
1.  Introduction
Tropical cyclones (TCs) can lead to significant economic damages and death tolls across TC-prone global regions 
(Rappaport, 2014). The normalized cost of hurricane damage in the United States is estimated to be $1.9 trillion 
from 1900 to 2017, with a normalized annual average of $16.7 billion (Weinkle et al., 2018). Between 1980 
and 2022, hurricane-related fatalities totaled 6,751 across the United States (NCEI,  2023). One of the most 
devastating hurricanes in the United States was Hurricane Katrina in 2005, which resulted in ∼$186 billion 
in damages (in 2022 dollars) and 1,392 deaths (Knabb et al., 2023). In 2022, Hurricane Ian caused substantial 
damage to the United States, which resulted in 156 fatalities and losses estimated at $112.9 billion (NCEI, 2023; 
NHC, 2022). These huge losses in the past may become even more substantial in the future due to climate change 
and changes in exposure and vulnerability as a result of population growth, aging infrastructure, and land devel-
opment (Dinan, 2017; Estrada et al., 2015; Pant & Cha, 2019).

Many researchers have provided evidence for stronger TCs due to climate change (Camelo et  al.,  2020; 
Emanuel, 2011; Gori et al., 2022; Holland & Bruyère, 2014; Hosseini et al., 2018; Li et al., 2023; Ting et al., 2019), 
with stronger TCs already detected in the recent historical record (Kossin et al., 2020). There has been an increase 
in the proportion of North Atlantic TCs that become major hurricanes and the proportion of TCs that intensify 
rapidly (Balaguru et al., 2018; Bhatia et al., 2019; Song, Alipour, et al., 2020; Song, Duan, & Klotzbach, 2020; 
Vecchi et al., 2021). At the same time, a signal of climate change has been detected in increased TC rainfall rates 
in some regions (e.g., Emanuel, 2017). These trends are expected to continue in the future (Knutson et al., 2020) 
with increased peak wind speeds combining with higher peak rainfall rates and higher storm surge due to sea level 
rise raising the multi-hazard threat to coastal regions (Lin et al., 2012; Marsooli et al., 2019; Mayo & Lin, 2022).

A key component to understanding the risk of hurricane-related damages is the estimation of a realistic frequency 
for hurricane events. To address this, the concept of exceedance probability (the inverse commonly referred to as 
the return period) has been widely adopted. Engineered structures such as hydraulic structures and pipe networks 
are designed based on the return period. During the past two decades, many studies explored frequency analyses 
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of meteorologic and hydrologic data (Chebana & Ouarda, 2011; Favre et al., 2004; Genest et al., 2007; Laio 
et al., 2009; Li et al., 2019, 2023; Salvadori & De Michele, 2004; Yue & Rasmussen, 2002; Q. Zhang et al., 2014; 
L. Zhang & Singh, 2006). Hurricane-related frequency analyses began with direct analyses of historical records 
(Elsner & Kara, 1997; Keim et al., 2007). Since then, various meteorologic and hydrologic data, such as wind 
speed, precipitation, flow discharge, and storm surge, have been statistically analyzed to estimate the return peri-
ods of the multiple hazards posed by hurricanes.

Univariate frequency analyses of hurricanes have been mostly based on wind speed and precipitation (Elsner 
et al., 2006; Emanuel, 2017; Emanuel & Jagger, 2010; Keellings & Hernández Ayala, 2019; Regier et al., 2022; 
Van Oldenborgh et al., 2017; Vu & Mishra, 2019). For example, Elsner et al. (2006) evaluated the return period 
of Hurricane Katrina by examining the maximum wind speeds that affected the United States from 1899 to 2004, 
and used the generalized Pareto distribution to perform the frequency analyses. Van Oldenborgh et al. (2017) 
calculated the return period of Hurricane Harvey's rainfall by applying the generalized extreme value (GEV) 
distribution to the annual maximum 3-day rainfall data in Houston, Texas. Peak discharge has also been consid-
ered as a major variable in univariate analyses. For Hurricane Harvey's flood return period estimations, McDonald 
and Naughton (2019) applied the Log Pearson III distribution and Nyaupane et al. (2018) applied the GEV to 
discharge data. However, these univariate assessments miss potentially important dependencies between hazards 
and misrepresent the likelihood of high-impact conditions (Harr et al., 2022).

