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Abstract

How to control information exchange among different users is an im-

portant problem in networked systems with many users/agents. Generally

speaking, there are several considerations in control of information exchange

in a networked system, including (1) to ensure a friend user has sufficient

information to perform its tasks, (2) to deprive an adversary user its infor-

mation to perform its tasks, (3) to minimize information exchange among

friend users so that the risk of information leaking is minimized, and (4) to

maximize information broadcasted to all users to achieve maximum trans-

parency. In this paper, we investigate the information control problems in

the framework of discrete event systems. Based on the problem at hand, we

divide users in a networked system into two or more groups. Users in the

same group are consider as friends and users in a different group are consider
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as adversaries. Several information control problems are investigated and

solved using a systematic and rigorous approach. Methods are developed to

design controllers that send minimum information to its friends to help them

to perform their tasks and broadcast maximum information without helping

its adversaries.

Keywords: Networked systems, discrete event systems, multi-agent

systems, information flow, information control

1. Introduction

The Internet revolution has led to information explosion. Wide use of

Internet and cyberspace has made information that was previously difficult

to obtain now readily available. This information revolution has greatly

improved productivity, enriched people’s life, and brought the world closer.

While the information revolution has many significant positive impacts on

the society, it also has some negative impacts, especially in terms of infor-

mation security and information abuses. To enhance positive impacts and to

reduce negative impacts of information explosion, it is important to control

information flow in cyberspace.

Intuitively, the information control problem to be investigated in this pa-

per can be briefly described as follows. There are many users/agents in a

networked system, each has its own goals. To reach its goals, one user needs

information from other users. At the same time, each user can control its own

information by deciding whether or not to exchange its information. There

are two ways to exchange information: (1) communicating the information

to other users privately (say, via encrypted messaging), or (2) broadcasting
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the information to all users publicly. For reasons of security, some users may

want to communicate as little information as possible. For reasons of trans-

parency, some users may be required to broadcast as much information as

possible. Therefore, the questions related to information control include the

following. (1) What information shall one user communicate to others? (2)

What information shall a user broadcast? (3) How to minimize information

communicated? (4) How to maximize information broadcasted? We plan to

develop a systematic approach to answer these and other questions in the

framework of discrete event systems.

The traditional information theory [1, 12, 14, 18, 21] focuses on issues

related to reliable and efficient communication, such as channel coding, data

compression, and information encryption. The issues addressed in this paper

are based on reliable communication, that is, we assume that the commu-

nication is reliable. We focus on the optimal control of information release.

Specifically, we will investigate the mechanism of information release, as well

as the concepts of minimum and maximum release. The traditional infor-

mation theory cannot be directly applied to address these important issues

related to information release and information control.

For example, consider the discrete event system shown in Fig. 1(a). As-

sume that two users, a boss and his/her subordinate, know the system mod-

el. For the subordinate to perform his/her task, he/she needs to know if the

system is in state 2 or not (for example, the subordinate needs to call an

ambulance if the patient described by the system in Fig. 1(a) is in State 2,

but there are no needs to call an ambulance if the patient is in States 1, 3,

and 4). The boss wants to communicate the occurrences of some events to
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the subordinate so that he/she knows whether the system is in State 2 or not.

The question is: which event shall the boss communicate to the subordinate?

Shall it be α? β? γ? or some combinations of them? In this example, the

answer is α, because if the number of occurrences of α is an odd number,

then the system is in State 2 and if the number of occurrences of α is an even

number, then the system is in States 1, 3, or 4.

Since this example is simple, the answer is unique and can be obtained by

intuition. If the system is complex, consisting of hundreds of states and many

events, or the problem is not to identify one state, but rather, to distinguish

one subset of states from another subset of states, then the answer will not be

unique and intuitive. For example, consider the system shown in Fig. 1(b).

If a user needs to distinguish states 0 and 5 from states 2 and 4, then the

answer to the question of which events shall be communicated to him/her is

not as intuitive and straightforward as the answer to the system in Fig. 1(a).

Hence, a systematic approach that can be implemented using computers is

highly desirable.

Figure 1: Information control using discrete event system model.

To make the approach general, we model a user’s task as to distinguish

certain pairs of states. Specifying a task as distinguishing certain pairs of
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states is very general and most common tasks can be specified in this way [20,

8, 11]. For example, in supervisory control, a supervisor needs to distinguish

legal states from illegal states [13, 10, 16]. In diagnosis, a diagnoser needs to

distinguish normal states from fault states [17, 9, 4, 3]

If a user can distinguish these pairs of states based on information directly

available to the user, then it does not need any information from other users.

This will be a trivial case. In general, a user needs information communicated

or broadcasted by other users in order to perform its task. A user can also

control/release its information by deciding what information to communicate

or broadcast to other users. Its information control objective may include

one or two or more of the the following. (1) Help some users to perform

their tasks. (2) Prevent some other users from performing their tasks. (3)

Minimize information communicated to other users for security reasons. (4)

Maximize information broadcasted to others to ensure transparency.

The information directly available to a user is the occurrences of some

events local to the user. We call these events (locally) observable events of

the user. A user can decide how to communicate or broadcast the occurrences

of its observable events. The total information available to a user is its own

observation of (locally) observable events, event occurrences communicated

by other users and event occurrences broadcasted by other users. Since each

user has only partial information of the system, no user knows the exact

state of the system. Based on the information available, a user can calculate

the set of all possible states the system may be in. We call this set “state

estimate”. Suppose that a user’s goal is to distinguish a set of states Q1 from

another set of states Q2. If its state estimate contains states in Q1 but no
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states in Q2, or contains states in Q2 but no states in Q1, then its goal can

be reached.

The information control problem is challenging when the system is com-

plex with many users of different goals. We assume that users are divided into

two or more groups: users in the same group are friends and users in a differ-

ent group are adversaries. The division of groups depends on the problems

to be solved and is problem specific. For notational simplicity, we consider

two groups. It is not difficult to extend the results of the paper from two

groups to several groups. Suppose that the initial control objectives are: (1)

to help friend users to reach their goals, (2) to prevent adversary users from

reaching their goals. Then the initial control strategy is to communicate all

information to friends and not to communicate anything to adversaries, and

not to broadcast anything. If a user’s goal can be reached under this initial

control, then nothing his adversaries can do to prevent him from reach his

goal. If a user’s goal cannot be reached under this initial control, then noth-

ing his friends can to to help him to reach his goal. From this initial control,

we will investigate how to further improve the control based on additional

requirements as follows.

