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Abstract

Continual Learning (CL) has achieved rapid progress in
recent years. However, it is still largely unknown how to
determine whether a CL model is trustworthy and how to
foster its trustworthiness. This work focuses on evaluating
and improving the robustness to corruptions of existing CL
models. Our empirical evaluation results show that existing
state-of-the-art (SOTA) CL models are particularly vulnera-
ble to various data corruptions during testing. To make them
trustworthy and robust to corruptions deployed in safety-
critical scenarios, we propose a meta-learning framework of
self-adaptive data augmentation to tackle the corruption ro-
bustness in CL. The proposed framework, MetaMix, learns to
augment and mix data, automatically transforming the new
task data or memory data. It directly optimizes the general-
ization performance against data corruptions during train-
ing. To evaluate the corruption robustness of our proposed
approach, we construct several CL corruption datasets with
different levels of severity. We perform comprehensive exper-
iments on both task- and class-continual learning. Extensive
experiments demonstrate the effectiveness of our proposed
method compared to SOTA baselines.

1. Introduction

Humans constantly acquire new information throughout
their lifespan and easily recognize information shifts such
as structure and style variations in images. Continual learn-
ing (CL) aims at imitating human’s ability to learn from
non-stationary data distributions without forgetting the previ-
ously learned knowledge. The past few years have witnessed
rapid progress in CL research [1, 30,31, 36,45]. Despite
the success, existing CL systems overlook the robustness
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against unforeseen data shifts during testing. They assume
that training and test images for each task follow the same
distribution. However, as data distributions evolve and new
scenarios occur, test images often encounter various cor-
ruptions such as snow, blur, pixelation, and combinations,
resulting in a shifted distribution from the training set. For
example, Figure | shows various corruptions applied on one
image from Split-minilmageNet.

Data corruption can drastically impair the performance
of existing image recognition systems. A recent study [21]
shows that classification accuracy of various architectures
has dropped significantly on the ImageNet test set with some
simple and natural corruptions. Our empirical evaluation
results show that state-of-the-art CL models are even more
vulnerable to these corruptions during testing. For example,
the accuracy of DER++ [5] for task-continual learning de-
creases from 93.9% to 50.5% on split-CIFAR10; accuracy
drops to 10.6 % from 75.6 % on split-CIFAR100; accuracy
decreases to 9.8% from 61.3% on split-minilmageNet by
applying those common corruptions on test data of each CL
task. This severe issue makes existing CL models highly
unreliable in safety-critical applications. Thus, improving
the robustness of CL models to foster their trustworthiness
when deployed in real-world scenarios is essential.

Training a CL model robust to various corruptions is diffi-
cult due to the following challenges. 1) Unseen corruptions
could perturb the test set far beyond those encountered dur-
ing training. A model that naively augments training images
with seen corruptions cannot generalize to the new ones
during testing. Also, it is unrealistic to enumerate all possi-
ble corruptions during training since there are infinite types
of corruptions and their combinations. 2) With the ever-
evolving data distributions in CL, an effective augmentation
strategy learned on previous tasks may gradually become
less effective because the optimal augmentation strategies
are task-dependent and dynamically change over tasks [11].
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Figure 1. Visualization of five types of different corruption operations on the testing images of Split-minilmageNet.

Although we can adopt a memory buffer to store data from
previous tasks, augmenting and replaying them at later train-
ing iterations, the augmented memory may gradually be-
come less effective as the model could memorize the stored
information after replay runs. Recent approaches, such as
Augmix [22] composes and combines multiple pre-defined
augmentation operations with different depths and widths,
show efficacy in improving robustness under traditional su-
pervised classification tasks. However, these approaches are
not directly applicable to corruption-robust CL since they
only use a fixed random augmentation strategy that is often
not optimal for non-stationary data distributions in CL.

To address these unique challenges of corruption-
robustness in CL, we propose a temporally self-adaptive
Augmix within a meta-learning framework, named MetaMix.
It adaptively augments the memory buffer data and the cur-
rently received new data by learning to mix the augmentation
operations tailored to the evolving data distributions. In par-
ticular, our automatic self-adaptive MetaMix is a bi-level
optimization, simulating the evaluation process on unseen
corruptions. We randomly divide the training augmentation
operations into pseudo-seen and pseudo-unseen operations
at each CL step. The lower-level optimization is to optimize
the model performance on the pseudo-seen operations; the
upper-level optimization is to optimize the generalization of
the pseudo-unseen operations. The augmentation strategy
is governed by an LSTM, which inputs context information
and outputs the corresponding mixing parameters for the
augmentations. The proposed MetaMix ensures the augmen-
tation strategy automatically adapts to non-stationary data
distribution. Furthermore, the objective is to optimize the
performance of the pseudo-unseen corruption operations,
which aligns with our goal during testing and encourages the
generalization to unseen corruptions.

