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In this paper we investigate the problem of quantifying the contribution of each variable to the satisfying
assignments of a Boolean function based on the Shapley value.

Our main result is a polynomial-time equivalence between computing Shapley values and model counting
for any class of Boolean functions that are closed under substitutions of variables with disjunctions of fresh
variables. This result settles an open problem raised in prior work, which sought to connect the Shapley value
computation to probabilistic query evaluation.

We show two applications of our result. First, the Shapley values can be computed in polynomial time
over deterministic and decomposable circuits, since they are closed under OR-substitutions. Second, there is a
polynomial-time equivalence between computing the Shapley value for the tuples contributing to the answer
of a Boolean conjunctive query and counting the models in the lineage of the query. This equivalence allows
us to immediately recover the dichotomy for Shapley value computation in case of self-join-free Boolean
conjunctive queries; in particular, the hardness for non-hierarchical queries can now be shown using a simple
reduction from the #P-hard problem of model counting for lineage in positive bipartite disjunctive normal
form.
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1 INTRODUCTION

The Shapley value quantifies the fair contribution of a player to a wealth function that is shared
by a set of players in a cooperative game [29, 31]. For this reason, it has been used in a variety of
applications ranging from bioinformatics to network analysis and machine learning: measuring the
centrality and power of genes [24] and the influence in social networks [25]; sharing profit between
Internet providers [21, 22]; finding key players in networks [33]; feature selection, explainability,
multi-agent reinforcement learning, ensemble pruning, and data valuation [23, 30].

In this paper we investigate the problem of computing the Shapley value for variables in Boolean
functions. The Shapley values quantify the contribution of each variable to the satisfying assign-
ments of the Boolean function. Understanding the importance of variables to the outcome of a
Boolean function has numerous applications [16, 17]. The nature of the Shapley values for the
variables in Boolean functions can also serve as complexity-theoretic assumption for tractability
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in generalized constraint satisfaction problems with order predicates [4, 18]. When focusing on
functions representing the lineage of Boolean conjunctive queries in relational databases [15], the
Shapley values are used to support explanations for query answers. In this setting, the tuples in the
input database are the players that contribute to the answer of a given query and the Shapley value
assigns a score to each input tuple based on its contribution to the query answer. Recent works
in database theory and systems [10, 12, 20, 28] have made great progress towards charting the
tractability frontier of computing the Shapley values of database tuples and proposed algorithms
for exact and approximate computation. We next highlight two key results from prior work.

First, for every Boolean query Q and database D, the problem of computing the Shapley value
of any tuple in D reduces in polynomial time to the problem of computing Q over a probabilistic
version of D, where each tuple becomes an independent random variable [12]. This connection
to probabilistic query evaluation (PQE) allows to transfer well-established results from PQE to
Shapley value computation. In particular, the tractability of PQE for safe queries [32] implies the
tractability of Shapley value computation for safe queries. Furthermore, knowledge compilation
techniques developed for PQE can be adjusted for Shapley value computation. It is stated as open
problem whether PQE also reduces in polynomial time to Shapley value computation, effectively
establishing a polynomial-time equivalence between the two problems [12].

Second, the dichotomy for conjunctive queries without self-joins over probabilistic databases [6]
also holds for Shapley value computation [20]: For any self-join-free Boolean conjunctive query Q,
the problem of Shapley value computation is in FP if Q is hierarchical and is FP*'-hard otherwise.

The main result in this paper is a polynomial-time equivalence between the Shapley value
computation and model counting for any class of Boolean functions that are closed under substitu-
tions of variables with (possibly empty) disjunctions of fresh variables. This equivalence connects
the Shapley value computation to a fundamental and well-established problem [14] with many
applications from artificial intelligence to formal verification. This result settles the open problem
raised in prior work [12], albeit not using PQE but model counting under OR-substitutions.

We also show two applications of our result. In Section 4 we first show that deterministic and
decomposable circuits are closed under OR-substitutions, where we allow further polynomial-
time transformations. Since model counting is tractable for such circuits [8], it follows from our
main result that Shapley value computation is also tractable for such circuits. Deterministic and
decomposable circuits are extensively investigated in knowledge compilation [8, 9], prime examples
are the ordered binary decision diagrams (OBDDs) and the deterministic decomposable negation
normal forms (d-DNNFs).

Our second application is in databases. In Section 5 we show a polynomial-time equivalence
between computing the Shapley value for the tuples contributing to the answer of a Boolean
conjunctive query Q and counting the models in the lineage of Q. When lifted to the level of the
query, the OR-substitutions can be expressed by stretching the query, a rewriting which introduces
fresh variables in relations. This equivalence allows us to immediately recover the dichotomy for
Shapley value computation in case of self-join-free Boolean conjunctive queries [20]; in particular,
the hardness for non-hierarchical queries can now be shown using a simple reduction from the
#P-hard problem of model counting for lineage in positive bipartite formulas in disjunctive normal
form [27], as previously used to show FP*"-hardness of PQE [6].

Shapley value versus SHAP score. Recent works [2, 3, 11] consider the notion of SHAP score,
which is based on, yet different from, the Shapley value and used for providing explanations in
machine learning. For a given classification model M, entity e, and feature x, the SHAP score
intuitively represents the importance of the feature value e(x) to the classification result M(e). In
its general formulation, it takes as input a Boolean function F encoding a Boolean classifier and a
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probability distribution on the set of truth assignments. The probability distribution is assumed
to be a product distribution, also called a fully factorized distribution, and the wealth function of
the SHAP score is an expectation. In this setting, it was shown that computing the SHAP score
is polynomial-time equivalent to weighted model counting for the function F [11]. These prior
works [1, 3] also show that the SHAP score can be computed in polynomial time in case the Boolean
function F is given by a tractable (deterministic and decomposable) circuit. Tractability of such
circuits is the main study in knowledge compilation [8, 9].

In contrast, we study the Shapley value where the wealth function is just the Boolean function F,
without any probability distribution. This appears unrelated to the SHAP score, in particular it is
not equivalent to setting all probabilities to 1/2. While there exist fully-polynomial randomized
approximation schemes (FPRAS) for model counting [19] and the Shapley value in the database
context [20], there is no such FPRAS for the SHAP score even in case of positive bipartite DNF
functions [2]. Our polynomial-time equivalence is technically more challenging than for the SHAP
score discussed in prior work [11], because we no longer have the ability to use an oracle with
varying probability functions (or, equivalently, weight functions). Instead, our proof of equivalence
relies on the ability to substitute a Boolean variable with a disjunction of fresh variables.

2 PRELIMINARIES

We use N to denote the set of natural numbers including 0. For n € N, we denote by [n] def
{1,2,...,n}.In case n = 0, then [n] = 0.
Boolean Functions. Let X be the set of n € N Boolean variables Xj, . .., X,,. Where convenient,

we may denote a variable X; by its index i. A Boolean function over n € N variables is a function
F:{0,1}" — {0, 1}. We denote by BF the set of all Boolean functions.

Representations of Boolean Functions. In this paper, we consider two syntactic representations for
Boolean functions: propositional formulas and Boolean circuits, which we introduce next.

