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Abstract

Continual Learning (CL) has achieved rapid progress in

recent years. However, it is still largely unknown how to

determine whether a CL model is trustworthy and how to

foster its trustworthiness. This work focuses on evaluating

and improving the robustness to corruptions of existing CL

models. Our empirical evaluation results show that existing

state-of-the-art (SOTA) CL models are particularly vulnera-

ble to various data corruptions during testing. To make them

trustworthy and robust to corruptions deployed in safety-

critical scenarios, we propose a meta-learning framework of

self-adaptive data augmentation to tackle the corruption ro-

bustness in CL. The proposed framework, MetaMix, learns to

augment and mix data, automatically transforming the new

task data or memory data. It directly optimizes the general-

ization performance against data corruptions during train-

ing. To evaluate the corruption robustness of our proposed

approach, we construct several CL corruption datasets with

different levels of severity. We perform comprehensive exper-

iments on both task- and class-continual learning. Extensive

experiments demonstrate the effectiveness of our proposed

method compared to SOTA baselines.

1. Introduction

Humans constantly acquire new information throughout

their lifespan and easily recognize information shifts such

as structure and style variations in images. Continual learn-

ing (CL) aims at imitating human’s ability to learn from

non-stationary data distributions without forgetting the previ-

ously learned knowledge. The past few years have witnessed

rapid progress in CL research [1, 30, 31, 36, 45]. Despite

the success, existing CL systems overlook the robustness

*Corresponding author

against unforeseen data shifts during testing. They assume

that training and test images for each task follow the same

distribution. However, as data distributions evolve and new

scenarios occur, test images often encounter various cor-

ruptions such as snow, blur, pixelation, and combinations,

resulting in a shifted distribution from the training set. For

example, Figure 1 shows various corruptions applied on one

image from Split-miniImageNet.

Data corruption can drastically impair the performance

of existing image recognition systems. A recent study [21]

shows that classification accuracy of various architectures

has dropped significantly on the ImageNet test set with some

simple and natural corruptions. Our empirical evaluation

results show that state-of-the-art CL models are even more

vulnerable to these corruptions during testing. For example,

the accuracy of DER++ [5] for task-continual learning de-

creases from 93.9% to 50.5% on split-CIFAR10; accuracy

drops to 10.6 % from 75.6 % on split-CIFAR100; accuracy

decreases to 9.8% from 61.3% on split-miniImageNet by

applying those common corruptions on test data of each CL

task. This severe issue makes existing CL models highly

unreliable in safety-critical applications. Thus, improving

the robustness of CL models to foster their trustworthiness

when deployed in real-world scenarios is essential.

Training a CL model robust to various corruptions is diffi-

cult due to the following challenges. 1) Unseen corruptions

could perturb the test set far beyond those encountered dur-

ing training. A model that naively augments training images

with seen corruptions cannot generalize to the new ones

during testing. Also, it is unrealistic to enumerate all possi-

ble corruptions during training since there are infinite types

of corruptions and their combinations. 2) With the ever-

evolving data distributions in CL, an effective augmentation

strategy learned on previous tasks may gradually become

less effective because the optimal augmentation strategies

are task-dependent and dynamically change over tasks [11].
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(a) Original data (b) Brightness (c) Contrast (d) Defocus Blur (e) Elastic (f) Fog

Figure 1. Visualization of five types of different corruption operations on the testing images of Split-miniImageNet.

Although we can adopt a memory buffer to store data from

previous tasks, augmenting and replaying them at later train-

ing iterations, the augmented memory may gradually be-

come less effective as the model could memorize the stored

information after replay runs. Recent approaches, such as

Augmix [22] composes and combines multiple pre-defined

augmentation operations with different depths and widths,

show efficacy in improving robustness under traditional su-

pervised classification tasks. However, these approaches are

not directly applicable to corruption-robust CL since they

only use a fixed random augmentation strategy that is often

not optimal for non-stationary data distributions in CL.

To address these unique challenges of corruption-

robustness in CL, we propose a temporally self-adaptive

Augmix within a meta-learning framework, named MetaMix.

It adaptively augments the memory buffer data and the cur-

rently received new data by learning to mix the augmentation

operations tailored to the evolving data distributions. In par-

ticular, our automatic self-adaptive MetaMix is a bi-level

optimization, simulating the evaluation process on unseen

corruptions. We randomly divide the training augmentation

operations into pseudo-seen and pseudo-unseen operations

at each CL step. The lower-level optimization is to optimize

the model performance on the pseudo-seen operations; the

upper-level optimization is to optimize the generalization of

the pseudo-unseen operations. The augmentation strategy

is governed by an LSTM, which inputs context information

and outputs the corresponding mixing parameters for the

augmentations. The proposed MetaMix ensures the augmen-

tation strategy automatically adapts to non-stationary data

distribution. Furthermore, the objective is to optimize the

performance of the pseudo-unseen corruption operations,

which aligns with our goal during testing and encourages the

generalization to unseen corruptions.

To evaluate the corruption robustness of existing and the

proposed methods, we propose a new challenging benchmark

where various corruptions perturb the testing data of each CL

task. To facilitate future research, we construct several new

datasets, including split-CIFAR-10-C, split-CIFAR-100-C,

and split-miniImageNet-C. Extensive experiments on the

constructed benchmarks demonstrate the effectiveness of

our proposed MetaMix approach compared with several

SOTA data-augmentation approaches adapted for CL. We

summarize our contributions as follows:

• To our best knowledge, we are the first to study the

corruption-robustness of CL methods. Accordingly, we

propose the first set of novel benchmarks for evaluating

the corruption-robustness of existing CL methods and

moving towards trustworthy CL.

• We propose a self-adaptive augmentation method,

MetaMix, by learning to mix and augment the training

data of each CL task to achieve corruption-robustness

on unseen corruptions for each CL task.

• Our method is versatile and can be seamlessly inte-

grated with existing CL methods. Extensive experi-

ments with both task/class continual learning demon-

strate the effectiveness of MetaMix.