For privacy, security, and other reasons, it is often required that the com-

munication among users be minimized. We can improve the initial control

by requiring minimal communication among the friends without jeopardiz-

ing the goals that can be reached by the friends under the initial control.

Intuitively, what we can do is removing some events from communication.

Hence the information available to some users are reduced. This will change

the state estimates E of these users. Generally speaking, this will make the
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state estimates E bigger (that is, less certain). If removing an event σ en-

larges E of a friend user to the point that it contains both states in Q1 and

Q2, then the goal of the user can no longer be reached. Hence σ must be

communicated. Otherwise, σ can be removed from communication. Minimal

communication is achieved when no more events can be removed. Depending

on the order of events being examined, the minimal communication is not

unique. Minimizing communication in distributed discrete-event systems has

been investigated in the literature [15, 22]. This paper extends the existing

results to multiple users with different grouping in a systematic and compre-

hensive way. Minimizing information diffusion is a topic also discussed in the

context of continuous-time diffusion networks [7]. However, our approach is

different and uses the framework of discrete event systems.

For some users such as government agencies, it is required that they re-

lease (broadcast) as much information as possible1. We studied the maximum

information release problem for single user in [2]. We extend this to multiple

users in this paper. Again, we start with the initial control described ear-

ly. We can improve the initial control by requiring some users to maximize

the information broadcasted without helping their adversaries to reach goals

that cannot be reached under the initial control. The maximizing privacy is

discussed in continuous-time diffusion networks [6], which is different than

our approach.

1For example, in USA, the Freedom of Information Act (FOIA) requires that certain

information and records of government agencies to be released to the public upon request,

unless such release will harm national security or be covered under other nine specific

exemptions.
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Compared with the results in the literature, the novelty and contribution-

s of this paper are as follows. (1) We consider multiple users with multiple

groups. Some users are friends, and some other users are adversaries. (2) We

consider both private communications among users and public broadcast-

ing to all users. (3) We systematically investigate five information control

problems and provide solutions to the problems. These problems capture

the essence of information exchange, security, and transparency in large net-

worked systems.

This paper is organized as follows. In Section 2, we introduce our model

of networked systems, which is a discrete event system built from its compo-

nents. In Section 3, two mechanisms of information exchange among different

users are proposed: private communication and public broadcasting. State

estimates for all users are introduced and a procedure is proposed to obtain

them. In Section 4, controllers are introduced to control information flow in

a networked system. The task of a user is specified as a set of state pairs that

the user needs to distinguish based on its own local observation and commu-

nication from its friends and broadcasting from other users. Necessary and

sufficient condition is derived for a user to perform its task. Five information

control problems are then solved. In Section 5, an illustrative example of a

distribution system is given to illustrate the results of the paper.

2. Networked Systems

We model networked systems as discrete event systems. The reasons for

using discrete event system model are as follows. (1) The model is general and

flexible. Most networked systems can be modeled as discrete event systems at
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some level of abstraction. (2) It allows us to build a networked system model

in a modular way where components are modeled by small automata and

then combined using parallel composition (automatically using computers).

(3) It can describe system properties and information flows very well. We

use automaton (also called finite state machine) to model a discrete event

system [13, 10, 5]:

G = (Q,Σ, δ, qo),

where Q is the set of finite states; Σ is the set of finite events; qo is the initial

state; and δ : Q × Σ → Q is the transition function which describes the

dynamics of the system. The transition function is extended to δ : Q×Σ∗ →

Q in the usual way [5].

A trajectory s of G is a string that starts at qo and is defined by δ. We use

δ(qo, s)! to mean that δ(qo, s) is defined. The set of all possible trajectories

describes the behavior of G and is called the language generated by G:

L(G) = {s : s ∈ Σ∗ : δ(qo, s)!}.

One advantage of using automaton G is that the model can be built in a

modular way: Each component of a networked system can be modeled by a

small automaton Gi. Then the model for the overall system can be obtained

using the parallel composition [5]:

G = G1||G2||...||GM .

Flexibility and scalability are important in modeling networked systems,

as components in a networked systems change frequently. Our model is

flexible and scalable.
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A user in a networked system is denoted by Ui. We assume that there are

N users: i = 1, 2, ..., N . Each user observes local observable events in Σo,i

and operates on local events in Σi, where Σo,i ⊆ Σi ⊆ Σ. To describe the

local observation, we use the natural projection Pi : Σ∗ → Σ∗o,i that erases all

unobservable events from a string. Formally, Pi(s) is defined recursively as

Pi(ε) = ε, Pi(sσ) =

 Pi(s)σ if σ ∈ Σo,i

Pi(s) otherwise
,

where ε is the empty string. In other words, if a string of events s =

σ1σ2...σk ∈ L(G) occurred in the networked system G, User Ui will directly

observe w = Pi(s). In the paper, we assume that User Ui communicates to

other users based on its own local observation w ∈ Pi(L(G)), where Pi(L(G))

is the projection of L(G), representing all possible local observations by User

Ui.

3. Information Exchanges among Users

We assume that the information contents to be exchanged/released are

occurrences of (locally observed) events. We investigate two types of infor-

mation flows/exchanges among users: (1) Private communication from User

Ui to User Uj and (2) Public broadcasting by User Ui.

(1) Private communication from User Ui to User Uj, based on User Ui’s

local observation, is given by the following mapping

θij : Pi(L(G))→ 2Σo,i .

In other words, if the current local observation of User Ui is w ∈ Pi(L(G)),

then if any event σ ∈ θij(w) occurs, User Ui will let User Uj know, that is,

User Ui will communicate this information to User Uj.
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Without loss of generality, we use state-base mapping in the rest of the

paper. In other words, we assume that there exists a deterministic automaton

Hi = (Xi,Σo,i, ξi, xi,o)

with Pi(L(G)) ⊆ L(Hi) and a mapping

ϑij : Xi → 2Σo,i

such that, for all w ∈ Pi(L(G)),

θij(w) = ϑij(ξi(xi,o, w)).