A propositional formula ¢ over a set X of variables is a constant 0 or 1, a variable X; € X, the
negation —¢ of a formula ¢, the logical conjunction ¢; A ¢, or the logical disjunction ¢; V @, of
formulas ¢; and ¢,. The size |¢| of the formula ¢ is the number of the occurrences of its constants,
variables, and logical operators -, A, and V.

A Boolean circuit G over a set X of variables is a directed acyclic graph where each node is one
of the following gates: a constant gate labeled with either 0 or 1; a variable gate labeled with a
variable from X; or a logic gate labeled with a Boolean operator A (and), V (or), or = (not). The
constant and variable gates have no incoming edges. The logic gates A and V may have two or
more incoming edges, and the logic gate — has one incoming edge. There is one gate, called the
output gate, that has no outgoing edge. The size |G| of a circuit G is the number of its edges. The
main difference between formulas and circuits is that in circuits, we can name formulas and re-use
them at the place of variables.

Two formulas (circuits) are isomorphic if they are equal up to renaming of variables; we consider
such formulas (circuits) identical. For instance, the formulas X; A (X, V =X3) and Y1 A (Y2 V =Y3)
are isomorphic.

The same Boolean function may admit different formula and circuit representations. In this
section and Section 5, we use the representation of functions as propositional formulas. For example,
we write F = X; A (X3 V =X3) to describe a function F over the three variables X, X, and Xj.
In Section 4, we use the circuit representation of functions. The results in Section 3 hold for any
representation of Boolean functions.
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Substitutions. Given n € N, a substitution is a function 8 : [n] — BF. We often denote the
substitution 6 by the set {X; := 0(1),..., X;, := 6(n)}. The result of applying the substitution 6
to a Boolean function F is denoted by F[0]. We may define a substitution only on a subset of the
variables and assume implicitly that the other variables are mapped to themselves. For example, for
the above function F and substitution 8 = {X, := Z; V Z,}, we have F[0] = X1 A (Z, V Z, V =X3).

Definition 2.1. A Boolean function F over n variables admits an OR-substitution into a Boolean
OR .
function G, denoted by F — G, if G = F[0] with 6 = {X; :== Z! V... v Z"™| i € [n]} for
mi,...,m, € N and fresh variables Zil, e, Zl.m". Notice that G has )}, m; variables. If m; = 0, then
0 maps X; to 0.
Given a class C of Boolean functions, we define C = {G|3F € C such that F o G}. We say that
C OR-substitutes into C.

Notice that C C C. , because we can substitute each X; with a single variable Z; and obtain an
isomorphic function.

Valuations. Valuations are special substitutions where variables are mapped to constants. Given
a valuation 0 : [n] — {0, 1}, we denote by F[0] the Boolean value of F. We say that 6 is a model of
Fif F[6] = 1. It is often convenient to denote the valuation 8 by the set T def {ie[n]]|0()=1},
in which case we write F[T] for F[0]. The size of a model 0 is thus the number of variables it
sets to 1, i.e., |T|. For instance, consider the valuation T = {1}, which for the example function
F =X; A (X3 V —X3) maps X; to 1 and the other two variables X, and X3 to 0. Then, F[{X;}] =1,
so T is a model of F of size 1. Two functions F; and F, are equivalent, denoted by F; = F, if
F1[6] = F,[0] for all valuations 6.

Model Counting. Consider a Boolean function F over n variables. The model count #F is the
number of models of F:

4F & > FIT]

TC([n]

Given 0 < k < n, the k-model count #.F is the number of models of F of size k:

4 F Z F[T]

re(¥)
where ([Z]) represents the subsets of [n] of size k. We denote the vector of k-model counts by:

oF S (#F, #,F, .. #,F)

,,,,,

Shapley value. Given a Boolean function F over n variables, the Shapley value of a variable X; for
i € [n] is defined as:
def 1 i i
Shap(F, X;) = — D (FII u {i}] - F[I™)) 1)
" IIeS,

where S, is the symmetric group, i.e., the set of permutations of [n], and IT~/ is the set of indices j
that come before i in the permutation II. If i is at the first position of II, then II< is the empty set.

Example 2.2. Consider again the function F = X A (X3 V —=X3). The only models of the function
are {X1}, {X1, X2}, and {X1, X5, X5}. Hence, #F = 3, #oF = 0, and #,F = #,F = #3F = 1. The table
below shows for each possible permutation IT € S, the difference F[IT<! U {i}] — F[II!] for
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i € [3]. For instance, in case IT = (2,1,3) we have II<! U {1} = {1,2} and IT<! = {2}. Hence,
FlO'u{1}] -F[II<]=1-0=1.
F[II<' U {i}] — F[II*"]
II i=1 i=2 i=3

(1,2,3) 1 0 0
(1,3,2) 1 1 -1
(2,1,3) 1 0 0
(2,3,1) 1 0 0
(3,1,2) 0 1 0
(3,21) 1 0 0

To obtain the Shapley value of variable X;, we sum up the values in the column for i and divide
by 3! = 6. We obtain Shap(F, X;) = 2, Shap(F,X;) = £, Shap(F, X3) = —+. Note that the Shapley
value of X3 is negative because it appears negatively in the function.

Next, we give an alternative formulation of the Shapley value that uses model counting.

PROPOSITION 2.3 ([20] PAGE 11, ADAPTED). The Shapley value of a variable X; of a Boolean function
F is:
n-1
Shap(F,Xi) = D ek (#F[Xi = 1] = #F[X; = 0]) (2)
k=0
kl(n—k-1)!

n!

where ¢ =

The above formulation does not consider #,F, since X; is set to either 1 or 0 and F has therefore
n — 1 remaining variables.

Example 2.4. We compute the Shapley value of X in F = X; A (X3 V —X3) using Eq. (2). We have
F[X; :=0] = 0 A (X5 V =X3). Since this function cannot evaluate to 1, we have #,F[X; := 0] =
# F[X; :=0] = #,F[X; := 0] = 0. It holds F[X; := 1] = 1 A (X5 V =X3). The function F[X; = 1]
has the models 0, {X,}, and {X, X3}. Hence, #,F[X; := 1] = #,F[X; := 1] = #,F[X; := 1] = 1. We
have ¢y = QG- %, ¢ = M = é, and ¢y = M = %. Following Eq. (2), we obtain

6
Shap(F, X;) = % + 2+ % = g, which is the Shapley value of X; as computed in Example 2.2.

1
6
The following proposition follows immediately from the definition of the Shapley value:

PRroOPOSITION 2.5. For any Boolean function F, it holds

Z Shap(F, X;) =F[1] — F[0]

i€[n]

where 1 is the valuation that maps all variables to 1, and 0 the valuation that maps all variables to 0.

In the original setting, };c[,) Shap(F, X;) = F[1]. This does not hold in our case, since F[0] may
not necessarily be 0 as F may have both positive and negative literals. That is, in our setting the
efficiency property (F[0] = 0) of the Shapley value [29] does not hold,; it holds for functions where
all literals are positive.

