.

1681.11 1681.13 1681.15

seconds

-8

-6

-4
u

(d) Chattering is negligible after
parameter convergence.

Fig. 8. Controller performance for nonlinear plant with
linear rerference model.

8. CONCLUSION

In this paper, we investigated the applicability of the B-
L learning algorithm to adaptive control. We found that
combining the dynamics of the B-L learning algorithm
with sliding mode control improves the performance of

the controller. We derived the control law which guarantee
the convergence of the parameters to a final value, which
reduces chattering. We also showed that given enough per-
sistent excitation at the input, the parameters converge
to their desired values. We showed that it is possible to
adapt a class of nonlinear plants to linear reference mod-
els, and gain information about the plant’s parameters.
In summary, the B-L learning algorithm is applicable in
adaptive control when combined with sliding mode con-
trol. For future work, we plan to further investigate which
chatter reduction techniques in the literature fits well with
our method while ensuring the parameters don’t drift. We
will also investigate adapting to the uncertainties related
to the actuator dynamics. Furthermore, the work in Sec-
tion 5 will be further investigated to see if predictive AI
can be used to replace e(t +h), and how a controller may
be designed considering the prediction errors.
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