2. Related Work

2.1. Continual Learning

CL focuses on learning non-stationary data distribution

without forgetting previous knowledge. These methods can

be categorized into: 1) retaining memory for future replay

[1, 4, 8, 9, 17, 31, 35, 42, 46, 48, 49]; 2) designing tailored net-

work architectures [14, 24, 37, 41, 54]; 3) performing proper

regularization during parameter updates [7, 26, 40, 56]; 4) in-

troducing Bayesian methods for model parameter inference

[13,23,34,53]; 5) subspace-based methods [27,30,38] and 6)

prompt-tuning [29] based methods [50, 51]; 7) transformer-

based methods [47, 52]. However, all these works focus on

the simplified setting in which training and testing data of

each CL task follow the same distribution. In practice, the

testing data may come from another different distribution due

to the variations in weather, light, snow, etc. These distor-

tions pose significant robustness challenges for existing CL

methods. Existing literature largely ignored these trustwor-

thy properties of CL. According to the terminology of [43],

CL settings can be categorized into three scenarios based

on whether task identities of the testing data are available

to the CL model during test time. Among the three sce-

narios, task-continual learning studies the scenario that the

task identities are available during testing and is the easiest

learning setting; domain incremental learning focuses on the

case that all the tasks during CL solve the same classification

task with different data distribution and the task identities

are unknown during testing; class-continual learning focuses
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on the scenario that task identities are unavailable and is the

most difficult learning setting. We focus on task/class CL

scenarios.

Recently, robust CL began to attract researchers’ attention.

Self-Purified Replay [25] and PuriDivER [3] consider CL on

noisy data stream with label noise. Their work is orthogonal

to ours since they consider noisy data during training; we

instead consider the robustness to data corruptions during

testing. A closely related work to our is Continual Active

Adaptation (CAA) [32], which is different from and orthog-

onal to ours since they focus on the setting that for each

data distribution, the label space for each learning task is the

same. Each task only encounters a single data corruption.

During testing, CAA focuses on generalization to previously

seen corruption operations. In contrast, we focus on the

setting that each task solves a different task. During testing,

the CL model should be robust to unseen data corruptions.

2.2. Data Augmentation

We categorize existing data augmentation techniques into

two classes: 1) improving performance on clean data; 2)

improving performance and being robust to data distribution

shift and corruptions.

Augmentations for Improving Clean Data Performance.

Standard data augmentation aims to improve the generaliza-

tion performance on clean data. To improve the performance

of neural network, standard supervised learning adopts com-

mon augmentations, such as random flips, rotations, and

crops. Recently, Cutout [12], Mixup [57], CutMix [55] and

MaxUp [16] show excellent performance on clean datasets.

Other techniques include automatically learning augmen-

tation policy from data, e.g., AutoAugment [10] and Ran-

dAugment [11]. However, AutoAugment is computationally

impractical for CL problems since it needs a huge computa-

tion cost and separate proxy tasks to train the policy network.

Augmentations for Being Robust to Corruptions. Aug-

mix [22] is one of the SOTA methods on the data corruption

benchmarks, such as ImageNet-C, CIFAR100-C, etc. Deep-

Augment [20] and AdversarialAugment [6] transform and

augment clean images by perturbing the representations/fea-

tures of neural networks to generate new augmented images.

However, this increases a lot of computation costs. Thus,

DeepAugment [20] and AdversarialAugment [6] are imprac-

tical for CL. We thus choose the more efficient and effective

AugMix and propose a new self-adaptive AugMix for CL.

3. Methodology

In this section, we first define the corruption robustness

of CL and then describe the proposed MetaMix approach.

We describe the notation in the main text. We also provide a

notation table in Table 4 in Appendix for ease of reading.

3.1. Problem Setup

Corruption robustness of CL. We consider the prob-

lem of learning a sequence of tasks denoted as Dtr =
{Dtr

1 ,Dtr
2 , · · · ,Dtr

N}, where N is the number of training

tasks. The k-th task training data Dtr
k consists of many la-

beled examples (xk, yk, Tk), where xk is the data example

in the task, yk is the corresponding data label, and Tk is the

task identifier. The goal is to learn a model fθ on the training

task sequence Dtr so that it performs well on the testing set

of all the learned tasks Dte = {Dte
1 ,Dte

2 , · · · ,Dte
N} without

forgetting previously learned knowledge. In particular, we

focus on improving the model robustness on the testing set

for each task Tk under a collection of corruption operations

C. Below, we define the CL corruption robustness.

Definition 1 (CL corruption robustness). Given a sequence

of N tasks with test data Dte = {Dte
1 ,Dte

2 , · · · ,Dte
N}, and a

collection of corruption operations C, the corruption robust-

ness is the expectation accuracy after applying corruptions

C on the test data of each task k, i.e.,

ACC=
1

N

k=N∑

k=1

Ec∼C [E(xk,yk,Tk)∼Dte

k

I(f(c(xk))=yk)]

(1)

where c(xk) is the resulting testing data after applying the

corruption operation c on xk. I() is the indicator function.

ACC measures the average robust accuracy after applying

a collection of corruption operations C.

Preliminary of AugMix. AugMix [22] is a recently

proposed SOTA augmentation technique that significantly

improves model robustness in standard supervised learn-

ing. Considering that CL requires the algorithm to be

both efficient and effective, we thus choose the efficient

and effective AugMix to adapt to CL. AugMix maintains

augmented data diversity by mixing several augmentation

chains. Suppose we have an augmentation operation set

O = {op1, op2, · · · , opM} during training. The standard

AugMix implementation samples three operations op1, op2
and op3 from O, and composes them with varying depths

to form several operation chains; where each chain consists

of one to three randomly selected augmentation operations.

