
Join Size Bounds using ✓?-Norms on Degree Sequences

MAHMOUD ABO KHAMIS, RelationalAI, USA
VASILEIOS NAKOS, RelationalAI, USA
DAN OLTEANU, University of Zurich, Switzerland
DAN SUCIU, University of Washington, USA

Estimating the output size of a query is a fundamental yet longstanding problem in database query processing.
Traditional cardinality estimators used by database systems can routinely underestimate the true output size
by orders of magnitude, which leads to signi�cant system performance penalty. Recently, upper bounds have
been proposed that are based on information inequalities and incorporate sizes and max-degrees from input
relations, yet their main bene�t is limited to cyclic queries, because they degenerate to rather trivial formulas
on acyclic queries.

We introduce a signi�cant extension of the upper bounds, by incorporating ✓? -norms of the degree sequences
of join attributes. Our bounds are signi�cantly lower than previously known bounds, even when applied
to acyclic queries. These bounds are also based on information theory, they come with a matching query
evaluation algorithm, are computable in exponential time in the query size, and are provably tight when all
degrees are “simple”.

CCS Concepts: • Information systems! Join algorithms.

Additional Key Words and Phrases: query output cardinality; degree sequence; worst-case optimal join

ACM Reference Format:
Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, and Dan Suciu. 2024. Join Size Bounds using ✓? -
Norms on Degree Sequences. Proc. ACM Manag. Data 2, 2 (PODS), Article 96 (May 2024), 24 pages. https:
//doi.org/10.1145/3651597

1 INTRODUCTION
Cardinality estimation is a central yet longstanding open problem in database systems. It allows
query optimizers to select a query plan that minimizes the size of the intermediate results and
therefore the necessary time and memory to compute the query. Yet traditional estimators present
in virtually all database management systems routinely underestimate the true cardinality by orders
of magnitude, which can lead to ine�cient query plans [14, 17, 21].
The past two decades introduced worst-case upper bounds on the output size of a join query.

The �rst such bound is the AGM bound, which is a function of the sizes of the input tables [5]. It
was further re�ned in the presence of functional dependencies [3, 13]. A more general bound is
the PANDA bound, which is a function of both the sizes of the input tables and the max degrees
of attributes in these tables [4]. These are powerful methods as they can be applied to arbitrary

Authors’ addresses: Mahmoud Abo Khamis, mahmoud.abokhamis@relational.ai, RelationalAI, 2120 University Ave, Berkeley,
CA, 94704, USA; Vasileios Nakos, vasileios.nakos@relational.ai, RelationalAI, 2120 University Ave, Berkeley, CA, 94704, USA;
Dan Olteanu, olteanu@i�.uzh.ch, University of Zurich, Department of Informatics, Andreasstrasse 15, Zurich, 8050, Switzer-
land; Dan Suciu, suciu@cs.washington.edu, University of Washington, Department of Computer Science & Engineering,
Box 352350, Seattle, WA, 98195-2350, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/5-ART96
https://doi.org/10.1145/3651597

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0003-3894-6494
HTTPS://ORCID.ORG/0000-0003-2703-2750
HTTPS://ORCID.ORG/0000-0002-4682-7068
HTTPS://ORCID.ORG/0000-0002-4144-0868
https://doi.org/10.1145/3651597
https://doi.org/10.1145/3651597
https://orcid.org/0000-0003-3894-6494
https://orcid.org/0000-0003-2703-2750
https://orcid.org/0000-0002-4682-7068
https://orcid.org/0000-0002-4144-0868
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651597

96:2 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

joins and compute provable upper bounds on the query output size, unlike traditional cardinality
estimators which often severely underestimate the query output size [20].

However, these theoretical bounds have not had practical impact. One reason is that most queries
in practice are acyclic queries, where upper bounds become trivial: they simply multiply the size of
one relation with the maximum degrees of the joining relations. This is not new for a practitioner:
standard estimators do the same, but use the average degrees instead of the max degrees. A second,
related reason, is that they use essentially the same statistics as existing cardinality estimators:
cardinalities and max or average degrees. There have been a few implementations under the name
pessimistic cardinality estimators [7, 15], but their empirical evaluation showed that they remain
less accurate than other estimators [8, 14].
In this paper, we introduce new upper bounds on the query output size that use ✓?-norms of

degree sequences. The degree sequence of a graph is the sorted list of the degrees of the nodes,
31 � 32 � · · · , where31 the largest degree,32 the next largest, etc. The ✓? -norm of a degree sequence
is de�ned as (3?1 + 3?2 + · · ·)1/? . Our method computes an upper bound in terms of ✓?-norms of
the degree sequences of the join columns; to the best of our knowledge, these are the �rst upper
bounds that use arbitrary ✓? -norms on the relations. They strictly generalize previous bounds based
on cardinalities and max-degrees [4], because the ✓1-norm of an attribute '.� is the size

Õ
8 38 of ',

and the ✓1-norm is the max degree 31 of �. However, our method can use any other norm, which
leads to a much tighter upper bound. We follow the standard assumption in cardinality estimation,
and assume that several ✓? -norms are pre-computed, and available during cardinality estimation.
Like the AGM [5] and the PANDA [4] bounds, our method relies on information inequalities.

The computed bound is the optimal solution of a linear program, and can be computed in time
exponential in the size of the query. Our method applies to arbitrary join queries (cyclic or not),
but, unlike AGM and PANDA, it leads to completely new bounds even for acyclic queries, and uses
new kinds of statistics, which makes it more likely for these theoretical bounds to have impact in
practical scenarios.

1.1 A Motivating Example
The standard illustration for size upper bounds is the triangle query:

& (- ,. ,/) ='(- ,.) ^ ((. ,/) ^) (/ ,-), (1)

for which the AGM bound [5] (based on the ✓1-norm) is:

|& |  (|' | · |(| · |) |)1/2 (2)

and the PANDA bound [4] (based on the ✓1 and ✓1 norms) is:

|& |  |' | · | |deg((/ |.) | |1 (3)

where deg((/ |.) = (31,32, . . . ,3<) is the degree sequence of. in (, more precisely 38 is the number
of occurrences of the 8’th most frequent value . = ~. If the ✓2- and ✓3-norms of the degree sequences
are also available, then we can derive new upper bounds, for example:

|& | 
�
| |deg' (. |-) | |22 · | |deg((/ |.) | |22 · | |deg) (- |/) | |22

�1/3 (4)

|& | 
�
| |deg' (. |-) | |33 · | |deg((. |/) | |33 · |) |5

�1/6 (5)

Assuming the ✓1, ✓2, ✓3, ✓1 norms are precomputed, then all formulas above give us upper bounds on
the query output size, and we can take the minimal one; which one is the smallest depends on the
actual data.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:3

1.2 Problem Definition
Before we de�ne the problem investigated in this paper, we introduce the class of queries and the
statistics under consideration.

For a number =, let [=] def= {1, 2, . . . ,=}. We use upper case - for variable names, and lower case
G for values of these variables. We use boldface for sets of variables, e.g., ^ , and of constants, e.g., x .

A full conjunctive (or join) query is de�ned by:

& (^) =
€
92 [<]

' 9 (_9) (6)

where _9 is the tuple of variables in ' 9 and ^ =
–
92 [<] _9 is the set of =

def= |^ | variables in the
query & .
For a relation (and subsets [, \ of its attributes, let deg((\ |[) be the degree sequence of [in

the projection ⇧[\(. Formally, let ⌧ def= (⇧[((), ⇧\ ((), ⇢) be the bipartite graph whose edges
⇢ are all pairs (u, v) 2 ⇧[\ ((). Then deg((\ |[)

def= (31,32, . . . ,3<) is the degree sequence of the
[-nodes of the graph.
Fix ^ a set of variables. An abstract conditional, or simply conditional, is an expression of

the form f = (\ |[). We say that f is guarded by a relation '(_) if [, \ ✓ _ ; then we write
deg' (f)

def= deg' (\ |[). An abstract statistics is a pair g = (f, ?), where ? 2 (0,1]. If ⌫ � 1 is a real
number, then we call the pair (g,⌫) a concrete statistics, and call (g,1), where 1 def= log⌫, a concrete
log-statistics. If ' is a relation guarding f , then we say that ' satis�es (g,⌫) if | |deg' (f) | |?  ⌫.
When ? = 1 then the statistics is a cardinality assertion on |⇧[\ (') |, and when ? = 1 then it
is an assertion on the maximum degree. We write ⌃ = {g1, . . . , gB } for a set of abstract statistics,
and H = {⌫1, . . . ,⌫B } for an associated set of real numbers; thus, every pair (g8 ,⌫8) is a concrete
statistics. We will call the pair (⌃,H) a set of (concrete) statistics, and call (⌃, b), where 18 def= log⌫8 ,
a set of concrete log-statistics. We say that ⌃ is guarded by a relational schema X = ('1, . . . ,'<) if
every g8 2 ⌃ has a guard ' 98 , and we say that a database instance J = ('⇡1 , . . . ,'⇡<) satis�es the
statistics (⌃,H), denoted by J |= (⌃,H), if | |deg'⇡98 (f) | |?8  ⌫g8 for all g8 = (f8 , ?8) 2 ⌃, where ' 98
is the guard of f8 . We can now state the problem investigated in this paper:

P������ 1. Given a join query& and a set of statistics (⌃,H) guarded by the (schema of the) query
& , �nd a bound* 2 R such that for all database instances J , if J |= (⌃,H), then |& (J) |  * .

The bound * is tight, if there exists a database instance J such that J |= (⌃,H) and * =
$ (|& (J) |).

1.3 Main Results
We solve Problem 1 for arbitrary join queries & , databases J with relations of arbitrary arities,
and statistics (⌃,H) consisting of arbitrary ✓? -norms of degree sequences. We make the following
contributions.

Contribution 1: ✓? Bounds on Query Output Size. Our key observation is that the concrete statistics
| |deg(\ |[) | |?  ⌫ implies the following inequality in information theory:

1
?
⌘([) + ⌘(\ |[)  log⌫ (7)

where ⌘ is the entropy of some probability distribution on ' (reviewed in Sec. 3). Using (7) we
prove the following general upper bound on the size of the query’s output. Note that in this bound,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:4 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

the query variables become random variables when we take a probability distribution over the
query’s output: (The distribution will be speci�ed later in the proof.)