We denote this state-based mapping by θij = (Hi, ϑij). Note that θij

has two subscripts, where i is the user sending the communication and j is

the user receiving the communication. θij also specifies who can communi-

cate with whom. If θij(w) = ∅ for all w ∈ Pi(L(G)), then user Ui cannot

communicate with user Uj.

(2) Public broadcasting by User Ui is given by the following mapping

φi : Pi(L(G))→ 2Σo,i .

In other words, if the current local observation of User Ui is w ∈ Pi(L(G)),

then if any event σ ∈ φi(w) occurs, User Ui will let all users know, that is,

User Ui will broadcast this information.

We again use state-base mapping based on Hi in the rest of the paper

and assume that there exists a mapping

ϕi : Xi → 2Σo,i

11



such that, for all w ∈ Pi(L(G)),

φi(w) = ϕi(ξi(xi,o, w)).

We denote this state-based mapping by φi = (Hi, ϕi). Note that φi has

only one subscript, where i is the user sending the communication. There is

no need to specify which user receives the communication as it is broadcasted

to all users. Note further that we use the same Hi for both θij and φi without

loss of generality, because we can always refine the state space Xi to make it

suitable for both θij and φi.

Therefore, information (that is, occurrences of events) received by user

Uj is given by

ρj = Pj ∪ φ1 ∪ ... ∪ φN ∪ θ1j ∪ ... ∪ θNj. (1)

where the union ∪ is interpreted as follows. User Uj knows the occurrence

of an event if (1) it is observed by itself; (2) it is broadcasted by some User

Ui; or (3) it is communicated to User Uj by some User Ui. Hence, if a string

of events s ∈ L(G) occurred in the networked system G, User Uj will see

w = ρj(s). Formally, ρj(s) is defined recursively as

ρj(ε) = ε, ρj(sσ) =


ρj(s)σ if σ ∈ Σo,j ∪ φ1(P1(s)) ∪ ... ∪ φN(PN(s))

∪ θ1j(P1(s)) ∪ ... ∪ θNj(PN(s))

ρj(s) otherwise

.

Given an information mapping ρj : L(G) → Σ∗, define state estimate of

User Uj after observing a string w ∈ ρj(L(G)) as the set of all possible states

G may be in from the view point of Uj:

Eρj(w) = {q ∈ Q : (∃s ∈ L(G))ρj(s) = w ∧ δ(q0, s) = q}.
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We propose the following procedure to calculate state estimate Eρj(w).

Step 1. Take the parallel composition of G and Hi, i = 1, 2, ..., N :

G̃ = (Q̃,Σ, δ̃, q̃o) = G||H1||...||HN

= (Q×X1 × ...×XN ,Σ, δ̃, (qo, x1,o, ..., xN,o)).

Since Pi(L(G)) ⊆ L(Hi), it is clear that

L(G̃) = L(G||H1||...||HN)

= L(G) ∩ P−1
1 (L(H1)) ∩ ... ∩ P−1

N (L(H1)) = L(G).

Step 2. For each User Uj, j = 1, 2, ..., N , replace the transitions in G̃ that

cannot be observed by Uj with ε-transitions to obtain

G̃j
ε = (Q̃,Σ, δ̃jε, q̃o),

where δ̃jε is defined as follows. With a slight abuse of notation, denote the

set of all transitions of G̃ also by δ̃, that is, δ̃ = {(q̃, σ, δ̃(q̃, σ)) : q̃ ∈ Q̃ ∧ σ ∈

Σ ∧ δ̃(q̃, σ))!}. For q̃ = (q, x1, ..., xN) and σ ∈ Σ, transition (q̃, σ, δ̃(q̃, σ)) is

replaced with ε-transition (q̃, ε, δ̃(q̃, σ)) if σ cannot be observed by User Uj,

that is, σ 6∈ Σo,j ∪ (∪Ni=1ϑij(xi)) ∪ (∪Ni=1ϕi(xi)). In other words,

δ̃jε ={(q̃, σ, δ̃(q̃, σ)) = ((q, x1, ..., xN), σ, δ̃(q̃, σ)) :

((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃ ∧ σ ∈ Σo,j ∪ (∪Ni=1ϑij(xi)) ∪ (∪Ni=1ϕi(xi))}

∪ {(q̃, ε, δ̃(q̃, σ)) = ((q, x1, ..., xN), ε, δ̃(q̃, σ)) :

((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃ ∧ σ 6∈ Σo,j ∪ (∪Ni=1ϑij(xi)) ∪ (∪Ni=1ϕi(xi))}.

Note that G̃j
ε is a nondeterministic automaton. By the above definition

of δ̃jε, it is clear that

L(G̃j
ε) = ρj(L(G̃)) = ρj(L(G)).
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Step 3. For each User Uj, j = 1, 2, ..., N , convert G̃j
ε to a deterministic

automaton G̃j
obs, called observer, as

G̃j
obs = (Yj,Σ, ζj, yj,o) = Ac(2Q̃,Σ, ζj, UR({q̃o})),

where Ac(.) denotes the accessible part; UR(.) is the unobservable reach

defined, for y ⊆ Q̃, as

UR(y) = {q̃ ∈ Q̃ : (∃q̃′ ∈ y)q̃ ∈ δ̃jε(q̃′, ε)}.

The transition function ζj is defined, for y ∈ Yj and σ ∈ Σ, as

ζj(y, σ) = UR({q̃ ∈ Q̃ : (∃q̃′ ∈ y)q̃ ∈ δ̃jε(q̃′, σ)}).

It is well-known (see, for example, in [5]) that (1) L(G̃j
obs) = L(G̃j

ε) =

ρj(L(G)) and (2) for all w ∈ ρj(L(G)) = L(G̃j
obs),

ζj(yj,o, w) = {q̃ ∈ Q̃ : (∃s ∈ L(G̃))ρj(s) = w ∧ δ̃(q̃0, s) = q̃}.

Define

Ẽρj(w) = {q̃ ∈ Q̃ : (∃s ∈ L(G̃))ρj(s) = w ∧ δ̃(q̃0, s) = q̃},

then ζj(yj,o, w) = Ẽρj(w).

For any y ∈ Yj (hence y ⊆ Q), define

y|Q = {q ∈ Q : (∃q̃ ∈ y)q̃ = (q, x1, ..., xN)}.