The augmented image is a convex mix of A chains (A de-

notes the number of augmentation chains), i.e., xaug = w1 ·
chain1(x)+w2 ·chain2(x)+ ...+wA ·chainA(x), where

mixing weights w = (w1, w2, ..., wA) is sampled from the

distribution, Drichelet(α, α, ..., α) with α = 1. With the

mixed image xaug, AugMix combines it with the original

image through another random convex combination to obtain

the final image xaugmix, i.e., xaugmix = mx+(1−m)xaug ,

where m is sampled from a Beta(α, α) distribution. AugMix

adopts a fixed random augmentation policy, i.e., Dirichlet

and Beta distributions, during the entire training process.
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(c) MetaMix (Ours)

Figure 2. Comparisons between AugMix [22] and our proposed

MetaMix. (a) Tasks sequentially arrive during CL. (b) At each

CL step, AugMix adopts a fixed and random augmentation policy

during the entire learning process, thus lacking adaptation to the

non-stationary data in CL and may not be the optimal strategy for

each task. (c) MetaMix automatically adapts to the non-stationary

data distribution during CL by meta-learning the mixing parameters

of augmentation. At time t, we sample a batch of data (xr, yr)
from the memory buffer and concatenate them with the current

received data (xt, yt) as (xb, yb). We apply MetaMix to augment

each data example. Specifically, we feed the context information

It into the LSTM cell with parameters φt, and obtain the mixing

weights wt and mt. The CL model fθt
calculates the losses for the

augmented data. We adopt bi-level optimization to improve model

generalization on unseen corruptions by splitting the augmentation

operations into a pseudo-seen set St and pseudo-unseen set Ut. The

loss Lφt
is calculated on data augmented with Ut to update φt,

and loss Lθt
is calculated on data augmented with St to update θt.

We repeat this process for all tasks in the sequence.

The augmentation procedure of AugMix is illustrated in Fig-

ure 2 (b). The optimization objective of AugMix is shown in

the following:

θ∗=argmin
θ

E
op∈O

L(x, y,θ)+λJS(x,xaugmix1,xaugmix2),

(2)

where x is the original data and y is the data label; L(x, y,θ)
is the loss function on the labeled data (cross-entropy for

classification); xaugmix1 and xaugmix2 are two augmenta-

tions of original data x by AugMix; JS denotes the Jensen

Shannon divergence for regularizing the output consistency

between the original and augmented data. We will define it

in the following section.

3.2. MetaMix Approach

Direct extension of AugMix [22] for CL is to augment

data examples sampled from the memory buffer, and the re-

ceived new data at each time point for memory-based method

across the sequentially arrived tasks. In the following, we

present our methods for memory-based CL methods, but our

methods can be easily extended to other families of CL meth-

ods as well, also demonstrated in Section 4. However, since

the memory buffer is usually small for CL models, using

a fixed random augmentation strategy (like AugMix) may

make the CL model gradually memorize the training data

corruption operations, but fail to generalize to unseen cor-

ruptions during testing. Moreover, with the non-stationary

nature of the data, the optimal augmentation strategy for

image mixing is data-dependent, and the mixing weights

should be specifically optimized for each task. However,

since we cannot repeatedly tune the mixing weights for each

task during CL learning process, an automatic self-adaptive

process is necessary to achieve good performance. We thus

introduce the details of our self-adaptive data augmentation

approach, namely MetaMix, for improving robustness in

CL. Figure 2 (c) illustrates the training process of MetaMix

at time t. Specifically, we adopt meta-learning to learn a

set of data-dependent parameters wt and mt, which can

dynamically control the mixing weights of augmentation op-

erations and automatically adapt to the non-stationary data

distribution.

First, to memorize previous knowledge, we allocate

a small memory buffer M to store data from previous

tasks by reservoir sampling, similar to [35]. The data in

the memory buffer will be replayed later with a new task

together. Suppose we have M augmentation operations

O = {op1, op2, · · · , opM} during training, CL model pa-

rameters at time t are θt, and the function represented by the

network with θt is fθt
(x).

To capture the sequential dependencies among previous

tasks, we design a self-adaptive LSTM mixing strategy. The

LSTM inputs the current context information and outputs

the adaptive mixing parameters. We use an LSTM (dynamic)

model to dynamically change the mixing weights instead

of an MLP (static) model since the tasks in CL sequentially

arrive. The LSTM can encode the information of previous

tasks into an additional hidden state while the MLP can only

capture the data information of the current task. It does not

capture the information of previous tasks without the hidden

state. Formally, the LSTM adaptive process is defined as:

ot+1,ht+1, gt+1 = LSTMφt
(It,ht, gt), (3)
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where φt is the LSTM MetaMixer parameters at time t, ht

is the hidden state of LSTM at time t, gt is the cell state

of LSTM at time t, It is the context information encoding

as input to LSTM at time t; ot+1 is the output of LSTM at

time t+1 for the mixing parameters, i.e., ot+1 = {w′
t,m

′
t},

where m′
t is the mixing weight for the augmented data and

original raw data and w′
t are the mixing weights for different

chains in the augmentation. We apply softmax function to

w′
t and sigmoid function to m′

t to ensure they are within

[0,1] interval, i.e.,

mt = Sigmoid(m′
t),wt = Softmax(w′

t). (4)

The context It contains essential information to charac-

terize data in current and previous tasks. It is shown as:

It={∇Lθt
(xr, yr) · ∇Lθt

(xt, yt),Lθt
(xr, yr), er, et},

(5)

where (xr, yr) is the labeled mini-batch data sampled from

the memory buffer and (xt, yt) is the labeled data received

at time t. We adopt this information for several reasons:

(1) ∇Lθt
(xr, yr) · ∇Lθt

(xt, yt) is the gradient dot product

between memory data gradient and current mini-batch data

gradient. It determines the degree of interference and transfer

between memory data and current task mini-batch data. It

is commonly used in existing CL as context information

[18, 35]; (2) we also input the memory mini-batch data loss,

as it indicates the degree of forgetting of previous tasks; (3)

er and et are data encoding for mini-batch data, xr, sampled

from memory buffer and currently received new mini-batch

data, xt, respectively. That is, er and et are the last layer

features outputted by ResNet-18. This determines the data-

dependent features for calculating the data-dependent mixing

weights.