To evaluate the corruption robustness of existing and the
proposed methods, we propose a new challenging benchmark
where various corruptions perturb the testing data of each CL
task. To facilitate future research, we construct several new
datasets, including split-CIFAR-10-C, split-CIFAR-100-C,
and split-minilmageNet-C. Extensive experiments on the
constructed benchmarks demonstrate the effectiveness of
our proposed MetaMix approach compared with several
SOTA data-augmentation approaches adapted for CL. We
summarize our contributions as follows:

* To our best knowledge, we are the first to study the
corruption-robustness of CL methods. Accordingly, we
propose the first set of novel benchmarks for evaluating
the corruption-robustness of existing CL methods and
moving towards trustworthy CL.

* We propose a self-adaptive augmentation method,
MetaMix, by learning to mix and augment the training
data of each CL task to achieve corruption-robustness
on unseen corruptions for each CL task.

¢ Our method is versatile and can be seamlessly inte-
grated with existing CL methods. Extensive experi-
ments with both task/class continual learning demon-
strate the effectiveness of MetaMix.

2. Related Work
2.1. Continual Learning

CL focuses on learning non-stationary data distribution
without forgetting previous knowledge. These methods can
be categorized into: 1) retaining memory for future replay
[1,4,8,9,17,31,35,42,46,48,49]; 2) designing tailored net-
work architectures [14,24,37,41,54]; 3) performing proper
regularization during parameter updates [7,26,40,56]; 4) in-
troducing Bayesian methods for model parameter inference
[13,23,34,53]; 5) subspace-based methods [27,30,38] and 6)
prompt-tuning [29] based methods [50,51]; 7) transformer-
based methods [47,52]. However, all these works focus on
the simplified setting in which training and testing data of
each CL task follow the same distribution. In practice, the
testing data may come from another different distribution due
to the variations in weather, light, snow, etc. These distor-
tions pose significant robustness challenges for existing CL
methods. Existing literature largely ignored these trustwor-
thy properties of CL. According to the terminology of [43],
CL settings can be categorized into three scenarios based
on whether task identities of the testing data are available
to the CL model during test time. Among the three sce-
narios, task-continual learning studies the scenario that the
task identities are available during testing and is the easiest
learning setting; domain incremental learning focuses on the
case that all the tasks during CL solve the same classification
task with different data distribution and the task identities
are unknown during testing; class-continual learning focuses
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on the scenario that task identities are unavailable and is the
most difficult learning setting. We focus on task/class CL
scenarios.

Recently, robust CL began to attract researchers’ attention.
Self-Purified Replay [25] and PuriDivER [3] consider CL on
noisy data stream with label noise. Their work is orthogonal
to ours since they consider noisy data during training; we
instead consider the robustness to data corruptions during
testing. A closely related work to our is Continual Active
Adaptation (CAA) [32], which is different from and orthog-
onal to ours since they focus on the setting that for each
data distribution, the label space for each learning task is the
same. Each task only encounters a single data corruption.
During testing, CAA focuses on generalization to previously
seen corruption operations. In contrast, we focus on the
setting that each task solves a different task. During testing,
the CL model should be robust to unseen data corruptions.

2.2. Data Augmentation

We categorize existing data augmentation techniques into
two classes: 1) improving performance on clean data; 2)
improving performance and being robust to data distribution
shift and corruptions.

Augmentations for Improving Clean Data Performance.
Standard data augmentation aims to improve the generaliza-
tion performance on clean data. To improve the performance
of neural network, standard supervised learning adopts com-
mon augmentations, such as random flips, rotations, and
crops. Recently, Cutout [12], Mixup [57], CutMix [55] and
MaxUp [16] show excellent performance on clean datasets.
Other techniques include automatically learning augmen-
tation policy from data, e.g., AutoAugment [10] and Ran-
dAugment [ 1]. However, AutoAugment is computationally
impractical for CL problems since it needs a huge computa-
tion cost and separate proxy tasks to train the policy network.

Augmentations for Being Robust to Corruptions. Aug-
mix [22] is one of the SOTA methods on the data corruption
benchmarks, such as ImageNet-C, CIFAR100-C, etc. Deep-
Augment [20] and AdversarialAugment [6] transform and
augment clean images by perturbing the representations/fea-
tures of neural networks to generate new augmented images.
However, this increases a lot of computation costs. Thus,
DeepAugment [20] and Adversarial Augment [6] are imprac-
tical for CL. We thus choose the more efficient and effective
AugMix and propose a new self-adaptive AugMix for CL.

