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ABSTRACT: We report a highly cross- and atroposelective coupling between ortho-(chloro)arylphosphine oxides and ortho-(bromo)aryleth-
ers. This previously unknown asymmetric nickel-catalyzed reaction offers a direct route to highly enantioenriched axially chiral biaryl mono-
phosphine oxides that are difficult to access by other means. These products can be readily reduced to generate chiral MOP-type ligands bearing 
complex skeletal backbones. The utility of these chiral ligands in asymmetric catalysis is also demonstrated.

Recently, significant progress has been achieved in the develop-
ment of cross-electrophile coupling reactions, leveraging a diverse 
array of transition metal catalysts.1 Particularly noteworthy is the 
emergence of asymmetric variants between Csp3 and Csp2 electro-
philes, providing potent methods for constructing intricate chiral 
molecules.2 In addition, numerous groups have independently re-
ported progress on the reductive coupling of aryl electrophiles to 
make achiral or racemic biaryls (Figure 1a).3,4 However, despite 
these advancements, the asymmetric reductive cross-coupling of 
two different aryl electrophiles to form axially chiral biaryl com-
pounds has not been reported. 

Simultaneously, C1-symmetric axially chiral biaryl monophos-
phines have emerged as highly effective chiral inducers for various 
metal-catalyzed transformations. 5 Examples of widely utilized 
monophosphines include MOP, KenPhos, and QUINAP (Figure 
1b).6 Typically, this class of privileged ligands is prepared either via 
chiral resolution to separate the atropisomers or via the use of com-
mercially available enantiopure biaryl starting materials, such as 
BINOL (Figure 1b). Chiral resolutions are often difficult to opti-
mize for new compounds, and in some cases require stoichiometric 
precious metals,7 making resolution generally unappealing for novel 
ligand synthesis. Likewise, in the latter case, the requirement for en-
antiopure biaryls as starting materials, which have limited commer-
cial access, severely limits the types of new ligands that can be pre-
pared.  

Notably, while atroposelective Suzuki-Miyaura and other redox-
neutral cross-coupling reactions have been known for many years,8 
only recently have conditions been reported that are able to access 
tetra-ortho-substituted biaryl products and they remain limited in 
scope.9 To date, Suzuki-Miyaura couplings to prepare biaryl mono-
phosphine ligands have been limited to the preparation of tri-ortho-
substituted monophosphobiarenes, and cannot access ligands such 
as MOP and KenPhos.6d, 10, 11 Other approaches to fully substituted 
chiral biaryl phosphine ligands have been developed,12,13,14,15 but are 
less general than cross-coupling strategies. These factors severely 
limit the development and design of new ligands. 

 

Figure 1. Methods for the preparation of biaryl compounds 

Recently, we and others have developed nickel-catalyzed methods 
for preparing C2-symmetric axially chiral biaryl compounds via the 
atroposelective reductive homocoupling reaction.16 In particular, we 
demonstrated the synthesis of highly enantioenriched tetra-ortho-
substituted bisphosphobiarenes, as well as other C2-symmetric 
biaryl products.  

Encouraged by our success in the homocoupling reaction, we 
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envisioned the possibility of an atroposelective reductive coupling of 
two different aryl halides. Herein, we present the successful develop-
ment of a nickel-catalyzed atroposelective cross-electrophile cou-
pling reaction involving ortho-(chloro)arylphosphine oxides and or-
tho-(bromo)arylethers (Figure 1c).17 This reaction yields chiral 
biaryl monophosphine oxides in good yields with high levels of en-
antioselectivity and requires approximately equimolar amounts of 
each coupling partner. Furthermore, we demonstrate that these 
products can be reduced to access chiral MOP-type ligands, and 
show successful application in asymmetric catalysis. In addition to 
its potential impact in the synthesis of chiral biaryl monophosphines, 
this transformation also represents the first enantioselective reduc-
tive cross-coupling of aryl halides, and is a rare example of a cross-
coupling that can provide a tetra-ortho-substituted biarene with four 
unique ortho-substituents.18 

 

Figure 2. Statistical product distribution from the reductive coupling 
between two similar aryl halides.  

In asymmetric reductive homocoupling, as only a single aryl hal-
ide is involved, only a single biaryl product is expected (Fig 2, top). 
Thus, control of stereochemistry is the only major obstacle. Enanti-
oselective aryl halide reductive cross-coupling presents a considera-
bly higher challenge. Assuming similar reactivity from the two aryl 
electrophiles, six stereochemically unique products are expected 
(Fig 2, bottom). In the absence of a large excess of one of the cou-
pling partners, either enantiomer of the desired heterodimer is sta-
tistically expected in only 25% yield. Achieving success in this area 
necessitates not only a highly organized and selective enantiodeter-
mining step but also selective sequencing of the reactivity of the two 
aryl electrophiles.  