Since corruption operations on testing data are unseen

during training, we cannot directly optimize the augmenta-

tion strategy for these corruptions. To make the CL model

generalize better to unseen corruptions, at each training step

t, we randomly split the augmentation operations O into

non-overlapping pseudo-seen St and pseudo-unseen Ut op-

erations, i.e., St ∪ Ut = O and St ∩ Ut = ∅. We use the

pseudo operation sets to simulate the scenario in which train-

ing and testing corruptions have no overlap. We formulate

MetaMix as a bi-level optimization problem to make the

CL model learn to augment and mix. This ensures that the

update of model parameters θ on the pseudo-seen set can

improve the optimization of MetaMixer parameters φ on

the pseudo-unseen set, which could, in turn, be beneficial

to improve the CL model generalization. We formulate the

MetaMix as the following bi-level optimization:

φ∗=argmin
φ

E
op∈Ut

L(xb, yb,θ∗,φ)+λJS(xb, x̂b1, x̂b2), (6)

θ∗=argmin
θ

E
op∈St

L(xb, yb,θ,φ)+λJS(xb,x
′
b1,x

′
b2),

where we concatenate the mini-batch data (xr, yr) from

the memory buffer and the current received mini-batch data

(xt, yt) together as (xb, yb); x̂b1 and x̂b2 are the two mini-

batch data augmented by applying the pseudo-unseen aug-

mentation operations Ut on (xb, yb); x
′
b1 and x′

b2 are the

two mini-batch data augmented by applying the pseudo-seen

augmentation operations St on (xb, yb). λ is the regular-

ization constant for the consistency loss. The lower-level

optimization is to optimize the performance on the pseudo-

seen augmentation operations St at the training step t; and

the upper-level optimization is to optimize the generaliza-

tion on the pseudo-unseen augmentation operations Ut. This

bi-level optimization for learning to augment and mix can

be efficiently solved by first-order gradient descent method,

similar to the first-order MAML [15].

The advantage of MetaMix (Eq. (6)) over AugMix (Eq.

(2)) are two folds. First, MetaMix improves the generaliza-

tion to unseen corruptions since we split the training data

augmentation operations into pseudo-seen and unseen op-

erations. This is similar to the train-validation data split in

standard meta-learning, which improves the generalization

compared to the training without data split [39]; It could

be understood as introducing an implicit regularization so

that it can benefit from low sample complexity [39]. Second,

MetaMix can automatically adapt to the non-stationary data

distribution in CL, while AugMix can only work well in the

stationary data distribution in a single task.

Consistency Regularization To ensure the network out-

put consistency between the original raw image data and

the augmented data, we use a similar consistency loss [22]

to regularize the network output to ensure smoother neural

network responses. We hope the model to have similar re-

sponses to xb, x̂b1, x̂b2. We minimize the Jensen-Shannon

divergence among the posterior distributions of the original

sample xb and its augmented variants x̂b1 and x̂b2. The

consistency loss is defined as below:

pmean = (pxb
+ px̂b1

+ px̂b2
)/3 (7)

JS(xb, x̂b1, x̂b2) = (KL(pxb
|pmean)+KL(px̂b1

|pmean)

+KL(px̂b2
|pmean))/3 (8)

Where KL denotes the KL divergence between two distri-

butions. pxb
= fθt

(xb) is the network output probabilities

of each class for original raw data xb. Similarly, we can de-

fine px̂b1
= fθt

(x̂b1) and px̂b2
= fθt

(x̂b2). We summarize

our proposed algorithm in Algorithm 3. Line 5-8 takes the

context information as input and computes desired augmen-

tation mixing parameters. Line 9-11 augments the original

data with the pseudo-seen augmentation operations St and

pseudo-unseen operations Ut by Algorithm 1. Line 12 solves

the bi-level optimization problem (Eq. (6)) by Algorithm 2.
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Algorithm 1 DataMix

1: Function DataMix (xb,wt,mt,V)

2: MetaMix augmented images initialized as x′
b = 0

3: xorig = xb

4: for i = 1 to A do { A is the number of augmentation chains}

5: xb = xorig

6: for l = 1 to d do { d is the augmentation depth}

7: randomly sample operation op ∈ V (V is the collection

of augmentation operations)

8: xb = op(xb)
9: end for

10: x′
b+ = wi

t · xb

11: end for

12: x′
b = mtxorig + (1−mt)x

′
b;

13: similar to the above procedure, we can get two different mini-

batch x′
b1,x

′
b2

14: return x′
b1,x

′
b2

15: EndFunction

Algorithm 2 Bi-level Solver

1: Function Bi-level Solver(θt,φt,xb, yb,x
′
b1,x

′
b2, x̂b1, x̂b2)

2: optimize the lower-level optimization problem in Eq.

(6) by θt+1 = θt − γ∇θ Eop∈St
[L(xb, yb,θt,φ) +

λJS(xb,x
′
b1,x

′
b2)]

3: calculate the upper-level optimization loss function in

Eq. (6) by E(θt+1,φ) = Eop∈Ut
[L(xb, yb,θt+1,φ) +

λJS(xb, x̂b1, x̂b2)]
4: φ′

1 = φt

5: for s = 1 to J do

6: φ′
s+1 = φ′

s − β∇φ′E(θt+1,φ
′
s)

7: end for

8: φt+1 = φ′
J+1

9: return θt+1, φt+1

10: EndFunction

4. Experiment

We evaluate the model performance for both task- and

class-continual learning. The CL models are evaluated on

the proposed benchmark for each dataset. We then describe

experiment setup, results, and ablation study.

4.1. Experiment Setup

Below, we first construct the corruption CL benchmark

and then describe the evaluation metrics, baselines, and im-

plementation details.

Corruption CL benchmark. Existing CL bench-

marks, such as Split-CIFAR10, Split-CIFAR100, and Split-

miniImageNet, are commonly used in literature. However,

each task’s training and testing data follow the same dis-

tribution for these datasets. Thus, these benchmarks are

not suitable for evaluating the corruption robustness of CL

methods. To properly evaluate the corruption robustness, we

follow the protocols [21] and create several new CL datasets.