In particular,

Ẽρj(w)|Q = {q ∈ Q : (∃q̃ ∈ Ẽρj(w))q̃ = (q, x1, ..., xN)}.

We have the following theorem.
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Theorem 1. The state estimate of User Uj after observing a string w ∈

ρj(L(G)) is given by

Eρj(w) = Ẽρj(w)|Q = ζj(yj,o, w)|Q. (2)

Proof:

By the definitions,

Ẽρj(w)|Q ={q ∈ Q : (∃q̃ ∈ Ẽρj(w))q̃ = (q, x1, ..., xN)}

={q ∈ Q : (∃s ∈ L(G̃))ρj(s) = w ∧ δ̃(q̃0, s) = (q, x1, ..., xN)}

(by the definition of Ẽρj(w))

={q ∈ Q : (∃s ∈ L(G))ρj(s) = w ∧ δ(q0, s) = q}

(because L(G) = L(G̃))

=Eρj(w).

4. Information Control

How to control information communicated or broadcasted is the key to

information control in networked systems. Information communicated or

broadcasted by User Ui, i = 1, 2, ..., N is controlled by a controller πi, which

determines ϕi and ϑij. In other words,

πi = (ϕi, ϑi1, ..., ϑiN).

We investigate how to design π = (π1, ..., πN). Intuitively, if User Ui wants

to help User Uj to perform its tasks, then User Ui shall send its observation
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to User Uj. User Ui may want to minimize the information it sends to User

Uj while still helps User Uj to perform its task. If User Ui wants to prevent

User Uj from performing its tasks, then User Ui shall not send information

to User Uj and shall avoid broadcasting information that may help User Uj

to perform its tasks.

We assume that in order for User Uj, j = 1, 2, ..., N to perform its tasks, Uj

needs to distinguish some states in G from some other states in G. Formally,

let T = Q×Q be the set of all state pairs and let

T jspec ⊆ T

be the task specification for User Uj. We say that User Uj can perform

its task if it can always distinguish all state pairs in T jspec, that is, for all

w ∈ ρj(L(G)),

(Eρj(w)× Eρj(w)) ∩ T jspec = ∅.

Remark 1. Specifying a task using Tspec is very general and most common

tasks can be specified in this way. The following examples show that tasks

in supervisory control, diagnosability, and detectability can all be specified by

Tspec. In supervisory control, a common task is to prevent a system from

entering some illegal/unsafe states. In order to do so, a supervisor needs to

distinguish legal states Ql ⊆ Q from illegal states Qil ⊆ Q. Hence, Tspec =

(Ql × Qil) ∪ (Qil × Ql). For diagnosability, a diagnoser needs to distinguish

normal states Qn ⊆ Q from fault states Qf ⊆ Q. Hence, Tspec = (Qn×Qf )∪

(Qf ×Qn). The goal of detectability is also specified by Tspec [19].

We have the following theorem.
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Theorem 2. User Uj, j = 1, 2, ..., N can perform its task if and only if in

the observer G̃j
obs,

(∀y ∈ Yj)(y|Q × y|Q) ∩ T jspec = ∅. (3)

Proof:

We need to prove

(∀w ∈ ρj(L(G)))(Eρj(w)× Eρj(w)) ∩ T jspec = ∅

⇔(∀y ∈ Yj)(y|Q × y|Q) ∩ T jspec = ∅.

Or, equivalently,

(∃w ∈ ρj(L(G)))(Eρj(w)× Eρj(w)) ∩ T jspec 6= ∅

⇔(∃y ∈ Yj)(y|Q × y|Q) ∩ T jspec 6= ∅.

(⇒): If (∃w ∈ ρj(L(G)))(Eρj(w) × Eρj(w)) ∩ T jspec 6= ∅ is true, then let

y = ζj(yj,o, w). By Theorem 1, Eρj(w) = y|Q. Therefore, (∃y ∈ Yj)(y|Q ×

y|Q) ∩ T jspec 6= ∅.

(⇐): If (∃y ∈ Yj)(y|Q × y|Q) ∩ T jspec 6= ∅ is true, then let w be any

string from yj,o to y, that is, y = ζj(yj,o, w). By Theorem 1, Eρj(w) = y|Q.

Therefore, (∃w ∈ ρj(L(G)))(Eρj(w)× Eρj(w)) ∩ T jspec 6= ∅.

We assume that users are divided into two groups:

Group 1 = {1, ..., N1}, Group 2 = {N1 + 1, ..., N}.

Users in the same group are friends and users in the other group are adver-

saries. We investigate the following information control problems.
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Information Control Problem 1

The first problem that we investigate is: Can User Uj perform its task

based on its own local observation without information from other users,

including its friends?

To solve this problem, we let ρj = Pj and check if the condition of Theo-

rem 2 is satisfied or not. Note that, since ρj = Pj, the procedure is simpler

than outlined in the previous section. In fact, we do not need to take the

parallel composition G̃ = G||H1||...||HN . We can simply let G̃ = G and

construct the observer of G with respect to Pj. If the condition of Theorem

2 is satisfied, then User Uj can perform its task based on its own local ob-

servation without information from other users.

Information Control Problem 2

If the answer to the first problem is “no”, then User Uj needs helps from

other users. Hence, we investigate the second problem: Can User Uj perform

its task based on its own local observation and all its friends’ observation?

In other words, assume that all its friends will communicate all information

to User Uj, can User Uj perform its task?

Without loss of generality, let Uj = U1. If all its friends communicate all

information to User U1, then ρ1 = P1 ∪ P2 ∪ ... ∪ PN1 . To solve the second

problem, again, there is no need to take the parallel composition and we can

let G̃ = G. We construct the observer of G with respect to P1∪P2∪ ...∪PN1

and check if the condition of Theorem 2 is satisfied or not. If it is satisfied,

then User U1 can perform its task based on its own local observation and all

its friends’ observation.
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Information Control Problem 3

If the answer to the second problem is “yes”, then the third problem is

how to minimize communications from its friends to User U1.