In bivariate and trivariate probability estimates, copula theory is commonly used to interpret precipitation, wind 
speed, flow discharge, and storm surge data (Alipour et al., 2022; Harr et al., 2022; Latif & Simonovic, 2022; 
Meng et al., 2021; Phillips et al., 2022; Sebastian et al., 2017; Trepanier et al., 2015; Wahl et al., 2015; B. Zhang 
et  al., 2022). For example, Trepanier et  al.  (2015) examined the correlation and joint exceedance probability 
of wind speed and storm surge in Galveston, Texas, during the period of 1900–2008. Sebastian et al.  (2017) 
examined the Gulf of Mexico hurricane probabilities using copula and hourly storm surge and daily precipi-
tation data from 1900 to 2014. Harr et al. (2022) explored joint probabilities of TC rainfall and wind speeds. 
Phillips et al. (2022) applied copula to tide level and rainfall data in Florida, Georgia, and South Carolina, and 
analyzed the frequency of Hurricane Irma, which occurred in 2017. For trivariate frequency analyses, Latif and 
Simonovic (2022) examined rainfall, flow discharge, and sea level data in Vancouver, Canada, and established a 
relationship among the existing univariate, bivariate, and trivariate frequency analysis results.

While several studies have focused on TC rainfall, wind speed, and storm surge, comprehensive investigations 
into these characteristics and their dependencies using state-of-the-art analysis techniques have been limited 
(Latif & Simonovic, 2022; Ming et al., 2022). Additionally, it is challenging to find comprehensive examinations 
of spatial characteristics of multivariate hurricane frequency. Since most studies examined data from limited 
numbers of point locations or area-averaged data, it is difficult to assess the spatial distribution of hurricane 
frequency. Another limitation in the body of literature is that previous studies used point times of observations 
rather than defining events over the actual duration of hurricanes. The term “point times of observation” refers to 
specific moments when data is collected, whereas the “actual duration of hurricanes” denotes the complete time 
span in which the hurricane events occur. Due to the fact that a hurricane may not perfectly match the time of 
observation, the uncertainty of frequency analyses can be rather high. This is a major source of uncertainty iden-
tified by frequency analysis studies of rainfall events (Jun et al., 2018; Kao & Govindaraju, 2007; Lee et al., 2010; 
Yoo & Cho, 2019).

The objective of this study is to develop a framework for event-based analyses of hurricanes using three frequency 
analysis techniques: univariate, bivariate, and trivariate. We demonstrate this framework on Hurricane Ian, a 
catastrophic hurricane in September 2022 that affected a large swath of the Southeastern United States. This 
study also examines the spatial distribution of hurricane frequency through univariate and bivariate frequency 
analyses of data from over 70 weather stations (for wind speed and rainfall), stream gauges (for flow discharges) 
and tidal gauges (for sea levels) in Florida. The novelty of this study lies in three key aspects. First, it introduces 
event-based frequency analyses as a more realistic approach for assessing hurricane risks, which is known to 
be more realistic than relying on the duration of observed rainfall events (Adams & Papa, 2001; Balistrocchi & 
Bacchi, 2011; Jun et al., 2018; Yoo et al., 2016). Second, by encompassing a broader range of variables, includ-
ing rainfall, wind speed, flow discharge, and sea level, this paper offers a framework for comprehensive assess-
ments of hurricane risks. Lastly, the framework expands upon existing methodologies by incorporating various 
frequency analysis techniques (univariate, bivariate, and trivariate) consistently applied at an hourly time scale. 
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These innovative aspects allow for a deeper understanding of hurricane risks and provide more detailed insights 
into their effects.

2.  Methodology
2.1.  Framework for Hurricane Frequency Analyses

This study presents a framework to conduct two types of frequency analyses: (a) point-based; and (b) spatial. For 
the point-based analyses, we apply univariate, bivariate and trivariate analyses on a single site to estimate return 
periods. For the spatial analyses, we perform univariate and bivariate analyses on multiple sites to investigate the 
spatial distribution of hurricane frequency. Trivariate analyses are not performed for the spatial analysis due to 
lack of data on all required variables across the geographic domain, but the framework accommodates trivariate 
spatial analyses if the data are available. Figure 1 illustrates a schematic of the framework for point-based and 
spatial analyses. The application of the framework present here is for flow discharge, rainfall, wind, and sea level, 
but the framework is flexible to other pertinent variables.