Algorithm 3 MetaMix

1: REQUIRE: Augmentation Operations O =
{osterize, rotate, · · · , solarize}; augmentation width

A; augmentation depth d; the number of CL tasks N; the

number of training iterations for each task Tk is Nk; memory

buffer M; CL model parameters θ; LSTM MetaMix with

parameters φ; MetaMixer LSTM update steps J ; CL model

parameter learning rate γ; regularization weight λ; original

image xorig; initial hidden state and cell state ht, gt are

initialized as random noise h1, g1 ∼ N (0, I)
2: for k = 1 to N do

3: for t = 1 to Nk do

4: randomly sample mini-batch data (xr, yr) from memory

buffer M and concatenate it with the current received

mini-batch data (xt, yt) to obtain (xb, yb)
5: compute context vector It = {∇Lθt

(xr, yr) ·
∇Lθt

(xt, yt),Lθt
(xr, yr), er, et}

6: ot+1,ht+1, gt+1 = LSTMφt
(It,ht, gt)

7: generate mixing parameters: w′
t,m

′
t = ot+1;

8: mt = Sigmoid(m′
t),wt = Softmax(w′

t)
9: randomly split augmentation operations O into non-

overlapping pseudo-seen St and unseen Ut

10: x′
b1,x

′
b2 = DataMix (xb,wt,mt,St) (Algorithm 1)

11: x̂b1, x̂b2 = DataMix (xb,wt,mt,Ut) (Algorithm 1)

12: θt+1, φt+1 = Bi-level Solver (θt,φt,xb, yb,x
′
b1,x

′
b2,

x̂b1, x̂b2) (Algorithm 2)

13: update memory buffer M through reservoir sampling

[35] to determine whether to store (xt, yt)
14: end for

15: end for

We apply 15 common corruption operations to the testing

data of the three CL benchmarks, such as snow, frost, fog, etc.

We provide a brief description for each corruption operation

in Table 5 in Appendix. We perform each corruption at five

different severity levels. Note that these corruptions only

appear on the testing dataset of each continually learned

task and are not seen in the training data of each task. This

is to ensure that we can measure the robustness to unseen

corruptions during testing for each compared method. To our

best knowledge, we build the first CL corruption benchmark

for measuring the generalization of CL models to unseen

corruptions during testing. We name these new datasets Split-

CIFAR10-C, Split-CIFAR100-C, and Split-miniImageNet-C.

Specifically, for Split-CIFAR-10-C, we split the CIFAR-

10 dataset [28] into 5 disjoint tasks, where each task has 2

classes; for Split-CIFAR-100-C, we split CIFAR-100 [28]

consisting of 100 classes into 10 disjoint tasks, where each

task has 10 classes; for Split-miniImageNet-C, we split

miniImageNet [44] that consists of 100 classes, into 10 dis-

joint tasks, where each task has 10 classes.

Evaluation Metrics. We evaluate the performance of dif-

ferent methods with average accuracy and backward transfer

at the end of CL training to measure the final performance
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and the extent of forgetting for different methods. For each

task, the accuracy for a specific corruption c is the average

accuracy over the five severity level. Suppose for task k,

ACCk
c,s measures the robust accuracy after applying the

corruption operation c with severity level s:

ACCk
c,s = E(xk,yk,Tk)∼Dte

k

I(f(cs(x
k)) = yk),

where cs(x
k) is the corruption operation c with severity

level s applied on xk. The accuracy for corruption c denoted

as ACCk
c is the average robust accuracy across all the five

severity levels. The overall accuracy for task k, ACCk, is

the average accuracy across all corruption types, i.e.,

ACCk
c =

1

5

s=5∑

s=1

ACCk
c,s, and ACCk =

1

|C|

∑

c∈C

ACCk
c .

To measure catastrophic forgetting, we also evaluate the

backward transfer (BWT), which measures the extent of for-

getting on previous tasks after learning new ones. BWT < 0
reveals the occurrence of catastrophic forgetting on previous

tasks, and BWT > 0 indicates that learning new tasks is

helpful for previous tasks. Formally, the backward trans-

fer (BWT) is defined as: BWT = 1
N−1

∑k=N−1
k=1 (RN,k −

Rk,k); where RN,k is the testing accuracy on task k after

learning on task N and RN,k is defined the same as the

above mentioned ACCk. For BWT, the higher, the better.

Continual Learning Setting. We apply our proposed

MetaMix to task-continual learning (Task-CL) and class-

continual learning (Class-CL). The former provides task

identities for the CL learner to select the relevant classifier

for each example during testing, whereas the latter does not.

Baseline. Our method can be seamlessly integrated

with exiting CL methods. For illustration, we integrate

the proposed methods with SOTA memory-based methods:

DER++ [5] and CLS-ER [2]. To evaluate the effectiveness

of the proposed MetaMix, we compare it with several SOTA

data augmentation approaches originally designed for tradi-

tional supervised learning: Adversarial Training (AT) [33],

RandAugment (RA) [11], Maxup [16], DeepAugment [20],

Augmix [22]. We adapt these augmentation methods for CL

problems by applying them on the new task data and the

memory buffer data. We provide more detailed descriptions

of baselines in Appendix. Due to space limitations, we put

the experiments that integrate our proposed method with

CLS-ER in Appendix.

Implementation details. We use ResNet18 [19] as clas-

sifier for all datasets. All the other hyperparameter settings

follow from [5]. The types of corruption during testing

are not seen during training for all the compared augmen-

tation methods to evaluate the robustness against unseen

corruptions. Following [22], the augmentation operations

performed during training are autocontrast, equalize, poster-

ize, rotate, solarize, shear-x, shear-y, translate-x, translate-y.

All the above-compared data augmentation methods apply

these augmentation operations to CL baseline method to

improve robustness. The memory buffer has capacity of

500 data points by default. We average the result for 5 runs

for each experiment. We provide both mean and standard

deviation across different runs. Due to space limitations, we

provide standard deviation results in Appendix. We provide

more implementation details in Appendix.

