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Abstract 27 

Hybrid ion exchange (IX) and biological processes have been developed for various water and 28 

wastewater treatment applications. These hybrid systems integrate multiple physical, chemical, 29 

biological, hydrodynamics, and substrate transport processes to improve the treatment efficiencies and 30 

system stability.  The mathematical description of the individual process has been well established 31 

previously; however, there is a lack of a holistic review and guidelines to develop hybrid models for 32 

different treatment systems. In this paper, we summarize the applications of hybrid IX and biological 33 

systems, critically review the representative individual process models, and propose the framework to 34 

integrate these models for the hybrid process. Additionally, we provide a comprehensive review of the 35 

equilibrium, kinetic, and thermodynamic models for the IX process and the key biological process 36 

models, along with their applied scenarios. Advanced data-driven modelling and its combination with 37 

mechanistic models are also discussed to overcome the drawbacks in conventional modeling approach. 38 

We highlight emerging techniques that would lead to higher fidelity models. This review provides a 39 

comprehensive guideline for the model development of hybrid systems and presents future research 40 

directions to build robust systems.  41 

Keywords: water and wastewater treatment, ion exchange, biological processes, process applications, 42 

mathematical modeling  43 
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 52 

Nomenclature 53 

Parameter Definition 

A Interfacial area of the ion exchange (IX) resins 

B Constant in the Dubinin-Radushkevich (D-R) model 

Df Diffusion coefficient within the biofilm phase 

Di Diffusion coefficient in kinetic models within solid phase 

Dij Surface diffusivity of the counter pair ions i-j 

Dis Surface diffusivity between i and the ionic groups s fixed within the solid phase 

Dw Substrate diffusion coefficient in the bulk liquid 

F Faraday constant 

K Equilibrium constant  

𝐾!,#
$  Equilibrium constant for functional group j 

KF Constant for an ion exchange equilibrium process in the Freundlich model 

Lf Thickness of the biofilm 

Lw Thickness of the hypothetical boundary layer 

Ni Flux of ion i 

Qmax Maximum IX capacity 

Q0 Monolayer adsorption capacity 

R Diameter of the IX resin 

Sb Concentration of substrate in the bulk liquid 

Sf Concentration of the substrate within the biofilm phase 

Ss Concentration of substrate at the interface of liquid and biofilm 

T Absolute temperature  

V Volume of the liquid 

ai Ion activity of i 

b Constant which depends on the free energy of the IX  

ce Equilibrium liquid phase concentration 

ci Concentration of i in the liquid 
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n Constant for specific IX process in the Freundlich model 

k1 Rate constant of the first order sorption 

k2 Rate constant of the second order sorption 

kf Mass transfer coefficient in the liquid film 

qi Concentration of i in the solid phase 

qe Equilibrium solid phase concentration in the ion adsorption model 

qmax Ion-exchange capacity of the solid material in the D-R model 

r Radial position in the solid phase 

rf Substrate utilization rate within the biofilm phase 

rs Substrate utilization rate 

t Time  

yj Mole fraction of ion j 

ys Mole fraction of ionic fixed group s 

ɛ Polanyi potential 

ℜ Ideal gas constant 

Φ Electric potential 

𝛻𝜇
%
 Surface chemical potential gradient of i 

  54 
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1. Introduction  55 

In the United States, 46% of the total river and stream miles were classified as poor while 56 

21% of the lakes are suffering from eutrophication resulted from nutrients overloading (USEPA 2017). 57 

Biological water and wastewater treatment systems are commonly used to remove nutrients, organic 58 

contaminants, and metals to protect ecosystems and public health (Rani et al. 2019). However, toxic 59 

compounds, irregular flow and transient loadings of the influent may impact the performance and the 60 

stability of biological processes (Jiang et al. 2019; Saidulu et al. 2021; Torres-Franco et al. 2021; 61 

Yenigün and Demirel 2013). Ion exchange (IX) is a reversible process where ions in insoluble solid 62 

materials are exchanged with other ions in an aqueous phase with a stoichiometrically equivalent 63 

amount (Saidulu et al. 2021). Hybrid IX with biological processes has the potential to abate the adverse 64 

impact of toxicities and inhibition on microorganisms and enhance system performance (Aponte-65 

Morales et al. 2018; Beigbeder 2023; Lin et al. 2020; Waki et al. 2020; Wang et al. 2011).   66 

IX materials such as zeolites and synthetic IX resins have been used in the hybrid IX and 67 

biological systems (Liu et al. 2020; Wang et al. 2018). In addition to abating the inhibition of high 68 

ammonia concentrations of high-strength wastewater, the hybrid process has been applied to the 69 

removal of heavy metals and natural organic matter (NOM). Examples of the applications include 70 

hybrid IX and algal systems (Wang et al. 2018), onsite wastewater treatment systems (Chen et al. 2019; 71 

Rodriguez-Gonzalez et al. 2016; Wang et al. 2011), and low impact development (LID) systems (Dietz 72 

2007). Interactive IX and biological phenomena of the hybrid process induce complexity in 73 

understanding contaminant removal mechanisms. Elucidating these interactions is critical for system 74 

design and the enhanced efficacy of hybrid treatment systems. A recent review on the zeolite 75 

application in biological wastewater and solid waste treatment described the integration of zeolite ion-76 

exchanger in anaerobic digestion, biological nutrient removal and composting for nutrient and heavy 77 

metal removals (Montalvo et al. 2020). Hybrid IX and biological processes can also be applied to 78 

stormwater and drinking water treatment. Additionally, there is a lack of review of the mathematical 79 

modeling of the hybrid system, which can decipher the interactions of the IX and biological processes 80 

and aid the system design. 81 

Mathematical models are helpful tools to guide the design and optimization of water and 82 
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wastewater treatment systems and predict system performance (Hamedi et al. 2021; Pell and Wörman 83 

2009). Mathematical modeling of hybrid IX with biological processes, such as biological nutrient 84 

removal (BNR) and photosynthesis have been presented in prior studies (Aponte-Morales et al. 2018; 85 

van der Steen et al. 2015; Wang et al. 2018). These models incorporated mechanisms including IX 86 

equilibrium, mass transfer, and biological kinetics.  However, there is a lack of best practices guiding 87 

the development of mathematical models for hybrid IX and biological systems, given the wide 88 

applications of these systems. Moreover, hybrid systems include reactions in different phases and mass 89 

transfer on each interface. The selection of models for each process is critical in developing hybrid IX 90 

and biological models. Thus, it is vital to assess the appropriate approach based on the system 91 

configuration and the objective of the applications by optimizing related variables with the assistance 92 

of mathematical model. 93 

This review assesses the current state-of-the-art of hybrid IX and biological treatment 94 

processes, including their applications and mathematical models. The main advantages of hybrid 95 

systems are highlighted as the reduction of ammonia toxicity for wastewater treatment, the attenuation 96 

of transient influent system loading, and the extended life cycle of materials due to bioregeneration. 97 

Mathematical models are essential tools for improving hybrid system design and testing new 98 

hypotheses given the multiple (physical, chemical, and biological) mechanisms in these systems. Data-99 

driven approaches are also illustrated as an advanced mathematical method to combine with 100 

mechanistic models to improve the understanding of the complicated IX and biological processes in 101 

hybrid systems. This review highlights properties and commonalities among modeling approaches and 102 

provides future guidance on research efforts to establish more robust hybrid systems. 103 

2. Applications of hybrid ion exchange and biological processes 104 

The hybrid IX-biological systems can be applied for the treatment of wastewater, stormwater 105 

runoff, and drinking water. Virous applications and the system performance are summarized in Table 1. 106 

More details of the different applications are discussed in the following subsections. 107 

    108 
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Table 1. Summary of recent research on hybrid IX-biological systems 109 

Process 
Type of water 

treated 
System description IX material Dosage Performance Reference 

IX-anaerobic 

digestion 

Swine waste diluted 
with tap water 

Batch Zeolite  20 g/L Methane production was improved by 210% 
compared with the one without zeolite. 

