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Abstract

We study generating abstractive summaries

that are faithful and factually consistent with

the given articles. A novel contrastive learn-

ing formulation is presented, which leverages

both reference summaries, as positive training

data, and automatically generated erroneous

summaries, as negative training data, to train

summarization systems that are better at dis-

tinguishing between them. We further de-

sign four types of strategies for creating neg-

ative samples, to resemble errors made com-

monly by two state-of-the-art models, BART

and PEGASUS, found in our new human an-

notations of summary errors. Experiments on

XSum and CNN/Daily Mail show that our con-

trastive learning framework is robust across

datasets and models. It consistently produces

more factual summaries than strong compar-

isons with post error correction, entailment-

based reranking, and unlikelihood training, ac-

cording to QA-based factuality evaluation. Hu-

man judges echo the observation and find that

our model summaries correct more errors.

1 Introduction

Large pre-trained Transformers have yielded re-

markable performance on abstractive summariza-

tion (Liu and Lapata, 2019; Lewis et al., 2020;

Zhang et al., 2020a) with impeccable fluency, yet

their summaries often contain factually inconsis-

tent content (Maynez et al., 2020; Zhang et al.,

2020b; Goyal and Durrett, 2020), even for state-

of-the-art models. Three types of remedies have

been proposed: running a separately learned error

correction component (Dong et al., 2020), remov-

ing noisy training samples (Nan et al., 2021; Goyal

and Durrett, 2021), and modifying the Transformer

architecture (Huang et al., 2020; Zhu et al., 2021).

Yet they either rely on heuristically created data for

error handling, falling short of generalization, or

require learning a large number of new parameters,

and summary informativeness is often sacrificed.

XSum Article: The Fermanagh MLA Phil Flanagan tweeted
after Tom Elliott appeared on a BBC radio programme in
May 2014. . . . “I wonder if he will reveal how many people
he harassed and shot as a member of the UDR.”. . .

Contrastive learning (our method): A Sinn Féin MLA has
been ordered to apologise and pay compensation to a former
member of the Ulster Defence Regiment (UDR).

Cross-entropy: A Sinn Féin MLA has agreed to pay com-
pensation to a former Ulster Unionist Party (UDR) MP after
he tweeted that he had harassed and shot people as a member
of the party.

Entailment reranking: A Sinn Féin MLA has agreed to
pay compensation to a former Ulster Unionist Party (UDR)
councillor for a tweet he sent about him.

Unlikelihood: An MLA has been ordered to apologise and
pay compensation to a former loyalist MP for a remark he

made about him while serving in the Ministry of Defence.

Figure 1: Sample article and system summaries by dif-

ferent methods. Our contrastive learning model trained

on low confidence system outputs correctly generates

the full name. Comparisons using cross-entropy loss,

beam reranking by entailment scores (Kryscinski et al.,

2020), and unlikelihood objective (Welleck et al., 2020)

over negative samples all produce unfaithful content.

Our goal is to train abstractive summarization

systems that generate both faithful and informative

summaries in an end-to-end fashion. We observe

that, while the commonly used maximum likeli-

hood training optimizes over references, there is no

guarantee for the model to distinguish references

from incorrect generations (Holtzman et al., 2020;

Welleck et al., 2020). Therefore, potential solu-

tions reside in designing new learning objectives

that can effectively inform preferences of factual

summaries over incorrect ones.

Concretely, we hypothesize that including factu-

ally inconsistent summaries (i.e., negative samples)

for training, in addition to references (i.e., positive

samples), let models become better at differentiat-

ing these two types of summaries. Although using

negative samples has been effective at text repre-

sentation learning, e.g., word2vec (Mikolov et al.,



2013) and BERT (Devlin et al., 2019), there exist

two major challenges for it to succeed in concrete

language tasks. First, a suitable training objective

is critical to avoid performance degradation (Saun-

shi et al., 2019). Second, it is nontrivial to con-

struct “natural” samples that mimic the diverse

errors made by state-of-the-art systems that vary in

words and syntax (Goyal and Durrett, 2021).

To address both challenges, we first propose

a new framework, CLIFF, that uses contrastive

learning for improving faithfulness and factuality

of the generated summaries.1 Contrastive learn-

ing (CL) has obtained impressive results on many

visual processing tasks, such as image classifica-

tion (Khosla et al., 2020; Chen et al., 2020) and

synthesis (Park et al., 2020; Zhang et al., 2021b).

Intuitively, CL improves representation learning

by compacting positive samples while contrasting

them with negative samples. Here, we design a

task-specific CL formulation that teaches a sum-

marizer to expand the margin between factually

consistent summaries and their incorrect peers.

Moreover, we design four types of strategies

with different variants to construct negative sam-

ples by editing reference summaries via rewriting

entity-/relation-anchored text, and using system

generated summaries that may contain unfaithful

errors. Importantly, these strategies are inspired

by our new annotation study on errors made by

state-of-the-art summarizers—models fine-tuned

from BART (Lewis et al., 2020) and PEGA-

SUS (Zhang et al., 2020a)—on two benchmarks:

XSum (Narayan et al., 2018) and CNN/DailyMail

(CNN/DM) (Hermann et al., 2015).

We fine-tune pre-trained large models with

our contrastive learning objective on XSum and

CNN/DM. Results based on QuestEval (Scialom

et al., 2021), a QA-based factuality metric of high

correlation with human judgments, show that our

models trained with different types of negative sam-

ples uniformly outperform strong comparisons, in-

cluding using a summarizer with post error cor-

rection and reranking beams based on entailment

scores to the source. Moreover, compared with un-

likelihood training method that penalizes the same

negative samples (Welleck et al., 2020), our sum-

maries also obtain consistently better QuestEval

scores. Human evaluation further confirms that

our models consistently reduce both extrinsic and

1Our code and annotated data are available at https://
shuyangcao.github.io/projects/cliff_summ.

intrinsic errors over baseline across datasets.

2 Related Work

Factuality Improvement and Evaluation. Neu-

ral abstractive summaries often contain unfaith-

ful content with regard to the source (Falke et al.,

2019). To improve summary factuality, three major

types of approaches are proposed. First, a separate

correction model is learned to fix errors made by

the summarizers (Zhao et al., 2020; Chen et al.,

2021), including replacing entities absent from the

source (Dong et al., 2020) or revising all possi-

ble errors (Cao et al., 2020). The second type tar-

gets at modifying the sequence-to-sequence archi-

tecture to incorporate relation triplets (Cao et al.,

2018), knowledge graphs (Zhu et al., 2021), and

topics (Aralikatte et al., 2021) to inform the sum-

marizers of article facts. Yet additional engineer-

ing efforts and model retraining are often needed.

Finally, discarding noisy samples from model train-

ing has also been investigated (Nan et al., 2021;

Goyal and Durrett, 2021), however, it often leads

to degraded summary informativeness. In compari-

son, our contrastive learning framework allows the

model to be end-to-end trained and does not re-

quire model modification, thus providing a general

solution for learning summarization systems.