Example 2.6. For the function F = Xj A (X; V —X3), we have F[1] = 1 and F[0] = 0, since 1 is a
model of F but 0 is not. By Proposition 2.5, the Shapley values of the variables of F must sum up
to 1. This is indeed the case, since we have Shap(X;) = %, Shap(X;) = %, and Shap(X3) = —é (see
Example 2.2).
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We write Shap(F) to denote the vector of the Shapley values of all variables in F:

Shap(F) “(shap(F, X;), ..., Shap(F, X))

Polynomial-time Reductions and Transformations. A polynomial-time reduction (also called a Cook
reduction) from a problem A to a problem B, denoted by A <” B, is a polynomial-time algorithm
for the problem A with access to an oracle for the problem B. If B <P A also holds, then we
write A =P B and say that the two problems are polynomial-time equivalent. A polynomial-time
transformation from a class of functions C; to another class of functions C,, denoted by C; <P G,
is an algorithm T that takes time polynomial in the representation size of functions and such that:
VF, € C,3F, € Cy : F, =T(F;) and F; = F,. If C, <P € also holds, then we write C; ~* C, and
say that C; and C; have a bidirectional polynomial-time transformation.

3 POLYNOMIAL-TIME REDUCTIONS FOR PROBLEMS OVER BOOLEAN FUNCTIONS

We consider three problems: model counting, fixed-size model counting, and Shapley value compu-
tation. They are all parameterized by a class C of Boolean functions. We show reductions between
these problems that take time polynomial in the representation size of the functions under the as-
sumption that the OR-substitutions can be computed in time polynomial in the sizes of the function
and of the substitution. In subsequent sections we show two well-known examples where this
assumption is met: for deterministic and decomposable circuits (Section 4) and for query lineage
(Section 5).

Given a function F € C over n variables, the model counting problem asks for the number of
models of F:

Problem: #C
Description:  Model Counting
Input: FecC
Compute: #F

There is extensive literature on the model counting problem #C [14]. We use two examples
later in this paper. If C is the class of positive, bipartite functions in disjunctive normal form, i.e.,
functions of the form F = \/(; j)cp(Xi A Y;) where E is a set of pairs E C [n] X [n], then #C is
#P-hard [27]. If C is the class of deterministic and decomposable Boolean circuits, then #C is in
FP [8, 9].

The fixed-size model counting problem asks for the number of models of F of size k, for any
0<k<n

Problem: #.C
Description:  Fixed-Size Model Counting
Input: F € C over n variables

Compute: #o,..nF

The Shapley value computation problem asks for the Shapley value of each variable in F:
Problem: Shap(C)

Description:  Shapley Value Computation

Input: FecC

Compute: Shap(F)

Our main result gives polynomial-time reductions between the above three problems:

THEOREM 3.1. Given a class C of Boolean functions, it holds:
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e Shap(C) <f #.C
o #,.C <P #C
e #C <P shap(C).

In case C OR-substitutes to itself, i.e., C = 5, the problems #C, #.C, and Shap(C) become
polynomial-time equivalent:

CoROLLARY 3.1 (THEOREM 3.1). Given a class C of Boolean functions with C = C, it holds:
Shap(C) =F #.C =" #C

This result connects model counting to Shapley value computation. Whenever model counting is
tractable for a class C of Boolean functions that is closed under OR-substitutions, then the Shapley
value computation is also tractable. We give here an immediate example; Sections 4 and 5 provide
two further examples.

The class C of positive f-acyclic CNF functions is trivially closed under OR-substitutions'. Fur-
thermore, #C is in FP [5]?. Corollary 3.1 then implies that Shap(C) is also in FP.

There are two immediate generalizations of Theorem 3.1. First, we may allow for polynomial-time
transformations to accommodate the OR-substitutions. That is, the polynomial-time equivalence
between the two problems holds whenever C =~ C holds and not only when C = C holds. Second,
we may use substitutions beyond the OR-substitution considered here, such as AND-substitutions
(more details are given at the end of Section 3).

3.1 Proof of Theorem 3.1

We separate the theorem into three lemmas:
LEMMA 3.2. Shap(C) < #.C
LemMA 3.3. #,C <P #C
LEmMA 3.4. #C <F Shap(C).

Proor oF LEMMA 3.2. Let F € C be a Boolean function. Our goal is to compute Shap(F) in
polynomial time, given an oracle for #,C. We use Eq. (2) for the Shapley value and the following
equality:

#r1F = #.F[X; = 1] + #F[X; = 0]

Then, Eq. (2) becomes:

n-1

Shap(F,X;) = ) ci (ke = #n FIX; = 0] = #F[X; 2= 0])

k=0
Consider the function F that results from F by replacing each variable by a fresh variable and the
function F’ that results from F by replacing X; by the empty disjunction and each other variable by
a fresh variable. Clearly, F admits OR-substitutions into Fand F/ , hence, F F’ € C. The functions
F and F’ are isomorphic (i.e., identical up to renaming of the Varlables) to F and respectively
F[X; := 0], so model counting and fixed-size model counting is the same for F and F, and also for

The hypergraph of a CNF function has one node per variable and one hyperedge per clause. It is -acyclic if there is no
cycle in the hypergraph, nor in any sub-hypergraph. Substituting a variable by a disjunction of fresh variables preserves
the structure of the CNF and of its hypergraph, except for replacing one node by several nodes that all occur in the same
hyperedges as the replaced node.

Tractability holds even when removing the restriction on the functions being positive.
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F[X; := 0] and F’. We thus have access to an oracle to compute the quantities #y1 F, #5+1F[X; := 0],
and #;F[X; := 0]. This means that we can compute Shap(F, X;) in polynomial time. )

Proor or LEMMA 3.3. Let F € C be a Boolean function over the Variablesz( = {Xy,..., Xn}.
Our goal is to compute #,__,(F) in polynomial time, given an oracle for #C. For a valuation
0 : X — {0,1}, we write |6| for the number of variables X; s.t. 9(X;) = 1. It follows:

#.F = Z F[6]
6:10|=k

for 0 < k < n. For each ¢ € N, define:
et ¢ e
FO CFX; = \/Z’,...,Xn = \/Z,f,]
j=1 j=1

where each Zij with i € [n] and j € [£] is a fresh variable. It holds F(*) € C. Therefore, we have
access to an oracle for computing #F(*). We claim:

Craim 3.5. Foreach t € N, it holds:

n
#F(® :2(2” — 1)k F 3)
k=0

Claim 3.5 implies Lemma 3.3 as follows. We use Eq. (3) for £ € [n + 1] to form a system of n + 1
linear equations with the n+ 1 unknowns #yF, . . ., #,F. The matrix of this system is a Vandermonde
(n+ 1)-by-(n + 1) matrix, which is non-singular so we can compute its inverse [13]. Hence, we can
solve the linear system

#F) 1 @'-nt ... (@Y=" )\ [#F
#F(n+1) 1 (2n+1 _ 1)1 .. (2n+1 - 1)) \#,F
S——— S~——
known Vandermonde unknown
and determine the values of #yF, ..., #,F in .polynomial time.