To minimize the communication, we proceed as follows. We partition the

transitions in G̃ into three groups: (1) transitions belonging to Σo,1 (observ-

able by U1 itself), (2) transitions belonging to Σo,2∪ ...∪Σo,N1−Σo,1 (observ-

able by its friends), and (3) other transitions. In other words, δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3

with

δ̃1
1 = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σo,1}

δ̃1
2 = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σo,2 ∪ ... ∪ Σo,N1 − Σo,1}

δ̃1
3 = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σ− Σo,1 ∪ ... ∪ Σo,N1}.

(4)

Since the answer to the second problem is “yes”, we know that by replac-

ing all transitions in δ̃1
3 by ε-transitions, the resulting observer of U1 satisfies

the condition of Theorem 2. Transitions in δ̃1
2 require communications from

Users Ui, i = 2, ..., N1. To minimize such communications, let us find a min-

imum set δ̃1
2,min ⊆ δ̃1

2 under which the resulting observer of U1 satisfies the

condition of Theorem 2 using the following algorithm.

Algorithm 1. Calculation of a minimum set δ̃1
2,min ⊆ δ̃1

2

Input: G̃

Output: δ̃1
2,min

1: Partition the transitions in G̃ as δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3;
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2: Initially, let

δ̃1
o = δ̃1

1 ∪ δ̃1
2, δ̃

1
uo = δ̃1

3;

3: For all (q̃, σ, δ̃(q̃, σ)) ∈ δ̃1
2 do

δ̃1
o = δ̃1

o − {(q̃, σ, δ̃(q̃, σ))};

δ̃1
uo = δ̃1

uo ∪ {(q̃, σ, δ̃(q̃, σ))};

δ̃1
ε = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃o}

∪ {(q̃, ε, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃uo};

G̃1
ε = (Q̃,Σ, δ̃1

ε , q̃o);

G̃1
obs = (Y1,Σ, ζ1, y1,o);

If (∀y ∈ Y1)(y|Q × y|Q) ∩ T 1
spec = ∅ is not true, then

δ̃1
o = δ̃1

o ∪ {(q̃, σ, δ̃(q̃, σ))};

δ̃1
uo = δ̃1

uo − {(q̃, σ, δ̃(q̃, σ))};

4: Let

δ̃1
2,min = δ̃1

o − δ̃1
1;

5: End.

To calculate a minimum set δ̃1
2,min, Algorithm 1 checks transitions in

δ̃1
2 one by one to see if it is needed for User U1 to perform its task. If

it is not needed, it will be removed. Note that minimum set δ̃1
2,min is not

unique, depending on the order in which transitions in δ̃1
2 are checked. It

is not difficult to see that the computational complexity of Algorithm 1 is
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determined by Step 3. In Step 3, constructing observer G̃1
obs has complexity

|Σ| |2Q̃|. Step 3 may be repeated at most |Q̃| |Σ| times. Therefore, the

computational complexity of Algorithm 1 is O(|Q̃| |Σ|2 |2Q̃|).

Clearly, transitions in the resulting δ̃1
2,min need to be communicated to U1

by one of Ui, i = 2, ..., N1. In order for a transition

(q̃, σ, δ̃(q̃, σ)) = ((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃1
2,min

to be communicated to U1, it is requires that

σ ∈ (∪N1
i=2ϑi1(xi)) ∪ (∪N1

i=2ϕi(xi)).

Therefore, we need to find a set of minimum controls

πi = (ϕi, ϑi1, ..., ϑiN), i = 2, ..., N1.

satisfying

(∀(q̃, σ, δ̃(q̃, σ)) = ((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃1
2,min)

σ ∈ (∪N1
i=2ϑi1(xi)) ∪ (∪N1

i=2ϕi(xi)).
(5)

Obviously, set of minimum controls is not unique. The following algo-

rithm finds one set of minimum controls.

Algorithm 2. Calculation of a set of minimum controls πi = (ϕi, ϑi1, ..., ϑiN), i =

2, ..., N1

Input: δ̃1
2,min

Output: πi = (ϕi, ϑi1, ..., ϑiN), i = 2, ..., N1

1: For i = 2, ..., N1 and xi ∈ Xi do ϕi(xi) = ∅;
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2: For i = 2, ..., N1 and xi ∈ Xi do ϑi1(xi) = ∅;

3: For ((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃1
2,min do

If σ 6∈ (∪N1
2=1ϑi1(xi)) ∪ (∪N1

i=2ϕi(xi)) is true, then

pick i = 2, ..., N1 such that σ ∈ Σo,i;ϑi1(xi) = ϑi1(xi) ∪ {σ};

4: End.

In Step 3, the choice of which ϑi1(xi) to add σ is arbitrary, but can be

made based in the other considerations such as sharing the communication

burden among friends or choosing neighboring friends. Algorithm 2 has a

computational complexity of O(N |Q̃| |Σ|).

Information Control Problem 4

If the answer to the second problem is “no”, then User U1 cannot perform

its task unless some adversaries make some mistakes and release information

that they shall not release. Therefore, the problem is how an adversary can

avoid making such mistakes. If an adversary, say User Uj, j = N1 + 1, ..., N ,

has no obligation to broadcast any information, then its information control

is simple: It shall only communicate with its friends to help them to perform

their tasks. It shall not communicate anything to its adversaries, and it shall

not broadcast any information to the public. On the other hand, if User Uj

has obligation to release as much information as possible to the public, then

the fourth problem is how to broadcast maximal information to the public

without helping User U1 to perform its task.

To maximize the broadcasting, we proceed as follows. We consider again

the partition δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3. In order to maximize the broadcasting without
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helping U1, we use the following algorithm to find a maximum set δ̃1
3,max ⊆ δ̃1

3

such that the condition of Theorem 2 is not satisfied if U1 observes transitions

in δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3,max.

Algorithm 3. Calculation of a maximum set δ̃1
3,max ⊆ δ̃1

3

Input: G̃

Output: δ̃1
3,max

1: Partition the transitions in G̃ as δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3;

2: Initially, let

δ̃1
o = δ̃1

1 ∪ δ̃1
2, δ̃

1
uo = δ̃1

3;

3: For all (q̃, σ, δ̃(q̃, σ)) ∈ δ̃1
3 do

δ̃1
o = δ̃1

o ∪ {(q̃, σ, δ̃(q̃, σ))};

δ̃1
uo = δ̃1

uo − {(q̃, σ, δ̃(q̃, σ))};

δ̃1
ε = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃o}

∪ {(q̃, ε, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃uo};

G̃1
ε = (Q̃,Σ, δ̃1

ε , q̃o);

G̃1
obs = (Y1,Σ, ζ1, y1,o);

If (∀y ∈ Y1)(y|Q × y|Q) ∩ T 1
spec = ∅ is true, then

δ̃1
o = δ̃1

o − {(q̃, σ, δ̃(q̃, σ))};

δ̃1
uo = δ̃1

uo ∪ {(q̃, σ, δ̃(q̃, σ))};

4: Let

δ̃1
3,max = δ̃1

o − (δ̃1
1 ∪ δ̃1

2);
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5: End.