T������ 1.1. Let & be a full conjunctive query (6), [8 , \8 ✓ ^ be sets of variables, for 8 2 [B], and
suppose that the following information inequality is valid for all entropic vectors h with variables ^ :

’
82 [B]

F8

✓
1
?8
⌘([8) + ⌘(\8 |[8)

◆
� ⌘(^) (8)

whereF8 � 0, and ?8 2 (0,1], for all 8 2 [B]. Assume that each conditional (\8 |[8) in (8) is guarded
by some relation ' 98 in & . Then, for any database instance J = ('⇡1 ,'⇡2 , . . .), the following upper
bound holds on the query output size:

|& (J) | 
÷
82 [B]

| |deg'⇡98 (\8 |[8) | |
F8
?8 (9)

We prove the theorem in Sec. 4. Thus, one approach to �nd an upper bound on the query output
is to �nd an inequality of the form (8), prove it using Shannon inequalities, then conclude that (9)
holds. For example, the bounds (4)-(5) stated in our motivating example follow from the following
inequalities:

(⌘(-) + 2⌘(. |-)) + (⌘(.) + 2⌘(/ |.)) + (⌘(/) + 2⌘(- |/)) �3⌘(-./) (10)
(⌘(-) + 3⌘(. |-)) + (⌘(/) + 3⌘(. |/)) + 5⌘(-/) �6⌘(-./) (11)

These can be proven by observing that they are sums of basic Shannon inequalities (reviewed in
Sec. 3):

⇢@. (10) is sum of

8>>><
>>>:

⌘(-) + ⌘(. |-) + ⌘(/ |.) � ⌘(-./)
⌘(.) + ⌘(/ |.) + ⌘(- |/) � ⌘(-./)
⌘(/) + ⌘(- |/) + ⌘(. |-) � ⌘(-./)

⇢@. (11) is sum of

8>>>>><
>>>>>:

2⌘(-/) + 2⌘(. |-) � 2⌘(-./)
2⌘(-/) + 2⌘(. |/) � 2⌘(-./)
⌘(-) + ⌘(. |-) + ⌘(/) � ⌘(-./)
⌘(. |/) + ⌘(-/) � ⌘(-./)

Contribution 2: Asymptotically Tighter Cardinality Upper Bounds. The AGM and PANDA’s bounds
also rely on an information inequality, but use only ✓1 and ✓1. Our novelty is the extension to ✓?
norms. We show in Sec. 2.1 that this leads to signi�cantly better bounds. Quite surprisingly, we are
able to improve signi�cantly the bounds even for acyclic queries, and even for a single join.

Preliminary experiments [2] with cyclic queries on the SNAP graph datasets [22] and with acyclic
queries on the JOB benchmark [20] show that the upper bounds based on ✓? -norms can be orders
of magnitude closer to the true cardinalities than the traditional cardinality estimators (e.g., used
by DuckDB) and the theoretical upper bounds based on the ✓1 and ✓1 norms only. To achieve the
best upper bound with our method, a variety of norms are used in the experiments.

Contribution 3: New Algorithm Meeting the New Bounds. The celebrated Worst Case Optimal Join
algorithm runs in time bounded by the AGM bound [23, 24]. A more complex algorithm [4] runs in
time bounded by the PANDA bound. In Sec. 2.2 we describe an algorithm that runs in time bounded
by our new ✓? -bounds. Any such algorithm must include PANDA’s as a special case, because our
bounds strictly generalize PANDA’s. Our new algorithm in Sec. 2.2 consists of reducing the general
case to PANDA. We do this by repeatedly partitioning each relation ' such that a constraint on

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:5

| |deg' (\ |[) | |? can be replaced by two constraints, on |⇧[(') | and | |deg' (\ |[) | |1. The original
query becomes a union of queries, one per combination of parts of di�erent relations. The algorithm
then evaluates each of these queries using PANDA’s algorithm.

Contribution 4: Computing the bounds. One way to describe the solution to Problem 1 is as follows.
Consider a set of statistics (⌃,H). Any valid information inequality (8) implies some bound on
the query output size, namely |& |  Œ

82 [B] ⌫
F8
98
. The best bound is their minimum, over all valid

inequalities (8); we denote the log of this minimum by Log-U-Bound. This describes the solution to
Problem 1 as a minimization problem. This approach is impractical, because the number of valid
inequalities is in�nite. In Sec. 5 we describe an alternative, dual characterization of the upper bound,
as a maximization problem, by considering the following quantity:

Log-L-Bound = sup
h |=(⌃,b)

⌘(^) (12)

where ^ is the set of all variables in the query & , and h is required to “satisfy” the concrete
log-statistics (⌃, b), meaning that inequality (7) is satis�ed for every statistics in ⌃. Equation (12)
de�nes a maximization problem. Our fourth contribution is:

T������ 1.2 (I�������). If h ranges over the same closed, convex cone in both (8) and (12),
then Log-U-Bound = Log-L-Bound.

We explain the theorem. is used implicitly in (8) to de�ne when the inequality is valid, namely
when it holds 8h 2 , and also in (12), as the range of h. The theorem says that, if is topologically
closed and convex, then the two quantities coincide. The special case of the theorem when def= �=
is the set of polymatroids and (8) are the Shannon inequalities appeared implicitly in [4]; the general
statement is new, and it includes the non-trivial case when def= �̄⇤= is the closure of entropic vectors
and (8) are all entropic inequalities. To indicate which cone was used, we will use the subscript
in (12). Theorems 1.1 and 1.2 and the fact that �̄⇤= ✓ �= imply:

log |& |  Log-U-Bound�̄⇤=  Log-U-Bound�= (13)

Theorem 1.2 has two important applications. First, it gives us an e�ective method for solving
Problem 1, when (8) are restricted to Shannon inequalities, because in that case (12) is the optimal
value of a linear program. Second, it allows us to study the tightness of the bound, by taking a
deeper look at (13). We prove [2] that the entropic bound, Log-U-Bound�̄⇤= , is asymptotically tight
(which is a weaker notion than tightness), while, in general, the polymatroid bound, Log-U-Bound�= ,
is not even asymptotically tight.

Contribution 5: Simple degree sequences. The tightness analysis leaves us with a dilemma: the
entropic bound is tight but not computable, while the polymatroid bound is computable but not
tight. We reconcile them in Sec. 6: For simple degree sequences, the two bounds coincide, i.e., they
become equal. A degree sequence deg' (\ |[) is simple if |[|  1. Moreover, in this case the bound
is tight, in our usual sense: there exists a database J such that the size of the query output is
|& (J) | � 2 · 2Log-U-Bound�= , where 2 is a constant that depends only on the query & . The database J
can be restricted to have a special form, called a normal database.

Closely related work. Jayaraman et al. [16] present a new algorithm for evaluating a query & and
prove a runtime in terms of ✓? -norms on degree sequences. Their result is limited to binary relations
(thus all degrees are simple), to a single value ? for a given query, and to queries with girth � ? + 1.
(The girth is the length of the minimal cycle.) While their work concerns only the algorithm, not a
bound on the output, one can derive a bound from the runtime of the algorithm, since the output

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:6 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

size cannot exceed the runtime. In the full version [2], we describe their bound explicitly, and show
that it is a special case of our inequality (8). For example, for the triangle query (1) their runtime
is (4), but they cannot derive (5), because the query graph has girth 3, hence they cannot use ✓3.
The authors also notice that the worst-case instance is not always a product database, as in the
AGM bound, but don’t characterize it: our paper shows that this is always a normal database.

The Degree Sequence Bound (DSB) [9] is a tight upper bound of a query& in terms of the degree
sequences of its join attributes. The query & is restricted to be Berge-acyclic, which also implies
that all degree sequences are simple. There exists a 1-to-1 mapping between a degree sequence
31 � · · · � 3< and its �rst< norms ✓1, . . . , ✓< (see Appendix A), therefore the DSB and our new
bound could have access to the same information. Somewhat surprisingly, the DSB bound can be
asymptotically better: the reason is that the 1-to-1 mapping is monotone only in one direction. We
describe this analysis in Appendix B.1. In practice, both methods have access to fewer statistics
than<: the DSB bound uses lossy compression [10], while our bound will have access to only a
few ✓? -norms, making the two methods incomparable.

2 APPLICATIONS
Before we present the technical details of our results, we discuss two applications: cardinality
estimation and query evaluation.

2.1 Cardinality Estimation
Our main intended application of Theorem 1.1 is for pessimistic cardinality estimation: given a
query and statistics on the database, compute an upper bound on the query output size. A bound
is good if it is as small as possible, i.e. as close as possible to the true output size. We follow the
common assumption in cardinality estimation that the statistics are precomputed1 and available at
estimation time. For example the system may have precomputed the ✓2, ✓5, ✓1-norms of deg' (. |-)
and the ✓1, ✓10-norms of deg((/ |.). We give several examples of upper bounds of the from (9) that
improve signi�cantly previously known bounds. For presentation purposes we describe all bounds
in this section using (9). A system would instead rely on (12), i.e. it will compute the numerical
value of the upper bound by optimizing a linear program, as we explain in Sec. 5. To reduce clutter,
in this section we abbreviate |& (J) | with |& |, and drop the superscript ⇡ from an instance '⇡
when no confusion arises.