It remains to prove Claim 3.5. Let Z = {Z/]i € [n] and j € [¢]} be the set of variables of F() By
definition:

#F0 = 3 FOg] )
@:Z—{0,1}

For each valuation ¢ : Z — {0,1} we define the induced valuation 6, : X — {0,1} by setting
0,(Xi) = qo(\/ji:1 Zl.j). In other words, 6, (X;) = 1iff ¢ evaluates Z! V --- v Z! to 1. Notice that:

Vo:Z —{0,1}, FO[¢] =F[6,] )
VO :X — {01}, [{g |0, =0} =(2" - 1)’ ©)
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We group each valuation ¢ in Eq. (4) by its induced valuation 6,:

#F(0) — Z Z F([)[go]

0:X—{0,1} ¢:0,=6

- Z Z F[6] (by Eq. (5)
0:X—{0,1} ¢:0,=0

= > @ -0F0 (by Eq. (6))
0:X—{0,1}

=znl Z 2" = 1)kF[6]

k=0 6:X—{0,1}:|0|=k

n
=Z(2" — 1)k F
k=0

This completes the proof of Claim 3.5, which implies Lemma 3.3. O

ProOF OoF LEMMA 3.4. Let F € C be a Boolean function. Our goal is to compute #F in polynomial
time given an oracle to Shap(C).

Suppose F has n variables X = {Xj, ..., X, }. We fix £ € N. For each variable X, let F&D be the
function obtained from F by substituting X; with a fresh variable Z; and every other variable X,
with a disjunction of fresh variables X, := Z 11, VARERY Z;;‘ The function F admits OR-substitutions
into F(“)_ hence, F(“) € C. Using the oracle for Shap(C), we compute Shap(F(“"), Z;). Then, using
Eq. (2) for the Shapley value and Eq. (3), we obtain:

[u

shap(F“9, Z) = )" ci (#F (2, = 1] - #F 9 [Z; = 0]

S X
_ o

(2" — D¥cx (#F[X; = 1] — #F[X; = 0])
k=0

Keeping i fixed, we let ¢ iterate over [n] to form a system of n equations with n unknowns
ToF % ¢y (#1F[X; == 1] = #F[X; = 0]), k € {0,...,n— 1}.

Shap(F(1), 7)) 2'-1)° ... (@'-1)" N\ [ I,F
shap(F*9,z)) \@"-1° -+ (2" =1)"\LioiF
———

known Vandermonde unknown

The matrix of the equation system is a Vandermonde matrix, hence, nonsingular. We solve the
system, and, since the constants c; are known and computable in polynomial time, we obtain all
differences #; F[X; := 1] — #,F[X; := 0]. We next show how to compute #F using these differences.
Let us keep k fixed and sum these differences for i € [n]. We claim:

Cramm 3.6. Foranyk € {0,...,n— 1}, it holds:

Z (#.F[X; = 1] — #F[X; = 0]) =(k + 1)#r,F — (n — k)#cF
i=1
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Claim 3.6 follows from the following two equalities:

D FFIXi = 1] =(k + ) 7)
i=1
Z #. F[X; = 0] =(n — k)% F (8)
i=1

Equality (7) holds as follows:
Z#kp[xi =1] =Z Z F[{X; =1} U 0]
i=1 i=1 0:X-{X;}—{0,1};|0|=k
n
=, >, Flg]
i=1 @:X—{0,1};|¢|=k+1L;p(X;)=1

(*)

=(k+1) > Flyl
¥:X—{0,1};|¢/|=k+1

:(k+1)#k+1F

Equality (*) holds because each valuation ¢, which maps X; and k other variables to 1 and the
remaining n — k — 1 variables to 0, is considered k + 1 times when iterating over all i € [n]. More
precisely, let T be the set of the indices of the k+1 variables set to 1 in ¢. Then out of the n iterations
in the outer sum, the valuation ¢ is only considered for i € T.
Equality (8) above follows from a similar argument.
n n
Z#kF[X,- =0] =Z Z F[{X; := 0} U 0]
i=1 i=1 6:X-{X;}—{0,1};|0|=k
n
=y > Flo]
=1 @:X—{0,1}:]@|=kip (X;)=0

(n-k) >, FIy]
¥:X—{0,1};|y|=k
=(n— k)#F

(*:*)

Equality (s#x) holds because each valuation ¢, which maps X; to 0, k other variables to 1, and the
remaining n — k — 1 variables to 0, is considered n — k times when iterating over all i € [n]. More
precisely, let T be the set of the indices of the k variables set to 1 in ¢. Then out of the n iterations
in the outer sum, the valuation ¢ is only considered for i € [n] \ T, as for i € T the considered
valuations have variable X; set to 0.

This completes the proof of Claim 3.6. Thus, we have computed all n differences (k + 1)#.1F —
(n — k)#F. The final step is the following. Start by observing that #,F = F[0], where 0 is the
valuation that sets all variables to 0. Then, proceed inductively, computing #F for k = {1,...,n},
using Claim 3.6, where we have already computed the left-hand side. O

AND-substitutions. Theorem 3.1 also holds for AND-substitutions:

¢ 4
FOEFX, = Nzl Xe= N\ 2
J=1 J=
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where each Zij with i € [n] and j € [£] is a fresh variable. To accommodate AND-substitutions,
Claim 3.5 changes as follows:

Craim 3.7. Foreach t € N, it holds:

n
#F0) = Z(z" —1)" K F
k=0

4 FROM FUNCTIONS TO CIRCUITS

In general, Boolean functions do not admit polynomial-time satisfiability and model counting.
Knowledge compilation is an approach that turns Boolean functions into equivalent representations
that admit polynomial-time computation for a large number of tasks including model counting [8, 9].
The price to pay is a possibly exponential time in the number of variables of the function to compute
such an equivalent yet tractable representation. The tractability of well-known circuits, such as
OBDDs and d-DNNFs, relies on two key properties: determinism and decomposability.

We next recall the notion of a deterministic and decomposable circuit and then show that such
circuits can efficiently accommodate OR-substitutions. This implies that the Shapley value can be
computed in time polynomial in the size of such tractable circuits.

4.1 Deterministic and Decomposable Circuits

Given a circuit G, a gate g in G defines the circuit G, that is G where all gates that have no directed
path to g are removed. An V-gate g is deterministic if for every pair (g, g,) of distinct input gates
of g, their circuits G;, and Gy, are disjoint: There is no valuation 8 such that G, [0] = G, [0] = 1.
An A-gate g is decomposable if for every pair (gy, g2) of distinct input gates of g, their circuits G,
and G, have no variable in common. A circuit is deterministic if all its V-gates are deterministic
and is decomposable if all its A-gates are decomposable.

Example 4.1. Consider the circuit (=X; A X3) V (Xj A X3). It is deterministic as its only V-gate
is deterministic: There is no valuation that maps both =X; A X; and X; A Xj to 1, since the two
functions are mutually exclusive. It is also decomposable since for both A-gates have input gates
whose circuits do not share variables.

4.2 Circuits under OR-substitutions

Our main insight in this section is that the deterministic and decomposable circuits can efficiently
accommodate OR-substitutions. Let G be the class of deterministic and decomposable circuits and
G be the class of circuits in G where some variables are OR-substituted.