3. Methodology

In this section, we first define the corruption robustness
of CL and then describe the proposed MetaMix approach.
We describe the notation in the main text. We also provide a
notation table in Table 4 in Appendix for ease of reading.

3.1. Problem Setup

Corruption robustness of CL. We consider the prob-
lem of learning a sequence of tasks denoted as D" =
{Di", DL, .- DY}, where N is the number of training
tasks. The k-th task training data D}” consists of many la-
beled examples (¥, y*, T;), where x* is the data example
in the task, yk is the corresponding data label, and 7y, is the
task identifier. The goal is to learn a model fg on the training
task sequence D'" so that it performs well on the testing set
of all the learned tasks D¢ = {D'¢, DL - .. D} without
forgetting previously learned knowledge. In particular, we
focus on improving the model robustness on the testing set
for each task 7} under a collection of corruption operations
C. Below, we define the CL corruption robustness.

Definition 1 (CL corruption robustness). Given a sequence
of N tasks with test data D'® = {D'¢, D¢, .- | D'}, and a
collection of corruption operations C, the corruption robust-
ness is the expectation accuracy after applying corruptions
C on the test data of each task k, i.e.,

k=N
1
ACC= NZ ]ECNC [E(w’“,yk,Tk)NDzC]I(f(C(wk)) = yk)]

k=1
(1)
where c(x*) is the resulting testing data after applying the
corruption operation c on x*. 1() is the indicator function.
AC'C measures the average robust accuracy after applying
a collection of corruption operations C.

Preliminary of AugMix. AugMix [22] is a recently
proposed SOTA augmentation technique that significantly
improves model robustness in standard supervised learn-
ing. Considering that CL requires the algorithm to be
both efficient and effective, we thus choose the efficient
and effective AugMix to adapt to CL. AugMix maintains
augmented data diversity by mixing several augmentation
chains. Suppose we have an augmentation operation set
O = {op1,0ps,--- ,opp} during training. The standard
AugMix implementation samples three operations op1, op2
and op3 from O, and composes them with varying depths
to form several operation chains; where each chain consists
of one to three randomly selected augmentation operations.
The augmented image is a convex mix of A chains (A de-
notes the number of augmentation chains), i.e., Tqyg = w1 -
chainy (x) +ws - chaing(x) 4 ...+ w4 - chain s (x), where
mixing weights w = (w1, wa, ..., w4) is sampled from the
distribution, Drichelet(a, a, ..., &) with @ = 1. With the
mixed image x4, AugMix combines it with the original
image through another random convex combination to obtain
the final image T oy gmiz, 1.6, Taugmiac = ML+(1—m)x gy,
where m is sampled from a Beta(«, o) distribution. AugMix
adopts a fixed random augmentation policy, i.e., Dirichlet
and Beta distributions, during the entire training process.
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Figure 2. Comparisons between AugMix [22] and our proposed
MetaMix. (a) Tasks sequentially arrive during CL. (b) At each
CL step, AugMix adopts a fixed and random augmentation policy
during the entire learning process, thus lacking adaptation to the
non-stationary data in CL and may not be the optimal strategy for
each task. (c) MetaMix automatically adapts to the non-stationary
data distribution during CL by meta-learning the mixing parameters
of augmentation. At time ¢, we sample a batch of data (x,, y,)
from the memory buffer and concatenate them with the current
received data (@, y¢) as (v, y»). We apply MetaMix to augment
each data example. Specifically, we feed the context information
I; into the LSTM cell with parameters ¢, and obtain the mixing
weights w; and m;. The CL model fg, calculates the losses for the
augmented data. We adopt bi-level optimization to improve model
generalization on unseen corruptions by splitting the augmentation
operations into a pseudo-seen set S; and pseudo-unseen set I/;. The
loss L4, is calculated on data augmented with I/, to update ¢,
and loss Lg, is calculated on data augmented with S; to update ;.
We repeat this process for all tasks in the sequence.

The augmentation procedure of AugMix is illustrated in Fig-
ure 2 (b). The optimization objective of AugMix is shown in
the following:

0.= arg min E L(l', Y, 0)+/\Js(m, Laugmizls maugmimZ)a
0 opcO
2

where @ is the original data and y is the data label; L(x, y, 0)
is the loss function on the labeled data (cross-entropy for
classification); T qygmiz1 and Taugmize are two augmenta-

tions of original data & by AugMix; J.S denotes the Jensen
Shannon divergence for regularizing the output consistency
between the original and augmented data. We will define it
in the following section.