Wang et al. 2011 

IX-anaerobic 

digestion 

Waste activated 
sludge 

Batch  Natural 
zeolite 

0.1 g/g   
VSS 

Methane production was improved by 20% 
compared with the one without zeolite. 

Tang et al. 2023 

IX-denitrification Nitrate-
contaminated 
drinking water 

 

Packed column with an empty 
bed contact time (EBCT) of 
10 min; zeolite was 
regenerated in batch mode 

Nitrate 
selective 
resin 

 

1 g/L The system can still achieve NO3
- removal 

efficiencies of over 90% after 4 cycles of 
bioregeneration. 

Ebrahimi and Roberts 
2013 

IX-nitrification Centrate from 
anaerobic digestion 
of swine waste 

Batch Chabazite 150 g/L The nitrification rate was increased from 
0.16 to 0.36 mg-N (g-VSS)−1 h–1. 

Aponte-Morales et al. 
2018 

IX-nitrification-

denitrification 

Anaerobically 
digested swine 
wastewater  

Constructed wetland with 
tidal flow of 50 L/d 

Zeolite 340 
g/L-
reactor* 

NH4
+-N and COD removal efficiencies were 

61% and 86% under tidal operation 
respectively. 

Han et al. 2019b 

IX-nitrification-

denitrification 

Landfill leachate Zeolite-biological aerated 
filter with hydraulic retention 
time (HRT) varying from 5.36 
to 8.85 h 

Natural 
zeolite 

55.6% 
(v/v) 

NH4
+-N, and total nitrogen (TN) removal 

efficiencies were about 93.5 ± 2.4% and 
74.7 ± 9.4%, respectively and stable FA was 
maintained to inhibit NOB to achieve nitrite 
production rate of 1.38 kg NO2--N m-3 day-1. 

Chen et al. 2019 

IX-nitrification-

denitrification 

Urban domestic 
sewage 

Sequence batch reactor (SBR) 
with an HRT of 12 h 

Zeolite 
powder 

0.9 g/L The removal rates of TN and total phosphate 
(TP) were improved of by 4% and 2 %. 

Lin et al. 2020 

IX- nitrification-

denitrification 

Synthetic 
wastewater  

Aerated zeolite trickling filter 
with an HRT of 24 h 

Zeolite - Total nitrogen removal efficiency was 
enhanced to 80%. 

Liu et al. 2021 
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*Calculated based on literature and the unit is g zeolite/L reactor110 

IX-partial 

nitritation-

Anammox 

Iron oxide red 
wastewater 

Two-stage zeolite-biological 
aerated filter with HRT 
between 5.8 h and 11.6 h 

Natural 
zeolite 

87.5% 
(v/v) 

TN removal efficiency was above 70% in 
the steady stage, among which 52% was 
removed in the 1st filter by zeolite and 48% 
was removed in the 2nd filter by biological 
process. 

Feng et al. 2019 

IX-sulfur 

oxidizing 

denitrification 

Slaughterhouse 
wastewater 

Up-flow packed bed reactor 
with an EBCT of 8 h 

Zeolite 826 
g/L-
reactor* 

NH4
+-N and NO3

--N removal efficiencies 
were almost 100%, with 56% increase 
compared with traditional sulfur oxidizing 
denitrification. 

Tong et al. 2022 

IX-algal 

photosynthesis 

Centrate from 
anaerobic digester 

Batch, with algae harvested 
twice 

Chabazite 60, 
150, 
and 
250 g/L 

NH4
+-N concentrations were reduced from 

over 1000 mg/L to around 10 mg/L, with the 
removal efficiency over 90%. 

Wang et al. 2018 

IX-algal 

photosynthesis 

Secondary urban 
wastewater (UWW) 

Pretreated UWW with zeolite, 
and then switched to 
sequential-batch cultivation 
mode 

Commercial 
natural 
zeolite  

25, 50, 
75% 
and 
100% 
(v/v) 

The average biomass yield with 50% zeolite 
medium was about 70% higher than the one 
without zeolite. 

López-Rosales et al. 
2022 

IX-algal 

photosynthesis 

Centrate from 
anaerobic digester 

Batch  Clinoptilolite 100 g/L NH4
+-N removal efficiency was 99%, which 

was increased by 209% in comparison with 
the one without clinoptilolite. 

Beigbeder 2023 

IX-algae-yeast 

consortia 

Swine wastewater Batch Synthetic 
zeolite 

75, 
100, 
125, 
and 
150 g/L 

The highest removal efficiencies of TN, 
NH4

+-N, and TP were 94%, 99%, and 84%, 
respectively. 

Lu et al. 2023 

IX-biodegradation Untreated drinking 
water 

Drinking water treatment pilot 
plant with an EBCT of 10.8 
min 

Anion 
exchange 
resin-
Purolite® 
A860 

- DOC removal efficiency was 81%, 
improved by over 22% compared with that 
of granular activated carbon (GAC) or 
biological activated carbon (BAC). 

Liu et al. 2020 
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2.1 Mitigation of ammonia toxicity in biological wastewater treatment processes  111 

High ammonia concentrations in centrate from anaerobic digesters, agricultural wastewater 112 

and industrial wastewater are toxic to microorganisms by inhibiting the activity of cytosolic enzymes or 113 

affecting the pH and concentrations of other cations inside microbial cells (Kadam and Boone, 1996; 114 

Liu et al. 2019). In BNR processes, free ammonia (FA) concentrations ranging from 10-150 mg/L have 115 

been shown to inhibit ammonia oxidizing bacteria (AOB) activity, while 0.1-1 mg/L inhibit nitrite 116 

oxidizing bacteria (NOB) (Anthonisen et al. 1976; Jiang et al. 2019). In addition, long-term inhibition 117 

by FA changes the cell density and morphology of AOB, reducing system recoverability (Jiang et al. 118 

2019). High concentrations of FA can also inhibit other biological processes, such as the anaerobic 119 

digestion process (Chen et al. 2008; Jiang et al. 2019; Li et al. 2023) and algal photosynthesis (Lu et al. 120 

2019).  121 

IX resin amended systems have been used to abate ammonia toxicity. Among the IX resins, 122 

zeolites are commonly used in wastewater treatment (Han et al. 2021; Metcalf et al. 2003). Zeolites 123 

have porous structures consisting of three-dimensional frameworks of SiO4
4 − and AlO4

5 − tetrahedra 124 

linked through shared oxygen atoms, and occupied by alkali (e.g., Li+, Na+, K+) and alkaline earth 125 

cations (e.g., Be2+, Ca2+, Mg2+), which lead to high cation exchange abilities. The selectivity sequence 126 

for some cations is K+ > NH4
+ > Na+ > Ca2+ > Mg2+. The system can also be used for heavy mental 127 

removal and the selectivity sequence for heavy metals are affected by pH (Colella 1996; Inglezakis et 128 

al. 2003). Natural zeolites have a high affinity for NH4
+ and can be integrated with biological processes 129 

to reduce ammonia toxicity and improve the system performance (Fig. 1). Na+ is the major counter ion 130 

with NH4
+ when using zeolite as the IX resin. After IX process, biological consumption of NH4