LSTM Architecture. It has one recurrent layer with

5 hidden units. A linear layer (fully connected layer) is

appended next to the LSTM output to generate the mixing

parameters wt and mt. The LSTM only has about 20K

parameters and is negligible compared to ResNet18, which

has more than 11.22 million parameters.

4.2. Robustness of Task-CL

Task-Continual Learning In this section, we evalu-

ate the corruption robustness under task-continual learning,

where the task identifiers are provided to the CL learner dur-

ing testing. We present the results that integrate baselines

and the proposed method with DER++ [5]. Due to space

limitations, we put the experiments that integrate baselines

and MetaMix with CLS-ER [2] in Appendix.

Results. We show the results across different corruptions

and compared methods in Tables 1-2; where Avg is the av-

erage robust accuracy across all the corruptions. Due to the

space limitations, we provide the standard deviation across

different runs in Table 8 and 9 in Appendix. We also put

results on split-CIFAR10-C in Table 6 and Table 7 in Ap-

pendix. We can observe that without data augmentation, the

performance of DER++ is close to random guessing, indi-

cating that the CL model does not generalize to common

corruptions. The proposed self-adaptive MetaMix brings

significant improvement toward corruption robustness. It

outperforms the average corruption robustness accuracy of

the other models by a large margin of 2.4%, 2.6% on Split-

CIFAR100-C, and Split-miniImageNet-C, respectively. The

improvement shows the effectiveness of proposed MetaMix,

which can automatically adapt to the non-stationary data

distribution. The compared methods only use fixed stat-

ic/random augmentation methods which lack adaptation to

the non-stationary data in CL, and thus do not perform well.

Random augmentation achieves second-best results. Deep-

augment would distort the image such that they are very

different from original images. Adversarial training and

Maxup do not help much corruption robustness among the

compared methods. Adversarial training can generate sim-

ilar images compared to original images. Thus, there is a

large gap between training and testing corrupted data for

those methods adapted for CL. Maxup aims for improving

clean data performance, not designed for robust accuracy.
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Table 1. Robust accuracy of Task-CL on Split-CIFAR100-C with DER++

Method
Noise Blur Weather Digital

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER++ 10.46 10.69 10.26 10.76 10.51 10.71 10.66 10.47 10.56 10.51 10.79 10.54 10.75 10.55 10.72 10.60

AT 10.36 10.45 10.25 10.23 10.24 10.27 10.25 10.12 9.88 9.98 10.16 9.83 10.19 10.3 10.31 10.19

RA 26.77 27.15 25.46 27.84 23.46 24.05 25.99 23.26 26.34 30.45 27.95 28.8 25.54 29.12 29.09 26.75

DeepAugment 11.00 11.16 10.86 11.35 11.15 11.45 11.33 10.76 10.46 10.59 11.10 10.57 11.20 11.36 11.25 11.04

Maxup 11.1 11.17 11.13 11.09 11.06 11.13 11.1 10.88 10.76 10.81 10.86 10.37 11.06 11.13 11.12 10.98

Augmix 59.58 62.68 59.92 67.95 58.88 65.93 67.03 63.39 63.93 63.24 68.62 63.27 65.82 66.06 64.07 64.02

Ours 61.53 65.14 61.18 70.35 61.28 68.01 68.76 66.02 66.49 66.14 71.49 66.16 68.24 68.91 66.75 66.43

Table 2. Robust accuracy of Task-CL on Split-MiniImageNet-C with DER++

Method
Noise Blur Weather Digital

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER++ 10.27 10.1 10.07 9.78 9.73 9.67 9.72 9.61 9.71 9.85 9.69 10.15 9.55 9.45 9.57 9.79

AT 9.07 9.24 9.27 9.65 9.62 9.6 9.48 9.17 9.10 9.01 9.12 8.38 9.54 9.56 9.35 9.28

RA 17.23 18.22 16.7 19.81 16.6 18.32 19.07 18.94 17.14 18.26 17.26 14.56 21.14 20.84 23.0 18.47

DeepAugment 10.54 10.53 10.62 10.68 10.70 10.63 10.74 10.56 10.32 10.32 10.52 9.92 10.55 10.41 10.49 10.50

Maxup 10.4 10.9 10.68 10.65 9.75 10.21 10.25 9.62 10.12 10.21 10.34 10.9 10.2 10.16 10.07 10.30

Augmix 43.45 48.91 42.20 53.78 49.68 59.88 51.83 53.22 54.02 55.63 59.59 43.46 61.35 51.34 62.75 52.74

Ours 48.8 53.33 43.81 59.7 53.64 62.78 56.95 56.19 57.31 56.08 62.07 41.71 63.17 49.78 64.55 55.32

Table 3. Robust accuracy of Class-CL on Split-CIFAR100-C with DER++

Method
Noise Blur Weather Digital

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER++ 0.75 0.75 0.88 0.75 0.86 0.77 0.68 0.88 0.96 0.92 0.75 0.96 0.78 0.78 0.79 0.82

AT 0.99 0.97 1.04 0.91 0.95 0.97 0.92 0.83 1.05 0.94 0.92 1.0 0.91 0.95 0.93 0.95

RA 6.22 6.3 5.67 6.25 4.42 4.54 5.59 5.25 6.24 7.72 6.42 6.93 5.16 6.81 7.11 6.04

DeepAugment 1.29 1.29 1.25 1.26 1.26 1.23 1.24 1.26 1.24 1.24 1.14 1.26 1.22 1.28 1.33 1.25

Maxup 1.17 1.15 1.16 1.15 1.08 1.14 1.12 1.08 1.08 1.09 1.14 1.06 1.13 1.15 1.11 1.12

Augmix 19.57 21.21 20.35 26.18 19.08 25.17 25.46 22.09 22.43 22.82 26.44 22.54 23.72 24.64 23.01 22.98

Ours 22.32 24.44 23.15 29.19 22.13 28.10 28.35 25.47 25.2 26.08 29.56 25.78 27.01 28.16 25.82 26.05

4.3. Robustness of Class-CL

Class-Continual Learning. In this section, we eval-

uate the corruption robustness under the more challenging

class-continual learning setting, where the task identifiers

are unavailable to the CL learner during testing.