Alongside improving factuality, we have also

witnessed growing interests in automated factu-

ality evaluation, since popular word-matching-

based metrics, e.g., ROUGE, correlate poorly with

human-rated factual consistency levels (Gabriel

et al., 2021; Fabbri et al., 2021). Entailment-based

scorers are designed at summary level (Kryscinski

et al., 2020) and finer-grained dependency relation

level (Goyal and Durrett, 2020). QA models are

employed to measure content consistency by read-

ing the articles to answer questions generated from

the summaries (Wang et al., 2020; Durmus et al.,

2020), or considering the summaries for addressing

questions derived from the source (Scialom et al.,

2019). Though not focusing on evaluation, our

work highlights that models can produce a signif-

icant amount of world knowledge which should

be evaluated differently instead of as extrinsic hal-

lucination (Maynez et al., 2020). We also show

that world knowledge can possibly be distinguished

from errors via model behavior understanding.

Training with negative samples has been investi-

gated in several classic NLP tasks, such as gram-

matical error detection (Foster and Andersen, 2009)



and dialogue systems (Li et al., 2019). Notably,

negative sampling plays a key role in word repre-

sentation learning (Mikolov et al., 2013) and train-

ing large masked language models, such as BERT

and ALBERT, to induce better contextual represen-

tations (Devlin et al., 2019; Lan et al., 2020). For

text generation tasks, unlikelihood training is pro-

posed to penalize the generation of negative tokens

(e.g., repeated words) and sentences (e.g., contra-

dictory responses in a dialogue system) (Welleck

et al., 2020; Li et al., 2020; He and Glass, 2020).

We use contrastive learning that drives enhanced

representation learning to better distinguish be-

tween factual and incorrect summaries, which en-

courages more faithful summary generation.

Contrastive Learning (CL) for NLP. CL has

been a popular method for representation learning,

especially for vision understanding (Hjelm et al.,

2019; Chen et al., 2020). Only recently has CL

been used for training language models with self-

supervision (Fang et al., 2020), learning sentence

representations (Gao et al., 2021), and improving

document clustering (Zhang et al., 2021a). With

a supervised setup, Gunel et al. (2021) adopt the

contrastive objective to fine-tune pre-trained mod-

els on benchmark language understanding datasets.

Using a similar idea, Liu and Liu (2021) enlarge

the distances among summaries of different quality

as measured by ROUGE scores.

3 CLIFF: Contrastive Learning

Framework for Summarization

We design a contrastive learning (CL)-based train-

ing objective that drives the summarization model

to learn a preference of faithful summaries over

summaries with factual errors. It is then used for

fine-tuning BART (Lewis et al., 2020) and PEGA-

SUS (Zhang et al., 2020a) for training summariza-

tion models. Formally, let an article x have a set of

reference summaries P (henceforth positive sam-

ples) and another set of erroneous summaries N
(negative samples). The contrastive learning objec-

tive is (Khosla et al., 2020; Gunel et al., 2021):

lxcl = −
1

(

|P |
2

)

∑

yi,yj∈P

yj 6=yi

log
exp(sim(hi,hj)/τ)

∑

yk∈P∪N
yk 6=yi

exp(sim(hi,hk)/τ)

(1)

where hi, hj , and hk are representations for sum-

maries yi, yj , and yk. sim(·, ·) calculates the cosine

similarity between summary representations. τ is a

temperature and is set to 1.0.

Importantly, summaries in P and N are included

in the same batch during training, so that the model

acquires better representations to differentiate cor-

rect summaries from those with errors by compar-

ing the two types of samples, thus maximizing the

probabilities of the positive samples and minimiz-

ing the likelihoods of the corresponding negative

samples. The CL objective on the full training set,

denoted as LCL, is the sum of losses lxcl over all

samples.

To effectively employ CL in summarization, we

need to address two challenges: (1) how to auto-

matically construct both positive and negative sam-

ples, which are critical for CL efficacy (Chen et al.,

2020), and (2) how to represent the summaries (i.e.,

h∗). Below we describe positive sample genera-

tion and options for h∗, leaving the strategies for

negative samples to § 5.

Positive Sample Construction (P ). Summariza-

tion datasets often contain a single reference for

each article. To create multiple positive samples, in

our pilot study, we experiment with paraphrasing

with synonym substitution (Ren et al., 2019), ran-

domly replacing words based on the prediction of

masked language models (Kobayashi, 2018), and

back-translation (Mallinson et al., 2017). We find

back-translation to be best at preserving meaning

and offering language variation, and thus use NL-

PAug2 to translate each reference to German and

back to English. Together with the reference, the

best translation is kept and added to P , if no new

named entity is introduced.

Summary Representation (h∗). We use the out-

puts of the decoder’s last layer, and investigate

three options that average over all tokens, named

entity tokens, and the last token of the decoded

summary. Entities and other parsing results are ob-

tained by spaCy (Honnibal et al., 2020). We further

consider adding a multi-layer perceptron (MLP)

with one hidden layer to calculate the final h∗.

The final training objective combines the typical

cross-entropy loss LCE and our contrastive learn-

ing objective: L = LCE + λLCL, where λ is a

scalar and set to 1.0 for all experiments.

2https://github.com/makcedward/nlpaug
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Figure 2: Percentage of samples with intrinsic and ex-

trinsic error spans for models fine-tuned from BART

and PEGASUS on XSum and CNN/DM.

4 Summary Error Annotation and

Model Behavior Analysis

We first describe annotating unfaithfulness errors

by state-of-the-arts, i.e., models fine-tuned from

BART and PEGASUS on XSum and CNN/DM.

We then probe into the model generation behavior

that is indicative of errors, which guides the design

of negative sample construction strategies.

600 (150 × 2 × 2) summaries are annotated to

demonstrate how often do the models “hallucinate",

i.e., generating content not grounded by the source.

To characterize errors, we annotate text spans in

summaries with (i) intrinsic errors caused by mis-

constructing phrases or clauses from the source;

and (ii) extrinsic errors which include words not

in the source that are either unverifiable or can-

not be verified by Wikipedia. Content not covered

by the article but can be validated by Wikipedia

is annotated as world knowledge, and the models’

behavior pattern when generating them differs from

when they generate errors.

Two fluent English speakers with extensive ex-

perience in summary evaluation and error labeling

are hired. For each sample, they are shown the

article and two system summaries, and instructed

to annotate text spans with the aforementioned er-

rors and world knowledge. After labeling every

50 samples, the annotators discuss and resolve any

disagreement. The Fleiss’s Kappas on XSum and

CNN/DM are 0.35 and 0.45.

Error statistics are displayed in Fig. 2. Extrinsic

errors dominate both datasets, especially on XSum.

58.7% of summaries by BART (and 44.0% by PE-

GASUS) contain at least one extrinsic error. No-

ticeably, PEGASUS is a newer model pre-trained

with a larger amount of data, thus contains less

errors than BART and other older models studied

for error annotations by Maynez et al. (2020). This

observation also highlights the usage of our anno-

extri. intri. world other
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Figure 3: Probability distributions of generating the

first tokens of proper nouns and numbers, grouped by

extrinsic errors, intrinsic errors, world knowledge, and

other correct tokens.

tations for future development and evaluation of

summarization models.