To calculate a maximum set δ̃1
3,max, Algorithm 3 checks transitions in δ̃1

3

one by one to see if it will help User U1 to perform its task. If it will help User

U1, then it will be removed. Note that maximum set δ̃1
3,max is not unique,

depending on the order in which transitions in δ̃1
3 is checked. User U1 is able

to observe transitions in δ̃1
3,max. Similar to Algorithm 1, the computational

complexity of Algorithm 3 is O(|Q̃| |Σ|2 |2Q̃|).

Therefore, we need to find a set of maximum controls (on broadcasting)

ϕj, j = N1 + 1, ..., N

such that only transitions in δ̃1
3,max are observable to U1. In order words,

transitions in δ̃1
3 − δ̃1

3,max are not observable to U1:

(∀(q̃, σ, δ̃(q̃, σ)) = ((q, x1, ..., xN), σ, δ̃(q̃, σ))

∈ δ̃1
3 − δ̃1

3,max)σ 6∈ ∪Nj=N1+1ϕj(xj).
(6)

Obviously, set of maximum controls is not unique. The following algo-

rithm finds one such set.

Algorithm 4. Calculation of a set of maximum controls ϕj, j = N1 +

1, ..., N.

Input: δ̃1
3,max

Output: ϕj, j = N1 + 1, ..., N

1: For j = N1 + 1, ..., N and xj ∈ Xj do ϕj(xj) = ∅;

2: For j = N1 + 1, ..., N , xj ∈ Xj, and σ ∈ Σo,i do ϕj(xj) = ϕj(xj) ∪ {σ};
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If (∃((q, x1, ..., xN), σ, δ̃(q̃, σ)) ∈ δ̃1
3 − δ̃1

3,max)

σ ∈ ∪Nj=N1+1ϕj(xj) is true, then ϕj(xj) = ϕj(xj)− {σ};

3: End.

Algorithm 4 starts with empty set, that is, no broadcasting, and add

events one by one unless such the addition will help U1 to perform its task.

Algorithm 4 has a computational complexity of O(N |Q̃| |Σ|).

Information Control Problem 5

In some cases, for transparency, fairness, and/or other reasons, the system

operator may request each user to broadcast some minimal information to

the public. This minimal requirement is given by

ϕj,min(xj), for xj ∈ Xj, j = 1, 2, ..., N.

When this is the case, we need to solve the following problem: What are the

impacts of minimally required broadcasting ϕj,min on information control?

To solve this problem, we partition the transitions in G̃ into three groups

by taking ϕj,min into account: (1) transitions observable by U1 itself plus

minimally required broadcasting by other users, (2) additional transitions

observable by its friends, and (3) the remaining transitions. In other words,

δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3 with

δ̃1
1 ={(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σo,1 ∨ (q̃ = (q, x1, ..., xN)

∧ σ ∈ ∪Nj=1ϕj,min(xj))}

δ̃1
2 ={(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σo,2 ∪ ... ∪ Σo,N1} − δ̃1

1

δ̃1
3 ={(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : σ ∈ Σ} − (δ̃1

1 ∪ δ̃1
2).

(7)
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We first check if User U1 can perform its task with User Uj, j = 1, 2, ..., N

broadcasting the minimally required broadcasting information ϕj,min as fol-

lows. Let

δ̃1
o = δ̃1

1

δ̃1
uo = δ̃1

2 ∪ δ̃1
3

δ̃1
ε = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃o}

∪ {(q̃, ε, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃uo}

G̃1
ε = (Q̃,Σ, δ̃1

ε , q̃o)

G̃1
obs = (Y1,Σ, ζ1, y1,o)

If (∀y ∈ Y1)(y|Q× y|Q)∩ T 1
spec = ∅ is true, then User U1 can perform its task

with all users broadcasting ϕj,min.

If User U1 cannot perform its task with all users broadcasting ϕj,min, we

then check if User U1 can perform its task with the help of its friends as

follows. Let

δ̃1
o = δ̃1

1 ∪ δ̃1
2

δ̃1
uo = δ̃1

3

δ̃1
ε = {(q̃, σ, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃o}

∪ {(q̃, ε, δ̃(q̃, σ)) ∈ δ̃ : (q̃, σ, δ̃(q̃, σ)) ∈ δ̃uo}

G̃1
ε = (Q̃,Σ, δ̃1

ε , q̃o)

G̃1
obs = (Y1,Σ, ζ1, y1,o)

If (∀y ∈ Y1)(y|Q× y|Q)∩ T 1
spec = ∅ is true, then User U1 can perform its task

with the help of its friends.

26



We can then minimize the communications from its friends to User U1

by using Algorithm 1. Algorithm 1 remains unchanged, but the partition of

δ̃ = δ̃1
1∪ δ̃1

2∪ δ̃1
3 is modified as in Equation (7) to take into account of minimal

required broadcasting ϕj,min.

The corresponding minimum controls can be calculated using Algorithm

2. To take into account of minimal required broadcasting ϕj,min, Step 1 in

the Algorithm 2 needs to be modified as follows.

For i = 2, ..., N1 and xi ∈ Xi do

ϕi(xi) = ϕi,min(xi);

If users have obligation to release as much information as possible to the

public, then users can maximize the broadcasting without helping User U1

by using Algorithm 3 with the modified partition of δ̃ = δ̃1
1∪ δ̃1

2∪ δ̃1
3 described

in Equation (7).

The corresponding maximum controls can be calculated using Algorithm

4 with Step 1 in the Algorithm 4 modified as follows.

For j = N1 + 1, ..., N and xj ∈ Xj do ϕj(xj) = ϕj,min(xj).