E������ 2.1. As a warmup we start with a single join:

& (- ,. ,/) ='(- ,.) ^ ((. ,/) (14)

Traditional cardinality estimators (as found in textbooks [25], see also [20]) use the formula

|& | ⇡ |' | · |(|
max(|⇧. (') |, |⇧. (() |)

(15)

Since |' |
|⇧. (') | is the average degree of '(- |.), (15) is equivalent to

|& | ⇡min (|(| · avg(deg' (- |.)), |' | · avg(deg((/ |.))) (16)

Turning our attention to upper bounds, we note that the AGM bound is |' | · |(|. A better bound is the
PANDA bound, which replaces avg with max in (16):

|& | min (|(| · | |deg' (- |.) | |1, |' | · | |deg((/ |.) | |1) (17)

1It takes$ (# log#) time to compute the degree sequence of an attribute- of a relation ' of size # : sort ' by- , group-by
- , count, then sort again by the count.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:7

Our framework derives several new upper bounds, by using ✓? -statistics other than ✓1 and ✓1. We
start with the simplest:

|& |  | |deg' (- |.) | |2 · | |deg((/ |.) | |2 (18)

The reader may notice that this inequality is Cauchy-Schwartz, but, in the framework of Th. 1.1, it
follows from a Shannon inequality:

1
2
(⌘(.) + 2⌘(- |.)) + 1

2
(⌘(.) + 2⌘(/ |.)) �⌘(-./)

The inequality can be simpli�ed to ⌘(.) + ⌘(- |.) + ⌘(/ |.) � ⌘(-./), which holds because
⌘(.) +⌘(- |.) = ⌘(-.), ⌘(/ |.) � ⌘(/ |-.), and ⌘(-.) +⌘(/ |-.) = ⌘(-./); we review Shannon
inequalities in Sec. 3. Depending on the data, (18) can be asymptotically better than (17). A simple exam-
ple where this happens is when& is a self-join, i.e. '(- ,.)^'(/ ,.). Then, the two degree sequences are
equal, deg' (- |.) = deg' (/ |.), and (18) becomes an equality, because |& | = | |deg' (- |.) | |22. Thus,
(18) is exactly |& |, while (17) continues to be an over approximation of |& |, and can be asymptotically
worse (see Appendix B.1).
A more sophisticated inequality for the join query is the following, which holds for all ?,@ � 0 s.t.

1
? + 1

@  1:

|& |  | |deg' (- |.) | |?? · | |deg((/ |.) | |
@

? (@�1)
@ |(|1�

@
? (@�1) (19)

Depending on the concrete statistics on the data, this new bound can be much better than both (17)
and (18). We prove this bound in Appendix B.1, where we also use this bound to study the connection
between our ✓? -bounds on the Degree Sequence Bound in [9].

The new bounds (18)-(19) are just two examples, and other inequalities exist. In the full version [2],
we provide some empirical evidence showing that, even for a single join, these new formulas indeed
give better bounds on real data.

E������ 2.2. In real applications most queries are acyclic. In the full version [2], we conducted
some preliminary empirical evaluation on the JOB benchmark consisting of 33 acyclic queries over the
IMDB real dataset, and found that the new ✓? -bounds are signi�cantly better than both traditional
estimators (e.g., used by DuckDB) and pessimistic estimators (AGM, PANDA). We give here a taste of
how such a bound might look for a path query of length = � 3:

& (-1, . . . ,-=) =
€

82 [=�1]
'8 (-8 ,-8+1)

Traditional cardinality estimators apply (15) repeatedly; similarly PANDA relies on a straightforward
extension of (17). Our new approach leads, for example, to:

|& |?  |'1 |?�2 · | |deg'2 (-1 |-2) | |22 ·
÷

8=2,=�2
| |deg'8 (-8+1 |-8) | |

?�1
?�1 · | |deg'=�1 (-= |-=�1) | |

?
?

This bound holds for any ? � 2, because of the following Shannon inequality:

(? � 2)⌘(-1-2) + (⌘(-2) + 2⌘(-1 |-2)) +
’

8=2,=�2
(⌘(-8) + (? � 1)⌘(-8+1 |-8))

+ (⌘(-=�1) + ?⌘(-= |-=�1)) � ?⌘(-1 . . .-=) (20)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:8 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

In particular, the above inequality holds because it is a sum of the following basic Shannon inequalities:

(? � 2)⌘(-1-2) +
’

8=2,=�2
(? � 2)⌘(-8+1 |-8) + (? � 2)⌘(-= |-=�1) � (? � 2)⌘(-1 . . .-=)

⌘(-2) + ⌘(-1 |-2) +
’

8=2,=�2
⌘(-8+1 |-8) + ⌘(-= |-=�1) � ⌘(-1 . . .-=)

⌘(-1 |-2) +
’

8=2,=�2
⌘(-8) + ⌘(-=�1) + ⌘(-= |-=�1) � ⌘(-1 . . .-=)

Several other bounds for the path query exist [2]. To our surprise, when we conducted our
empirical evaluation in the full version [2], we found that the system used ✓? -norms from a wide
range, ? 2 {1, 2, . . . , 29,1}. This shows the utility of having a large variety of ✓? -norm statistics for
the purpose of cardinality estimation. It also raises a theoretical question: is it the case that, for
every ? , there exists a query/database, for which the optimal bound uses the ✓? -norm? We answer
this positively next.

E������ 2.3. For every ? , there exists a query and a database instance where the ✓? -norm on degree
sequences leads to the best upper bound. Consider the cycle query of length ? + 1:

& (-0, . . . ,-?) = '0 (-0,-1) ^ . . . ^ '?�1 (-?�1,-?) ^ '? (-? ,-0)
For every @ 2 [?], the following is an upper bound (generalizing (4)):

|& | 
÷
8=0,?

| |deg'8 (- (8+1)mod(?+1) |-8) | |
@

@+1
@ (21)

To prove (21), we show the following Shannon inequality, where the arithmetic on the indices is taken
modulo ? + 1, i.e. 8 + 1 means (8 + 1) mod (? + 1) etc:’

8=0,?
(⌘(-8) + @⌘(-8+1 |-8)) �(@ + 1)⌘(-0 . . .-?) (22)

To prove the inequality, we proceed as follows. First, we observe that, for each 8 = 0, ? , the following is
a Shannon inequality:

⌘(-8) + ⌘(-8+1 |-8) + . . . + ⌘(-8+@ |-8+@�1) �⌘(-8-8+1 . . .-8+@)
All indices are taken modulo ? + 1, for example 8 + @ means (8 + @) mod (? + 1). Each inequality
above can be easily checked. Next, we add up these ? + 1 inequalities, and make two observations.
First, the sum of their LHS is precisely the LHS of (22). Second, after adding up their RHS, we use
the following Shannon inequality

Õ
8=0,? ⌘(-8 . . .-8+@) � (@ + 1)⌘(-0-1 . . .-?) (which holds because

each variable-: occurs exactly @ +1 times on the left, hence this is a Shearer-type inequality). Together,
these observations prove (22). We compare now the upper bound (21) to the AGM and PANDA bounds.
To reduce the clutter we will assume that '0 = '1 = · · · = '? . Then the AGM bound and the PANDA
bounds are:

|& |  |' |
?+1
2 |& |  |' | · | |deg' (. |-) | |?�11 (23)

They follow from the following straightforward Shannon inequalities:

⌘(-0-1) + ⌘(-1-2) + · · · + ⌘(-?-0) �2⌘(-0-1-2 . . .-?)
⌘(-0-1) + ⌘(-2 |-1) + · · · + ⌘(-? |-?�1) �⌘(-0-1-2 . . .-?)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:9

In Appendix B.2, we prove that, for any ? , there exists a database instance where the bound (21)
for @ := ? is the theoretically optimal bound that one can obtain by using the statistics on all
✓1, ✓2, . . . , ✓? , ✓1-norms of all degree sequences.

E������ 2.4. Previous examples used only binary relations. We illustrate here some examples with
relations of higher arity. More precisely, we derive general upper bounds for the class of queries, called
Loomis-Whitney, that have relational atoms with more than two join variables. A Loomis-Whitney
query has = variables and = relational atoms, such that there is one atom for each set of = � 1 variables.
The triangle query is the Loomis-Whitney query with = = 3.

The Loomis-Whitney query with = = 4 is:

& (- ,. ,/ ,,) = �(- ,. ,/) ^ ⌫(. ,/ ,,) ^⇠ (/ ,, ,-) ^ ⇡ (, ,- ,.)
One bound that can be obtained with our framework is the following:

|& |4  | |deg� (./ |-) | |22 · |⌫ | · | |deg⇠ (,- |/) | |22 · |⇡ |
This bound follows from the following information inequality:

4⌘(-./,) (⌘(-) + 2⌘(./ |-)) + ⌘(./,) + (⌘(/) + 2⌘(,- |/)) + ⌘(,-.)
The inequality holds because it is a sum of 4 Shannon inequalities:

⌘(-./,) ⌘(-) + ⌘(./ |-) + ⌘(, |./)
⌘(-./,) ⌘(/) + ⌘(,- |/) + ⌘(. |,-)
⌘(-./,) ⌘(./ |-) + ⌘(,-)
⌘(-./,) ⌘(,- |/) + ⌘(./)

2.2 �ery Evaluation
The second application is to query evaluation: we show that, if inequality (8) holds for all polyma-
troids, then we can evaluate the query in time bounded by (9) times a polylogarithmic factor in the
data and an exponential factor in the sum of the ? values of the statistics. Our algorithm generalizes
the PANDA’s algorithm [4] from ✓1 and ✓1 norms to arbitrary norms. Recall that PANDA starts
from an inequality of the form (8), where every ?8 is either 1 or 1, and computes & (J) in time
$

�Œ
8 ⌫

F8
8

�
if the database satis�es |⇧[8\8 (' 98) |  ⌫8 when ?8 = 1 and | |deg' 98

(\8 |[8) | |1  ⌫8 when
?8 = 1.

Our algorithm uses PANDA as a black box, as follows. It �rst partitions the relations on the join
columns so that, within each partition, all degrees are within a factor of two, and each statistics
de�ned by some ✓? -norm on the degree sequence of the join column can be expressed alternatively
using only ✓1 and ✓1. The original query becomes a union of queries, one per combination of parts
of di�erent relations. The algorithm then evaluates each of these queries using PANDA.We describe
next the details of data partitioning and the reduction to PANDA.
Consider a relation ' with attributes ^ , and consider a concrete statistics (g,⌫), where g =

((\ |[), ?). We say that ' strongly satis�es (g,⌫), in notation ' |=B (g,⌫), if there exists a number
3 > 0 such that | |deg' (\ |[) | |1  3 and |⇧[(') |  ⌫?/3? . If ' |=B (g,⌫) then ' |= (g,⌫) because:

| |deg' (\ |[) | |??  |⇧[(') | · | |deg' (\ |[) | |?1  ⌫?