LEMMA 4.2. é <P G.
More precisely, we can show the following for any deterministic and decomposable circuit G,

a variable X that occurs k times in G, and distinct variables Z;, ..., Z, that do not occur in G: A

OR
deterministic and decomposable circuit that represents G under the OR-substitution X — \/{_, Z;
can be computed in O(|G| + k¢) time. This proves that the assumption made at the beginning of
Section 3 holds for such circuits.

Proor. While the circuit Gy (Zy,...,Z;) = Z; V - -+ V Z; that replaces X is not deterministic, it
can be turned into an equivalent deterministic and decomposable circuit of size O(¢):

G\/(Zl', .. .,Z{) =7Z;V (—|Zi A (GV(Zi+1, .. .,Z[))), forie [f - 1]
Gv(Zy) = Z,
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Its negation =Gy (Zy,...,Z;) can be equivalently expressed as =Z; A --- A =Z,, which is both
deterministic and decomposable, since Z; to Z;, are distinct variables. Furthermore, substituting X
by Gy and =X by =Gy does not violate the decomposability and determinism of the gates that are
reached from X and —-X. ]

The next theorem states that the Shapley value can be computed in polynomial time on deter-
ministic and decomposable circuits. It is an immediate corollary of three results: (1) the well-known
result on tractability of model counting for G [8]; (2) Lemma 4.2 stating that OR-substitutions
can be assimilated by any circuit in G in polynomial time; and (3) Theorem 3.1 conditioning the
tractability of Shap on the tractability of model counting for functions under OR-substitutions.

THEOREM 4.1. Shap(G) is in FP.

5 FROM FUNCTIONS TO QUERIES

We now lift our investigation of the Shapley value computation problem from Boolean functions to
(first-order) conjunctive queries. This is an application of our main result in Theorem 3.1, enabled
by the observation that the lineage or provenance polynomial [15] of a query is a Boolean function.

One challenge is to understand what is the counterpart of OR-substitutions at the query level.
For this purpose, we introduce the notion of stretching of a query and show that the lineage of the
stretching of a CQ Q is equivalent to the lineage of Q under OR-substitutions. Furthermore, the
two lineages can be transformed into one another in polynomial time. One caveat specific to this
section is that the problems and reductions used in the results below use data complexity®.

The main result of this section is the recovery of the dichotomy for Shapley value computa-
tion [20] using immediate derivations based on our main theorem and classical results for model
counting.

5.1 Conjunctive Queries and Lineage

We consider databases where some relations are endogenous while all others are exogenous. While
we are interested in the contribution of the tuples from endogenous relations to the answer of a
query, we disregard the contribution of the tuples from exogenous relations. Whenever we need to
distinguish between the two kinds of relations, we annotate an endogenous relation R as R" and an
exogenous relation R as R*.

A Boolean Conjunctive Query (CQ) is:

Q=3x /\ Ri(y)) ©)
j€lm]
where x is the tuple of all variables in Q, R;(y;) are the atoms of Q where R; is either an endogenous
or an exogenous relation, and y; C x for j € [m]. The size of Q, denoted by |Q]|, is the number m
of its atoms. We denote by at(x) the atoms with variable x, i.e., at(x) = {R;(y;)|j € [m], x € y;}.
To distinguish between variables in queries from those in Boolean functions, we write the former
in lowercase and the latter in uppercase.

A CQ Q is hierarchical if for any two query variables x and y, one of the the following conditions
hold: at(x) N at(y) = 0, at(x) C at(y), or at(y) C at(x). A CQ Q is self-join-free if there are no
two atoms for the same relation.

For each database instance D, the lineage Fo p of a CQ Q over D is a Boolean function represented
as a positive propositional formula in disjunctive normal form (DNF) over the variables v(t)
associated to the tuples ¢ in D. Each clause in the lineage is a conjunction of m variables, where m

3Under data complexity, the query is fixed and has constant size. The complexity O(]D|!9!) is thus polynomial time, since
the exponent |Q| is the constant query size.
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is the number of relation atoms in Q. We define lineage recursively on the structure of a CQ (D is
implicit and dropped from the subscript):

Fo,vo, = Fo, vV Fo, Fo,n0, = Fo, A Fo,
Faxp = \/ Fola/x)
acadom(D)
F _Jo(t) ifteR F _J1 ifteR
R = 0 otherwise R = 0 otherwise

The lineage of a conjunction (disjunction) of two subqueries is the conjunction (disjunction) of
their lineages. In case of an existential quantifier Jx, we construct the disjunction of the lineages of
all residual queries obtained by replacing the query variable x by each value in the active domain
(adom) of the database D. Once all variables in an atom R(t) are replaced by constants, we check
whether the tuple t of these constants is in the relation R. If it is not, then it does not contribute
to the lineage (it is 0, or false). If it is, then we distinguish two cases. If R is endogenous, then the
Boolean variable u(t) associated with the tuple ¢ is added to the lineage. If R is exogenous, then we
add instead 1 (or true) to signal that the variable v(t) is not relevant for Shapley value computation.

The query Q defines a class of Boolean functions that consists of the lineages of Q over all
databases D:

Co Cléf{FQ!D | D is a database instance}

5.2 Stretching Databases and Queries

The following transformation is central to this section:

Definition 5.1. Given an endogenous relation R"(y, . . ., yx) with attributes yy, . . ., yy, its stretch-
ing is the relation R"(yo, yy, . - ., Yk ). That is, we add one new attribute on the first position.
Given a CQ, where Vj € [m] : a; CaandVj € [p] : b; C b:

Q=3a3b A R"(aj) A /\ S%(b))

Jjelm] Jjelp]

its stretching is the CQ

0=3a3z...3z, 3b A Ri(zia) A\ S¥(by)
jelm] Jjelp]

where zy, ..., z;, are fresh existential variables, one for every atom of an endogenous relation.
Example 5.2. The stretching of the non-hierarchical query
0 = T3y R*(x) A S (x,y) A T"(y) (10)
is
§ = AxFyTz; 3z, R (21, x) A S*(x,y) AT (22, 1) (11)

The relationship between a CQ Q, its stretching § their lineages Fp p and F—Q~’5 over databases
D and 5 and the function IEE,D obtained from Fg p by OR-substitution, is depicted below:
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stretching

Qo
Q)

D D

OR-substitution —
FQ,D FQ,D = F@,ﬁ

In the bottom right node, FEE) and F5p are equivalent and transformable into each other in
polynomial time. The stretching at the query level captures the OR-substitutions at the lineage
level. That is, the lineage of Q under OR-substitutions can be recovered via a polynomial-time
transformation from the lineage of the stretching of Q and vice versa. This shows that the assumption
made at the beginning of Section 3 holds for lineage: We can construct in polynomial time? a
lineage for the stretched query from the lineage of the query under OR-substitutions.

LEMMA 5.3. sz ~F Cs holds for any CQ Q and its stretching Q.