Low confidence generation is indicative of ex-

trinsic errors. Inspired by recent work that stud-

ies model prediction confidence (Liu et al., 2021),

we examine generation probabilities for tokens of

different part-of-speech (POS) tags. Fig. 3 shows

salient results on the generation probabilities of the

first token of a proper noun or a number (with ad-

ditional analysis provided in Appendix A). As ob-

served, model confidence tends to be lower for the

first tokens of proper nouns and numbers if they are

part of spans with extrinsic errors. Also note that

world knowledge, which cannot be inferred from

the source either, often has higher generation proba-

bility than extrinsic errors. Take this snippet gener-

ated by a fine-tuned BART as an example: “Manch-

ester United captain Wayne Rooney’s testimonial

game against Manchester City. . .”. “Manchester

City" is an extrinsic error and “Wayne" is produced

as world knowledge. The model assigns a low

probability of 0.10 to the first token of “Manch-

ester City” and a high probability of 0.92 to token

“Wayne”. This implies that model confidence can be

a useful indicator for negative sample collection.

5 Negative Sample Construction

Here we describe four strategies for constructing

negative samples that modify the references (§ 5.1-

5.3) or use system generated summaries (5.4).

5.1 Entity Swap

Entity swap imitates intrinsic errors, as over 55%
of intrinsic errors in our annotations are found to

contain named entities. We construct negative sam-

ples by swapping named entities in the references

with other randomly selected entities of the same

entity type in the source (SWAPENT). One sam-



REFERENCE: A “rare” short-eared owl found emaciated in
Flintshire is now recuperating well, the RSPCA have said.

SWAPENT: Flintshire → Bettisfield
⇒ A “rare” short-eared owl found emaciated in Bettisfield is
now recuperating well, the RSPCA have said.

MASKENT: A “rare” short-eared owl found emaciated in
[MASK] is now recuperating well, the RSPCA have said.
⇒ A “rare” short-eared owl found emaciated in a field in South
Yorkshire is now recuperating well, the RSPCA have said.

MASKREL: A “rare” short-eared owl found [MASK] in
[MASK] is now recuperating well, the RSPCA have said.
⇒ A “rare” short-eared owl found dead in London is now recu-
perating well, the RSPCA have said.

REGENENT: A “rare” short-eared owl found emaciated in
⇒ A “rare” short-eared owl found emaciated in Notting-
hamshire is now at a wildlife centre to recover.

REGENREL: A “rare” short-eared owl found
⇒ A “rare” short-eared owl found in the grounds of a former
coal mine is being cared for by the RSPCA in Somerset.

SYSLOWCON: An injured golden owl found in a former coal
mine in Lancashire is being cared for by the RSPCA.

Table 1: Negative sample construction strategies (§ 5).

For summaries edited from the reference, their differ-

ences are bolded. Introduced errors are in red. Text

before is the prefix for regeneration.

ple is constructed for each entity in the reference.

Though this idea has been studied by Kryscinski

et al. (2020), they allow entities of different types

to be used, e.g., a PERSON can be replaced by a

LOCATION. Examples are displayed in Table 1.

SWAPENT has the advantage of not depending

on any trained model. Yet it only introduces intrin-

sic errors and lacks the coverage for extrinsic errors,

which is addressed by the following generation-

based methods.

5.2 Mask-and-fill with BART

To simulate extrinsic errors, we leverage large un-

conditional language models’ capability of convert-

ing a sequence with masked tokens into a fluent and

appropriate sequence. Specifically, we replace each

named entity in a reference with a [MASK] token

and encode it with BART (without any fine-tuning).

BART then fills this partially masked summary

with newly generated entities (MASKENT). BART

is chosen since it can fill [MASK] with varying

number of tokens. For each entity in the reference,

we sample three summaries and only retain the

ones containing at least one entity that is absent

from both the source and the reference.

Up to now, the two introduced strategies both

focus on incorrect named entities. To cover more

diverse extrinsic and intrinsic errors (Goyal and

Durrett, 2020), we extend MASKENT to contain

relations (MASKREL). We first obtain dependency

relations using Stanza (Qi et al., 2020), with each

relation denoted as <gov, rel, dep>. To in-

corporate more context, we consider noun phrase

spans enclosing the token of gov or dep if it is a

content word and the noun phrase contains a named

entity. Similar to MASKENT, three negative sam-

ples are generated by BART based on the input

with both gov and dep spans masked in the ref-

erence. Only the samples that introduce any new

dependency relation that is not contained in the

source nor the reference are kept. Specifically, we

consider a match of a dependency relation as the

same form or synonyms of its gov and and dep is

found in the source or the reference with the same

relation.

Both MASKENT and MASKREL can create more

extrinsic errors compared to other strategies intro-

duced in this section, since negative samples are

generated without being grounded on the source

articles. However, their constructed negative sam-

ples may contained drifted topics that can be easily

detected by a summarization model, resulting with

less efficient training signals.

5.3 Source-conditioned Regeneration

To ground negative sample generation with the arti-

cle, we further design a regeneration strategy based

on conditional generation. For each named en-

tity in the reference, we treat the text before it as a

prompt. A summarizer, e.g., fine-tuned from BART

or PEGASUS, first reads in the source using the

encoder, then receives the prompt as the first part of

the decoder output, and finally decodes the rest of

the content based on nucleus sampling (Holtzman

et al., 2020) with a cumulative probability thresh-

old of 0.7. The prompt and the regenerated text

comprise the final negative sample. This method is

denoted as REGENENT.

We also extend entities to relations with

expanded governor and dependent spans

(REGENREL). Here, we consider a prompt as the

text before the gov or dep span, whichever occurs

first. For both REGENENT and REGENREL, three

negative samples are generated for each prompt,

and a sample is kept if it introduces any new entity

(for REGENENT) or dependency relation (for

REGENREL) with regard to the source and the

reference.

Negative samples generated by both methods are

more relevant to the article than the mask-and-fill



strategy, yet they may still miss certain types of

errors and differ from real model outputs, since

they are modified from the reference summaries.

5.4 System Generation

Motivated by the model confidence analysis in § 4,

we explore using system generated summaries as

negative samples. We first run fine-tuned BART

or PEGASUS on the same training set to decode

summaries. For each summary, we check the

model confidence on the first token of each proper

noun and number span. If the probability is be-

low a threshold, we keep it as a negative sample

(SYSLOWCON). The threshold is tuned by maxi-

mizing F1 based on our error annotations.

We consider all beams at the last decoding step

as candidates. We use beam sizes of 6 and 4 for

XSum and CNN/DM. Statistics of negative sam-

ples constructed by different strategies are in Ap-

pendix B.

6 Experiment Setup

Evaluation Metrics. QuestEval (Scialom et al.,

2021) is used as the main metric to evaluate sum-

maries’ factual consistency. Given an article and

a summary, QuestEval first generates natural lan-

guage questions for entities and nouns from both.