3?
3? = ⌫? (24)

In other words, ' strongly satis�es the ✓? statistics (g,⌫) if it satis�es an ✓1 and an ✓1 statistics that
imply (g,⌫). We prove:

L���� 2.5. Fix a join query & , and suppose that inequality (8) holds for all polymatroids. Let
⌃ = {(\8 |[8 , ?8) | 8 2 [B]} be the abstract statistics andF8 � 0 be the coe�cients in (8). If a database

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:10 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

J strongly satis�es the concrete statistics (⌃,H), then the query output& (J) can be computed in time
$

�Œ
82 [B] ⌫

F8
8 polylog #

�
, where # is the size of the active domain of J .

P����. SinceJ strongly satis�es the concrete statistics (⌃,H), we can use (24) and replace each ✓? -
statistics with an ✓1 and an ✓1 statistics.Wewrite⌫8 as⌫8 = ⌫

1
?

8,1 ·⌫8,1, such that both |⇧*8 ('⇡98) |  ⌫8,1
and | |deg' 98

(\ |[) | |1  ⌫8,1 hold. Expand the inequality (8) to
Õ
8
F8
?8
⌘([8) +

Õ
8 F8⌘(\8 |[8)  ⌘(^).

This can be viewed as an inequality of the form (8) with 2B terms, where half of the terms have
?8 = 1 and the others have ?8 = 1. Therefore, PANDA’s algorithm can use this inequality and run
in time: and

$
©≠
´
÷
82 [B]

⌫
F8
?8
8,1 ·

÷
82 [B]

⌫F8
8,1 · polylog # ™Æ

¨
=$ ©≠

´
÷
82 [B]

⌫F8
8 polylog # ™Æ

¨
⇤

In order to use the lemma, we prove the following:

L���� 2.6. Let ' be a relation that satis�es an ✓? -statistics, ' |= (((\ |[), ?),⌫). Then we can
partition ' into d2?e log# disjoint relations, ' = '1 ['2 [. . ., such that each '8 strongly satis�es the
✓? -statistics, '8 |=B (((\ |[), ?),⌫).

P����. By assumption, | |deg'\ |[| |??  ⌫? . First, partition' into log# buckets'8 , 8 = 1, . . . , dlog# e,
where '8 contains the tuples C whose [-component u satis�es:

28�1 deg' (\ |[= u) = deg'8 (\ |[= u)  28

Then |⇧[('8) |  ⌫?/2? (8�1) , because:
⌫? � | |deg' (\ |[) | |?? � | |deg'8 (\ |[) | |

?
? � |⇧[('8) | · 2? (8�1)

Second, partition '8 into d2?e sets '8,1,'8,2, . . . such that |⇧[('8) |  ⌫?/2?8 . Then, each '8, 9 strongly
satis�es the concrete statistics (((\ |[), ?),⌫), and their union is '. ⇤

Our discussion implies:

T������ 2.7. There exists an algorithm that, given a join query & , an inequality (8) that holds
for all polymatroids, and a database J satisfying the concrete statistics (⌃,H), computes the query
output& (J) in time$

�
2 · Œ82 [B] ⌫

F8
8 polylog#

�
; here 2 =

Œ
82 [B] d2?8 e, where ?1, . . . , ?B are the norms

occurring in ⌃.

P����. Using Lemma 2.6, for each ✓?8 -norm, we partition J into a union of 2?8 databases J1 [
J2 [. . ., where each J 9 strongly satis�es (⌃,H). Resolving B such norms like this partitions J into
2 parts. We then apply Lemma 2.5 to each part. ⇤

3 BACKGROUND ON INFORMATION THEORY
Consider a �nite probability space (⇡, %), where % : ⇡ ! [0, 1], ÕG2⇡ % (G) = 1, and denote by -
the random variable with outcomes in ⇡ . The entropy of - is:

� (-) def= �
’
G2⇡

% (G) log % (G) (25)

If # def= |⇡ |, then 0  � (-)  log# , the equality � (-) = 0 holds i� - is deterministic, and
� (-) = log# holds i� - is uniformly distributed. Given = jointly distributed random variables
^ = {-1, . . . ,-=}, we denote by h 2 R2[=]

+ the following vector: ⌘U
def= � (^U) for U ✓ [=], where

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:11

^U is the joint random variable (-8)82U , and � (^U) is its entropy; such a vector h 2 R2[=]
+ is called

entropic. We will blur the distinction between a vector in R2[=]
+ , a vector in R2^+ , and a function

2^ ! R+, and write interchangeably hU , h^U , or ⌘(^U). A polymatroid is a vector h 2 R2[=]
+ that

satis�es the following basic Shannon inequalities:

⌘(;) = 0 (26)
⌘([[\) � ⌘([) (27)

⌘([) + ⌘(\) � ⌘([[\) + ⌘([\ \) (28)

The last two inequalities are called called monotonicity and submodularity respectively.
For any set \ ✓ {-1, . . . ,-=}, the step function h

\ is:

⌘\ ([) def=

(
1 if \ \ [< ;
0 otherwise

(29)

There are 2= � 1 non-zero step functions (since h; ⌘ 0). A normal polymatroid is a positive linear
combination of step functions. When \ is a singleton set, \ = {-8 } for some 8 = 1,=, then we call
h
-8 a basic modular function. A modular function is a positive linear combination of h-1 , . . . ,h-= .

The following notations are used in the literature: "= is the set of modular functions, #= is the
set of normal polymatroids, �⇤= is the set of entropic vectors, �̄⇤= is its topological closure, and �=
is the set of polymatroids. It is known that "= ⇢ #= ⇢ �⇤= ⇢ �̄⇤= ⇢ �= ⇢ R2[=]

+ , that "=,#=, �= are
polyhedral cones, �̄⇤= is a closed, convex cone, and �⇤= is not a cone.2

The conditional of a vector h is de�ned as:

⌘(\ |[) def=⌘([\) � ⌘([)
where [, \ ✓ ^ . If h is a polymatroid, then ⌘(\ |[) � 0. If h is entropic and realized by some
probability distribution, then:

⌘(\ |[) =E
u
[⌘(\ |[= u)] (30)

where ⌘(\ |[= u) is the standard entropy of the random variable \ conditioned on [= u.
An information inequality is a linear inequality of the form:

c · h �0 (31)

where c 2 R2[=] . Given a set ✓ R2[=]
+ , we say that the inequality is valid for if it holds for all

h 2 ; in that case we write |= c ·h � 0. Entropic inequalities are those valid for �⇤ or, equivalently,
for �̄⇤= : it is an open problem whether they are decidable. Shannon inequalities are those valid for �=
and are decidable in exponential time.

4 PROOF OF THEOREM 1.1
In this section we prove Theorem 1.1, by showing that the information inequality (8) implies an
upper bound on the query output size. The crux of the proof is inequality (7), which we prove below
in Lemma 4.1. It establishes a new connection between information measures and the ✓?-norm,
Eq. (34) below.
We brie�y review connections that are known between database statistics and information

measures. Let ' be a relation instance with attributes ^ and with # tuples. Let % : ' ! [0, 1] be
any probability distribution whose outcome consists of the tuples in ', in particular

Õ
C 2' % (C) = 1,

2We refer to [6] for the de�nitions.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:12 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

and let ⌘ : 2^ ! R+ be its entropic vector. The following two inequalities connect h to statistics on
':

8\ ✓ ^ : ⌘(\)  log |⇧\ (') | (32)
8[, \ ✓ ^ : ⌘(\ |[)  log | |deg' (\ |[) | |1 (33)

Eq. (33) follows from (32), from the fact that, for all u 2 ⇧[('),

⌘(\ |[= u)  log deg' (\ |[= u)  logmax
u0

deg' (\ |[= u
0) = log | |deg' (\ |[) | |1

and from (30). In addition to these two connections, Lee [19] also proved a connection between
conditional mutual information and multivalued dependencies, which is unrelated to our paper.
We prove here a new connection:

L���� 4.1. With the notations above, the following holds:

8? 2 (0,1] : 1
?
⌘([) + ⌘(\ |[)  log | |deg' (\ |[) | |? (34)

P����. When ? = 1, then (34) becomes (33), so we can assume ? < 1 and rewrite (34) to:

⌘([) + ?⌘(\ |[)  log | |deg' (\ |[) | |??

Assume that ⇧[(') has # distinct values u1, . . . , u# , and that each u8 occurs with 38 distinct values
\ = v. In particular, deg' (\ |[= u8) = 38 . Let %8 def= % ([= u8) be the marginal probability of u8 .
We use the de�nition of the entropy (25) and the formula for the conditional (30) and derive:

⌘([) + ?⌘(\ |[) =
’
8

%8 log
1
%8

+ ?
’
8

%8⌘(\ |[= u8) 
’
8

%8 log
1
%8

+ ?
’
8

%8 log38

=
’
8

%8 log
3?8
%8

 log

 ’
8

%8
3?8
%8

!
= log

’
8

3?8 = log | |deg' (\ |[) | |??

where the last inequality is Jensen’s inequality. ⇤

P���� �� T������ 1.1. Assume that inequality (8) holds for all entropic vectors h. Fix a database
instance J = ('1, . . . ,'<).
Consider the uniform probability distribution over the output & (J), and let h be its entropic

vector. By uniformity, ⌘(^) = log |& (J) |. By assumption, every conditional term ⌘(\8 |[8), 8 2 [B]
that occurs in (8) has a witness ' 98 . From Lemma 4.1, we have

1
?8
⌘([8) + ⌘(\8 |[8)  log | |deg' 98

(\8 |[8) | |?8

Using inequality (8), we derive:

log |& (J) | = ⌘(^) 
’
82 [B]

F8

✓
1
?8
⌘([8) + ⌘(\8 |[8)

◆


’
82 [B]

F8 log | |deg' 98
(\8 |[8) | |?8

This immediately implies the upper bound (9). ⇤

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:13

5 COMPUTING THE BOUND
In this section we prove Theorem 1.2. Recall that the main problem in our paper, problem 1, asks
for an upper bound to the query’s output, given a set of concrete statistics on the database. So far
we have proven Theorem 1.1, which says that, for any valid information inequality of the form (8),
we can infer some bound. The best bound is their minimum, over all valid inequalities (8), and
depends on the concrete statistics of the database. In this section we describe how to compute the
best bound, by using the dual of information inequalities.