3.2. MetaMix Approach

Direct extension of AugMix [22] for CL is to augment
data examples sampled from the memory buffer, and the re-
ceived new data at each time point for memory-based method
across the sequentially arrived tasks. In the following, we
present our methods for memory-based CL methods, but our
methods can be easily extended to other families of CL meth-
ods as well, also demonstrated in Section 4. However, since
the memory buffer is usually small for CL models, using
a fixed random augmentation strategy (like AugMix) may
make the CL model gradually memorize the training data
corruption operations, but fail to generalize to unseen cor-
ruptions during testing. Moreover, with the non-stationary
nature of the data, the optimal augmentation strategy for
image mixing is data-dependent, and the mixing weights
should be specifically optimized for each task. However,
since we cannot repeatedly tune the mixing weights for each
task during CL learning process, an automatic self-adaptive
process is necessary to achieve good performance. We thus
introduce the details of our self-adaptive data augmentation
approach, namely MetaMix, for improving robustness in
CL. Figure 2 (c) illustrates the training process of MetaMix
at time ¢. Specifically, we adopt meta-learning to learn a
set of data-dependent parameters w; and m;, which can
dynamically control the mixing weights of augmentation op-
erations and automatically adapt to the non-stationary data
distribution.

First, to memorize previous knowledge, we allocate
a small memory buffer M to store data from previous
tasks by reservoir sampling, similar to [35]. The data in
the memory buffer will be replayed later with a new task
together. Suppose we have M augmentation operations
O = {op1,0p2, -+ ,0pp } during training, CL model pa-
rameters at time ¢ are 8y, and the function represented by the
network with 8, is fg, ().

To capture the sequential dependencies among previous
tasks, we design a self-adaptive LSTM mixing strategy. The
LSTM inputs the current context information and outputs
the adaptive mixing parameters. We use an LSTM (dynamic)
model to dynamically change the mixing weights instead
of an MLP (static) model since the tasks in CL sequentially
arrive. The LSTM can encode the information of previous
tasks into an additional hidden state while the MLP can only
capture the data information of the current task. It does not
capture the information of previous tasks without the hidden
state. Formally, the LSTM adaptive process is defined as:

0111, hi11,9i41 = LSTMy, (I, hy, gt), (3)
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where ¢; is the LSTM MetaMixer parameters at time ¢, h
is the hidden state of LSTM at time ¢, g; is the cell state
of LSTM at time ¢, I, is the context information encoding
as input to LSTM at time ¢; 044 is the output of LSTM at
time ¢ + 1 for the mixing parameters, i.e., 0z41 = {w}, m}},
where m; is the mixing weight for the augmented data and
original raw data and w; are the mixing weights for different
chains in the augmentation. We apply softmax function to
w; and sigmoid function to m; to ensure they are within
[0,1] interval, i.e.,

my = Sigmoid(m}), w; = Softmax(w}). 4)

The context I; contains essential information to charac-
terize data in current and previous tasks. It is shown as:

It:{VACGt (m'm yr) : Vﬁat (mta yt), L:Ot (xrv yr); €r, et}7

(5
where (., y,) is the labeled mini-batch data sampled from
the memory buffer and (x;, y;) is the labeled data received
at time ¢. We adopt this information for several reasons:
(1) VLe, (xr,yr) - VLe, (¢, y:) is the gradient dot product
between memory data gradient and current mini-batch data
gradient. It determines the degree of interference and transfer
between memory data and current task mini-batch data. It
is commonly used in existing CL as context information
[18,35]; (2) we also input the memory mini-batch data loss,
as it indicates the degree of forgetting of previous tasks; (3)
e, and e, are data encoding for mini-batch data, x,, sampled
from memory buffer and currently received new mini-batch
data, x;, respectively. That is, e, and e; are the last layer
features outputted by ResNet-18. This determines the data-
dependent features for calculating the data-dependent mixing
weights.

Since corruption operations on testing data are unseen
during training, we cannot directly optimize the augmenta-
tion strategy for these corruptions. To make the CL model
generalize better to unseen corruptions, at each training step
t, we randomly split the augmentation operations O into
non-overlapping pseudo-seen S; and pseudo-unseen U/, op-
erations, i.e., S; UU; = O and S; NU; = (. We use the
pseudo operation sets to simulate the scenario in which train-
ing and testing corruptions have no overlap. We formulate
MetaMix as a bi-level optimization problem to make the
CL model learn to augment and mix. This ensures that the
update of model parameters 6 on the pseudo-seen set can
improve the optimization of MetaMixer parameters ¢ on
the pseudo-unseen set, which could, in turn, be beneficial
to improve the CL model generalization. We formulate the
MetaMix as the following bi-level optimization:

d)*:arg min E ‘C(wba Yb, 0*7 d))—’_)\JS(wbv :/ibh :/ibQ): (6)
@ opclly

G*Zargmin E »C(wbvyb707¢)+AJS(wbv$;zl7w;)2)7
6 opeS,

where we concatenate the mini-batch data (x,,y,) from
the memory buffer and the current received mini-batch data
(z¢,y:) together as (xp, yp); Tp1 and Tpy are the two mini-
batch data augmented by applying the pseudo-unseen aug-
mentation operations U, on (xy,ys); @;; and x}, are the
two mini-batch data augmented by applying the pseudo-seen
augmentation operations S; on (xp,y,). A is the regular-
ization constant for the consistency loss. The lower-level
optimization is to optimize the performance on the pseudo-
seen augmentation operations S; at the training step ¢; and
the upper-level optimization is to optimize the generaliza-
tion on the pseudo-unseen augmentation operations /;. This
bi-level optimization for learning to augment and mix can
be efficiently solved by first-order gradient descent method,
similar to the first-order MAML [15].

The advantage of MetaMix (Eq. (6)) over AugMix (Eq.
(2)) are two folds. First, MetaMix improves the generaliza-
tion to unseen corruptions since we split the training data
augmentation operations into pseudo-seen and unseen op-
erations. This is similar to the train-validation data split in
standard meta-learning, which improves the generalization
compared to the training without data split [39]; It could
be understood as introducing an implicit regularization so
that it can benefit from low sample complexity [39]. Second,
MetaMix can automatically adapt to the non-stationary data
distribution in CL, while AugMix can only work well in the
stationary data distribution in a single task.

Consistency Regularization To ensure the network out-
put consistency between the original raw image data and
the augmented data, we use a similar consistency loss [22]
to regularize the network output to ensure smoother neural
network responses. We hope the model to have similar re-
sponses to &y, Tp1, Tpo. We minimize the Jensen-Shannon
divergence among the posterior distributions of the original
sample x;, and its augmented variants Z; and Zps. The
consistency loss is defined as below:

Pmean = (pmb + Pzyq + p:iw)/?’ (7)
JS(QIb, :/B\bh :/ibQ) - (KL(wa ‘pmean) +KH4(p5b1 ‘pmean)
+ K]L‘(pﬁbz |pmean))/3 (8)

Where KL denotes the KL divergence between two distri-
butions. pg, = fe, () is the network output probabilities
of each class for original raw data a;. Similarly, we can de-
fine pz,, = fo,(Tp1) and pz,, = fo, (ZTp2). We summarize
our proposed algorithm in Algorithm 3. Line 5-8 takes the
context information as input and computes desired augmen-
tation mixing parameters. Line 9-11 augments the original
data with the pseudo-seen augmentation operations S; and
pseudo-unseen operations U, by Algorithm 1. Line 12 solves
the bi-level optimization problem (Eq. (6)) by Algorithm 2.
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Algorithm 1 DataMix Algorithm 3 MetaMix
1: Function DataMix (xp, we, me, V) I: REQUIRE: Augmentation Operations O =
2: MetaMix augmented images initialized as x;, = 0 {osterize,rotate, - - - , solarize}; augmentation width
3 Xorig = Ty A; augmentation depth d; the number of CL tasks N; the
4: for i = 1to A do { A is the number of augmentation chains} number of training iterations for each task 7 is Nj; memory
5: Ty = Torig buffer M; CL model parameters 8; LSTM MetaMix with
6: for! = 1toddo { disthe augmentation depth} parameters ¢; MetaMixer LSTM update steps .J; CL model
7: randomly sample operation op € V (V is the collection parameter learning rate y; regularization weight \; original

of augmentation operations) image ®orig; initial hidden state and cell state h;,g; are

8: xp = op(xp) initialized as random noise k1, g1 ~ N (0, I)
9:  end for 2: for k =1to N do

10: @+ = wi- -z 3:  fort=1to N do

11: end for 4: randomly sample mini-batch data (., y,-) from memory

12: @ = MuTorig + (1 — my)xy;
13: similar to the above procedure, we can get two different mini-
/ /
batch ¢y, T)o
14: return xp,, T;,
15: EndFunction

Algorithm 2 Bi-level Solver

1: Function Bi-level Solver(0;, ., Tv, Y, Th1, Tho, To1, To2)

2: optimize the lower-level optimization problem in Eq.
(6) by 0t+1 = 0; — 'YVG Eopes, [L(mbaybvet’d)) +
AT S (@, Ty s Tha )]

3: calculate the upper-level optimization loss function in

Eq (6) by 5(0i+17¢) = EOPQ/’L [c(wb7yb70t+17¢)) +

)\JS(wb, 53\1,1, 1/1:\172)]

= ¢

: for s =1to J do
Pop1 = @ — BV E(Ous1, &)

end for

OIS ¢’i7+1

: return 0t+1, d)t+1

10: EndFunction

4. Experiment

We evaluate the model performance for both task- and
class-continual learning. The CL models are evaluated on
the proposed benchmark for each dataset. We then describe
experiment setup, results, and ablation study.