+ in the 131 

liquid phase creates the concentration gradient that promotes the desorption of NH4
+ from solid phase 132 

of the zeolite, thus the bioregeneration of the zeolite. Bio-regenerated zeolite can support the 133 

continuous operation of the wastewater treatment system (Hong et al. 2019; Rožić et al. 2000; Zamzow 134 

et al. 1990; Zhou and Boyd 2014). Zeolite can also serve as the biofilm carrier and provide niches with 135 

favorable environmental conditions for microorganisms. For example, zeolite amended BNR provided 136 

aerobic/anaerobic conditions for nitrifiers and denitrifiers with counter diffusion of substrate and 137 

oxygen to enhance the system performance (Han et al. 2019a, Tang et al. 2023). The formation of 138 

biofilm will also boost the resilience of functional microorganisms in response to environmental 139 
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stressors.  Additionally, K+ and Mg2+ released during the IX process can promote biomass growth 140 

(López-Rosales et al. 2022, Tang et al. 2023). In those systems, factors such as pH, size of zeolites, 141 

contact time, zeolite dosage, and other cations in the wastewater will impact the IX behavior (Huang et 142 

al. 2010). Heavy metals in the wastewater such as Pb(Ⅱ), Cd(Ⅱ), and Cr(Ⅵ) can be removed by IX in 143 

the system, reducing the toxicity for biomass (Silva et al. 2023). Zeolite can also be applied for dye 144 

wastewater treatment due to the adsorption of dye on the surface of zeolite and biomass (Gneedy et al. 145 

2022, Senila et al. 2022). 146 

  The combination of IX and nitrification process has been applied to landfill leachate 147 

treatment, swine waste treatment, and textile wastewater treatment (Aponte-Morales et al. 2018; Chang 148 

et al. 2009; Martins et al. 2017). Natural or modified zeolite has shown the potential to create a micro-149 

environment that favors the growth of Nitrosobacteria to aid the partial nitritation-anammox (PN/A) 150 

process because adsorbing NH4
+ onto zeolite benefitted the process by maintaining a suitable NO2

-/ 151 

NH4
+ ratio (Chen et al. 2019; Waki et al. 2020). In addition, combining a membrane aeration module in 152 

a packed bed reactor for IX-nitrification-denitrification would improve the hydrodynamic conditions 153 

and the system performance (Almutairi and Weatherley 2015). 154 

 155 

Fig. 1 The hybrid ion exchange (IX) and biological system showing the integration of natural zeolites 156 

and microorganism for NH4
+ removal.  157 

IX can also be combined with algae photosynthesis to reduce the ammonia toxicity when 158 

treating high ammonia wastewater and promote the biomass production (Lu et al., 2019). The systems 159 

have been applied to treat centrate from an anaerobic digester and secondary urban wastewater with 160 

low ammonia-tolerant marine microalgae (López-Rosales et al. 2022; Zalivina 2019). Moreover, IX 161 
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amended bioprocess can modulate bioproducts, such as lipids and protein, from algae biomass for 162 

different applications (Wang et al. 2018). 163 

In the anaerobic digestion process, bioreactor with zeolite will reduce the ammonia toxicity 164 

and improve the methane production, when treating swine waste, livestock waste, and waste activated 165 

sludge (Tang et al. 2023; Zheng et al. 2015; Wang et al. 2011). The zeolite-biofilm retained functional 166 

microorganisms promoting hydrolysis and acidification, thus more substrates are available for 167 

methanogenesis for methane production (Tang et al. 2023). 168 

2.2 Treatment of stormwater runoff  169 

Excess nutrient discharge to surface water and groundwater systems can deteriorate water 170 

quality and ecosystems and pose significant public health issues (Akhtar et al. 2021; Bowen et al. 2007; 171 

Ouyang 2005). Among the various forms of nutrients, NH4
+ has the highest concentration in the first 172 

flush, which is the initial portion of a runoff event (Hathaway et al. 2012). LID infrastructure, such as 173 

bioretention systems, is an effective solution since it can reduce peak flow rates, increase groundwater 174 

recharge, and remove heavy metals and nutrients (Dietz 2007). 175 

In the conventional bioretention systems, nutrient removal efficiency is limited because there 176 

is only a single soil layer providing an aerobic environment for nitrification to occur, and the lack of 177 

anoxic area limited the denitrification process or extra NH4
+ removal pathways (Erickson et al. 2014). 178 

Modifications have been made to enhance nitrogen removal by incorporating zeolites in the aerobic 179 

layer of bioretention systems (Fig. 2). An approach that amended soil media with zeolites found that the 180 

NH4
+ removal efficiency could reach almost 70% in laboratory bioretention column studies (Jiang et al. 181 

2018). Moreover, bioretention columns with zeolites demonstrated higher adsorption capacities for 182 

NH4
+ removal than columns without zeolites (Jiang et al. 2019). However, one caveat is that the salinity 183 

of the effluent from the system increases due to the exchange of NH4
+ with Na+. Another laboratory 184 

study using simulated stormwater showed that the hybrid IX and biological process was effective by 185 

allowing the IX material, clinoptilolite, to accumulate NH4
+ from stormwater, which would be nitrified 186 

by nitrifiers later (Khorsha et al. 2021). Additionally, it was found that nitrification regenerated 187 

exchange sites on the clinoptilolite, allowing for continuous effective NH4
+ removal. 188 
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 189 

Fig. 2 Modified bioretention systems with ion exchange (IX) materials for improved nitrogen (N) 190 

removal 191 

Constructed wetlands are also widely used for non-point source pollution control. Similar to 192 

bioretention systems, zeolites can serve as adsorbents in wetland systems, where NH4
+ was adsorbed 193 

during cold seasons and subsequently desorbed during warm seasons for nitrification (Wen et al. 2012). 194 

In this way, nitrification was enhanced, abating seasonal nitrogen removal fluctuations. The removal 195 

efficiency of nitrogen was improved by 50%, compared with the system without zeolites (Wen et al. 196 

2012). The NH4
+ removal efficiency can reach over 60% even at a low temperature of 10 ℃ (Han et al. 197 

2019b). Moreover, nitrous oxide (N2O) emissions from wetlands can also be reduced by adding zeolite 198 

as a soil amendment (Zaman et al. 2008).  199 

2.3 IX and biological process for organic matters and nitrate removal in drinking water  200 

The presence of NOM in drinking water can impact odor, color, taste, and cause the formation 201 

of disinfection byproducts. The combination of IX and biological process can be applied to remove 202 

NOM from drinking water (Liu et al. 2020). Anion exchange resins can assist the removal of NOM 203 

through IX between NOM and its counter ion, such as chloride (Levchuk et al. 2018; Rahmani 2017). 204 

Biofilm formed on the IX resins can uptake the NOM from the exchange sites, leading to the 205 

regeneration of the IX resins (Fig. 3). IX resins for wastewater treatment can be divided into strong-206 

acid cation resins, weak-acid cation resins, strong-base anion resins, weak-base anion resins, and 207 

Metal-selective chelating resins. For NOM removal, the most common rinses are strongly basic-anion 208 

exchange rinses, where the chemical matrix consists of styrene, divinylbenzene (DVB) and sulfonic 209 

acid functional groups (Levchuk et al. 2018). It has been confirmed in a laboratory-scale study that in a 210 

biofiltration system, 81% of the total dissolved organic carbon (DOC) removal can be achieved, which 211 

was much higher than around 65% DOC removal efficiency with biological activated carbon (Liu et al. 212 