Given a vector h 2 R2[=]
+ an abstract conditional f = (\ |[), and an abstract statistics g = (f, ?),

we denote by:

⌘(f) def=⌘(\ |[) ⌘(g) def=
1
?
⌘([) + ⌘(\ |[) (35)

We say that a vector h satis�es a concrete log-statistics (g,1) if ⌘(g)  1. Similarly, h 2 R2[=]
+ satis�es

a set of concrete log-statistics (⌃, b), in notation h |= (⌃, b), if ⌘(g8)  18 for all g8 2 ⌃,18 2 b .

D��������� 5.1. If ⌃ = {g1, . . . , gB } is a set of abstract statistics, then a ⌃-inequality is an informa-
tion inequality of the form: ’

82 [B]
F8⌘(g8) �⌘(^) (36)

whereF8 � 0. Notice that (8) in Theorem 1.1 is a ⌃-inequality.
For ✓ R2[=]

+ , the log-upper bound and log-lower bound of a set of log-statistics (⌃, b) are:

Log-U-Bound (⌃, b)
def
= inf

w: |=Eq. (36)

’
82 [B]

F818 (37)

Log-L-Bound (⌃, b)
def
= sup

h2 :h |=(⌃,b)
⌘(^) (38)

Fix a query& (^) = ”
9 ' 9 (_9) that guards ⌃, and assume = �̄⇤= : by Theorem 1.1, if a database J

satis�es the statistics (⌃,H), then log |& (J) |  Log-U-Bound , but it is an open problem whether
this bound is computable. On the other hand, Log-L-Bound is not a bound, but it has two good
properties. First, when = �= , then Log-L-Bound is computable, as the optimal value of a linear
program: we show this in Example 5.3. Second, when the optimal vector h⇤ of the maximization
problem (38) is the entropy of some relation, then we can construct a “worst-case database instance”
J : we use this in Sec. 6. We prove that (37) and (38) are equal:

T������ 5.2. If is any closed, convex cone, and#= ✓ ✓ �= then Log-U-Bound = Log-L-Bound .

The special case of this theorem when = �= was already implicit in [4]. The proof of the
general case is more di�cult, and we defer it to [2]. Both �̄⇤= and �= are closed, convex cones, hence
the theorem applies to both. We call the corresponding bounds the almost-entropic bound (when
 = �̄⇤=) and the polymatroid bound (when = �=) respectively.

There are two important applications of Theorem 5.2. First, it gives us an e�ective algorithm for
computing the polymatroid bound, by computing the optimal value of a linear program: we used
this method in all experiments in the full version [2]. We illustrate here with a simple example.

E������ 5.3. Consider the triangle query & in (1). Assume that we have the following statistics
for the relations ', (,) : (a) their cardinalities, denoted by ⌫',⌫(,⌫) , whose logarithms are 1',1(,1) ,
(b) the ✓2-norms of all degree sequences: (c) the ✓3 norms of all degree sequences. Then the poly-
matroid bound (38) can be computed by optimizing the following linear program, with 8 variables

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:14 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

⌘(;),⌘(-), . . . ,⌘(-./):
maximize ⌘(-./), subject to:
⌘(-.)  1', ⌘(./)  1(⌘(-/)  1) // cardinality stats
1
2
⌘(-) + ⌘(. |-)  1 ((. |-),2) . . . // ✓2-norm stats

1
3
⌘(-) + ⌘(. |-)  1 ((. |-),3) . . . // ✓3-norms stats

⌘(-) + ⌘(-./)  ⌘(-.) + ⌘(-/) // Shannon inequalities
⌘(.) + ⌘(-./)  ⌘(-.) + ⌘(./) // i.e. (26)-(28)
. . .

The second application of Theorem 5.2 is that it allows us to reason about the tightness of the
bounds. If we can convert the optimal h⇤ in the lower bound (38) into a database, then we have
a worst-case instance witnessing the fact that the bound is tight. We show in the full version [2]
that the almost-entropic bound is asymptotically tight (a weaker form of tightness), while the
polymatroid bound is not tight. However, we show in the next section that the polymatroid bound
is tight in the special case of simple degrees.

6 SIMPLE DEGREE SEQUENCES
Call a conditional f = (\ |[) simple if |[|  1; call a set of abstract statistics ⌃ simple if, for all
(f, ?) 2 ⌃, f is simple. Simple conditionals were introduced in [1] to study query containment
under bag semantics. We prove here that, when all statistics are simple, then the polymatroid bound
is tight, meaning that there exists a worst case database J such that the size |& (J) | of the query
output is within a query-dependent constant of the polymatroid bound. Recall (Sec. 3) that #= is
the set of normal polymatroids.

T������ 6.1. If ⌃ is simple, then

Log-U-Bound#=
(⌃, b) = Log-U-Bound�̄⇤= (⌃, b) = Log-U-Bound�= (⌃, b)

The proof relies on the following result in [1]:
L���� 6.2. [[1]] Let ⌃ be a simple set of LP-statistics. Consider the ⌃-inequality (36). Then the

following are equivalent:
• Eq. (36) is valid for all h 2 �= .
• Eq. (36) is valid for all h 2 �̄⇤= .
• Eq. (36) is valid for all h 2 #= .

In other words, if the inequality (36) is simple, then it is valid for all polymatroids i� it is valid for
all (almost-) entropic vectors, i� it is valid for all normal polymatroids. This immediately implies 6.1.

In the rest of the section, we will use Theorem 6.1 to prove that the polymatroid bound is tight.
For that we prove a lemma. If) (^) is any relation instance with attributes ^ , then its entropy,
h) , is the entropic vector de�ned by the uniform probability distribution on) . Call the relation)
totally uniform if, for all \ ✓ ^ , the marginal distribution on ⇧\ ()) is also uniform. Equivalently,
it is totally uniform if log |⇧\ ()) | = ⌘) (\) for all \ ✓ ^ . The lemma below proves that, if h is
normal, then it can be approximated by the entropy of a totally uniform) , which we will call a
normal relation. Recall from Sec. 3 that h is normal if it is a positive, linear combination of step
functions:

h =
’
\✓^

U\h
\ (39)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:15

where "\ � 0.

L���� 6.3. Let h be the normal polymatroid in (39), and let 2 is the number of non-zero coe�cients
U\ . Then there exist a totally uniform relation) (^) such that |) | � 1

22 2
⌘ (^) , whose entropy h)

satis�es 8[, \ ✓ ^ , ⌘) (\ |[)  ⌘(\ |[).

The lemma implies tightness of the polymatroid bound:

C�������� 6.4. If all statistics in ⌃ are simple, the polymatroid bound U-Bound�= (
def
= 2Log-U-Bound�=)

is tight.

P����. Since #= is polyhedral, we have:

Log-U-Bound�= =Log-U-Bound#=
by Th. 6.1

=Log-L-Bound#=
by Th. 5.2

= max
h2#= :(⌃,b) |=h

⌘(^) by (38)

=⌘⇤ (^)

where h⇤ 2 #= is optimal solution to the maximization problem. Let) (^) be the totally uniform
relation given by Lemma 6.3. De�ne the database instance J = ('⇡1 , . . . ,'⇡<) by setting '⇡9

def=
⇧_9 ()), for 9 = 1,<. Then J satis�es the constraints (⌃,H), because, by total uniformity:

log | |deg' 98
(\8 |[8) | |?? = log

⇣
|⇧[8 (' 98) | ·

⇣
avg(deg' 98

(\8 |[8))
⌘? ⌘

= log
✓
|⇧[8 ()) | ·

✓ |⇧[8\8 ()) |
|⇧[8 ()) |

◆? ◆

=⌘) ([8) + ?⌘) (\8 |[8)  ⌘⇤ ([8) + ?⌘⇤ (\8 |[8)  18

The corollary follows from |& (J) | = |) | � 1
22 2

⌘⇤ (^) = 1
22 U-Bound�= . proving that the bound is

tight. ⇤

In the rest of the section we prove Lemma 6.3. Given two ^-tuples x = (G1, . . . , G=) and x
0 =

(G 01, . . . , G 0=) their domain product is x⌦x0 def= ((G1, G 01), . . . , (G=, G 0=)): it has the same = attributes, and
each attribute value is a pair consisting of a value from x and a value from x

0. Given two relations
) (^),) 0 (^), with the same attributes, their domain product is) ⌦) 0 def= {x ⌦ x

0 | x 2) , x0 2) 0}.
The following hold:

|) ⌦) 0 | =|) | · |) 0 |
h)⌦) 0 =h) + h) 0 (40)

Domain products were �rst introduced by Fagin [11] (under the name direct product), and appear
under various names in [1, 12, 18].

D��������� 6.5. For \ ✓ ^ , the basic normal relation)\
is:

)\
#

def
= {(:, · · · ,:,| {z }

attributes in \

0, · · · , 0| {z }
^�\

) | : = 0,# � 1} (41)

A normal relation is a domain product of basic normal relations.

P���������� 6.6. (1))\
is totally uniform. (2) Its entropy is h)\

#
= (log#) · h\ , where h\ is the

step function.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:16 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

The proof is immediate and omitted. It follows that every normal relation is totally uniform,
because |⇧\ () ⌦) 0) | = |⇧\ ()) | · |⇧\ () 0) | = 2⌘) (\) · 2⌘) 0 (\) = 2⌘) ⌦) 0 (\) , and the entropy of a
normal relation is a normal polymatroid, because it is the sum of some step functions. We illustrate
normal relations with an example.