A QA model then consumes the article to answer

questions derived from the summary, producing a

score. Another score is obtained from a QA model

addressing article-based questions after reading the

summary. The final QuestEval score is the har-

monic mean of the two. We use the version with

learned weights for questions, which has shown

high correlation with human judged consistency

and relevance.

We further use FactCC (Kryscinski et al., 2020),

trained based on their negative sample construction

method, to measure if the summary can be entailed

by the source. We also report ROUGE-L (Lin,

2004). Both FactCC and ROUGE-L reasonably

correlate with summary factuality as judged by

human (Pagnoni et al., 2021).

Based on our error annotations, we report the cor-

relations between each metric and the error rate—

percentage of tokens being part of an error span,

and the raw number of errors (Table 2). QuestEval

correlates better on both aspects than other metrics.

Comparisons. In addition to the models fine-

tuned with cross-entropy loss (CRSENTROPY),

we consider reranking beams based on FactCC

Metric XSum CNN/DM
% of Err # of Err % of Err # of Err

QuestEval -0.43∗ -0.25∗ -0.33∗ -0.29∗

FactCC -0.02 -0.15∗ -0.13∗ -0.12∗

ROUGE-1 -0.16∗ -0.02 -0.03 -0.06
ROUGE-2 -0.11∗ -0.05 -0.02 -0.04
ROUGE-L -0.13∗ -0.03 -0.06 -0.08

Table 2: Pearson correlation between metrics and error

rates and numbers of errors. ∗: p-value < 0.05.

score (also our metric) at the last decoding

step (ENTAILRANK). We also include three

common methods of improving factuality: (1)

(CORRECTION) fine-tunes BART to fix summary

errors as a separate step (Cao et al., 2020). (2)

SUBSETFT fine-tunes large models based on train-

ing samples without any dependency relation er-

ror (Goyal and Durrett, 2021), with released check-

point only available for XSum. (3) FASUM

modifies Transformer by incorporating knowledge

graphs for factual consistency (Zhu et al., 2021),

with model outputs only on CNN/DM.

Moreover, we compare with unlikelihood train-

ing that penalizes the probabilities of all tokens in a

negative sample (Li et al., 2020). Given a negative

sample y′, the loss is defined as −
∑|y′|

t=1
log(1 −

p(y′t|y
′
1:t−1

, x)), where p(y′t|y
′
1:t−1

, x) is the out-

put probability at the t-th step. We combine the

unlikelihood training objective with cross-entropy

loss with equal weights for fine-tuning.

Lastly, we compare our negative sample strate-

gies with negative samples constructed for training

the FactCC scorer, denoted as FCSAMPLE. For

CL only, we compare with using other samples

in the same batch as negative samples (BATCH),

a common practice for CL-based representation

learning (Gao et al., 2021; Zhang et al., 2021a).

7 Results

7.1 Automatic Evaluation

We report results by models fine-tuned from BART

and PEGASUS with different objectives and nega-

tive samples on XSum and CNN/DM in Tables 3

and 4. CLIFF models use a summary representa-

tion of averaging over all tokens with MLP projec-

tion, with other variants discussed in § 7.3. Unless

explicitly stated, comparison models are fine-tuned

from the same large model used by CLIFF.

First, comparing with other factuality improve-

ment models (top of the tables), almost all CLIFF

models trained with different negative samples uni-



Model XSum CNN/DM

QEval FC R-L QEval FC R-L

Comparisons without Negative Samples
CRSENTROPY 33.09 23.92 37.14 50.94 49.07 40.82
ENTAILRANK 32.95 38.45 36.55 51.02 49.84 40.89
CORRECTION 33.12 24.14 37.11 50.93 49.06 40.82
SUBSETFT 32.25 21.83 30.35 - - -
FASUM - - - 50.73 50.58 37.18

Comparisons with Unlikelihood Training

FCSAMPLE 32.93 24.46 33.96 50.60 35.09 41.22
SWAPENT 32.90 23.94 34.96 49.77 32.37 40.18
MASKENT 33.21 24.22 33.89 51.01 48.57 41.23
MASKREL 33.18 23.50 34.56 51.00 48.35 41.15
REGENENT 32.41 24.12 37.08 50.97 48.59 41.07
REGENREL 30.86 24.58 37.18 50.97 48.42 41.14
SYSLOWCON 32.01 26.30 32.04 50.82 48.66 40.81

Our Method: CLIFF
BATCH 33.18 24.88 36.76 50.99 52.18 40.98

FCSAMPLE 33.15 24.50 36.72 51.02 49.62 41.06
SWAPENT 33.30 25.67∗35.60 51.05 50.96 40.89
MASKENT 33.32∗ 25.73∗36.02 50.98 49.04 41.06
MASKREL 33.35∗ 25.69∗35.86 51.03 49.89 41.04
REGENENT 33.15 24.64 36.32 51.04 49.91 41.11
REGENREL 33.22 25.39 36.21 50.96 49.48 41.11
SYSLOWCON 33.35∗ 25.47∗36.19 51.05 50.05 41.01

Table 3: Results of models fine-tuned from BART on

XSum and CNN/DM. QEval: QuestEval; FC: FactCC;

R-L: ROUGE-L. The best result per metric per dataset

is bolded. For models of unlikelihood training and

CLIFF that use the same negative samples, the better

of the two is highlighted with green. ∗: our model is

significantly better than CRSENTROPY (approximation

randomization test, p < 0.005).

formly produce higher QuestEval scores across

datasets with both large models, with the improve-

ments more pronounced on XSum. Importantly,

ROUGE scores for CLIFF models are compa-

rable or better than baselines trained with cross-

entropy, e.g., on CNN/DM as in Table 3. A similar

trend is observed with the FactCC metric, espe-

cially when using PEGASUS as the base model

(Table 4). Note that ENTAILRANK tends to yield

significantly higher FactCC scores, though it ob-

tains lower QuestEval scores than the cross-entropy

baseline. Human inspection finds that ENTAIL-

RANK can pick up beams with peculiar words of

high FactCC scores, without improving factuality.

Moreover, other comparisons based on post COR-

RECTION and model engineering (FASUM) only of-

fer incremental gains. The sample selection-based

method, SUBSETFT, sacrifices ROUGE scores sig-

nificantly. Overall, CLIFF demonstrates stronger

generalizability.