4.1. Experiment Setup

Below, we first construct the corruption CL benchmark
and then describe the evaluation metrics, baselines, and im-
plementation details.

Corruption CL benchmark. Existing CL bench-
marks, such as Split-CIFAR10, Split-CIFAR100, and Split-
minilmageNet, are commonly used in literature. However,
each task’s training and testing data follow the same dis-
tribution for these datasets. Thus, these benchmarks are
not suitable for evaluating the corruption robustness of CL
methods. To properly evaluate the corruption robustness, we
follow the protocols [21] and create several new CL datasets.

buffer M and concatenate it with the current received
mini-batch data (z+, y:) to obtain (s, ys)

5: compute context vector I = {VLe, (xr,yr) -
vtgt (mta yt)v ‘C’et (:L'T, y?“)v €r, ei}

6: Oi+1,hit1,9141 = LSTM¢t (It7 h¢, gt)

7: generate mixing parameters: w;, m; = O¢11;

8: my = Sigmoid(my}), w; = Softmax(w})

9: randomly split augmentation operations O into non-
overlapping pseudo-seen S; and unseen U

10: T}, The = DataMix (xp, wy, my, S¢) (Algorithm 1)

11: 1, Tpe = DataMix (xp, we, mye, Uy) (Algorithm 1)

12: 0:11, di1 = Bi-level Solver (0, ¢, Tb, Yo, Th1, Tha,
1, Tpz) (Algorithm 2)

13: update memory buffer M through reservoir sampling

[35] to determine whether to store (@¢, y:)
14:  end for
15: end for

We apply 15 common corruption operations to the testing
data of the three CL benchmarks, such as snow, frost, fog, etc.
We provide a brief description for each corruption operation
in Table 5 in Appendix. We perform each corruption at five
different severity levels. Note that these corruptions only
appear on the testing dataset of each continually learned
task and are not seen in the training data of each task. This
is to ensure that we can measure the robustness to unseen
corruptions during testing for each compared method. To our
best knowledge, we build the first CL corruption benchmark
for measuring the generalization of CL models to unseen
corruptions during testing. We name these new datasets Split-
CIFAR10-C, Split-CIFAR100-C, and Split-minilmageNet-C.
Specifically, for Split-CIFAR-10-C, we split the CIFAR-
10 dataset [28] into 5 disjoint tasks, where each task has 2
classes; for Split-CIFAR-100-C, we split CIFAR-100 [28]
consisting of 100 classes into 10 disjoint tasks, where each
task has 10 classes; for Split-minilmageNet-C, we split
minilmageNet [44] that consists of 100 classes, into 10 dis-
joint tasks, where each task has 10 classes.

Evaluation Metrics. We evaluate the performance of dif-
ferent methods with average accuracy and backward transfer
at the end of CL training to measure the final performance
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and the extent of forgetting for different methods. For each
task, the accuracy for a specific corruption c is the average
accuracy over the five severity level. Suppose for task k,
ACC@ . measures the robust accuracy after applying the

corruption operation ¢ with severity level s:
ACC?S = E(mk,yk.,Tk.)ND’k"‘]I(f(Cs(wk)) = yk)v

where c,(z") is the corruption operation ¢ with severity
level s applied on 2*. The accuracy for corruption ¢ denoted
as ACC¥ is the average robust accuracy across all the five
severity levels. The overall accuracy for task k, ACC k is
the average accuracy across all corruption types, i.e.,

1
and ACC* = l > Acct.
ceC

s=5
ACCF = é > Acck,,
s=1

To measure catastrophic forgetting, we also evaluate the
backward transfer (BWT), which measures the extent of for-
getting on previous tasks after learning new ones. BWT < 0
reveals the occurrence of catastrophic forgetting on previous
tasks, and BWT > 0 indicates that learning new tasks is
helpful for previous tasks. Formally, the backward trans-
fer (BWT) is defined as: BWT = ﬁ ],zzjlvfl(RN,k —
Ry 1); where Ry i is the testing accuracy on task k after
learning on task N and Ry is defined the same as the
above mentioned ACC*. For BWT, the higher, the better.

Continual Learning Setting. We apply our proposed
MetaMix to task-continual learning (Task-CL) and class-
continual learning (Class-CL). The former provides task
identities for the CL learner to select the relevant classifier
for each example during testing, whereas the latter does not.