We began our study by addressing the challenge of cross-selectiv-
ity. By leveraging the known oxidative addition rates of aryl electro-
philes towards low-valent nickel complexes,3a, 3d-f, 19 we hypothesized 
that cross-selectivity could be achieved by varying the electronic 
properties and leaving groups of the two electrophiles. With aryldi-
phenylphosphine oxide 1 and aryl methylether 2 as model sub-
strates, which we anticipated would provide electronic 

differentiation in rates of reaction, we prepared each with a variety of 
halides and pseudohalides. The cross-couplings of these partners 
were evaluated using catalytic Ni(COD)2/L1, cobalt phthalocya-
nine (CoPc) additive, and Mn as the reductant with added 4Å mol. 
sieves (Scheme 1a).16b We found that a combination of ortho-
(chloro)arylphosphine oxide 1a and ortho-(bromo)arylether 2b 
provided the best results, providing product 3 in 53% yield and 76% 
ee. Notably, conditions employing aryl iodide 1c, were particularly 
ineffective and resulted in significant levels of homo-coupling. In 
other cases, proto-dehalogenation was the major byproduct.   
Scheme 1. Optimization of Reaction Conditionsa 

 
a Yields determined by 1H NMR using an internal standard. Ee’s de-

termined by HPLC or SFC analysis using purified samples. b 2 equiv 2, 
10 mol % Ni(COD)2, 15 mol % L1, 5 mol % CoPc, 3.0 equiv Mn. c10 
mol % NiCl2·DME, 15 mol % L1, 5 mol % additive, 3.0 equiv reductant.  
d1.1 equiv ArBr, 10 mol % NiCl2·DME, 15 mol % L2-L5, 5 mol % CoPc, 
3.0 equiv Mn. e1.1 equiv ArBr, 10 mol % NiCl2·DME, 15 mol % L2, 5 
mol % CoPc, 3.0 equiv Mn. 
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Scheme 2. Scope of Atroposelective Cross Electrophile Coupling.a 

 
a 1.0 mmol scale. Yield and ee’s of isolated products. b 60 ºC for 48 h. c 2.0 equiv of ArBr. d 20 mol % NiCl2•DME, 30 mol % L2. e 0.2 mmol scale.  f 

100 ºC.  
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Further improvements were observed using NiCl2·DME in place 
of Ni(COD)2 (Scheme 1b, entry 1). Surprisingly, an equimolar 
amount of each aryl halide component could be used without nega-
tive influence on cross-selectivity (entry 2). This is particularly no-
table since many previous non-atroposelective methods have relied 
on using excess of one coupling partner.1a Other classes of stoichio-
metric reductants were also examined, but failed to give more than 
trace product (entries 3 and 4). The nickel catalyst was essential for 
reactivity, and removing CoPc dramatically lowered yield and ee 
(entries 5-6).20 Additional solvents and additives were evaluated, but 
none led to further improvements.21  

Other pyridine-oxazoline (PyOx) ligands were examined, but 
none proved better than L1.21 However, pyridine-imidazoline 
(PyIm) ligands were superior (Scheme 1C).21 When N-phenyl sub-
stituted PyIm ligand L2 was used, 82% yield of the cross-coupling 
product was observed, while maintaining enantioselectivity. Evalua-
tion of other N-substituted PyIm ligands were less fruitful. 

Finally, we investigated the activation of the manganese reducing 
agent. To this point, the manganese had been activated mechanically 
(continuous stirring in a glovebox). However, to develop a more ro-
bust set of reaction conditions that could be conducted without the 
use of a glovebox, we investigated the use of chlorotriethylsilane 
(TESCl), which has been shown to activate reducing metal in situ.22 
We found that the use of 40 mol % TESCl as an additive in the reac-
tion successfully activated the manganese (as purchased) and led to 
product 3 in comparable yield and ee. This activation approach al-
lowed the reaction to be set-up in a fume hood without need for a 
glovebox. We also found that under these condition molecular sieves 
were not needed.  

We next explored the scope of the reaction on a 1 mmol scale us-
ing the bench-top protocol. We began by investigating the role of the 
aryl bromide structure on the outcome of the reductive coupling 
(Scheme 2A). First, we found that the size of the ether substituent 
had significant impact on the enantioselectivity, with larger alkyl 
groups leading to a marked increase in selectivity. With isopropyl 
ethers, 81% yield and 94% ee of the cross-coupling product was ob-
served (5a). On gram scale, similar yield and ee were observed. No-
tably, for the smaller ethers, conducting the reaction at lower tem-
perature (60 °C) led to improved ee’s, albeit at lower yield (3). In 
contrast, with OtBu ethers, the ee remained high, but the yield was 
suppressed (6), and with silyl ethers (7) both yield and ee were 
lower.  As isopropyl ethers have been employed in MOP-type lig-
ands,6a, 6c, 23  we selected this group to move forward in the remainder 
of the study.  