Second, CLIFF is more effective and robust than

Model XSum CNN/DM

QEval FC R-L QEval FC R-L

Comparisons without Negative Samples
CRSENTROPY 32.50 25.48 39.07 50.21 44.44 40.39
ENTAILRANK 32.42 41.90 38.47 50.15 61.04 40.67
CORRECTION 32.55 25.15 39.02 49.48 32.96 39.79

Comparisons with Unlikelihood Training

FCSAMPLE 32.79 25.37 38.46 50.63 45.45 39.28
SWAPENT 32.88 24.76 37.91 50.43 43.02 38.96
MASKENT 33.04 26.30 37.51 51.11 52.19 39.34
MASKREL 33.08 24.38 38.05 51.14 52.93 39.31
REGENENT 32.89 24.46 38.47 51.11 52.90 39.23
REGENREL 32.91 24.80 38.46 51.07 53.68 39.45
SYSLOWCON 31.66 26.06 34.03 50.92 51.08 39.19

Our Method: CLIFF
BATCH 32.64 24.96 38.42 51.03∗ 51.81∗39.38

FCSAMPLE 32.96∗ 25.28 38.58 51.00∗ 51.80∗39.37
SWAPENT 33.09∗ 25.09 38.58 51.16∗ 52.97∗38.95
MASKENT 33.09∗ 25.75 38.12 51.13∗ 53.60∗39.24
MASKREL 33.06∗ 25.28 38.37 51.17∗ 53.34∗39.36
REGENENT 33.09∗ 24.48 38.33 50.99∗ 52.18∗39.28
REGENREL 33.16∗ 24.82 38.30 51.16∗ 53.21∗39.25
SYSLOWCON 33.21∗ 25.18 38.18 50.85∗ 53.73∗39.30

Table 4: Results of models fine-tuned from PEGASUS

on XSum and CNN/DM. We report results on 5, 000
randomly selected samples on CNN/DM, due to long

running time of QuestEval. For models of unlikelihood

training and CLIFF that use the same negative samples,

the better of the two is highlighted with green. ∗: our

model is significantly better than CRSENTROPY (ap-

proximation randomization test, p < 0.005).

unlikelihood training with the same negative sam-

ples. According to Table 3, using 7 negative sample

construction strategies on two datasets, CLIFF ob-

tains higher QuestEval scores than unlikelihood

training in 12 out of the 14 comparisons. Us-

ing PEGASUS, CLIFF also outperforms in 11 se-

tups as listed in Table 4. Similar trends are found

on FactCC and ROUGE-L. Another noteworthy

piece is that CLIFF’s improvements over the cross-

entropy baseline are more consistent, whereas un-

likelihood training occasionally hurts factuality or

ROUGE scores significantly. We believe the key

advantage of CLIFF resides in its measure of rep-

resentation similarities between positive and nega-

tive samples in the same batch, allowing models to

better differentiate between correct and erroneous

summaries.

Finally, among all variants, CLIFF trained with

low confidence summaries as negative samples ob-

tains the best QuestEval scores on the more abstrac-

tive dataset. As seen in Table 3, using low confi-

dence summaries also improves FactCC scores on

both datasets, and enhances ROUGE-L on the more



Strategy XSum CNN/DM

QEval FC R-L QEval FC R-L

SYSLOWCON 33.35 25.47 36.19 51.05 50.05 41.01
+ SWAPENT 33.40 25.50 35.50 51.32 53.95 40.57
+ MASKENT 33.21 25.47 35.91 51.16 51.90 40.66
+ MASKREL 33.39 25.20 35.70 51.24 52.48 40.80
+ REGENENT 33.31 25.07 35.94 51.21 51.86 40.91
+ REGENREL 33.38 24.97 36.03 51.13 50.85 40.97

Table 5: Results of fine-tuned BART with combina-

tions of negative sample construction strategies.

extractive dataset CNN/DM. This indicates that sys-

tem generated summaries contribute more diverse

errors made by existing models organically, which

are particularly suitable for our CL framework. As

we use summaries generated by the same model

for CLIFF training, one future direction is to use

outputs by different models. For our mask-and-fill

and source-conditioned regeneration strategies, we

find that relation-anchored construction often beats

their entity-anchored counterparts. This calls for ef-

forts that steer the entity-driven methods to a more

relation-focused direction.

Combining Strategies. We further show results

by fine-tuning BARTs using samples based on com-

bined negative sample construction strategies in

Table 5. As can be seen, combining SYSLOWCON

and other strategies yields better QuestEval scores

than models trained with negative samples by any

single strategy, except for MASKENT and REGE-

NENT on XSum. This signifies the importance of

covering diverse types of errors in negative sam-

ples.

7.2 Human Evaluation

Pairwise Comparison with Cross-entropy. We

recruit the two human annotators for our summary

error study, as well as another experienced annota-

tor, to evaluate summary informativeness and fac-

tual consistency. For each article, the judges are

shown summaries generated by the CRSENTROPY

model and four other systems. They then rate each

system summary against the CRSENTROPY sum-

mary. All four summaries generated by different

factuality-improved models are shown in random

order without system names shown, ensuring the

fair comparison among them.

We randomly pick 100 articles from each dataset

used in our error analysis study in § 4, and evaluate

summaries generated by ENTAILRANK, unlikeli-

hood training (ULL) with negative samples con-

Inform. Factual.
Model Win↑ Tie Lose↓ Win↑ Tie Lose↓

ENTAILRANK 3.3 84.3 12.3 23.7 71.7 4.7
ULL. MASKENT 6.3 80.7 13.0 26.3 62.0 11.7
CL. BATCH 5.3 80.0 14.7 21.7 68.0 10.3
CL. SYSLOWCON 8.7 78.3 13.0 31.3 61.7 7.0

(a) XSum

Inform. Factual.
Model Win↑ Tie Lose↓ Win↑ Tie Lose↓

ENTAILRANK 2.3 86.3 11.3 4.7 94.7 0.7
ULL. MASKENT 18.0 71.0 11.0 17.3 79.7 3.0
CL. BATCH 17.3 74.7 8.0 20.7 77.0 2.3
CL. SYSLOWCON 15.7 75.7 8.7 20.0 77.7 2.3

(b) CNN/DM

Table 6: Percentages of summaries that are better than,

tied with, or worse than CRSENTROPY, in informative-

ness (Inform.) and factual consistency (Factual.) The

Krippendorff’s αs are 0.33 and 0.62 for the two aspects

on XSum, and 0.34 and 0.89 on CNN/DM. Our CL

method using low confidence summaries is more fre-

quently rated as better for informativeness and factual-

ity on the more abstractive dataset XSum.
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Figure 4: Portions of summaries with errors. CL mod-

els consistently reduce both types of errors.

structed by MASKENT, and CLIFF models trained

with BATCH and SYSLOWCON negative samples.

All are fine-tuned from BART. Detailed evaluation

guidelines are in Appendix D.

Table 6 shows that on the more abstractive XSum

data CL trained with low confidence samples are

more frequently rated as being more informative

and more factual than CRSENTROPY summaries.

This echos our automatic evaluations with QuestE-

val in § 7.1. On CNN/DM, all models trained

with negative samples produce summaries with bet-

ter informativeness and faithfulness. In contrast,

ENTAILRANK summaries are less distinguishable

from outputs by CRSENTROPY on both datasets,

as more ties are found. We show sample outputs in

Fig. 1, with additional examples in Appendix E.

Intrinsic vs. Extrinsic Errors. Next, the annota-

tors are asked to label text spans with intrinsic and



0 35%

EntRank.

ULL.