5. Illustrative Example

In this section, we use an example to illustrate the results of the previous

sections. In order to draw the automata, the example is simple and is for

illustration only.

Let us consider a distribution system shown in Fig. 2. The system consists

of 18 cities in USA.
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Figure 2: A distribution system covering 18 cities in USA.

These cities are linked by railways as shown in the automaton G of Fig.

3. In G, states represent cities as follows.

q1 : Seattle q2 : Portland q3 : San Francisco

q4 : Los Angeles q5 : San Diego q6 : Salt Lake City

q7 : Phoenix q8 : Denver q9 : Minneapolis

q10 : Chicago q11 : Detroit q12 : New York City

q13 : Baltimore q14 : Washington D.C. q15 : Miami

q16 : Houston q17 : Austin q18 : Dallas

Without loss of generality, we assume that the initial state is q1. If there

is a railway link between city qi and city qj, then two events are defined as

follows.

αi,j : a train moves from qi to qj, αj,i : a train moves from qj to qi.

Note that for the clarity of the figure, state qi is denoted by i and not all
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events are labeled in Fig. 3, because these labels are obvious. Note also that

for this illustrative example, there is no need to use parallel composition to

obtain G.

The distribution system is managed by 7 distributors/users. The cities

covered by each distributor are also shown in Fig. 3. For example, User

U1 covers Seattle and Minneapolis, while User U6 covers Dallas, Washington

D.C., Houston, and Miami. Note that a city may be covered by more than

one distributors.

Figure 3: Automaton G of the distribution system.

The local events Σo,i for Ui, i = 1, 2, 3, 4, 5, 6, 7 are movements of a train

from or to a city covered by Ui. For example,

Σo,1 ={α1,9, α9,1, α1,2, α2,1, α9,10, α10,9},
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(a) H1 (b) H4

Figure 4: The observers of G with respect to P1 and P4.

Σo,4 ={α10,11, α11,10, α11,12, α12,11, α13,18,

α18,13, α13,11, α11,13, α12,11, α11,12, α14,15, α15,14}.

The corresponding deterministic automata H1 and H4 can be obtained by

constructing the corresponding observers [5] as

H1 = (X1,Σo,1, ξ1, x1,o), H4 = (X4,Σo,4, ξ4, x4,o),

where X1 = {x1,1, x1,2, x1,3}, X4 = {x4,1, x4,2, x4,3, x4,4}, x1,o = x1,1, x4,o =

x4,1. The transition functions ξ1 and ξ1 are shown in Fig. 4. It is well-known

that Pi(L(G)) = L(Hi).

The users are divided into two groups:

Group 1 = {1, 2, 3, 4}, Group 2 = {5, 6, 7}.

To perform its tasks, User U1 needs to know if the train has arrived in

Baltimore. Thus, the specification for User U1 is given by

T 1
spec = {(q13, qi) : qi ∈ Q− {q13}}. (8)
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The specifications for other users can be defined similarly. Let us now

solve the information control problems investigated in the previous section

as follows.

Information Control Problem 1: Can User U1 perform its task based on its

own local observation without information from other users, including its

friends?

To solve this problem, we let G̃ = G and construct the observer of G with

respect to P1, which is isomorphic to H1 shown in Fig. 4. Since state q13 is

mixed with other states in x1,3 (= Q − {q1, q9}), the condition of Theorem

2 is not satisfied. Thus, User U1 cannot perform its task based on its own

local observation without information from other users.

Information Control Problem 2: Can User U1 perform its task based on its

own local observation and all its friends’ observation?

To solve this problem, we again let G̃ = G and construct the observer

G1
obs = (Y1,Σ, ζ1, y1,o) of G with respect to P1 ∪ P2 ∪ P3 ∪ P4 as shown in

Fig. 5. Since state q13 only appears alone in y7, the condition of Theorem

2 is satisfied. Thus, User U1 can perform its task based on its own local

observation and all its friends’ observation.

Information Control Problem 3: How can communications from its friends

to User U1 be minimized?

To minimize communications from Users U2, U3, U4 to User U1, we con-

struct G̃ = G||H1||...||H7, which is isomorphic to G. We then partition the

31



Figure 5: The observer of G with respect to P1 ∪ P2 ∪ P3 ∪ P4.

transitions in G̃ into three groups as shown in Fig. 6: (1) transitions with

events in Σo,1, denoted by δ̃1
1 and represented by bold lines in Fig. 6, (2)

transitions with events in Σo,2 ∪ Σo,3 ∪ Σo,4 − Σo,1, denoted by δ̃1
2 and repre-

sented with normal lines in Fig. 6, and (3) other transitions, denoted by δ1
3

and represented by dashed lines in Fig. 6.

Using Algorithm 1, we can find a minimum set δ̃1
2,min ⊆ δ̃1

2 under which

the resulting observer of U1 satisfies the condition of Theorem 2, which is

given by

δ̃1
2,min ={(q̃, σ, δ̃(q̃, σ)) : σ = α13,11, α11,13, α13,12,

α12,13, α13,14, α14,13, α13,18, α18,13, }.

The transitions in δ̃1
2,min must be communicated to User U1. Since all

transitions in δ̃1
2,min are related to state q13, they are observed by User U4.

Therefore, User U4 needs to communicate these transitions to User U1, that

is, the communication mapping

ϑ4,1 : X4 → 2Σo,4
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Figure 6: Partition of transitions into three groups δ̃ = δ̃11 ∪ δ̃12 ∪ δ̃13 with respect to

P1 ∪ P2 ∪ P3 ∪ P4: δ̃11 - bold lines, δ̃12 - normal lines, and δ̃13 - dashed lines.

from U4 to U1 is given by

(∀x4 ∈ X4)ϑ4,1(x4) ={α13,11, α11,13, α13,12, α12,13,

α13,14, α14,13, α13,18, α18,13}.

Hence, for all w ∈ P4(L(G)),

θ4,1(w) =ϑ4,1(ξ4(x4,o, w))

={α13,11, α11,13, α13,12, α12,13, α13,14, α14,13, α13,18, α18,13}.

In other words, User U4 will communicate α13,11, α11,13, α13,12, α12,13, α13,14,

α14,13, α13,18, α18,13 to User U1 whenever it occurs.