E������ 6.7. The following is a basic normal relation:

)- ,/# =

- . /
0 0 0
1 0 1
2 0 2

· · ·
� 1 0 # � 1

Its entropy is (log#)h- ,/ . The following are normal relations:

)1 ={(8, 9,:) | 8, 9,: 2 [0 : # � 1]} =)-# ⌦).# ⌦)/#
)2 ={(8, 8, 8) | 8 2 [0 : # � 1]} =)-./#

)3 ={(8, (8, 9), 9) | 8, 9 2 [0 : # � 1]} =)- ,.# ⌦). ,/#

Their cardinalities are |)1 | = # 3, |)2 | = # , |)3 | = # 2.

P����. (of Lemma 6.3) Fix a normal polymatroid h given by (39). For each \ ✓ ^ , de�ne
V\

def= logb2U\ c. Then 2V\ is an integer, and satis�es the following: (a) V\  U\ , (b) 2V\ � 1
22
U\

when U\ < 0 and V\ = U\ when U\ | = 0. De�ne the normal relation) def=
À

\✓^)
\
2V\

; thus,) is
uniform. We check that) satis�es the lemma. Its entropy is

h) =
’
\✓^

V\h
\

Condition (1) follows form property (a). For all [,] ✓ ^ :

⌘) (] |[) =
’
\✓^

V\⌘
\ (] |[) 

’
\✓^

U\⌘
\ (] |[) = ⌘(] |[)

Condition (2) follows from property (b):

2⌘) (^) = |) | =
÷
\✓^

|)\
2V\ | =

÷
\✓^

2V\ � 1
22

÷
\✓^

2U\ =
1
22
2⌘ (^)

⇤

E������ 6.8. Recall that tightness of the AGM bound (✓1-bound) is achieved by a product database,
where each relation is the cartesian product of its attributes. We show a query where no product
database matches the ✓? -upper bound, instead a normal database is needed:

& (- ,. ,/) ='1 (- ,.) ^ '2 (. ,/) ^ '3 (/ ,-) ^ (1 (-) ^ (2 (.) ^ (3 (/)

Assume the statistics assert that each of | |deg'1 (. |-) | |44, | |deg'2 (/ |.) | |44, | |deg'3 (- |/) | |4⇠ , |(1 |, |(2 |,
|(3 | is  ⌫

def
= 21 . The log-statistics are:

⌘(-)  1 ⌘(.)  1 ⌘(/)  1
⌘(-) + 4⌘(. |-)  1 ⌘(.) + 4⌘(/ |.)  1 ⌘(/) + 4⌘(- |/)  1 (42)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:17

Consider the following Shannon inequality:

⌘(-) + ⌘(.) + ⌘(/) + (⌘(-) + 4⌘(. |-))+
(⌘(.) + 4⌘(/ |.)) + (⌘(/) + 4⌘(- |/)) � 6⌘(-./) (43)

In particular, the above inequality is a sum of the following basic Shannon inequalities:

2⌘(-) + 2⌘(. |-) + 2⌘(/ |.) �2⌘(-./)
2⌘(.) + 2⌘(/ |.) + 2⌘(- |/) �2⌘(-./)
2⌘(/) + 2⌘(- |/) + 2⌘(. |-) �2⌘(-./)

Inequality (43) implies that |& (J) |  ⌫. To compute the worst-case instance J , observe that h⇤ =
1 · h{- ,. ,/ } is the optimal solution to (42), since it satis�es (42) and ⌘⇤ (-./) = 1, and de�ne:

)
def
= {(:,:,:) | : = 0, b21c � 1}

Then J consists of projections of) , e.g. '⇡1 = ⇧-. ()), (⇡1 = ⇧- ()), etc, and |& (J) | = |) | =
b21c � 1

2 2
1 = 1

2⌫. On the other hand, for any product database J , the output & (J) is asymptotically
smaller than ⌫. Such a database has '⇡1 = [#-] ⇥ [#.] and | |deg'1 (. |-) | |44 = #-# 4

. . The concrete
✓4-statistics become:

#-#
4
. ⌫ #.#

4
/ ⌫ #/#

4
- ⌫

By multiplying them we derive #-#.#/  ⌫3/5. Since & (J) = [#-] ⇥ [#.] ⇥ [#/] we derive
|& (J) |  ⌫3/5, which is asymptotically smaller than the upper bound ⌫.

7 CONCLUSIONS
We have described a new upper bound on the size of the output of a multi-join query, using ✓? -norms
of degree sequences. Our techniques are based on information inequalities, and extend prior results
in [3–5, 13]. This is complemented by a query evaluation algorithm whose runtime matches the
size bound. The bound can be computed by optimizing a linear program whose size is exponential
in the size of the query. This bound is tight in the case when all degree sequences are simple.

Our new bounds signi�cantly extend the previously known upper bounds, especially for acyclic
queries. We have also conducted some very preliminary experiments on real datasets in the full
version [2], which showed signi�cantly better upper bounds for acyclic queries than the AGM and
PANDA bounds from prior work.

In future work, we will incorporate our ✓? -bounds into a cardinality estimation system.

ACKNOWLEDGMENTS
The authors would like to acknowledge Luis Torrejón Machado for their help with the preliminary
experiments reported in the full version of this paper [2].

This work was partially supported by NSF-BSF 2109922, NSF-IIS 2314527 and NSF-SHF 2312195.
Part of this work was conducted while some of the authors participated in the Simons Program on
Logic and Algorithms in Databases and AI.

REFERENCES
[1] Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. 2021. Bag Query Containment and

Information Theory. ACM Trans. Database Syst. 46, 3 (2021), 12:1–12:39. https://doi.org/10.1145/3472391
[2] Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, and Dan Suciu. 2023. Join Size Bounds using Lp-Norms on

Degree Sequences. arXiv e-prints (June 2023). https://doi.org/10.48550/arXiv.2306.14075 arXiv:2306.14075
[3] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2016. Computing Join Queries with Functional Dependencies.

In Proc. ACM PODS 2016. ACM, 327–342. https://doi.org/10.1145/2902251.2902289

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

https://doi.org/10.1145/3472391
https://doi.org/10.48550/arXiv.2306.14075
https://arxiv.org/abs/2306.14075
https://doi.org/10.1145/2902251.2902289

96:18 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-type Inequalities, Submodular
Width, and Disjunctive Datalog Have to Do with One Another?. In Proc. ACM PODS 2017. ACM, 429–444. https:
//doi.org/10.1145/3034786.3056105

[5] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query Plans for Relational Joins. SIAM J.
Comput. 42, 4 (2013), 1737–1767. https://doi.org/10.1137/110859440

[6] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press. https://doi.org/10.
1017/CBO9780511804441

[7] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for
Intermediate Join Cardinalities. In SIGMOD, 2019. ACM, 18–35. https://doi.org/10.1145/3299869.3319894

[8] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Kenneth Salem. 2022. Accurate Summary-based
Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. Proc. VLDB Endow. 15, 8 (2022), 1533–1545.
https://www.vldb.org/pvldb/vol15/p1533-chen.pdf

[9] Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. 2023. Degree Sequence Bound for Join Cardinality
Estimation. In ICDT 2023 (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:18. https:
//doi.org/10.4230/LIPIcs.ICDT.2023.8

[10] Kyle B. Deeds, Dan Suciu, and Magdalena Balazinska. 2023. SafeBound: A Practical System for Generating Cardinality
Bounds. Proc. ACM Manag. Data 1, 1 (2023), 53:1–53:26. https://doi.org/10.1145/3588907

[11] Ronald Fagin. 1982. Horn clauses and database dependencies. J. ACM 29, 4 (1982), 952–985.
[12] Dan Geiger and Judea Pearl. 1993. Logical and Algorithmic Properties of Conditional Independence and Graphical

Models. The Annals of Statistics 21, 4 (1993), 2001–2021. http://www.jstor.org/stable/2242326
[13] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size and Treewidth Bounds for Conjunctive

Queries. J. ACM 59, 3 (2012), 16:1–16:35. https://doi.org/10.1145/2220357.2220363
[14] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin,

Andreas Pfadler, Zhengping Qian, Jingren Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–765. https://doi.org/10.14778/3503585.
3503586

[15] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021. Simplicity Done Right for Join
Ordering. In CIDR 2021. www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf

[16] Sai Vikneshwar Mani Jayaraman, Corey Ropell, and Atri Rudra. 2021. Worst-case Optimal Binary Join Algorithms
under General ✓? Constraints. CoRR abs/2112.01003 (2021). https://arxiv.org/abs/2112.01003

[17] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jaehyok Chong. 2022. Learned Cardinality
Estimation: An In-depth Study. In SIGMOD, 2022. ACM, 1214–1227. https://doi.org/10.1145/3514221.3526154

[18] Swastik Kopparty and Benjamin Rossman. 2011. The homomorphism domination exponent. Eur. J. Comb. 32, 7 (2011),
1097–1114. https://doi.org/10.1016/j.ejc.2011.03.009

[19] Tony T. Lee. 1987. An Information-Theoretic Analysis of Relational Databases - Part I: Data Dependencies and
Information Metric. IEEE Trans. Software Eng. 13, 10 (1987), 1049–1061. https://doi.org/10.1109/TSE.1987.232847

[20] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[21] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
2018. Query optimization through the looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668. https://doi.org/10.1007/s00778-017-0480-7

[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.
edu/data.

[23] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case Optimal Join Algorithms. J. ACM 65, 3
(2018), 16:1–16:40. https://doi.org/10.1145/3180143

[24] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Rec. 42, 4 (2013), 5–16. https://doi.org/10.1145/2590989.2590991

[25] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database management systems (3. ed.). McGraw-Hill.
[26] Doron Zeilberger. 1984. A combinatorial proof of Newton’s identities. Discrete mathematics 49, 3 (1984).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1137/110859440
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/3299869.3319894
https://www.vldb.org/pvldb/vol15/p1533-chen.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2023.8
https://doi.org/10.4230/LIPIcs.ICDT.2023.8
https://doi.org/10.1145/3588907
http://www.jstor.org/stable/2242326
https://doi.org/10.1145/2220357.2220363
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.14778/3503585.3503586
http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf
https://arxiv.org/abs/2112.01003
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1016/j.ejc.2011.03.009
https://doi.org/10.1109/TSE.1987.232847
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/s00778-017-0480-7
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991

Join Size Bounds using ✓? -Norms on Degree Sequences 96:19

A EQUIVALENCE OF ✓?-NORMS AND DEGREE SEQUENCES
The following is a standard result, establishing a 1-to-1 correspondence between a sequence of
length< and its �rst< norms. We include it here for completeness.