CL.B

CL.SLC

XSum

0 25%

CNN/DM

Deletion Substitution Both

Figure 5: Summaries use different portions of error

correction operations. Contrastive learning with SYS-

LOWCON (CL.SLC) and BATCH (CL.B) substitute er-

rors with correct content more often than unlikelihood

training with MASKENT and ENTAILRANK.

extrinsic errors as done in § 4. Fig. 4 shows that CL

is more effective at reducing extrinsic errors than

unlikelihood training can on both datasets. We also

observe slight decreases of world knowledge in the

summaries (figure attached in Appendix D).

Error Correction Operations. Finally, with ref-

erence to CRSENTROPY summaries, human judges

are instructed to label each system summary as

whether it corrects any error by CRSENTROPY us-

ing deletion of the incorrect content, substitution

with factual information, or both. As seen in Fig. 5,

CL-based models restore factually consistent infor-

mation, e.g., by replacing erroneous names and

numbers with correct ones, more frequently than

unlikelihood training or entailment reranking.

7.3 Variants of Summary Representation

Sample representation is critical for CL to be ef-

fective. Here we investigate summary representa-

tion variants as discussed in § 3. There are two

major considerations: (1) Should we consider all

tokens in a summary or only representative ones

(e.g., entities or last token)? (2) Should additional

transformation, i.e., an MLP, be used?

Experiments on XSum using three negative sam-

ple construction strategies demonstrate that aver-

aging the decoder outputs of all tokens and adding

an MLP projection yield the best overall perfor-

mance, as shown in Table 7. The implications are

at least two-fold. First, even for entity- or relation-

triggered sample modifications, using more global

context helps with CL training. Second, additional

transformation can help avoid model degeneration.

For instance, more nonsensical and repetitive con-

tent is produced by variants without MLP.

SWAPENT MASKREL SYSLOWCON

Rep. MLP QEval FC QEval FC QEval FC

BART

Last X 33.15 25.10 33.20 25.29 33.10 24.85

Last +0.13 +0.02 –0.01 –0.32 –0.07 –0.10

Entity X 33.35 25.41 33.34 25.44 33.32 24.46

Entity –0.13 –0.07 –0.14 –0.05 –0.29 +0.72

All X 33.30 25.67 33.35 25.69 33.35 25.47

All –0.23 –0.80 –0.04 –0.48 –0.26 –0.40

PEGASUS

Last X 33.07 25.45 32.99 25.09 33.18 24.94

Last –0.07 –0.56 +0.01 -0.01 –0.02 –0.04

Entity X 33.03 25.43 33.05 24.77 33.20 24.59

Entity +0.01 –0.34 –0.05 +0.64 –0.30 +0.05

All X 33.09 25.09 33.06 25.28 33.21 25.18

All –0.11 +0.25 +0.03 -0.19 –0.02 –0.80

Table 7: Comparing different formulations of summary

representation in CL. For models without MLP, we dis-

play score changes from their counterparts. Overall, us-

ing all tokens with MLP produces better summaries.

8 Conclusion

We present CLIFF, a contrastive learning-based

framework to promote faithfulness and factuality

of abstractive summaries. CLIFF uses both refer-

ences and summaries that are factually inconsistent

with the articles to train systems to be better at

discriminating errors from factual and salient con-

tent. We further study strategies that automatically

create erroneous summaries by editing from refer-

ences or leveraging systems outputs, inspired by

our new summary error analysis on state-of-the-

art models. Both automatic evaluation and human

ratings show that CLIFF achieves consistent im-

provements over competitive comparison methods,

and is generalizable across datasets with systems

fine-tuned from different large models.
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A Additional Analysis for Summary

Error Annotation

We hire two fluent English speakers to annotate

summary errors on XSum and CNN/DailyMail

(CNN/DM). They annotate a common batch of 100

summaries generated by summarizers fine-tuned

from BART and PEGASUS, with 50 articles in

each batch. The two annotators are shown 50

HTML pages in a batch, each of which contains

an article and two summaries generated by the two

models. The detailed annotation guideline is given

in Fig. 9.

For our analysis on token generation probabili-

ties, we additionally show the distributions of the

first token’s probability for nouns and verbs in

Fig. 6. We also report the distributions of the non-

first token’s probability for proper nouns, numbers,

nouns, and verbs in Fig. 7. As can be seen, tokens

within extrinsic and intrinsic errors have high gen-

eration probabilities when they are non-first tokens.

B Statistics for Datasets and Training

Samples

Summarization Datasets. We follow the official

data splits for the two datasets, with the number of

samples in each split listed in Table 8.
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Figure 7: Probability distributions of generating the

non-first tokens of proper nouns, numbers, nouns, and

verbs, grouped by extrinsic errors, intrinsic errors,

world knowledge, and other correct tokens. Non-first

tokens do not exist for numbers and verbs, as they only

contain single tokens.

Dataset Train Validation Test

XSum 204,045 11,332 11,334
CNN/DM 287,227 13,368 11,490

Table 8: Numbers of samples in train/validation/test

splits of XSum and CNN/DM.

Positive Samples. We observe unfaithful para-

phrases by back-translation for some reference

summaries, which are mainly due to the introduc-

tion of new entities and the rewriting of quoted

text. Thus, we discard samples generated by back-

translation that contain new entities and inconsis-

tent quoted text. Finally, we obtain 182,114 and

91,468 positive samples by back-translation on

XSum and CNN/DM.

Negative Samples. For consistency, we use the

summarizer fine-tuned from BART in REGENENT,

REGENREL (§ 5.3), and SYSLOWCON (§ 5.4)

strategies. We tune a threshold to select negative

samples from model generations in our SYSLOW-

CON strategy. The threshold is set to 0.21, with F1

scores of 73.99 and 40.49 on XSum and CNN/DM

annotated samples generated by BART.

The numbers of negative samples constructed by

each strategy for training on XSum and CNN/DM

are shown in Table 9. SYSLOWCON constructs the

least negative samples in total, while it achieves the

best results as reported in our main paper (§ 7.1), in-

dicating that its negative samples are more effective

for training.



Strategy XSum CNN/DM

FCSAMPLE 936,164 1,291,710
SWAPENT 438,003 1,617,764
MASKENT 360,795 1,050,200
MASKREL 391,224 1,345,317
REGENENT 732,986 1,941,886
REGENREL 993,694 1,453,044
SYSLOWCON 401,112 502,768

Table 9: Numbers of negative samples constructed by

different strategies on XSum and CNN/DM.

C Implementation Details

We use Fairseq (Ott et al., 2019) and Hugging-

face Transformers (Wolf et al., 2020) for our ex-

periments with BART and PEGASUS. Our experi-

ments are conducted on the RTX 8000 GPU with

48GB memory and the A100 GPU with 40GB

memory.

Training Settings. For hyperparameters, we fol-

low Lewis et al. (2020) for BART and Zhang

et al. (2020a) for PEGASUS. During training,

we randomly select 5 and 4 negative samples for

each input article in XSum and CNN/DM. Mixed-

precision training is not supported by the PEGA-

SUS implementation and is utilized on BART only.

Decoding Settings. We use the beam search al-

gorithm to decode summaries. For BART, we set

the beam sizes as 6 and 4 on XSum and CNN/DM.

A beam size of 8 is used for PEGASUS on both

datasets.