The communication mapping

ϑi,1 : Xi → 2Σo,i
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from Ui, i = 2, 3, 5, 6, 7 to U1 is given by

(∀xi ∈ Xi)ϑ4,1(xi) = ∅.

Hence, for all w ∈ Pi(L(G)), i = 2, 3, 5, 6, 7,

θi,1(w) =ϑi,1(ξi(xi,o, w)) = ∅.

In other words, Users Ui, i = 2, 3, 5, 6, 7 will communicate nothing to User

U1.

The broadcasting mapping

ϕi : Xi → 2Σo,i

from Ui, i = 2, 3, 4, 5, 6, 7 is given by (∀xi ∈ Xi)ϕi(xi) = ∅.

Hence, for all w ∈ Pi(L(G)), i = 2, 3, 4, 5, 6, 7,

φi(w) = ϕi(ξi(xi,o, w)) = ∅.

In other words, Users Ui, i = 2, 3, 4, 5, 6, 7 will broadcast nothing.

Information Control Problem 4: How can a user broadcasts maximal infor-

mation to the public without helping its adversaries?

To illustrate this problem, let us move User U4 from Group 1 to Group 2,

that is,

Group 1 = {1, 2, 3}, Group 2 = {4, 5, 6, 7}.

Since User U4 is now an adversary of User U1, it shall not communicate

anything to User U1. Without communication from U4, the observer G1
obs =

(Y1,Σ, ζ1, y1,o) of G with respect to P1 ∪ P2 ∪ P3 is shown in Fig. 7.
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Figure 7: The observer of G with respect to P1 ∪ P2 ∪ P3.

Since state q13 is mixed with other states in y3 (={q8, q10, q11, q12, q13, q14,

q15, q16, q18}), the condition of Theorem 2 is not satisfied. Thus, User U1

cannot perform its task based on its own local observation and the observa-

tions from its friends. So, the problem is: How can U4, U5, U6, U7 broadcast

maximal information to the public without helping U1?

To solve the problem, we consider the new partition δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3 as

shown in Fig. 8. Under the new grouping, δ̃1
1 is represented by bold lines

in Fig. 8 and is same as in Fig. 6; δ̃1
2 contains transitions with events in

Σo,2 ∪ Σo,3 − Σo,1, which is represented by normal lines in Fig. 8; and δ̃1
3

contains the remaining transitions (with events in Σ − Σo,1 ∪ Σo,2 ∪ Σo,3),

which is represented by dashed lines in Fig. 8.

In order to maximize the broadcasting without helping U1, we use Algo-

rithm 3 to find a maximum set δ̃1
3,max ⊆ δ̃1

3 such that the condition of Theorem

2 is not satisfied if U1 knows the occurrences of transitions in δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3,max.

δ̃1
3,max is not unique. One such δ̃1

3,max is given by

δ̃1
3,max = δ̃1

3 − {(q̃13, α13,11, q̃11)}.

35



Figure 8: Partition of transitions into three groups δ̃ = δ̃11 ∪ δ̃12 ∪ δ̃13 with respect to

P1 ∪ P2 ∪ P3: δ̃11 - bold lines, δ̃12 - normal lines, and δ̃13 - dashed lines.

The corresponding broadcasting mapping

ϕi : Xi → 2Σo,i

from Ui, i = 2, 3, 4, 5, 6, 7 can be calculated using Algorithm 4 as

ϕ4(x4) = Σo,4 − {α13,11}, ϕ5(x5) = Σo,5 − {α13,11}

and for all other xi ∈ Xi, i = 2, 3, 4, 5, 6, 7,

ϕi(xi) = Σo,i.

Information Control Problem 5

In solving the above four information control problems, we assume that

there is no minimum information release required by the system operator,
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that is,

(∀xi ∈ Xi)ϕi,min(xi) = ∅.

We now relax this assumption. We consider the following minimum required

information release.

(∀x1 ∈ X1)ϕ1,min(x1) = ∅

(∀x2 ∈ X2)ϕ2,min(x2) = {α2,6, α6,2}

(∀x3 ∈ X3)ϕ3,min(x3) = ∅

(∀x4 ∈ X4)ϕ4,min(x4) = {α12,13, α13,12, α14,13, α13,14, }

(∀x5 ∈ X5)ϕ5,min(x5) = {α11,13, α13,11}

(∀x6 ∈ X6)ϕ6,min(x6) = {α18,13, α13,18}

(∀x7 ∈ X7)ϕ7,min(x7) = ∅.

(9)

For the above ϕi,min, we re-partition δ̃ into three groups δ̃ = δ̃1
1 ∪ δ̃1

2 ∪ δ̃1
3

as shown in Fig. 9: δ̃1
1 are locally transitions observable by U1 itself plus

minimally required transitions broadcasted by other users, represented by

bold lines in Fig. 9, δ̃1
2 are additional transitions observable by its friends,

represented by normal lines in Fig. 9, and δ̃1
3 are the remaining transitions,

represented by dashed lines in Fig. 9.

Let us check if User U1 can perform its task by observing transitions in

δ̃1
1 only. To do so, we construct the observer of G with respect to δ̃1

1, which

is shown in Fig. 10. Since in the observer, state q13 is not mixed with other

states, the specification (8) is satisfied. Therefore, User U1 can perform its

task by observing its local events and minimally required transitions broad-

casted by other users.
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Figure 9: Partition of transitions into three groups δ̃ = δ̃11 ∪ δ̃12 ∪ δ̃13 with respect to

P1 ∪ P2 ∪ P3 and ϕi,min given by Equation (9): δ̃11 - bold lines, δ̃12 - normal lines, and δ̃13 -

dashed lines.

6. Conclusion

We investigate information flow and information control in a large net-

worked systems in the framework of discrete event systems. The main contri-

butions of the paper are summarized as follows. (1) A discrete event system

model of a large networked system is proposed with different users, each ob-

serves a set of locally observable events. (2) Control of information exchange

among users by private communications from one user to another and by

public broadcasting to all users is introduced. (3) Five information con-

trol problems are investigated and solved for information exchanges among

friends and adversaries. (4) Controllers are designed to communicate mini-

mum information to friends to enhance security. (5) Controllers are designed
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Figure 10: The observer of G with respect to δ̃11 .

to broadcast maximum information to ensure transparency.
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