L���� A.1. Denote by Y ✓ R<+ the set of sorted sequences 31 � 32 � · · · � 3< � 0. The mapping

i : Y ! R<+ de�ned by i (d) def
= (| |d | |1, | |d | |22, . . . , | |d | |<<) is injective.

In other words, having the full degree sequence 31 � 32 � · · · � 3< is equivalent to having the
✓? -norms for ? = 1, 2, . . . ,<.

P����. We make use of the elementary symmetric polynomials

40 (d) = 1
41 (d) = 31 + 32 + . . . + 3<
42 (d) =

’
18< 9<

383 9

. . .

4< (d) = 31 · 32 · . . . · 3<
4: (d) = 0,: > <.

Using Newton’s identities (see [26] for a simple proof) we can express the elementary symmetric
polynomials using the !? -norms as follows

: · 4: (d) =
:’
?=1

(�1)?�14:�? (d) · kdk?? .

Thus, given the values of kdk? for ? 2 [<], the �rst < values of the elementary symmetric
polynomials inductively, by:

e0 (d) =1
1 · 41 (d) =40 (d) | |d | |11
2 · 42 (d) =41 (d) | |d | |11 � 40 (d) | |d | |22

. . .

< · 4< (d) =4<�1 (d) | |3 | |11 � 4<�2 (d) | |3 | |22 + · · · + (�1)<�140 (d) | |3 | |<<
This uniquely determines the values 41 (d), 42 (d), . . . , 4< (d). Using Vieta’s formulas we have that
the polynomial with roots 31,32, . . . ,3< corresponds to the polynomial

< � 41 (d)<�1 + 42 (d)_<�2 + . . . + (�1)<4< (d).

Thus, the �rst< symmetric polynomials uniquely determine the degree vector d. ⇤

B EXAMPLES
B.1 A Single Join (Example 2.1)
We discuss here in depth our new bounds applied to the single join query in Example 2.1. For
convenience, we repeat here the query (14):

& (- ,. ,/) = '(- ,.) ^ ((. ,/)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:20 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

Inequality (18). We start by describing a simple example where the bound (18) is asymptotically
better the PANDA bound (17). For this purpose we de�ne a type of database instance that we will
also use in the rest of the section.

D��������� B.1. An (U, V)-sequence is a degree sequence of the form:

("V , . . . ,"V| {z }
"U values

, 1, . . . , 1| {z }
"�"U values

) (44)

where U, V > 0 and U + V  1. An (U, V) relation is a binary relation '(- ,.) where both deg' (. |-)
and deg' (- |.) are a (U, V)-sequence. 3

In other words, there are"U nodes with degree"V , and" �"U nodes with degree 1.
Let both ' and (be (U, V)-instances with U = V = 1/3. Then the PANDA bound (17) is "4/3,

while our bound (18) is $ ("), which is asymptotically better.
The inequality (18) is a special case of a more general inequality, which is of independent interest

and we show it here. This new inequality uses the number of distinct values in the columns '.. and
(.. . Such statistics are often available in database systems, and they are captured by our framework
because any cardinality statistics is a special case of an ✓1-statistics, e.g. |⇧. (') | is the same as
| |deg' (- |;) | |1. PANDA also uses such cardinalities: for example, denoting " def= min(|⇧. (') |,
|⇧. (() |), PANDA also considers the following inequality:

|& |  | |deg' (- |.) | |1 · | |deg((/ |.) | |1 ·", (45)

Yet the best PANDA bound remains (17), because it is always better than (45).
Our new inequality uses " in the following bound, which holds for all ?,@ > 0 satisfying

1
? + 1

@  1:

|& |  | |deg' (- |.) | |? · | |deg((/ |.) | |@ ·"1� 1
? � 1

@ (46)

Inequality (18) is the special case of (46) for ? = @ = 2, while the PANDA bound (17) is the special
case ? = 1,@ = 1 and ? = 1,@ = 1.

We prove (46), by using the following Shannon inequality (which is of the form (8)):✓
1
?
⌘(.) + ⌘(- |.)

◆
+

✓
1
@
⌘(.) + ⌘(/ |.)

◆
+

✓
1 � 1

?
� 1
@

◆
⌘(.) � ⌘(-./)

The inequality simpli�es to ⌘(.) + ⌘(- |.) + ⌘(/ |.) � ⌘(-./), which holds because: ⌘(/ |.) �
⌘(/ |-.); ⌘(.) + ⌘(- |.) = ⌘(-.); and ⌘(-.) + ⌘(/ |-.) = ⌘(-./).

Examining closer (46), we also prove that it can only be optimal when 1
? + 1

@ = 1, because,
whenever ?  ?1 and @  @1, then the bound (46) using (?,@) is better than that using (?1,@1). In
particular, the only integral values of ?,@ for which (46) could be optimal are (1, 1), (1,1), and
(2, 2): other potentially optimal pairs (?,@) exists, e.g. (6/5, 6), but they require fractional ? or @.
To prove this claim, it su�ces to prove the following: if ?  ?1 then

| |deg' (- |.) | |?
"

1
?


| |deg' (- |.) | |?1

"
1
?1

We rearrange the inequality as:

| |deg' (- |.) | |?  | |deg' (- |.) | |?1 ·"
1
? � 1

?1

3Such a relation exists, either by Gale–Ryser theorem, or by direct construction: take ' the disjoint union of { (8, (8, 9)) |
8 2 ["U], 9 2 ["V] }, { ((8, 9), 8) | 8 2 ["U], 9 2 ["V] }, and { (8, 8) | 8 2 [" � 2"U+V] }.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:21

Denoting deg' (- |.) = (31,32, . . .) the inequality becomes: ’
8

3?8

! 1
?


 ’
8

3?18

! 1
?1

"
1
? � 1

?1

We raise both sides to the power ? , and denote by 08
def= 3?8 and @ def= ?1

? . Then the inequality
becomes:

’
8

08 
 ’
8

0@8

! 1
@

"1� 1
@

which is Hölder’s inequality. This proves the claim.

Inequality (19). Next, we provide the proof of (19), by establishing the following Shannon
inequality:✓

1
?
⌘(.) + ⌘(- |.)

◆
+

✓
1 � @

? (@ � 1)

◆
⌘(./) + @

? (@ � 1)

✓
1
@
⌘(.) + ⌘(/ |.)

◆
� ⌘(-./)

The coe�cient 1 � @
? (@�1) is � 0 because 1

? + 1
@  1. We expand the LHS of inequality and obtain:

1
?
⌘(.)+⌘(- |.) + ⌘(./) � @

? (@ � 1)⌘(./) +
1

? (@ � 1)⌘(.) +
@

? (@ � 1)⌘(/ |.)

=
@

? (@ � 1)⌘(.) + ⌘(- |.) + ⌘(./) � @

? (@ � 1)⌘(./) +
@

? (@ � 1)⌘(/ |.)

=⌘(- |.) + ⌘(./) � ⌘(-./)
which proves the claim. We will show below that (19) can be strictly better than (46).

Comparison to the DSB. A method for computing an upper bound on the query’s output using
degree sequences was described in [9], which uses the full degree sequence 31 � 32 � · · · instead
of its ✓1, ✓2, . . . norms. We compare it here to our method, on our single join query. It turns out
that (19) play a key role in this comparison.

Suppose ', (have the following degree sequences:

deg' (- |.) =01 � 02 � · · · � 0"
deg((/ |.) =11 � 12 � · · · � 1"

If the system has full access to both degree sequences, then the Degree-Sequence Bound (DSB)
de�ned in [9] is the following quantity:

⇡(⌫
def=

’
8=1,"

0818 (47)

In general the degree sequences are too large to store, and the DSB bound needs to use compres-
sion [10], but for the purpose of our discussion we will assume that we know both degree sequences,
and ⇡(⌫ is given by the formula above. It is easy to check that |& |  ⇡(⌫. Our bound (18) becomes:

|& |  | |deg' (- |.) | |2 · | |deg((/ |.) | |2 =
s
(
’
8

028) (
’
8

128)

Thus, the ⇡(⌫ and the ✓2-bound above are the two sides of the Cauchy-Schwartz inequality; ⇡(⌫
is obviously the better one. ⇡(⌫ is also better than the PANDA bound (17), which in our notation
is min(01

Õ
8 18 ,11

Õ
8 08) (assuming 01 and 11 are the largest degrees). Can we compute a better

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:22 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

✓? -bound? We will show that (19) can improve over both (17), and (18), however, it remains strictly
weaker than the ⇡(⌫ bound. This may be surprising, given the 1-1 correspondence between the
statistics and the ✓?-bounds that we described in Appendix A. The mapping between a degree
sequence of length" and its ✓1, ✓2, . . . , ✓" -norms is 1-to-1, and, moreover, both bounds are tight:
tightness of the DSB bound was proven in [9], while tightness of the polymatroid bound holds
because both degrees are simple, and it follows from our discussion in Sec. 6. So, one expects that
some ✓?-bounds will match the ⇡(⌫ expression (47). However, this is not the case, for a rather
subtle reason: it is because the set of databases to which these two bounds apply, di�er. The 1-to-1
mapping from degrees to ✓? -norms is monotone in one direction, but not in the other. For example,
consider the degree sequence d = (31,32) = (0 + Y,0 � Y), where | |d | |1 = 20, | |d | |22 = 202 + 2Y2. A
database with degree sequence d0 = (3 01,3 02) = (0,0) satis�es the ✓? -constraints, because | |d0 | |1 = 20,
| |d0 | |22 = 202, but it does not satisfy the degree sequence, because 3 02 > 32. We show next that
the polymatroid bound that we can obtain from the ✓? -norms can be strictly worse than the DSB.
However, we note that, for practical applications, the degree sequences in the⇡(⌫ bound need to be
compressed, leading to a di�erent loss of precision, which makes it incomparable to the ✓? -bound.