Running Time and Model Sizes. The BART-

based models take 6 and 13 hours for training on

XSum and CNN/DM, and it takes 1.5 hour to de-

code on the two datasets. Meanwhile, training the

PEGASUS-based models takes 8 and 25 hours for

XSum and CNN/DM, and the decoding takes 1

hour.

As for model sizes, our BART-based models and

PEGASUS-based models have 400M and 568M

parameters.

D Human Evaluation

In § 7.2, we demonstrate the percentages of sam-

ples containing intrinsic errors and extrinsic errors

for each model evaluated by human judges. Here,

we report the percentages of samples containing

world knowledge in Fig. 8. On XSum, all mod-

els produce less world knowledge compared to the

model trained with cross-entropy loss, while gen-
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Figure 8: Percentages of samples containing world

knowledge as labeled by human on the outputs of

XSum and CNN/DM.

erating similar or greater amounts of samples with

world knowledge on CNN/DM.

Our human evaluation guideline is shown in

Fig. 10.

E Sample Outputs

We include more sample outputs in Fig. 11.



In this study, you will first read article-summary pairs and then identify three types of text spans in

the summaries. These spans include content that is contradicted by or cannot be implied from the

article. The description for each type is described below:

• Intrinsic errors: Text spans that misconstruct phrases or clauses from the article.

• Extrinsic errors: Text spans that include words that are not in the article and are not verifiable

or cannot be verified by Wikipedia.

• world knowledge: Text spans that contain information that is not covered by the article but can

be validated by Wikipedia.

When selecting spans, you should always make sure the spans are complete words.

In practice, you should follow the these steps carefully: (1) read the article and summaries carefully;

(2) figure out if there is content contradicted by or not presented in the article; (3) label the span as an

intrinsic error if it misconstructs phrases or clauses from the article; (4) if the span does not belong

to intrinsic errors, search within Wikipedia and determine whether the content in the span can be

verified; (5) label it as world knowledge if the it can be verified by Wikipedia, otherwise label it as

an extrinsic error.

Example annotations 1

Article: Isis Academy in Oxford said it had rebranded as “Iffley Academy” to protect its “reputation,

integrity and image”. The name ‘Isis’ was originally chosen as the school is near to the section

of the River Thames of the same name. Formerly Iffley Mead School, it became Isis Academy in

2013. A statement issued by the school said it had changed name following “the unforeseen rise of

ISIS (also known as ISIL and the Islamic State) and related global media coverage of the activities

of the group”. “Our priority is to remove the detrimental impact which the name ‘Isis’ had on pupils,

their families and our staff.” Last year a language school in the city removed Isis from its name for

the same reason. The Isis is the name given to the part of the River Thames above Iffley Lock in

Oxford. It is also the name of the goddess wife of the god Osiris in Egyptian beliefs.

Summary: A school that was named after the Islamic State (IS) militant group has changed its name.

Explanation: “was name after” is an intrinsic error contradicted by the article sentence in bold.

Example annotations 2

Article: Khalil Dale, 60, was abducted in Quetta in January 2012 and was found dead on a roadside

a few months later. He had been beheaded. A note next to his body said he was killed because a

ransom had not been paid. Mr Dale was born in York but lived in Dumfries. He spent 30 years

working in countries including Somalia, Afghanistan and Iraq. An inquest into his death was held

at Chesterfield Coroners Court because he is buried in Derbyshire. The court heard that the Muslim

convert, who was formerly known as Kenneth, worked as a humanitarian assistance relief worker.

Following his abduction, negotiations were undertaken by the International Committee of the Red

Cross with the help of the UK government. His body was found on 29 April 2012. The inquest was

told that he died as a result of decapitation. Senior coroner Dr Robert Hunter concluded that Mr Dale

was unlawfully killed while providing international humanitarian assistance.

Summary: A British aid worker was unlawfully killed by Islamist militants in Pakistan, an inquest

has heard.

Explanation: “Islamist militant” is an extrinsic error as it can not be found in or inferred from

the article. The information is also not verifiable by Wikipedia. “Pakistan” is world knowledge as

Quetta in the article is a city in Pakistan according to Wikipedia.

Figure 9: Guideline for our summary error annotation (§ 4).



In this study, you will evaluate 100 sets of summaries produced by four systems. For each set, its corre-

sponding article and a baseline summary are shown before the four system summaries. The errors in the

baseline summary are highlighted.

Please first read the article and the baseline summary and then compare each system summary against

the baseline summary based on informativeness and factual consistency. In addition, please decide the

operations made by the system to achieve better factual consistency.

For informativeness and factual consistency, you need to label whether the system summary is better or

worse than the baseline summary. You can also label the system summary as tying with the baseline

summary.

You need to consider two types of operations: deletions and substitutions. Please label the system sum-

mary as making deletions, substitutions, or both operations. Examples for the aspects and the operations

are as follows.

Article: Alexys Brown, also known as Lexi, died at her home in Emmadale Close, Weymouth, on Thurs-

day. An investigation is under way to discover how she became trapped. A post-mortem examination is

due to be carried out this week. It was originally hoped the appeal would raise £2,000. Alison Record,

who started the Just Giving appeal, said she was "heart broken" over the death. “Everybody by now has

heard of the terrible tragedy the Brown family have suffered with the loss of their beautiful and beloved

little girl Lexi,” the appeal page reads. Many other comments have been posted on the appeal page. Steph

Harris said: “Thinking of you all at this devastating time, fly high beautiful princess. Love Steph and

family xxx” Lesley Andrews added: “No amount of money will take away the pain, but so much love

comes with every penny. Take care. xx” Aster Group, the housing association responsible for manag-

ing the home, is assisting with the police investigation. The Health and Safety Executive (HSE) is also

investigating. Dorset County Council said it had not installed the disabled lift at the property.

Baseline Summary: An appeal to raise 10,000 pounds for the family of a three-year-old girl who died

after becoming trapped in a lift has raised more than 20,000 pounds.

Informativeness: Whether the summary captures salient content from the input article. Note that incor-

rect content should be considered as invalid.

Win. An appeal to raise money for the family of a three-year-old girl who died after getting stuck in a lift

was originally hoped for raising £2,000. The target money of the appeal is a salient information.

Tie. An appeal to raise money for the family of a girl who died after getting stuck in a lift has raised more

than £20,000. Compared to the baseline, missing incorrect information does not affect the informative-

ness.

Lose. An appeal to raise money for the family of a three-year-old girl has raised more than £20,000. This

system summary does not mention the death of the girl, which is a salient content of the article.

Factual Consistency: Whether the summary is factually correctly based on the article and knowledge

from Wikipedia.

Win. An appeal has been set up for the family of an eight-year-old girl who died after becoming trapped

in a lift at her Dorset home. This system summary does not generate the incorrect numbers of money.

Tie. An appeal to raise 5,000 pounds for the family of a seven-year-old girl who died after becoming

trapped in a lift has raised more than 20,000 pounds. This system summary makes similar errors to the

baseline.