2020). When serving as a pre-treatment process for membrane filtration, the combination of IX and the 213 

biological process can reduce biofouling effectively by removing NOM (Schulz et al. 2017). The IX 214 
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and biological systems prevent the production of high concentrations of brine and NOM wastewater 215 

due to the bioregeneration of the system. While the conventional regeneration of IX resins by highly 216 

concentrated salt solution will produce high saline wastewater that is harmful to the aquatic 217 

environment. 218 

Nitrate (NO3
−) is another issue in drinking water, which can be solved by hybrid IX and 219 

biological method. NO3
− can be removed by anion exchange resin, which can be regenerated by NaCl 220 

solution later, and the removal efficiency reached over 98%. The functional groups of resins for NO3
− 221 

removal are tertiary or quaternary ammonium (Edgar and Boyer 2022). The NO3
− saturated IX resin 222 

can also be recovered by liquid containing other inorganic ions and organic compounds. The 223 

regeneration spent brine was then purified by biological denitrification process before drained (Edgar 224 

and Boyer 2022; Tabassum 2019). The IX and bioregeneration nitrate removal process has been 225 

confirmed as a sustainable method, where the NO3
− selective resin can be bioregenerated for six cycles 226 

with less than 6% resin capacity lost (Ebrahimi and Roberts 2013). 227 

 228 

Fig. 3 Natural organic matter (NOM) removal process by hybrid ion exchange (IX) and biological 229 

process 230 
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3. Mathematical modeling of hybrid IX and biological processes 231 

While experimental studies and new technologies are increasingly being developed for the 232 

hybrid processes, the lack of models that assist in elucidating mechanisms and facilitating reactor 233 

design limit enhanced efficacy of technologies. Mathematical models are powerful tools to understand 234 

the interactive mechanisms and predict the performance. The proper application of models would prove 235 

indispensable in IX material selection and determine optimal reactor configuration and operation 236 

conditions that lead to reduced cost and improved removal and recovery efficiencies.  Previous models 237 

established for each individual process will be illustrated in the following sections. Hybrid ion 238 

exchange and biological process modeling can be developed through the integration of individual 239 

processes with the consideration of transport process among multiple phases and their interfaces (Fig. 240 

4). The framework starts with a process description to conceptualize the mechanisms considered. 241 

Subsequently, experimental data should be collected to assist the calibration and verification of the 242 

individual components of the model for designing an integrated model for the hybrid system.  243 

 244 

Fig. 4 Proposed approach for modeling the hybrid ion exchange (IX) and biological systems 245 

Hybrid IX and biological processes are multiphase systems including bulk liquid, biomass, 246 

and solid (IX material) phases.  Mass balance expressions for each phase of the system are required for 247 

the process description. Fig. 5 depicts the conceptual phases and interfaces of the hybrid IX and 248 

biological system including the substrate concentration gradient from the bulk liquid to the solid phase 249 

(Alonso et al. 2021; Shen et al. 2012). In this system, it is assumed that the substrates will be 250 

transported from the bulk liquid to the interface between the liquid and the biofilm phases, mainly by 251 
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diffusion, and the thickness of biofilm layer is constant (Gaebler and Eberl 2018; Grady Jr et al. 2011).  252 

Reactor configurations and operational conditions of the hybrid system largely dictate which phases 253 

should be included during model conceptualization.  254 

In well-mixed batch hybrid systems which contain suspended microorganisms, solid IX 255 

materials, and liquid, the boundary layer and biofilm phases shown in Fig. 5 can be ignored when the 256 

biofilm is thin and does not inhibit the diffusion process (Aponte-Morales et al. 2018). Independent IX 257 

and biological process experiments can be conducted to aid the selection of appropriate IX model and 258 

biological model, respectively. This approach has successfully simulated data in hybrid algal 259 

photosynthesis and IX wastewater treatment system (Wang et al. 2018). 260 

 261 

Fig. 5 The hypothetical mass transfer in hybrid ion exchange (IX) and biological system. 1) IX process 262 

within the solid phase; 2) Mass transfer and biodegradation processes within biofilm and boundary 263 

layer, including biofilm and hypothetical boundary layer which can be ignored in some conditions; 3) 264 

biological process in the bulk liquid phase. 265 

In the following subsections, we critically review the individual IX and biological process 266 

modeling and interfacial phase (boundary between each phase) modeling that affects the hybrid 267 

modeling for batch and continuous operations.   268 

3.1 Ion exchange model 269 

Ion exchange is the key dynamic process that affects hybrid system performance.  IX 270 

equilibrium and kinetic models are required to describe the physico-chemical process between the 271 

liquid and the solid phases.  272 
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3.1.1 Ion exchange equilibrium and kinetic modeling for hybrid systems 273 

The models used to describe IX equilibrium can be divided into three groups: ion adsorption 274 

(semi-empirical model), homogeneous mass action, and heterogeneous mass action (Luqman, 2012; 275 

Mareev et al. 2022). Table 2 summarizes the underlying assumptions behind the various equilibrium 276 

models and the application scenarios.  277 

The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) isotherms are semi-empirical 278 

adsorption models that describe single component adsorption. They have been widely used to describe 279 

IX equilibrium (Bezzina et al. 2020; Moghimi et al. 2020). In the mathematical description of hybrid 280 

systems, the main advantage of using these models is the relatively simple implementation for fitting 281 

equilibrium data.  282 

The homogeneous mass action model assumes the IX sites are homogeneously distributed 283 

across the resin. This model contains the equilibrium among counter ions and is more theoretically 284 

sound. IX among multiple ions can be described using the homogeneous mass action model. However, 285 

it is more challenging to implement than semi-empirical models because more ions and parameters are 286 

involved leading to more complicated calculation.  287 

The third group includes the heterogeneous mass action model which consider heterogeneous 288 

IX sites with different IX capacities (Koopal et al. 2020; Lito et al. 2012). For example, if IX resin 289 

comprises two-functional groups including sulfonate (-SO3
-) and phosphorate acid (-PO3

-), where each 290 

group has a different IX capacity (Lito et al. 2012), heterogeneous mass action model should be used in 291 

this case. The heterogeneous model requires more parameters (e.g., the values of the equilibrium 292 

constant K for the different functional groups and ions) than the homogeneous model, which means 293 

more data are needed for fitting heterogenous mass action models. 294 

Four main kinetic models have been commonly applied to describe IX phenomena (Table 3). 295 

Among these models, semi-empirical models are based on the sorption capacity of the IX resin. They 296 

depend on the relative amounts (no matter if counted by volume or mass) of solid and liquid, i.e., if the 297 

amount of solid or liquid is changed, the rate constants (k1 and k2) in the models will be changed. Thus, 298 

the two semi-empirical equations can only be used in batch systems but not any other continuous 299 

systems with inlet or outlet flows during the experiments (Jiang et al. 2020; Luqman 2012; Rengaraj et 300 

al. 2007). 301 
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In Fick’s law-based models, ionic diffusion is considered as the rate-limiting step in the IX 302 

process. Table 3 shows Fick’s law-based equation assuming the IX particles are spherical. To complete 303 

the mathematical description, initial and boundary conditions are required. Equations 1-3 show the 304 

general specification of these conditions (Inglezakis et al. 2019):   305 

𝑞% = 𝑞%,&, 𝑐% = 𝑐%,&	at	𝑡 = 0  (1)  306 

 at r = 0, t >0   (2) 307 

𝑞% = 𝑓(𝑐%)	at	𝑟 = 𝑅	for	all	𝑡	   (3) 308 

where ci and qi are the concentrations of component i in the liquid and solid phase, respectively, ci,0 and 309 

qi,0 are the initial concentrations in those phases, r is the radial coordinate, R is the IX resin particle 310 

radius, t is time, and f(ci) is one of the IX equilibrium models in Table 2.  311 