Results. We present the results across different corrup-

tions and compared methods on Split-CIFAR100-C in Table

3, we present the results on Split-miniImageNet-C in Table

10 in Appendix. Similar to the Task-CL, MetaMix signif-

icantly improves over the baseline augmentation methods

in Class-CL setting due to its self-adaptivity property. It

outperforms the average corruption robustness accuracy of

the other models by a large margin of 3.1%, 2.2% on Split-

CIFAR100-C, and Split-miniImageNet-C, respectively. This

is because our proposed method can automatically adapt to

the non-stationary distributions. Most compared methods do

not perform well on this challenging setup.

Due to space limitations, we put BWT results in Table 15

in Appendix. In the corruption-robustness scenario, BWT is

no longer a meaningful metric with such extreme accuracy

differences, as the significantly lower accuracy of compar-

ison methods results in much less space for further perfor-

mance variations during backward transfer.

4.4. Ablation Study and Hyperparameter Analysis

Due to the limited space, we provide (1) ablation studies;

(2) hyperparameter analyses, including λ, J , β, etc.; (3)

The effect of using LSTM vs MLP and the benefit of using

additional hidden state information from previous tasks; (4)

computation cost in Appendix.

Effect of Memory Size. We evaluate the effect of mem-

ory size with 500 and 3000, respectively. The memory size of

500 is the default setting in the above tables. We provide ex-

periment results on Split-CIFAR100-C, Split-miniImageNet-

C with memory size 3000 on task-CL and class-CL respec-

tively in Table 11, 12, 13, 14 in Appendix. In these cases,

our method significantly outperforms baselines.

5. Conclusion

This paper tackles a more challenging problem of corrup-

tion robustness in CL with non-stationary data distribution,

where the testing data distribution may significantly differ

from training data distribution with various forms of com-

mon corruptions. We propose a meta-learning framework,

MetaMix, for self-adaptive data augmentation specialized

for CL. Our proposed MetaMix can substantially improve

the model’s robustness. Comprehensive experiments on both

task- and class-CL settings demonstrate the effectiveness of

the proposed method.

Acknowledgement We thank all the anonymous review-

ers for their insightful and thoughtful comments. This re-

search was supported in part by grant NSF III-1910492.

24528

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 30,2024 at 01:45:40 UTC from IEEE Xplore.  Restrictions apply. 



References

[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent

Charlin, Massimo Caccia, Min Lin, and Lucas Page-Caccia.

Online continual learning with maximal interfered retrieval.

Advances in Neural Information Processing Systems 32, pages

11849–11860, 2019. 1, 2

[2] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning

fast, learning slow: A general continual learning method

based on complementary learning system. In International

Conference on Learning Representations, 2022. 7, 12, 17

[3] Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song,

Jung-Woo Ha, and Jonghyun Choi. Online continual learning

on a contaminated data stream with blurry task boundaries. In

2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 9265–9274, 2022. 3

[4] E. Belouadah and A. Popescu. Il2m: Class incremental learn-

ing with dual memory. In 2019 IEEE/CVF International Con-

ference on Computer Vision (ICCV), pages 583–592, 2019.

2

[5] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide

Abati, and Simone Calderara. Dark experience for general

continual learning: a strong, simple baseline. 34th Conference

on Neural Information Processing Systems, 2020. 1, 7, 12

[6] Dan A. Calian, Florian Stimberg, Olivia Wiles, Sylvestre-

Alvise Rebuffi, Andras Gyorgy, Timothy Mann, and Sven

Gowal. Defending against image corruptions through adver-

sarial augmentations. https://arxiv.org/abs/2104.01086, 2021.

3

[7] Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio Calmon,

and Taesup Moon. {CPR}: Classifier-projection regulariza-

tion for continual learning. In International Conference on

Learning Representations, 2021. 2

[8] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

gem. Proceedings of the International Conference on Learn-

ing Representations, 2019. 2

[9] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,

Thalaiyasingam Ajanthan, Puneet K. Dokania, Philip H. S.

Torr, and Marc’Aurelio Ranzato. Continual learning with tiny

episodic memories. https://arxiv.org/abs/1902.10486, 2019.

2

[10] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V. Le. Autoaugment: Learning augmentation

policies from data. Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2019. 3

[11] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le.

Randaugment: Practical automated data augmentation with

a reduced search space. Advances in Neural Information

Processing Systems, 2020. 1, 3, 7, 12

[12] Terrance DeVries and Graham W. Taylor. Improved reg-

ularization of convolutional neural networks with cutout.

https://arxiv.org/abs/1708.04552, 2017. 3

[13] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and

Marcus Rohrbach. Uncertainty-guided continual learning

with bayesian neural networks. Proceedings of the Interna-

tional Conference on Learning Representations, 2020. 2

[14] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori

Zwols, David Ha, Andrei A. Rusu, Alexander Pritzel, and

Daan Wierstra. Pathnet: Evolution channels gradient descent

in super neural networks. https://arxiv.org/abs/1701.08734,

2017. 2

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

International Conference on Machine Learning, 2017. 5

[16] Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu.

Maxup: Lightweight adversarial training with data augmenta-

tion improves neural network training. Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2021. 3, 7,

12

[17] Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not just

selection, but exploration: Online class-incremental continual

learning via dual view consistency. In 2022 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2022. 2

[18] Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-maml:

Look-ahead meta learning for continual learning. In Advances

in Neural Information Processing Systems, 2020. 5

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, 2016. 7

[20] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-

vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,

Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,

and Justin Gilmer. The many faces of robustness: A critical

analysis of out-of-distribution generalization. International

Conference on Computer Vision, 2021. 3, 7, 12

[21] Dan Hendrycks and Thomas Dietterich. Benchmarking neural

network robustness to common corruptions and perturbations.