Lose. The family of an eight-year-old girl who died after becoming trapped in a lift at her Dorset home

have set a fundraising target of 10,000 pounds. This system summary fabricates an event The family have

set a fundraising target, which is more severe than errors of modifiers.

Deletion: The incorrect content in the baseline summary is deleted.

- An appeal for the family of a three-year-old girl who died after becoming trapped in a lift has raised

more than 20,000 pounds. The error “10,000 pounds” is deleted.

Substitution: The incorrect content in the baseline summary is replaced with correct one.

- An appeal to raise 2,000 pounds for the family of a three-year-old girl who died after becoming trapped

in a lift has raised more than 20,000 pounds. The error “10,000 pounds” is substituted with “2,000

pounds”, which is the correct information.

Figure 10: Guideline for our human evaluation (§ 7.2).



Example 1

CNN/DM Article: At the grand old age of 75, Jack Nicklaus is still capable of hitting aces. The Golden Bear added
another magic moment to his storied career at Augusta National in the Par-3 Contest. Stepping up to the tee on the
130-yard fourth, the greatest golfer of all time saw his shot sail beyond the flag before spinning back into the hole. Jack
Nicklaus gave the crowd something to cheer with a hole in one on the fourth during the Par-3 Contest. Nicklaus holds
up his ball to an adoring crowd as Gary Player (left) and Ben Crenshaw salute the great. Crenshaw and Nicklaus fist
pump following his ace on the 130-yard hole at Augusta National. Nicklaus was playing alongside Gary Player and Ben
Crenshaw as the first roar of Masters week filled the skies in a sunswept Georgia. ’I had an interview this morning, and I
said "well, all I’ve got to do is go out and win the Par-3 and make a hole and one", and I make a hole in one,’ Nicklaus said
afterwards. . The ace was Nicklaus’ first on the hallowed turf of Augusta, but the veteran saw his achievement eclipsed by
that of Camilo Villegas on a day which saw five hole-in-ones, levelling the record from 2002. The Colombian followed
Nicklaus with an ace on the fourth and also managed one on the eighth, but he couldn’t quite land the title, losing out to
world No 74 Kevin Streelman in a play-off. Nicklaus became the youngest person to wear a green jacket in 1963, and
collected his sixth in 1986. He is one of five men to complete the career grand slam, an accolade which favourite Rory
McIlroy can achieve if he wins his third major in succession.

Cross-entropy: Jack Nicklaus hit a hole in one on the fourth during the Par-3 Contest. The 75-year-old was playing
alongside Gary Player and Ben Crenshaw. Camilo Villegas and Kevin Streelman also hit hole-in-ones on the day.
Entailment reranking: Jack Nicklaus hit a hole in one on the fourth during the Par-3 Contest. The 75-year-old was
playing alongside Gary Player and Ben Crenshaw. Camilo Villegas and Kevin Streelman also hit hole-in-ones on day one.
Unlikelihood training: Jack Nicklaus hit a hole in one on the fourth during the Par-3 Contest. The 75-year-old was
playing alongside Gary Player and Ben Crenshaw. Camilo Villegas followed Nicklaus with a hole-in-one on the same hole.
Nicklaus is one of five men to complete the career grand slam.
Contrastive learning: Jack Nicklaus hit a hole in one on the fourth during the Par-3 Contest. The 75-year-old was playing
alongside Gary Player and Ben Crenshaw. Camilo Villegas followed Nicklaus with a hole-in-one on the eighth.

Example 2

XSum Article: The British supermarket giant, the world’s third largest retailer, has been looking to dispose of its
loss-making US food chain for some time. Around 4,000 of Fresh & Easy’s 5,000 employees are to transfer to the new
business as part of the deal. Tesco said in a statement that this is an "orderly and efficient exit from the US market". Under
the terms of the deal, Tesco will loan the new business around £80m. Fresh & Easy, which operates 200 stores across
California, Nevada and Arizona, has lost money since opening in 2007. Tesco did not specify which stores are being
transferred to Yucaipa, but it is understood the remaining 50 shops will be closed. It will cost Tesco £150m to dispose of
the Fresh & Easy brand, but part of that is a loan which may be paid back. Also, if Yucaipa is sucessful and the business
becomes profitable, Tesco has the option to buy a stake. Yucaipa is a Los Angeles based private equity company focused
on supermaket and restaurant businesses and is run by billionaire investor Ron Burkle. In April of this year, Tesco reported
its first fall in annual profits for 20 years.

Cross-entropy: Tesco has agreed to sell its US food chain Fresh & Easy to Yucaipa in a deal worth about 150m, the BBC
understands.
Entailment reranking: Tesco is to sell its US food chain Fresh & Easy to Yucaipa for an undisclosed sum.
Unlikelihood training: Tesco has agreed to sell its US food business, Fresh & Easy, to a private equity firm called Yucaipa
for an undisclosed sum.
Contrastive learning: Tesco has agreed to sell its US food chain, Fresh & Easy, to Yucaipa.

Example 3

XSum Article: Neil Aspin’s promotion-chasing hosts have not lost in nine National League matches while Adam
Lockwood’s side are unbeaten in five. Guiseley went ahead on 15 minutes against the run of play when a throw-in found
James Hurst who squared to Jake Lawlor to stroke into an empty net. Gateshead defender Liam Hogan superbly blocked
Jordan Preston’s effort and Guiseley keeper Jonny Maxted then saved well from Wesley York’s shot just before the break.
The hosts, who started the second half well, levelled on 62 minutes when a slip by half-time substitute Derek Asamoah
let York curl sweetly into the top-right corner from the edge of the box. Match report supplied by the Press Association.
Match ends, Gateshead 1, Guiseley 1. Second Half ends, Gateshead 1, Guiseley 1. Substitution, Guiseley. Michael
Rankine replaces Jordan Preston. Substitution, Gateshead. Luke Hannant replaces Gus Mafuta. Gus Mafuta (Gateshead)
is shown the yellow card. Substitution, Guiseley. Adam Boyes replaces Jake Cassidy. Goal! Gateshead 1, Guiseley 1.
Wes York (Gateshead). Substitution, Guiseley. Derek Asamoah replaces Kevan Hurst. Second Half begins Gateshead 0,
Guiseley 1. First Half ends, Gateshead 0, Guiseley 1. Simon Walton (Guiseley) is shown the yellow card. Goal! Gateshead
0, Guiseley 1. Jake Lawlor (Guiseley). First Half begins. Lineups are announced and players are warming up.

Cross-entropy: Gateshead and Guiseley maintained their unbeaten starts to the season with a 1-1 draw at the International
Stadium.
Entailment reranking: Gateshead and Guiseley shared the spoils after a 1-1 draw at the International Stadium.
Unlikelihood training: Gateshead and Guiseley shared the spoils after a goalless draw in the National League.
Contrastive learning: Gateshead and Guiseley shared the spoils after a 1-1 draw at Gateshead.

Figure 11: Sample generated summaries by fine-tuned BART models. Intrinsic errors are highlighted in red

and extrinsic errors are in blue. MASKENT and SYSLOWCON are used for negative sample construction with

unlikelihood training and contrastive learning.