We describe now an instancewhere there exists a gap between theDSP bound and the polymatroid
bound: the relation ' is a (0, 1/3)-relation, while (is a (0, 2/3)-relation, see Def. B.1. More precisely,
the two relations '(- ,.), ((. ,/) will have the following degree sequences:

deg' (- |.) =
⇣
"

1
3 , 1, 1, . . . , 1

⌘
" values

deg((/ |.) =
⇣
"

2
3 , 1, 1, . . . , 1

⌘
" values

There are" degrees equal to 1 in both sequences. The value ⇡(⌫ = $ (") is asymptotically tight,
because |& | = $ ("). Assume that we access to all statistics | |deg' (- |.) | |? , | |deg((/ |.) | |? , for
? = 1, 2, . . . ,",1. We prove:

C���� 1. The polymatroid bound is"
10
9 .

Normally, the polymatroid bound is computed as the optimal solution of a linear program, as
described in Sec. 5. However, to prove the claim, we proceed di�erently. First, we describe an
inequality proving that the polymatroid bound is $ (" 10

9). Second, we describe a database instance
that satis�es all the given ✓?-statistics, for which the query output has size |& | = ⌦(" 10

9). These
two steps prove the claim. We start by computing the ✓? -norms for our instance:

| |deg' (- |.) | |?? =

(
$ (") when ?  2
$

⇣
"

?
3

⌘
when ? � 3

| |deg((/ |.) | |@@ =

(
$ (") when @ = 1
$

⇣
"

2@
3

⌘
when @ � 2

|& | = ⇡(⌫ ="
1
3 ·" 2

3 +" = $ (")
For the �rst step, we use the inequality (19) specialized for ? = 3,@ = 2, which we show here:4

|& |  | |deg' (- |.) | |3 · |(|
1
3 · | |deg((/ |.) | |

2
3
2 (48)

4A direct proof follows from the following Shannon inequality:
1
3
(⌘ (.) + 3⌘ (- |.)) + 1

3
⌘ (./) + 1

3
(⌘ (.) + 2⌘ (/ |.)) �⌘ (-./)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

Join Size Bounds using ✓? -Norms on Degree Sequences 96:23

Since |(| = | |deg((/ |-) | |1 = $ ("), we obtain

|& | $
⇣
"

1
3 ·" 1

3 ·" 2
3 · 23

⌘
= $

⇣
"

10
9

⌘
The other upper bound (46) leads to strictly larger upper bounds, for any choice of ?,@.

For the second step we construct a new database instance '0, (0 that satis�es all the ✓? -statistics
that we computed for ', (. We describe them using their degrees:

deg'0 (- |.) =$
⇣
"

1
9 , . . . ,"

1
9

⌘
"

2
3 values

deg(0 (/ |.) =$
⇣
"

1
3 , . . . ,"

1
3

⌘
"

2
3 values

Then the following hold:

| |deg'0 (- |.) | |?? =$
⇣
"

?
9 + 2

3

⌘

| |deg(0 (/ |.) | |@@ =$
⇣
"

@
3 + 2

3

⌘
|& 0 | =" 1

9 ·" 1
3 ·" 2

3 = "
10
9

We check that the ✓? -norms of the degrees of '0, (0 are no larger than those of ', (:

?  2 : | |deg'0 (- |.) | |?? =$
⇣
"

?
9 + 2

3

⌘
 $ (") = | |deg' (- |.) | |??

? � 3 : | |deg'0 (- |.) | |?? =$
⇣
"

?
9 + 2

3

⌘
 $

⇣
"

?
3

⌘
= | |deg' (- |.) | |??

@ = 1 : | |deg(0 (/ |.) | |1 =$
⇣
"

1
3+ 2

3

⌘
 $ (") = | |deg((/ |.) | |1

@ � 2 : | |deg(0 (/ |.) | |@@ =$
⇣
"

@
3 + 2

3

⌘
 $

⇣
"

2@
3

⌘
= | |deg((/ |.) | |@@

Similarly, |'0 .. | = |(0 .. | = " 2
3  " . It follows that the relations '0, (0 satisfy all constraints on the

✓?-norms, including those on |'0 .. |, |(0 .. | (assuming the latter are available). Yet the size of the
output of the query on '0, (0 is"

10
9 .

As explained earlier, the issue stems from the fact that the DSB bound does not permit the
instance '0, (0, since its degree sequences are not dominated by those of ', (.

B.2 The Cycle�ery (Example 2.3)
We show that, for every ? � 1 there exists a database instance where the bound (21) for @ := ? is
the theoretically optimal bound that can be derived using all statistics on ✓1, ✓2, . . . , ✓? , ✓1 norms.

First, we describe a database instance for which bound (21) for @ := ? is better than the bounds
in (23). The instance consists of the (U, V)-relation ' for U = V = 1

?+1 (see Def. B.1); to simplify the
notations here we will rename " to # . Thus, we have |' | = # , | |deg' (. |-) | |@@ = # for @ 2 [?],
| |deg' (. |-) | |1 = #

1
?+1 , and the bounds in (23) and (21) become #

?+1
2 , #

2?
?+1 , and #

?+1
@+1 respectively.

The best bound among them is the latter, when @ = ? , which gives us |& |  | |deg' (. |-) | |?? =
(1 + > (#))# . All other bounds are asymptotically worse. Thus, among these three formulas, (21) is
the best, namely for @ := ? . However, this does not yet prove that these formulas provide the best
bounds if we have access to the given statistics.
We show now that these bounds are tight. In other words, we show that there exists relation

instances ' for which the bounds are tight, up to constant factors. We already know this for the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

96:24 Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, & Dan Suciu

{1}-bound (the AGM bound), since the AGM bound is # d⇤ , where d⇤ is the optimal fractional edge
covering number of the (? + 1)-cycle, which is d⇤ = ?+1

2 .
Consider now the {1,1}-bound, in other words we have only the statistics for | |deg' (. |-) | |1

(which is |' |) and | |deg' (. |-) | |1. We prove that the PANDA bound in (23) is indeed optimal. In fact
we prove amore general claim: the {1,1}-bound of the cycle query is |& |  # ·⇡?�1, whenever |' | 
, | |deg'. |- | |1  ⇡ , and # ,⇡ are numbers satisfying ⇡2  # . In our case we have ⇡ =

1
?+1 ,

and the claim implies that the {1,1}-bound is # 1+ ?�1
?+1 = #

2?
?+1 . To prove this claim, we will refer to

the polymatroid upper bound, and polymatroid lower bound in Def. 5.1. The Shannon inequality
that we proved in Example 2.3 implies Log-U-Bound�= (&)  log# + (? � 1) log⇡ . We also have
Log-U-Bound�= (&) = Log-U-Bound#=

(&) (by Theorem 6.1), where#= are the normal polymatroids,
and Log-U-Bound#=

(&) = Log-L-Bound#=
(&) by Theorem 5.2. We claim that there exists a normal

polymatroid that satis�es the {1,1}-statistics and where ⌘(-0 . . .-?) = log# + (? � 1) log⇡ : the
claim implies log# + (? � 1) log⇡  Log-L-Bound�= (&), which proves that the {1,1}-bound is
· ⇡?�1. To prove the claim, consider the following polymatroid:

⌘(;) =0, 8] < ;, ⌘(]) def= log# + (|] | � 2) log⇡
Then ⌘ satis�es the required statistics:

88 : ⌘(-8-8+1)  log# ⌘(-8+1 |-8)  log⇡

and ⌘(-0-1 . . .-?) = log# + (? � 1) log⇡ . It remains to observe that ⌘ is a normal polymatroid,
which follows by writing it as h = (log# � 2 log⇡) · ⌘^ + log⇡ · Õ8=0,? ⌘

-8 .
Finally, we prove that, if we have available all statistics | |deg' (. |-) | |@ for @ = 1, 2, . . . , ?,1, then

the best query upper bound is (21). Fix a number @ 2 [?], and let # , !,⇡ be three positive numbers
satisfying !  # and !  ⇡@+1. Then we claim that the {1, 2, . . . ,@,1}-bound of the cyclic query
in Example 2.3, when the input relation satis�es the statistics |' |  # , | |deg' (. |-) | |AA  !, for
all A  @, and | |deg' (. |-) | |1  ⇡ , is |& |  !

(?+1)@
@+1 . The claim applies to our database instance

(U, V) for U = V = 1
?+1 , because we have ! = (1 + > (#))# and ⇡ = #

1
?+1 , and implies that the

{1, 2, . . . ,@}-bound is !
(?+1)@
@+1 . To prove the claim, we use the same reasoning as above: it su�ces to

describe a polymatroid satisfying the statistics
⌘(-8-8+1)  log#

8A = 2,@ : ⌘(-8-8+1) + (A � 1)⌘(-8+1 |-8)  log!
⌘(-8+1 |-8)  log⇡

The desired polymatroid is the following modular function: ⌘(]) def= |] | ·log!
@+1 . In other words,

h = 1
@+1

Õ
8=0,? h

-8 . Then, the �rst inequality above is 2 log!
@+1  log# , and it holds because !  # .

The second inequality is (A + 1) log!@+1  log!, which holds because A  @. And the third inequality

is log!
@+1  log⇡ , which holds by the assumption !  ⇡@+1.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 96. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Problem Definition
	1.3 Main Results

	2 Applications
	2.1 Cardinality Estimation
	2.2 Query Evaluation

	3 Background on Information Theory
	4 Proof of Theorem 1.1
	5 Computing the Bound
	6 Simple Degree Sequences
	7 Conclusions
	Acknowledgments
	References
	A Equivalence of p-Norms and Degree Sequences
	B Examples
	B.1 A Single Join (Example 2.1)
	B.2 The Cycle Query (Example 2.3)