Baseline. Our method can be seamlessly integrated
with exiting CL methods. For illustration, we integrate
the proposed methods with SOTA memory-based methods:
DER++ [5] and CLS-ER [2]. To evaluate the effectiveness
of the proposed MetaMix, we compare it with several SOTA
data augmentation approaches originally designed for tradi-
tional supervised learning: Adversarial Training (AT) [33],
RandAugment (RA) [11], Maxup [16], DeepAugment [20],
Augmix [22]. We adapt these augmentation methods for CL
problems by applying them on the new task data and the
memory buffer data. We provide more detailed descriptions
of baselines in Appendix. Due to space limitations, we put
the experiments that integrate our proposed method with
CLS-ER in Appendix.

Implementation details. We use ResNet18 [19] as clas-
sifier for all datasets. All the other hyperparameter settings
follow from [5]. The types of corruption during testing
are not seen during training for all the compared augmen-
tation methods to evaluate the robustness against unseen
corruptions. Following [22], the augmentation operations
performed during training are autocontrast, equalize, poster-
ize, rotate, solarize, shear-x, shear-y, translate-x, translate-y.

All the above-compared data augmentation methods apply
these augmentation operations to CL baseline method to
improve robustness. The memory buffer has capacity of
500 data points by default. We average the result for 5 runs
for each experiment. We provide both mean and standard
deviation across different runs. Due to space limitations, we
provide standard deviation results in Appendix. We provide
more implementation details in Appendix.

LSTM Architecture. It has one recurrent layer with
5 hidden units. A linear layer (fully connected layer) is
appended next to the LSTM output to generate the mixing
parameters w; and m;. The LSTM only has about 20K
parameters and is negligible compared to ResNet18, which
has more than 11.22 million parameters.

4.2. Robustness of Task-CL

Task-Continual Learning In this section, we evalu-
ate the corruption robustness under task-continual learning,
where the task identifiers are provided to the CL learner dur-
ing testing. We present the results that integrate baselines
and the proposed method with DER++ [5]. Due to space
limitations, we put the experiments that integrate baselines
and MetaMix with CLS-ER [2] in Appendix.

Results. We show the results across different corruptions
and compared methods in Tables 1-2; where Avg is the av-
erage robust accuracy across all the corruptions. Due to the
space limitations, we provide the standard deviation across
different runs in Table 8 and 9 in Appendix. We also put
results on split-CIFAR10-C in Table 6 and Table 7 in Ap-
pendix. We can observe that without data augmentation, the
performance of DER++ is close to random guessing, indi-
cating that the CL model does not generalize to common
corruptions. The proposed self-adaptive MetaMix brings
significant improvement toward corruption robustness. It
outperforms the average corruption robustness accuracy of
the other models by a large margin of 2.4%, 2.6% on Split-
CIFAR100-C, and Split-minilmageNet-C, respectively. The
improvement shows the effectiveness of proposed MetaMix,
which can automatically adapt to the non-stationary data
distribution. The compared methods only use fixed stat-
ic/random augmentation methods which lack adaptation to
the non-stationary data in CL, and thus do not perform well.
Random augmentation achieves second-best results. Deep-
augment would distort the image such that they are very
different from original images. Adversarial training and
Maxup do not help much corruption robustness among the
compared methods. Adversarial training can generate sim-
ilar images compared to original images. Thus, there is a
large gap between training and testing corrupted data for
those methods adapted for CL. Maxup aims for improving
clean data performance, not designed for robust accuracy.
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Table 1. Robust accuracy of Task-CL on Split-CIFAR100-C with DER++

Method Noise Blur Weather Digital

Gauss  Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 1046 10.69 10.26 10.76 10.51 1071 10.66  10.47 1056 10.51 10.79  10.54 10.75  10.55 10.72  10.60
AT 10.36 1045 10.25 10.23 10.24 1027 1025 10.12 988 998 10.16 9.83 10.19 103 1031 10.19
RA 2677 2715 2546 27.84 2346 24.05 2599 2326 2634 3045 2795 2838 25.54  29.12 29.09 26.75
DeepAugment 11.00 11.16 10.86 11.35 11.15 1145 11.33  10.76 1046 10.59 11.10  10.57 11.20 1136 1125 11.04
Maxup 11.1 11.17  11.13 11.09 11.06  11.13 11.1 10.88 10.76 10.81 10.86  10.37 11.06 11.13  11.12 1098
Augmix 59.58  62.68 59.92 67.95 58.88 6593 67.03 6339 6393 6324 6862 63.27 65.82  66.06 64.07 64.02
Ours 61.53 65.14 61.18 70.35 61.28 68.01 68.76  66.02 66.49 66.14 71.49 66.16 68.24 6891 66.75 66.43