It should be noted that the boundary condition in Equation 3 is specified at the IX resin surface 312 

and adds the most complexity to the numerical solution of the equations due to the non-linearity of IX 313 

equilibrium models. This requires numerical techniques such as predictor-corrector methods to be used 314 

in the numerical solution (Press et al. 2007).  315 

The Nernst-Planck equation considers the electric field, which could affect the behavior of 316 

ions in an electrolyte solution. The model has been validated with IX resins for H+, Na+ and bromate 317 

(BrO3
−) removal (Mestri et al. 2023; Turner et al. 1966). Both ion-ion and ion-solid interactions are 318 

considered in the model. The diffusivity coefficient is not heavily dependent on the composition within 319 

IX materials but the properties of each counter ion. Additionally, in a binary system with dilute ionic 320 

solutions, both Nernst-Planck equation and Maxwell-Stefan equation can describe the process well 321 

(Lito and Silva 2008; Luo et al. 2018). It has been recognized that a chemical potential gradient is the 322 

driving force for ionic migration rather than concentration gradients. Nernst-Planck or Maxwell-Stefan 323 

formulations that represent more rigorous descriptions of the migration of a charged chemical species 324 

could be used in the future models (Cardoso et al. 2016; Figueiredo et al. 2018; Lito et al. 2015). 325 

With the combination of appropriate equilibrium and kinetic models, the dynamic behavior of 326 

exchanged ions can be described and predicted. For instance, if the IX process is fast enough, 327 

equilibrium models can serve as one of the boundary conditions for Fick’s law-based models on the 328 

surface of the solid phase (Aponte-Morales et al. 2018). 329 
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Table 2. Equilibrium models used to model IX equilibrium processes 330 

Groups of the 

equilibrium 

model 

Formula* Assumptions 
Applied IX resin and 

counter ions 
References 

Ion 

Adsorption 

and Related 

models 

Langmuir model   

The homogeneous 
surface of the 
absorbent material; 
monolayer coverage. 

Magnetite-natural zeolite 
and nickel ion (Ni2+); zeolite 
and NH4

+; activated teff 
straw and heavy metals (Cr, 
Cd, Pb, Ni, and Cu); metal 
organic frameworks and 
Pb(II). 

Baseri and Tizro 2017; Bashir et al. 2019; 
Desta 2013; Goyal et al. 2021; Malekian et al. 
2011; Masel 1996 

Freundlich model   
Energetically 
heterogeneous surface. 

Na-based zeolite and zinc 
ion (Zn2+); ion exchange 
resin and NO3

-; hydrotalcite 
and chromium Cr (VI); 
synthetic zeolite and Co(II). 

Chabani et al. 2006; Nasseh et al. 2021; 
Ostroski et al. 2009; Proctor and Toro-Vazquez 
1996; Terry 2004; Wang and Guo 2020 

D-R model   
Heterogeneous surface or 
porous solid material. 

Zeolites and several cations 
(Cs+, Sr2+, Ca2+ and Mg2+).  

El-Rahman et al. 2006; Wang and Guo 2020 

Homogeneous 

Mass Action 

Models   

 
No difference in IX capacity 
among sites. 

Chabazite and NH4
+.  Koopal et al. 2020; Payne 2018 

Heterogeneous 

Mass Action 

Models  

𝐾!,#
$ =

𝑎̄
#,$

'
𝑎!
'

𝑎̄
#,!

'
𝑎
$

' (𝑗 = 1,2) 
The solid phase is comprised of 
two or more functional groups 
with different IX capacities. 

K+/Na+/Cl-/clinoptilolite Koopal et al. 2020; Luqman 2012 

*In the Langmuir model, qe is the equilibrium solid phase concentration (mg/g), Q0 is the monolayer adsorption capacity (mg/g), ce is the equilibrium liquid phase 
concentration (mg/L), and b is a constant which depends on the free energy of the IX process; in the Freundlich model, KF (mg/g) and n are constants for the specific IX 
process; in the D-R model, qmax is the ion-exchange capacity of the solid material (mol/g), qe is the equilibrium solid phase concentration (mol/g), B is a constant 

(mol2/kJ2), and ɛ is the Polanyi potential (kJ/mol), and it can be calculated as ; in the homogeneous mass action models, K is the equilibrium 

constant,   and  are counter ions with valences 𝒛𝑨 and 𝒛𝑩,  is the concentration of  in the solid phase, and Qmax is the maximum IX capacity; in the 

heterogeneous mass action models,  is the equilibrium constant for each functional group j, is the activity for i. 
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3.1.2 impact of temperature and competing ions 332 

Temperature also plays a key in the IX process and therefore, thermodynamic considerations 333 

are important. The diffusion rate of related ions across an external boundary layer and internal sorption 334 

sites within the pores increases with an increase in temperature. In addition, equilibrium is influenced 335 

by temperature as shown in Eq. 5-7. The thermodynamic parameters, Gibbs free energy (ΔG), enthalpy 336 

change (ΔH), and entropy change (ΔS) can be calculated by the following equations: 337 

   (4) 338 

   (5) 339 

   (6) 340 

where K1 and K2 are the equilibrium constants at the temperatures at T1 and T2 respectively, and  is 341 

the gas constant. A negative ΔG value means the IX process can happen spontaneously, a positive value 342 

of ΔH means the IX process is endothermic, and the values of ΔS in equation 6 reflects the affinity of the 343 

IX materials for the ions (El-Rahman et al. 2006). In a study using anion exchange resins, results showed 344 

that enthalpy and 1/T had a linear relationship (Singare et al. 2008; Sutirman et al. 2021), which was 345 

consistent with equation 5. Thus, after confirmed at several temperature points by experiment, the 346 

relationship of K and enthalpy can be determined, and the value of K can be calculated and used into IX 347 

models at different temperatures. 348 

Hybrid system performance can also be significantly affected by multiple chemical species, so 349 

that IX equilibrium and kinetic models that account for more than one component are important. For 350 

the IX equilibrium model, a comprehensive study using a synthetic resin (Amberlite IR-120), 351 

considering ten binary systems and five ternary systems, found that the homogeneous mass action 352 

model provided better results than the heterogeneous mass action model (Valverde et al. 1999). 353 

However, another study using the natural zeolite, clinoptilolite, for a system with K+/Na+/Cl-354 

/clinoptilolite showed that the heterogeneous mass action model provided a more accurate fit to 355 

experimental data (Lito et al. 2012). For kinetic models in multicomponent systems, which contain 356 

multiple counter ions, the Maxwell-Stefan equation can describe the IX process better than the other 357 

three models mentioned above (Luo et al. 2018; Silva and Lito 2007; Wesselingh et al. 1995). More 358 

experimental data and characterization of the IX resin is needed to identify the appropriate model that 359 

is theoretically sound.360 
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Table 3. Kinetic models of IX process (Luqman 2012) 361 

Kinetic model  Formula*  Description 

Semi-empirical models The pseudo first order rate equation:   
The first-order equation is widely utilized to describe 

the IX mechanism. 

 The pseudo second order rate equation:  Both equations are used in batch systems. 

Fick’s law-based model   
Assumes that IX resins are spherical, and the diffusion-

driven model is based on Fick’s law. 

Nernst-Planck model   Considers the impact of the electric field. 

Maxwell-Stefan model   Assumes that surface diffusion is the only transport 

mechanism. 