Example 5.4. Consider the query Q = xR} (x), R} (x) and its stretching é = Jx3z;3z3R] (21, x),
R} (z2,x). We depict below a database D consisting of the relations R; and R; and a database D
consisting of the stretched relations. The variables Y; and Z; are associated to the database tuples.

D: R'(zy,x R*(z5, x

DR?(X) Rg(x) b lz(llx) 2(222 )x
x x Zl. bl Zl. 1

Yi:a4 Y;:a 1 %1 4 3°€ @41

Yzlaz Y4:a2

1. 1 1. .1
Zy: by ay Zy e, ag
n n q q
ZZ bz a Z4 : 02 a

The lineage of Q over D is Fop = (Y1 A Y3) V (Y2 A Yy), hence Fop € Cp. The lineage of
Q over D is F@,f) = \/iG[m],jE[p] (Z; A Zé’) \% \/iE[n],jE[q] (Zé A Zi), hence FQ,[‘) € Cé Under
the OR-substitution 6 = {¥; := VI, Z}.Y; = VI, Z}, Y5 = VI, Z3Ya = VL, 24}, we get
Foplf] = ((VZ,Z) A (\/f:1 Z))V (Vi Z3) A (\/;1=1 Z;)). It holds Fo p[0] € Cp. Observe that
Foplf] = F55 and can be transformed into one another in quadratic time using the distributivity
law for A over V (the time is exponential in the number of endogenous relations).

Lemma 5.3 immediately implies the following polynomial-time equivalences between the three
problems introduced in Section 3, now over classes of query lineage:

COROLLARY 5.5 (OF LEMMA 5.3). For any CQ Q and its stretching 0, the following polynomial-time
equivalences hold:
* Shap(Cg) =" Shap(Cp)
o #Cg =F #C5
e #,Cpo =F #*CQ

4This is in polynomial time data complexity, so possibly exponential in the query size or equivalently in the arity of the
clauses in the lineage.
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For instance, if we want to compute Shap(F) for F € CB, ie., for Q’s lineage under OR-
substitutions, and have an oracle for Shap(Cg), i.e., for computing the Shapley values for the

lineage of Q’s stretching O, we can first transform F in polynomial time into an equivalent function
Fe C and then compute Shap(F) using the oracle. Since F = F, we have Shap(F) = Shap(F).
Query stretching preserves the hierarchical property:

LEMMA 5.6. A CQ Q is hierarchical iff its stretching § is hierarchical.

5.3 Dichotomy for Self-Join-Free CQs

We prove the following dichotomy using our polynomial-time equivalences and lineage transfor-
mations:

THEOREM 5.1 ([20]). Let Q be a self-join-free CQ. If Q is hierarchical, then Shap(Cp) is in FP,
otherwise it is FP*"-hard.

The hardness result holds for specific classes of databases, where we can choose conveniently
the endogenous and exogenous relations, whereas the tractability result holds for any database.
We first focus on hardness and later on tractability.

Hardness. We show that for any non-hierarchical CQ Q, there are specific classes of databases
for which Shap(Cp) is FP*P-hard. We first show the hardness for the smallest non-hierarchical CQ
and then generalize to arbitrary non-hierarchical CQs.

Let us consider the smallest non-hierarchical CQ Q in Eq. (10) and its stretching in Eq. (11), where
we choose conveniently the relations R and T to be endogenous, while the relation S be exogenous.
The class Cp consists of all positive bipartite functions in disjunctive normal form: \/ (; j)es Xi A Y},
where X; annotates tuple R(i) and Y; annotates tuple T(j). Any such function can be obtained by
appropriately picking R and T for the sets of variables X; and Y}, and S to encode its clauses. We
next use a prior result on the #P-hardness for model counting for this class of functions [27]:

#Co <P Shap(aé) (by Theorem 3.1)
= #Co < Shap(Cp) (by Corollary 5.5)
= #Co <" Shap(Cp) (by Claim 5.2 below)
= Shap(Cp) is FP*-hard (#Cp is #P-hard [27])

Cramm 5.2. C5 = Co holds for the non-hierarchical query Q in Eq. (10) and its stretching Q in
Eq. (11).

The proof of Claim 5.2 is in Appendix B.1.

The generalization to arbitrary non-hierarchical CQs is as in prior work [6, 20]. We reduce the
computation of Q in Eq.(10) over any database D to the computation of any non-hierarchical query
Q’ over a specifically-designed database D’ constructed from D.

By definition, the non-hierarchical query Q has two variables x and y such that at(x) Nat(y) # 0,
at(x) ,¢_ at(y) and at (y) ;(_ at(x). We construct D’ as follows. We pick two distinct atoms in Q, call
them R and T, such that: R has x and not y, and T has y and not x. We make the relations of these
two atoms endogenous and all other relations exogenous. The x-column in R and the y-column in T
are copies of the corresponding columns in R and T. The x and y columns in the other relations in
D’ are copies of the corresponding columns in S. The values for all other variables are set to a fixed
dummy value. Then, the lineage of Q and Q’ over D and respectively D’ is the same: Fo p = Fy pr.
The hardness of #Cg thus transfers to #Cp.
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Tractability. We show that Shap(Cp) is in FP for any hierarchical CQ Q. We use that #Cp is
tractable for any hierarchical Q [26]:

CramM 5.3. For any hierarchical CQ Q, #.Cg is in FP.
Proor.

Q is hierarchical

= Q is hierarchical (by Lemma 5.6)
= #C@ is in FP (by [26])
= #645 is in FP (by Corollary 5.5)
= #,Cp is in FP (by Theorem 3.1)

Tractability of Shap(Cp) is now an immediate implication:

Q is hierarchical

= é is hierarchical (by Lemma 5.6)
= #*C'Q~ is in FP (by Claim 5.3)
= #*Cﬁz is in FP (by Corollary 5.5)
= Shap(Cp) is in FP (by Theorem 3.1)

Discussion. The above hardness proof is significantly simpler than the original one [20], which
solves several instances of computing the number of independent sets of a given bipartite graph
and assembles them in a full-rank set of linear equations. In fact, the original proof questions®
whether a simple proof based on the hardness of model counting for positive bipartite DNF, as used
to show the hardness of the non-hierarchical queries over probabilistic databases and also used in
our proof above, is even possible. Our result settles this question in the affirmative.