Electron-rich aryl bromides provided higher yield and ee com-
pared to electron-poor aryl bromides (8 vs. 9). With electron-poor 
aryl bromides, more homo-coupling of the aryl chloride is observed. 
Larger, bicyclic aryl bromides were also tolerated in the reaction and 
provided products with high ee and reasonable cross-selectivity (10 
and 11).  

The scope of the aryl chloride also proved to be broad (Scheme 
2B). Ring expansion (12) and various ring substitutions (13-17) are 
tolerated. Similar to the aryl bromide scope studies, electron-donat-
ing groups proved beneficial (18-19 vs. 20).24 Evaluation of the 
crude reaction mixture with electron-poor substrates revealed 
higher amounts of homocoupling side products. Unfortunately, 
higher loading of each aryl halide component did not lead to better 
results. However, electron-deficient aryl chlorides could be utilized 
to provide products in good yield and high ee when matched with 

small aryl bromides containing p-donors (21).  
Various phosphorus substitutions are tolerated (Scheme 2C), in-

cluding those with moderately bulky (5b-5d), electron-donating 
(5e) and electron-withdrawing (5f) groups. Very bulky aryl (5g), as 
well as alkyl (5f), phosphine oxides could also be used albeit with 
lower yield and ee. 

As previously mentioned, chiral biaryl monophosphines bearing 
complex biaryl scaffolds are often challenging to access. As a result, 
explored whether our method could be utilized to prepare chiral 
biaryl monophosphine oxides bearing structurally diverse back-
bones (Scheme 2D). In addition to various coupling combinations, 
complex natural products (27) and heterocycles such as dibenzofu-
rans (23 and 24), chromanes (25 and 26), piperidines (28), pyri-
dines (29), and lactones (31) are tolerated. Functional groups such 
as carbamates (28), distal ketones (27), and esters (31) are also 
compatible. This reaction enjoys diverse substitution patterns with 
generally high selectivity for cross-coupled products and high enan-
tioselectivity, resulting in a wide variety of potential new mono-
phosphine ligands. In addition to tetra-substituted products, tri-or-
tho-substituted biaryl phosphine oxides could also be prepared (32, 
33 and 34), as well as those lacking an ether meta to the phosphine 
oxide (35). 

 
Interestingly, when a benzyl ether substrate was used under our 

standard conditions, high yield and ee were observed, but the prod-
uct that resulted was phenol 36 resulting from debenzylation (eq 
1).25  This result potentially provides access to a variety of ether 
products via further manipulation of the phenol. We hypothesize a 
low-valent CoPc species generated in-situ is responsible for the 
dealkylation.21, 26 Consistent with this, lowering the temperature and 
loading of CoPc, the debenzylation was prevented, and good yield 
and ee of product 37 was observed.  
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To showcase the utility of our products, the chiral biaryl mono-
phosphine oxide 11 was reduced using known conditions to access 
biaryl monophosphine 38 in high yield with retention of enantiopu-
rity (eq 3). This chiral monophosphine was then applied as a ligand 
for the Tsuji-Trost reaction, previously described using various chi-
ral ligands.27 Excitingly, high yield and enantioselectivity were ob-
served using this novel ligand (eq 4). This finding underscores the 
potential importance of biaryl phosphine oxides that result from this 
reaction. 

A possible mechanism to account for cross-selectivity in this reac-
tion is shown in Figure 3. Pre-coordination of the phosphine oxide, 
in combination with its electron-withdrawing capability, facilitates 
oxidative addition to the aryl chloride.11, 28 After reduction to Ni(I), 
oxidative addition to a second aryl chloride is likely slow due to steric 
encumbrance, resulting in slow homo-dimerization. In contrast, ox-
idative addition to the smaller aryl bromide is likely faster, resulting 
in cross-selectivity. Detailed mechanistic studies are currently un-
derway.   

 

Figure 3. Possible mechanism. 

In conclusion, we have demonstrated the first example of an atro-
poselective reductive cross-coupling of two aryl halides. By develop-
ing conditions for the enantioselective union of ortho-(chloro)ar-
ylphosphine oxides and ortho-(bromo)arylethers via nickel cataly-
sis, we have developed a method for the synthesis of highly enanti-
oenriched axially chiral biaryl monophosphine oxides. The reaction 
proceeds under mild conditions, using bench-top procedures, and is 
compatible with a range of functional groups. The resulting chiral 
biaryl monophosphine oxide products can be easily reduced using 
known conditions to access novel biaryl monophosphine (MOP-
type) ligands in high ee’s. To showcase the utility of these products, 
a newly developed ligand was applied to an asymmetric Tsuji-Trost 
reaction, yielding product in high yield and high enantiopurity. Cur-
rent studies are focused on better understanding of the mechanism 
of this reaction and the unique role of CoPc in obtaining high levels 
of atroposelectivity. We hope that this method will open up new av-
enues for designing and developing enantioenriched biaryl 

monophosphine ligands. 
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