*𝒌𝟏is the rate constant of the first order sorption; 𝒒?𝒊,𝒆 is the sorbed solute concentration at equilibrium; 𝒒?𝒊 
is the concentration of ion i in the solid phase; 𝒌𝟐 is the rate 

constant of the second order sorption; Di in Nernst-Planck model is the diffusion coefficient, and r is the radial position in the IX resin; qi
 
is the concentration of ion i 

at the selected position in the solid phase; Ni is the flux of ion i; Di in Maxwell-Stefan model is the self-diffusion coefficients of chemical species i; F is the Faraday 

constant; R is the ideal gas constant; T is the absolute temperature (K); Φ is the electric potential;  is the surface chemical potential gradient of i; Dij is the surface 

diffusivity of the pair i-j; Dis is the surface diffusivity between i and the ionic groups s fixed within the solid phase; yj is the mole fraction of ion j; and ys is the mole 

fraction of ionic fixed group, s. 
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3.2 Mathematical modeling of biological processes 363 

The commonly used biological models to describe the biological kinetics in hybrid systems 364 

include Activated Sludge Model (ASM), Anaerobic Digestion Model (ADM), River Water Quality 365 

Model (RWQM) and their variants (Table 4).  366 

Based on the involved biological processed and the data collected, an appropriate model 367 

structure can be selected or modified, and then it can be calibrated by adjusting the parameters. After 368 

verification, the model can be applied to a specific system, of which some of the characteristics have 369 

been known, such as the initial biomass distribution and the initial substrates concentrations (Hulsbeek 370 

et al. 2002). These models have been serving as a valuable tool to design, operate, and predict the 371 

performance of various biological processes. In these models, except RWQM1, algal process is not 372 

involved. To simulate the algal-bacterial consortia, kinetic models should be modified by adding algal 373 

kinetic equations. Besides substrates, light intensity also plays a vital role in algae growth. Various 374 

kinetic models describing the algal process (Lee et al. 2015; Singh and Mishra 2019), can be integrated 375 

into the biological process models. 376 

3.3 Impact of biofilm and its mathematical model development 377 

When a biofilm layer is included in the hybrid modeling, diffusion and bioreaction within the 378 

biofilm layer should be considered (Deena et al. 2022; Verma et al. 2022). Table 5 lists the equations 379 

related to the processes involved. Assuming a spherical biofilm layer coating resin particle, Equation 8 380 

describes the substrates’ concentration in the biofilm layer (Cunningham and Mendoza‐Sanchez 2006). 381 

On the interface of solid IX material and the biofilm, the substrate concentration can be calculated by 382 

the equilibrium equations described in the equilibrium modeling section. 383 

  The diffusion of the substrates from the bulk liquid to the interface between the liquid and the 384 

biofilm phases can be described by Equation 7 (Grady Jr et al. 2011). Fick’s first law (Equation 10) can 385 

describe the flux exiting the boundary layer towards the biofilm. 386 

When the mass transfer between biofilm and hypothetical boundary layer reaches equilibrium, 387 

Equation 11 is finally applied to describe the boundary condition at the liquid/biofilm interface, where 388 

the substrate is transferred from the liquid phase to the outer face of the biofilm (Rittmann and 389 

McCarty 2012). Various research on biofilm-covered granular systems and biofilm-membrane systems 390 

has confirmed this model (Chen et al. 2021; Rittmann and McCarty 2012; Shafahi and Vafai 2011; 391 
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Shen et al. 2012). However, there is a lack of research on the model of the biofilm attached to ion 392 

exchange resin because diffusion in the boundary layer is not a dominant step of the system (Shen et al. 393 

2012; Walker and Weatherley 1997). One of the significant challenges in hybrid modeling is 394 

determining the dynamics of the biofilm thickness, Lf. Advances in soft matter research based on 395 

emerging phase-field methods are theoretically sound for tracking the biofilm/bulk liquid interface 396 

(Zhang et al. 2008).   397 

In well-mixed batch systems, physico-chemical and biological models mentioned above are 398 

combined to describe the IX, mass transfer, and biological kinetics processes. In this case, the mass 399 

balance expression can be written as: 400 

   (12) 401 

where A is the interfacial area of the ion exchange resin particles, V is the volume of the liquid, ci is the 402 

concentration of the ith chemical species in the aqueous phase, Ni is the flux of ions between the bulk 403 

liquid and solid phase, rs is the substrate utilization rate in the bulk liquid, and t is time.  404 

In Equation 12, ci equals Sb; Ni can be substituted by Ns (Equation 8); A is the interfacial area 405 

of the liquid phase and the equilibrium layer, which means that the radius calculating for A is the sum 406 

of R, Lw, and Lf. Therefore, the overall model can be developed by combining Equation 7-12.   407 

In terms of continuum-scale biofilm modeling, an approach such as phase-field modeling 408 

would represent a more state-of-the-art description (Li et al. 2020; Tierra et al. 2015). The Cahn-Hillard 409 

equation, which was initially applied in the material science community, has found applications in 410 

complex fluids and soft matter systems (Kim et al. 2016). The strength of phase-field modeling is that 411 

it would account for one of the biggest challenges in biofilm modeling related to the evolution of the 412 

free boundary at the interface between the bulk liquid and biofilm surface. Biofilms can be regarded as 413 

soft matter systems and are amenable to phase-field approaches. However, these models are yet to be 414 

applied widely within the environmental engineering discipline. Combining chemical potential driven 415 

ionic fluxes to describe IX and phase-field modeling for biological processes would represent a 416 

significant step forward in advancing hybrid IX and biological process modeling.  417 
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Table 4. Description and application of the models for biological process  418 

Model Processes included in the model Application Examples of application in different reactors and treatment systems 

ASM1 Growth of biomass, decay of biomass, 

ammonification of organic nitrogen, hydrolysis of 

particulate organics 

Modeling biological removal of 

organic carbon, NH4
+, and TN 

Aerobic membrane bioreactor (MBR) treating dilute municipal wastewater; 

Cyclic activated sludge system (CASS) treating wastewater with different COD:N 

ratios. 

(Baek et al. 2009; Gao et al. 2018; Henze et al. 2000; Kang et al. 2014;) 

ASM2 / 

ASM2d 

Hydrolysis, processes of facultative heterotrophic 

organisms, processes of phosphorus-accumulating 

organisms, nitrification, chemical precipitation 

Modeling biological removal of 

organic carbon, N, and P 

ASM2: Bench-scale sequencing batch reactor (SBR) for phosphorus removal, with 

EPS concentration involved; 

ASM2d: Pilot plant was operated under a UCT configuration treating municipal 

wastewater. 

(García-Usach et al. 2010; Henze et al. 2000; Yang et al. 2017) 

ASM3 Compared with ASM1: no decay of biomass but 

endogenous respiration 

Modeling biological removal of 

organic carbon, NH4
+, and TN 

CSTR system, where ASM3 was modified with nitrification/denitrification process; 

Shortcut nitrogen removal within an algal–bacterial consortium; 

Drinking water treatment by MBR for soluble microbial products (SMPs)  

(Arashiro et al. 2017; Henze et al. 2000; Iacopozzi et al. 2007; Shayan et al. 2022). 

ADM1 Acidogenesis, acetogenesis, acetoclastic 

methanogenesis, hydrogenotrophic 

methanogenesis, physicochemical reactions 

Simulating full-scale anaerobic 

sludge digestion, modeling 

biogas production 

Pilot-scale two-stage aerobic digestion; 

Aerobic digestion treating agricultural waste  

(Blumensaat and Keller 2005; Galí et al. 2009). 