6 CONCLUSION AND FUTURE WORK

In this paper we give a polynomial-time equivalence between computing Shapley values and
model counting for any class of Boolean functions that are closed under substitutions of variables
with disjunctions of fresh variables. This result settles an open problem raised in prior work.
We also show two direct applications of our result: tractability of Shapley value computation for
deterministic and decomposable circuits and the dichotomy for Shapley value computation in case
of self-join-free Boolean conjunctive queries. We conjecture that our work can be instrumental
to show that the dichotomy for unions of conjunctive queries in probabilistic databases [7] also
applies to Shapley value computation.
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A MISSING DETAILS IN SECTION 2
A.1 Proof of Proposition 2.3

ProposITION 2.3 ([20] page 11, adapted). The Shapley value of a variable X; of a Boolean function F
is:

n—1
Shap(F, X;) = Z cx (B F[X; := 1] — #F[X; := 0])
k=0

k!'(n-k-1)!

where ¢y = =

We show this proposition as follows:

Shap(F, X;)
@ 3 (R U ] - FT)

" IIeS,
) 1

, Z ITIN(n = |T] = D! (F[T U {i}] - F[T])

" Teln]-{i}
n—1
) 1
& DKl = k| = D) (#F(X = 1] = #cFLX; = 0])
" k=0

n-1

@ ch (#,F[X; = 1] — #F[X; = 0])
k=0

Equality (a) holds by definition. We obtain Equality (b) by grouping the sum by possible sets
T C [n] — {i} and scaling the result of F[T U {i}] — F[T] by the number of permutations of the
set {1,...,n} that start with the values in T followed by i. Observe that |T|!(n — |T| — 1)! is the
number of permutations of the set {1, ..., n} that start with the values in T followed by i. To obtain
Equality (c), we iterate over the sizes of possible sets T C [n] — {i} and observe that the number of
sets T C [n] — {i} of size k such that F[T U {i}] = 1 is exactly #;F[X; := 1]; similarly, the number
of sets T of size k such that F[T] = 1is #F[X; := 0]. We obtain Equality (d) by moving % inside
the sum and replacing W by ck.
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A.2  Proof of Proposition 2.5
PROPOSITION 2.5. For any Boolean function F, it holds

Z Shap(F, X;) =F[1] - F[0]

i€[n]
where 1 is the valuation that maps all variables to 1, and 0 the valuation that maps all variables to 0.

We show this proposition as follows:

n n n-1

Z Shap(F,Xi) (i) Z Z Ck (#kF[Xi =1] - #.F[X; = O])
i=1 i=1 k=0
n-1 n

= Z Z ok (#cF[X; == 1] = #(F[X; == 0])

k=0 i=1

n-1
N (crlk+ D = ci(n - k)#cF)
k=0
:Co'#lF—Co'n'#0F+
c1-2-#F—cy-(n—1)-#F +---+
Cp—1-N- #nF —Cpn-1" #nle

(2 Cho1-n-#,F—co-n-#F+

n-2
2 (€lk + it F = i (n — k = Vi F)
k=0
d
(=)c,,_1 ‘n-#,F—co-n-#F

< Fl1] - Flo]

Equality (a) uses the Shapley value characterization given in Proposition 2.3. Equality (b) follows
from the two Equalities (7) and (8) in Section 3.1. We obtain Equality (c) by regrouping the terms
on the left-hand side: We keep c,—1 - n - #,F — ¢ - n - #F outside the scope of the sum and
pair the terms ci(k + 1)#i41 F and cg41(n — k — 1)#4 1 F for 0 < k < n — 2 within the scope of
the sum. Equality (d) holds, since for each k, the two terms within the scope of the sum cancel
each other. This cancelling is due to the following equalities: ci(k + 1) = W(k +1) =
(k+1)!(n-k=1)! _ (k+1)!(:'—k—2)! (n—

n! !
Choi*h=cyp-n= %n = 1 and the observation that F can have at most one model of size n and

at most one model of size 0.

k — 1) = ¢g41(n — k — 1). Equality (e) follows from the equalities

B MISSING DETAILS IN SECTION 5

We introduce notation used in the following. Given a relation R over some attributes (y1,...,yn),
we write (y; : ai,...,Yp : a,) to denote a tuple in R where the y;-value is g; for i € [n].

B.1 Proof of Claim 5.2
Cramm 5.2.C5 = Co holds for the non-hierarchical query Q in Eq. (10) and its stretching Qin Eq. (11).
We first illustrate how we can construct databases to show that each lineage in Cp is also a

lineage in Cs and vice versa.
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Example B.1. Consider the following database D, where the variables Y; preceding the tuples in
endogenous relations are associated to the tuples.

D: R'(x) §%(x,y) T*(y)
X x v -

Y1 L ay ay b] Y3 : b1

YZ L az az bz Y4 : bz

The lineage of Q over D is Fop = (Y1 A Y3) V (Y2 A Yy). Hence, it holds Fpp € Cp. Now, we
construct from D a database D such that Fg p is the lineage of O over D. The idea is to assign to
the fresh attributes added due to stretching a dummy value d:

5 : E”(zl,x) Sx(x’ y) Tn(ZZs y)
zZ1 X X Yy zZ Yy
Yi:d a a; by Y3:d by
Yg :d a a bz Y4 :d bz

Now, consider the following database D’ with stretched relations:

D’: R"(z1.%) §*(x.y) T"(z2,y)
zZ1 X X Yy zZ Yy
YI : dl a a b Y3 : d] b
Y2 : dz a Y4 : d2 b
The lineage of@ over D’ is F@,B/ =(MAY)V(Y1AY)V (Y,AY;) V (Y, AY,). It holds Fé,f)’ € ng-

We construct now from D’ a database D’ such that F5 5 is a lineage of Q over D’. The idea is to
represent tuples over (z1,x) and (23, y) as single (composite) values over x and respectively y and
construct S such that the combinations of (z3, x) and (zs, y) remain the same as in D:

D’: R%(x) S*(x,y) T"(y)
x X Yy y

Y, - (dy, a) (dia) (dib) vy, (q,p)

Yy : (dy, a) (d,a) (dzb) . (d, b)

(d2,a) (d1,b)
(dz,a) (do,b)

Next, we prove Claim 5.2 formally. Consider the non-hierarchical CQ Q = Jx3Jy R" (x) AS* (x, y) A
T"(y) in Eq. (10) and its stretching Q = Ix3yTz; 3z, R*(z1, x) A S*(x,y) A T" (22, y) in Eq. (11). We
first show that Cg C Cs and then we show Cs < Co.

B.1.1 Cp < CQ Consider the lineage Fp p € Cp for a database D = {R", $*,T"}. We show that
Fop € ng- We construct from D a database D = {ﬁ", S*, T"} as follows. Assume that R"” is defined
over the attribute x, S* is defined over the attributes (x, y), and T" is defined over the attribute y.
Relation S* remains unchanged. We transform relation R” into the relation R" over the attributes
(21, x) for a new attribute z;. The relation R" consists of the tuples {(z; : d,x : a)|(x : a) € R"},
where d is a fresh dummy value. If a variable in Fg p is associated with the tuple (x : a) in R", we
associate the same variable with the tuple (z; : d,x : a) in R Similarly, we transform relation T"
into the relation T" over the attributes (22, y) for a new attribute z,. The relation T™ consists of the
tuples {(z, : d,y : b)|(y : b) € T"}. If a variable in Fp p is associated with the tuple (y : b) in T",
we associate the same variable with the tuple (z; : d, y : b) in T". Observe that Fop is the lineage
of é over 5, which means that Fp p € C@.
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B.1.2 Cg < Co. This direction is analogous to the one shown in the previous section. Consider
the lineage FQ 5 € C@ for some database D = {R", S*, T"}. We show that FQ,E € Cp. We start with