Table 2. Robust accuracy of Task-CL on Split-MinilmageNet-C with DER++

Method Noise Blur Weather Digital

Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 10.27  10.1 10.07 9.78 9.73  9.67 972 9.61 971 985 9.69 10.15 9.55 945 957 979
AT 9.07 924 927 9.65 9.62 9.6 948 9.7 9.10 9.01 9.2 8.38 9.54 9.56 935 928
RA 1723 1822 16.7 19.81 166 18.32 19.07 1894 17.14 1826 17.26 14.56 21.14  20.84 23.0 1847
DeepAugment 10.54  10.53  10.62 10.68 10.70  10.63 10.74 10.56 1032 10.32 1052 9.92 10.55 1041 1049 10.50
Maxup 10.4 109 10.68 10.65 9.75 1021 1025 9.62 10.12 1021 1034 109 10.2 10.16  10.07 10.30
Augmix 4345 4891 4220 53.78 49.68 59.88 51.83 5322 54.02 55.63 59.59 43.46 6135 51.34 6275 52.74
Ours 48.8 5333 43.81 59.7 53.64 62.78 56.95 56.19 57.31 56.08 62.07 41.71 63.17 49.78 64.55 55.32

Table 3. Robust accuracy of Class-CL on Split-CIFAR100-C with DER++

Method Noise Blur Weather Digital

Gauss  Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 0.75 0.75  0.88 0.75 0.86  0.77 0.68 088 096 092 075 0.96 0.78 078 079 0.82
AT 0.99 097  1.04 0.91 095 097 092 083 105 094 092 1.0 0.91 095 093 095
RA 6.22 6.3 5.67 6.25 442 454 559 525 624 772 642 6.93 5.16 6.81 7.1  6.04
DeepAugment 1.29 129 125 1.26 1.26 123 1.24 126 124 124 114 1.26 1.22 128 133 125
Maxup 1.17 1.15 1.16 1.15 1.08 1.14 1.12 1.08 1.08 1.09 1.14 1.06 1.13 1.15 1.11 1.12
Augmix 19.57  21.21 2035 26.18 19.08 25.17 2546 22.09 2243 2282 2644 2254 23.72 24.64 23.01 2298
Ours 2232 2444 2315 29.19 2213 2810 28.35 2547 252  26.08 2956 25.78 27.01 2816 25.82 26.05

4.3. Robustness of Class-CL

Class-Continual Learning. In this section, we eval-
uate the corruption robustness under the more challenging
class-continual learning setting, where the task identifiers
are unavailable to the CL learner during testing.

Results. We present the results across different corrup-
tions and compared methods on Split-CIFAR100-C in Table
3, we present the results on Split-minilmageNet-C in Table
10 in Appendix. Similar to the Task-CL, MetaMix signif-
icantly improves over the baseline augmentation methods
in Class-CL setting due to its self-adaptivity property. It
outperforms the average corruption robustness accuracy of
the other models by a large margin of 3.1%, 2.2% on Split-
CIFAR100-C, and Split-minilmageNet-C, respectively. This
is because our proposed method can automatically adapt to
the non-stationary distributions. Most compared methods do
not perform well on this challenging setup.

Due to space limitations, we put BWT results in Table 15
in Appendix. In the corruption-robustness scenario, BWT is
no longer a meaningful metric with such extreme accuracy
differences, as the significantly lower accuracy of compar-
ison methods results in much less space for further perfor-
mance variations during backward transfer.

4.4. Ablation Study and Hyperparameter Analysis

Due to the limited space, we provide (1) ablation studies;
(2) hyperparameter analyses, including A, J, f3, etc.; (3)

The effect of using LSTM vs MLP and the benefit of using
additional hidden state information from previous tasks; (4)
computation cost in Appendix.

Effect of Memory Size. We evaluate the effect of mem-
ory size with 500 and 3000, respectively. The memory size of
500 is the default setting in the above tables. We provide ex-
periment results on Split-CIFAR100-C, Split-minilmageNet-
C with memory size 3000 on task-CL and class-CL respec-
tively in Table 11, 12, 13, 14 in Appendix. In these cases,
our method significantly outperforms baselines.

5. Conclusion

This paper tackles a more challenging problem of corrup-
tion robustness in CL with non-stationary data distribution,
where the testing data distribution may significantly differ
from training data distribution with various forms of com-
mon corruptions. We propose a meta-learning framework,
MetaMix, for self-adaptive data augmentation specialized
for CL. Our proposed MetaMix can substantially improve
the model’s robustness. Comprehensive experiments on both
task- and class-CL settings demonstrate the effectiveness of
the proposed method.
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