RWQM1 Compared with ASM series: especially involved 

algae processes (growth, endogenous respiration, 

and death), and physicochemical reactions  

Modeling for rivers, stormwater 

pollution, and water treatment 

plants 

Oxygen and nitrogen conversion processes in the river; 

Algae-based activated sludge wastewater treatment process; 

High-Rate Algal Ponds (HRAPs). 

(Pierong et al. 2016; Reichert et al. 2001; Solimeno et al. 2017) 

419 
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Table 5. Equations describing substrates’ concentrations for each layer. 420 

Equations  

 (7) 

𝑁. = 𝑘/(𝑆0 − 𝑆1) (8) 

𝑘𝑓	 = 	𝐷𝑤/𝐿𝑤 (9) 

 (10) 

 (11) 

* In Equation 7, Sf is the concentration of the substrate within the biofilm phase, Df is the diffusion 

coefficient, r is a radial coordinate, and rf is the substrate utilization rate in the biofilm layer; in 

Equation 8, Ns is the flux; Sb is the concentration of substrate in the bulk liquid, Ss is the 

concentration of substrate at the interface of liquid and biofilm; and kf is the mass transfer coefficient 

of the liquid film; in Equation 9, Dw is the substrate diffusion coefficient in the bulk liquid; Lw is the 

thickness of the hypothetical boundary layer; in Equation 10, Df is the effective diffusivity within the 

biofilm phase,  is the concentration gradient, and Lf is the thickness of the biofilm.  

 421 

3.4 Modeling of continuous flow reactor  422 

Models accounting for hydraulic processes should be developed for applications of hybrid 423 

modeling in full-scale water and wastewater treatment systems. (Benjamin and Lawler 2013; Polat 424 

Bulut and Aslan 2021). Irrespective of the system being dealt with, the mass balance theory remains the 425 

same. The mathematical description then involves advection-diffusion-reaction (ADR) processes 426 

(Clement et al. 1997). The addition of advection term in the ADR model involves more parameters, 427 

increasing the complexity in comparison to adsorption-biological models described in section 3.1-3.3. 428 

There is rich literature focused on IX or adsorption modeling work in column-like packed-bed reactors 429 

(da Costa et al. 2020; Ma et al. 2019). The modeling framework developed for the adsorption-430 

biological column processes for biological active granular activated carbon (bGAC) system can be 431 

adapted to the hybrid IX-biological process (Lin and Ho 2022; Suksomboon et al. 2019). In their work, 432 
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the model for DOC removal was based on a similar mass transfer system as described in Fig. 5, taking 433 

adsorption equilibrium, kinetics, and ASM framework into consideration. The advection along the 434 

column depth was included as the key differentiating factor with the batch systems (Alonso et al. 435 

2021). The term was based on mass balance equation in the column reactor including parameters like 436 

column depth and flow velocity.  437 

There are also models for microbial growth and transport in porous media. Biofilm growth, 438 

attachment, and detachment process was also included in another model of a porous column (Gaebler 439 

and Eberl 2018). It simplified the porous column by dividing the whole column into small parallel, 440 

non-communicating flow channels. Groundwater flow system including advection-dispersion-reaction 441 

process, which is similar to the porous media column system, can also be modified to fit the continuous 442 

column system by including the IX term in the governing equation (Crop 2016; Gupta et al. 2021).  443 

In addition to groundwater system, another example in the literature that models the ADR 444 

process is wettability alteration of carbonate rocks (Magzymov et al. 2021). Langmuir-based kinetics is 445 

used for modeling the key reaction of desorbing non-wetting components attached to the rock and 446 

removed through the chemically-altered water injection process during representative secondary and 447 

tertiary recovery stages. Transport of components through the system is modeled using advection and 448 

diffusion terms. Experimental data on oil recovery was used to calibrate the different model parameters 449 

and results show predictability under varied conditions of high/low flow rates or fast or slow reaction 450 

kinetics (Magzymov et al. 2021). 451 

Since the continuous column systems mentioned above share similar processes with IX-452 

biological continuous column systems, including solid phase adsorption, biological process, and 453 

transport process, modification of the models of IX continuous column, GAC system, continuous 454 

column with porous media, and the ADR process is an effective method to develop the continuous IX-455 

biological model. What should be done is to adjust the model for each individual process based on the 456 

integrated frame model work. 457 

4. Challenges in modeling of the hybrid IX-biological systems 458 

One of the main challenges in hybrid system modeling is the limited availability of data. 459 

Sufficient experimental data is required to calibrate the hybrid model. For example, it is difficult to 460 

measure dissolved oxygen (DO) along the depth in the column systems packed with solid material, 461 
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which will affect the biological kinetics. When biofilm and porous IX materials are involved, it makes 462 

it more difficult to get the characterization and chemical dynamic data inside the biofilm or the porous 463 

media.  464 

Another challenge is to determine the rate-limiting step in the hybrid system and select the 465 

appropriate mathematical descriptions. Early attempts at understanding the interplay between processes 466 

utilized empirical approaches to determine rate-limiting processes (Lahav and Green 2000). Their study 467 

investigated the effects of biofilm on IX capacity and kinetics. The empirical model showed that pore 468 

diffusion within the zeolite was the rate-limiting step. However, the limiting step shifted from pore 469 

diffusion to film diffusion in a system with biofilm-covered chabazite. The authors indicated the 470 

counter-intuitive nature of this result, given that film diffusion is 3 to 4 orders of magnitude greater 471 

than the typical pore diffusion coefficient in zeolites (Lahav and Green 2000). In addition, it is 472 

important to consider the mathematical description of the process to be included in the model. For 473 

example, the N metabolism pathways such as nitrification, denitrification, anaerobic ammonia 474 

oxidation (anammox), may vary from reactor to reactor. The biological model to describe the involved 475 

process should be modified accordingly to reflect the metabolic pathways. This illustrates the 476 

importance of models with a more robust theoretical basis to test various hypotheses related to the 477 

dynamics of whether biological or chemical processes exhibit more influence. 478 

5. Outlook of hybrid ion exchange and biological modeling  479 

5.1 Applications of data-driven approaches in biological-IX systems 480 

The multiple physical-chemical-biological processes involved in the hybrid IX and biological 481 

process increased the complicity of the mechanistic modeling of the system. The rapidly advanced 482 

machine learning (ML) and artificial intelligence (AI) technologies provided a potential alternative to 483 

model the hybrid IX and biological systems. The ML/AI technologies have less dependence on the 484 

clarity of the process mechanism. If a data set with adequate quantity and quality is available, the 485 

ML/AI technologies can train a “black box” model that may accurately predict the characteristics of 486 

biofilm, chemical concentrations, and other variables in the hybrid IX and biological systems which 487 

could be challenges for traditional kinetics-based models as mentioned in the last section. 488 

Numerous ML/AI studies have been conducted on biological wastewater treatment including 489 

activated sludge systems (Sin and Al 2021), anaerobic digestion (Cruz et al. 2022), and algal systems 490 
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(Sundui et al. 2021). Note that Sin and Al (2021), Cruz et al (2022), and Sundui et al (2021) are review 491 

papers that well summarized the state of art of ML/AI application in the corresponding specific 492 

biological wastewater treatment systems. Most of past ML/AL studies on biological wastewater 493 

treatment were focused on system fault detection, prediction of water quality or operation condition, 494 

and optimization of process control, as pointed out by the above review papers as well as several other 495 

review papers on data-driven approaches in wastewater treatment (Malviya and Jaspal 2021; Newhart 496 

et al. 2019; Singh et al. 2022).  497 

ML/AI application in IX technology was relatively limited. Most of the existing reports 498 

focused on removal of heavy metals such as lead (Zeng et al. 2022), cadmium (Fawzy et al. 2018; Nasr 499 

et al. 2017), zinc (Ullah et al. 2020), nickel (Fawzy et al. 2016b), chromium (Fawzy et al. 2016a), and 500 

copper (Bhagat et al. 2021; Bleotu et al. 2018). Similar to biological wastewater systems, most of the 501 

past ML/AI applications in IX focused on variable prediction and operation condition optimization.  502 