constructing a database D = {R", 5%, , T"} from D. Observe that in contrast to the construction
in Section B.1.1, we change also the relation S*. Assume that ﬁ", S*, and T" in D are defined
over the attributes (z1,x), (x,y), and respectively (z,,y). We denote the value domains of the
attributes zy, x, z2, and y by Dom(z;), Dom(x), Dom(z;), and respectively Dom(y). We construct
from R" the relation R” over the attribute x” with domain Dom(x”) = Dom(z;) X Dom(x). We
define R" = {(x’ : (a’,a))|(z1 : @, x : a) € R"}. If a variable in F5p is associated with the tuple
(z7:d',x:a)in R", we associate it with the tuple (x” : (da’,a)) in R". Analogously, we construct
from T" the relation T" over the attribute y’ with domain Dom(y’) = Dom(z;) X Dom(y). We set
T"={( : W, b)|(z2: b,y:b) € T"}. If a variable is associated with the tuple (z5 : ',y : b)
in T", we associate it with the value (y : (b, b)) in T". Finally, we construct from relation S* the
relation S7.,, over the attributes (x’, y’) such that S}, = {(x" : (¢’,a),y" : (b',b))|(z1 : d’,x : a) €
R (x:a, y:b)eS* and (22 : b',y:b) € T"}. Observe that F5p is the lineage of Q over D. This
means that F5p € Co.

B.2 Proof of Lemma 5.3
LEMMA 5.3. sz ~F Cs holds for any CQ Q and its stretching 0.

The high-level idea of the bidirectional transformation is as follows: Consider the lineage Fp p
of Q over a database D and a variable X associated with a tuple ¢+ = (x : @) in an endogenous
relation R". Assume that FQ, p results from Fp p by substituting X with the disjunction Z; v - - - V Z,.
Now, consider the database D that results from D by stretching R"(x) into R"(z,x) and replacing
t = (x : a) with £ new tuples ¢; = (z : a;,x : a@),...,t; = (z : as,x : @) where ay, ..., a, are fresh
values. Then, FQ,D is equivalent to the lineage F55 of O over D and can be obtained from it in
polynomial time (data complexity).

We now explain the transformations in more detail. Consider a CQ Q and its stretching Q. In
Section B.2.1 we show that C@ <P 6’5 and in Section B.2.2 we show that CFE <P CQ.

B21 Cj <P Cz We describe a polynomial-time algorithm A that transforms any function

~

F@,ﬁ € C@ into an equivalent function from (ﬂ,z, for some database D. The algorithm A first

constructs from D a database D, where the attributes added by stretching are discarded. Then,
it transforms F5 p into an equivalent function F in polynomial time such that Fo p — F, which

means F € sz In the following, we first describe the construction of D, then we give the definition
of F, and finally explain the transformation from F5 p into F.

Construction of D. The exogenous relations in D remain unchanged. The algorithm replaces
each endogenous relation R" in D with an endogenous relation R" constructed as follows. Let
(z,y) be the attributes of R™ where z is the attribute added due to stretching. We set R" = ﬂyﬁ,
i.e., R" is the projection of R onto y. Given a value tuple t over the variables y, let Z be the set of
variables associated to the tuples in R whose projection onto y is t. The algorithm associates the
fresh variable X7 to the tuple # in R. The construction time is linear in the size of D.

Definition of F. Let us denote the set of variables in Fop by X. We define the substitution
0 = {Xz = \/yey Z|Xz € X} and set F = Fg p[0]. It follows Fo,p = F.
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Transformation of F5p into F. The algorithm first constructs from D a database D’ where each
lineage variable X7 is replaced by the disjunction \ zez Z. It then computes the lineage Fp pr of Q
over D’. By construction, it holds Fp pr = = F and Fopr FQ 5- The construction of Fp p requires
the computation of the join of the relations in D’, which can be done in time polynomial in the size
of D’ (hence, polynomial in the size of D) using any conventional join algorithm.

We conclude that the overall transformation from Fj 5 into F takes time polynomial in the size

of Fé,f) and D.

B.2.2 5(5 <P C@. We give a polynomial-time algorithm B that transforms functions in 6(5 into
equivalent functions in C@. Let F € Eé Hence, there is a database D and an OR-substitution 6

such that Fo p[0] = F. We first explain how algorithm B transforms Fin polynomial time into an
equivalent function F’ in DNF. Then, we show that F’ € C@, which concludes the proof.

Transformation ofl? into F' in DNF. Assume that Fop = C; V ---V C, where each C; is the
conjunction of the variables in some set X;. We set X = Ule X;. Assume that 0 is defined as
{X == Vzezy ZIX € X}, where for each X € X, Zx is a set of fresh variables. This means that
F:C{ V---VCl’,,where
a=N \V z

XeX; ZeZx
Algorithm B transform each such C; into a disjunction C;’ of conjunctions. Assume that X; =
Xi A -+ AN X, Then,
m
¢=_V Az
Z1€X1, 0 Zm€Xm  J=1
The algorithms sets F/ = C V-V Cy. The equivalence follows from the distributivity of V over

A. The transformation can be done in time polynomial in the size of F.

F’ is included in Cg- We turn D into a database D such that the lineage of Q over D is equal to

F’. The exogenous relations in D remain unchanged. For each endogenous relation R" over the
attributes y, we construct a relation R” over (z,1). For each value tuple ¢ in R” associated with
the lineage variable X, we add the following new tuples to R". LetO(X) =2, V---V Z;. We add
to R" the tuples ty, ..., t,, where each #; results from ¢ by adding a fresh value for attribute z. We
associate the tuples i, ..., t, in R” with the lineage variables Zy, .. ., Z,, respectively. It follows
from the construction of D that the lineage F5 0D is equal to F. Hence, F e C@.

B.3 Proof of Lemma 5.6
LEMMA 5.6. A CQ Q is hierarchical iff its stretching Q is hierarchical.

The main idea is that the class of hierarchical queries is closed under adding or removing variables
that are contained in a single atom. To prove this formally, we first recall that for any two variables
x and y in a hierarchical query, one of the following three properties (called hierarchical properties
in the following) must hold: at(x) N at(y) = 0, at(x) C at(y), or at(y) C at(x). We show each
direction of Lemma 5.6 separately.

“=”-direction: Assume that Q is hierarchical. If Q does not contain any fresh variable, then it
is obviously hierarchical. So, let x be a fresh variable in O that does not appear in Q and let y be
an arbitrary variable in é By the definition of stretching, we have |at(x)| = 1. For the sake of
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contradiction, assume that the hierarchical properties do not hold for x and y in Q. This means that
at(x) Nat(y) # 0, yet at(x) ¢ at(y) and at(y) ¢ at(x). So x appears in at least two atoms and the
same for y. This contradicts our assumption that |at(x)| = 1. Hence, O must be hierarchical.

“="-direction: Assume that Q is hierarchical. Consider two distinct variables x and y in Q. By
the definition of stretching, these variables must also appear in Q. Since Q is hierarchical, one of
the three hierarchical properties must hold for x and y in Q. Since stretching only extends existing
atoms, at(x) and at(y) are the same for both Q and Q This means that one of the three hierarchical
properties must also hold for x and y in Q. This implies that Q is hierarchical.
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