Proceedings of the International Conference on Learning

Representations, 2019. 1, 6

[22] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret

Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Augmix:

A simple method to improve robustness and uncertainty under

data shift. 2020. 2, 3, 4, 5, 7, 12

[23] Christian Henning, Maria Cervera, Francesco D’Angelo, Jo-

hannes Von Oswald, Regina Traber, Benjamin Ehret, Seijin

Kobayashi, Benjamin F Grewe, and Joao Sacramento. Poste-

rior meta-replay for continual learning. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Ad-

vances in Neural Information Processing Systems, 2021. 2

[24] Hyundong Jin and Eunwoo Kim. Helpful or harmful: Inter-

task association in continual learning. In European Confer-

ence on Computer Vision, 2022. 2

[25] Chris Dongjoo Kim, Jinseo Jeong, Sangwoo Moon, and Gun-

hee Kim. Continual learning on noisy data streams via self-

purified replay. International Conference on Computer Vision,

2021. 3

[26] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,

Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and

Raia Hadsell. Overcoming catastrophic forgetting in neural

24529

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 30,2024 at 01:45:40 UTC from IEEE Xplore.  Restrictions apply. 



networks. Proceedings of the national academy of sciences,

2017. 2

[27] Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. Bal-

ancing stability and plasticity through advanced null space

in continual learning. In European Conference on Computer

Vision, 2022. 2

[28] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009. 6

[29] Brian Lester, Rami Al-Rfou, and Noah Constant. The power

of scale for parameter-efficient prompt tuning. In Conference

on Empirical Methods in Natural Language Processing, 2021.

2

[30] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. TRGP:

Trust region gradient projection for continual learning. In

International Conference on Learning Representations, 2022.

1, 2

[31] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. Advances in Neural

Information Processing Systems, 2017. 1, 2

[32] Amrutha Machireddy, Ranganath Krishnan, Nilesh Ahuja,

and Omesh Tickoo. Continual active adaptation to evolving

distributional shifts. In 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW),

pages 3443–3449, 2022. 3

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning

models resistant to adversarial attacks. Proceedings of the

International Conference on Learning Representations, 2019.

7, 12

[34] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E.

Turner. Variational continual learning. Proceedings of the

International Conference on Learning Representations, 2018.

2

[35] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,

Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn

without forgetting by maximizing transfer and minimizing

interference. International Conference on Learning Repre-

sentations, 2019. 2, 4, 5, 6

[36] Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng,

Yee Whye Teh, and Yarin Gal. Continual learning via se-

quential function-space variational inference. In Proceedings

of the 39th International Conference on Machine Learning,

volume 162 of Proceedings of Machine Learning Research,

pages 18871–18887, 17–23 Jul 2022. 1

[37] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

https://arxiv.org/abs/1606.04671, 2016. 2

[38] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projec-

tion memory for continual learning. In International Confer-

ence on Learning Representations, 2021. 2

[39] Nikunj Saunshi, Arushi Gupta, and Wei Hu. A representa-

tion learning perspective on the importance of train-validation

splitting in meta-learning. In Proceedings of the 38th Interna-

tional Conference on Machine Learning, pages 9333–9343,

2021. 5

[40] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress and compress: A scalable

framework for continual learning. In Proceedings of the In-

ternational Conference on Machine Learning, 2018. 2

[41] Joan Serrá, Dídac Surís, Marius Miron, and Alexandros Karat-

zoglou. Overcoming catastrophic forgetting with hard atten-

tion to the task. In Proceedings of the International Confer-

ence on Machine Learning, 2018. 2

[42] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. Advances in

neural information processing systems, 30, 2017. 2

[43] Gido M. van de Ven and Andreas S. Tolias. Three scenarios

for continual learning. 2019. 2

[44] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray

Kavukcuoglu, and Daan Wierstra. Matching networks for

one shot learning. Advances in neural information processing

systems, 2017. 6

[45] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu,

Chongxuan Li, Lanqing HONG, Shifeng Zhang, Zhenguo

Li, Yi Zhong, and Jun Zhu. Memory replay with data com-

pression for continual learning. In International Conference

on Learning Representations, 2022. 1

[46] Zhenyi Wang, Tiehang Duan, Le Fang, Qiuling Suo, and

Mingchen Gao. Meta learning on a sequence of imbalanced

domains with difficulty awareness. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 8947–8957, 2021. 2

[47] Zhen Wang, Liu Liu, Yajing Kong, Jiaxian Guo, and Dacheng

Tao. Online continual learning with contrastive vision trans-

former. In European Conference on Computer Vision, 2022.

2

[48] Zhenyi Wang, Li Shen, Tiehang Duan, Donglin Zhan, Le

Fang, and Mingchen Gao. Learning to learn and remember

super long multi-domain task sequence. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7982–7992, 2022. 2

[49] Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan,

and Mingchen Gao. Improving task-free continual learning

by distributionally robust memory evolution. In International

Conference on Machine Learning, pages 22985–22998, 2022.

2

[50] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,

Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vin-

cent Perot, Jennifer Dy, et al. Dualprompt: Complementary

prompting for rehearsal-free continual learning. European

Conference on Computer Vision, 2022. 2

[51] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,

Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jen-

nifer Dy, and Tomas Pfister. Learning to prompt for continual

learning. In 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 139–149, 2022. 2

[52] Mengqi Xue, Haofei Zhang, Jie Song, and Mingli Song.

Meta-attention for vit-backed continual learning. In 2022

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 150–159, 2022. 2

24530

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 30,2024 at 01:45:40 UTC from IEEE Xplore.  Restrictions apply. 



[53] Qingsen Yan, Dong Gong, Yuhang Liu, Anton van den Hen-

gel, and Javen Qinfeng Shi. Learning bayesian sparse net-

works with full experience replay for continual learning. In

2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 109–118, 2022. 2

[54] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. International Conference on Learning Representa-

tions, 2018. 2

[55] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. IEEE International Conference on Computer Vision,

2019. 3

[56] Friedemann Zenke, Ben Poole, and Surya Ganguli.

Continual learning through synaptic intelligence.

https://arxiv.org/abs/1703.04200, 2017. 2

[57] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. International Conference on Learning Representations,

2018. 3, 12

24531

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 30,2024 at 01:45:40 UTC from IEEE Xplore.  Restrictions apply. 