Although the application of ML/AI to an integrated IX-biological system is rare, the great 503 

success of ML/AI in biological systems and IX technologies indicates a bright future of overcoming the 504 

challenges in integrated biological-IX systems, like determination of the biofilm characteristics and the 505 

chemical concentrations within biofilm and estimating biofilm growth in porous formations, using 506 

ML/AI. In addition, response surface methodology (RSM) has been used for system optimization 507 

(Almasi et al. 2019), which can be combined with data-driven method such as artificial neural network 508 

(ANN) to optimize and predict the performance of the treatment process (Wang et al. 2022).  509 

However, recall the challenge of limited data availability mentioned in the last section. It is a 510 

common challenge in many biological and chemical engineering systems. To address the low data 511 

availability issue, ML/AI models could be combined with a kinetic or mechanistic model, which may 512 

be developed based on prior known physical laws, to reduce the model dependence on data. One 513 

typical type of such a modeling framework is known as physics-informed neural networks (PINN). 514 

PINN has been demonstrated to be effective in modeling many engineering systems including fluids 515 

systems, chemical reaction systems, and water distribution systems (Falas et al. 2020; Raissi et al. 516 

2019). Attempts of PINN have been extended to biological systems (Mei et al. 2019) and IX systems 517 

(Santana et al. 2022) in recent years. Sin and Al (2021) also proposed an integrated modeling 518 

framework consisting of mechanistic models and data-driven models as shown in Figure 6. However, 519 
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how to blend ML/AI models with mechanistic models to get the most powerful modeling framework is 520 

still in exploration. In the future, advancements on both sides (i.e., ML/AI models and mechanistic or 521 

kinetic models) would create unlimited possibilities in forming a new modeling framework to help 522 

improve the knowledge of biological systems.  523 

 524 

Fig. 6 A Proposed Integrated Modeling Framework of Mechanistic Model and Data-driven Models 525 

(Adapted from Sin and Al 2021).  526 

5.2 Utilization of modern laboratory technologies to enhance hybrid IX modeling 527 

Many of the modeling studies to date primarily use concentrations of ionic species and 528 

biomass in the bulk liquid in the case of batch systems, and effluent concentrations for fixed-bed hybrid 529 

systems for model calibration and validation. Advances in imaging technologies such as confocal 530 

microscopy and microprobes that enable determining chemical species concentrations within biofilms 531 

would provide an additional source of data for validating higher fidelity models (Beyenal and Babauta 532 

2013; Wang et al. 2020). 533 

The electric cell-substrate impedance sensing (ECIS) technique has been applied to monitor 534 

the activities of animal cells, determine cell properties, and test the toxicity of drinking water in real-535 

time without invasion and damage to the cells (Wegener et al. 2000; Widder et al. 2015). Research on 536 

wastewater biofilm formation confirmed that a real-time cell analysis (RTCA) technology based on 537 

ECIS could be successfully used to quantitively and continuously monitor the initial biofilm attachment 538 

process by obtaining the time-biomass images (Wang et al. 2020). 539 

Since the concentrations of substrates and the extracellular environment such as DO and pH 540 

within the biofilm are challenging to be measured directly, microsensor technologies have been 541 

developed. The needle-type microsensor can be inserted into the biofilm to conduct the measurement 542 
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without damaging the biofilm and its structure. The results are reliable because the tip of the sensor is 543 

made of inert materials, which would not affect biofilm activities. At present, the technology has been 544 

applied in environmental biofilms, medical biofilms, and biofilms for energy and bioproducts, 545 

involving the processes of mass balances, reaction kinetics, and metabolic pathways (Babauta et al. 546 

2012; James et al. 2008; Okabe et al. 2002). Profiles for both concentration gradients with depth and 547 

concentration over time can be obtained. The generated data can support the development of the 548 

mathematical models that describe these processes (Beyenal and Babauta 2013; Subramanian et al. 549 

2020). 550 

Advanced techniques like x-ray computed tomography can be implemented for capturing the 551 

growth of biofilm in porous formations. The advantage of such a technique is that it provides rich 552 

three-dimensional digital data of the growth of biofilm over the course of the experiment enabling the 553 

mapping of biofilm growth spatially and temporally (Davit et al. 2011, Iltis et al. 2011). Such data can 554 

be used to corroborate other observations of biofilm growth such as hydraulic conductivity changes. 555 

Such valuable experimental data at the pore- and column-scale can enable the development of suitable 556 

models at a scale relevant for wastewater remediation purposes (Peszynska et al. 2016).  557 

There remain two major challenges with the application of x-ray computed tomography for 558 

imaging biofilm growth. The first is that the longer exposure of x-ray (or the doze of x-ray) can 559 

potentially stunt the growth of biofilm locally in the region where the biofilm growth is imaged. Such 560 

destruction can be minimized by acquiring faster x-ray scans to limit exposure and secondly by 561 

allowing enough time in between x-ray scans for biological processes to restabilize the local 562 

environment. The second challenge with x-ray imaging is being able to resolve the growth of biofilm in 563 

the wastewater domain. This is because both wastewater and biofilm phases present similar contrast 564 

when exposed to x-ray due to similar phase densities (Shastry et al. 2020). One way to circumvent this 565 

is by using contrast agents that selectively interact with the biofilm, for example, the application of 566 

Barium compounds like Barium sulfate particle suspensions that adhere to biofilm that provide a bright 567 

contrast with x-ray imaging (Davit et al. 2011; Ostvar et al. 2018). Other contrast agents suggested in 568 

the literature include ferrous sulfate where it is suggested that the oxidized state of ion allows for its 569 

adherence to the biofilm showing a brighter contrast during imaging (Carrel et al. 2017). 570 

As the development of imaging and microsensor technologies evolves, biofilm characteristics 571 
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and processes will become accessible at finer spatiotemporal resolutions offering valuable information 572 

for calibrating biofilm models. In turn, the development of sophisticated biofilm growth models will 573 

help explain mechanisms of biofilm activities in hybrid systems.  574 

6. Concluding Remarks 575 

This review summarizes the application of hybrid ion exchange (IX) and biological processes 576 

to a wide range of environmental issues. We highlight the current state of modeling approaches and 577 

suggest a path toward advancing the current state-of-the-art. The models of individual processes in the 578 

hybrid systems already have comprehensive development theoretically and practically. However, there 579 

is a lack of applicable comprehensive mathematical model for the hybrid IX and biological systems. 580 

Models of similar systems can be modified to fit the purpose. Advanced data-driven model methods 581 

and emerging technologies can assist with the model development process. Emerging imaging and 582 

microsensor technologies can provide insight into the dynamics of the hybrid system and provide 583 

valuable information useful for model development. In addition, soft matter models can be adapted into 584 

environmental engineering applications as an alternative biofilm modeling approach. This review 585 

highlights hybrid IX and biological systems as an active area of research and elucidates the requirement 586 

for further efforts along various complementary avenues that would ultimately lead to the development 587 

of new technologies to address many pressing environmental problems. 588 
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