To apply the event-based analyses, we use historical hourly data for flow discharge, rainfall, wind speed, and sea 
level. Annual maximum series of flood volume, peak discharge, total rainfall depth, maximum wind speed, wave 
height, and storm surge were prepared for the frequency analyses. Univariate frequency analyses are conducted 
using GEV distribution, the common choice in analyses using annual maxima approach (Alaya et  al.,  2020; 
Engeland et al., 2004; Faranda et al., 2011; Katz et al., 2002), and bivariate frequency analyses are conducted via 
copula. Trivariate frequency analyses are conducted by applying D-vine copula to sites with weather stations and 
stream gauges that are in close proximity as determined by being within the same hydrologic unit code 8 (HUC8) 
basin. In all frequency analyses, 95% confidence intervals of return periods are derived based on estimated 
parameters of the GEV within those intervals.

In the process of evaluating the return period of Hurricane Ian, we excluded the observed data in 2022 for deriv-
ing the GEV distribution and copulas. The flood volume, peak discharge, total rainfall depth, maximum wind 

Figure 1.  Schematic of the framework for point-based and spatial analyses. GEV: Generalized Extreme Value.
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speed, wave height, and storm surge of Hurricane Ian were then evaluated based on the derived GEV distribution 
and copula using all years, except for 2022. The events that occurred between September 23 and 30, 2022 (the 
hurricane period) were selected for evaluating Hurricane Ian. For example, an event already in progress at the 
time of the hurricane or an event that occurred during the occurrence period was selected as one of the represent-
ative events for Hurricane Ian.

2.2.  Selection of Annual Maximum Series

The first step of the frequency analysis is to determine annual maximum series or partial duration series of target 
time series. This study uses block maxima approach to sample annual maximum series using multi-criteria deci-
sion analyses. The annual maximum series can be chosen through the block maxima approach. This approach 
selects the event that has the greatest value within a specific period (e.g., 1 year). In contrast to the block maxima 
approach, the peak-over-threshold method samples maximum series using a specific threshold, allowing for the 
inclusion of more extreme data points. Both approaches have been widely applied in previous frequency analysis 
research (Engeland et al., 2004; Lombardo et al., 2019; Prosdocimi et al., 2015).

The advantage of the block maxima approach is that it guarantees the independence of the selected events 
(Brunner et al., 2016; Ferreir and De Haan, 2015; Tabari, 2021). By applying the block maxima approach in 
flood frequency analyses, it is possible to consider annual peak floods as independent and identically distributed 
series (Yan & Moradkhani, 2015). In addition, the use of the block maxima approach is appropriate for applying 
multi-criteria on annual maximum series selection. Several studies selected annual maximum series based on 
multi-criteria decision analyses (Kao & Govindaraju, 2007; Park et al., 2014; Yoo & Cho, 2019; Yoo et al., 2016).

2.3.  Theory of Copula

Copula is a mathematical method to derive a multivariate cumulative distribution function (CDF) based on vari-
ous marginal CDFs (Favre et al., 2004; Genest & Favre, 2007; Nelsen, 2007; Salvadori & De Michele, 2004; 
Sklar, 1959). The advantage of copula is that any type of marginal CDFs can be used to derive multivariate CDFs 
(Dupuis, 2007; Salvadori & De Michele, 2007; L. Zhang & Singh, 2007). As a result, a copula-based multivariate 
CDF can represent characteristics of the applied marginal CDF. The fundamental equation explaining the copula 
can be expressed as Equation 1.

𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝑛𝑛) = 𝐶𝐶[𝐹𝐹1(𝑥𝑥1), 𝐹𝐹2(𝑥𝑥2), ..., 𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)]� (1)

where H is the cumulative probability, C is the copula, and Fi(xi) is cumulative probability that is calculated using 
the ith marginal CDF. Equation 1 shows that the copula can be used to combine n marginal CDFs into a single 
multivariate CDF.

Copulas can be categorized into three major families: Archimedean copulas, elliptical copulas, and Marshall-Olkin 
copulas (Embrechts et al., 2001). The Archimedean and elliptical copula family are selected for our analyses 
because copulas under these categories are relatively straightforward to construct and are well-known for their 
wide range of applications in frequency analyses of hydrologic problems (Nelsen, 2007). Of the existing copulas 
under the Archimedean family, we consider the Clayton (Clayton, 1978; Equation 2), the Frank (Frank, 1979; 
Equation 3), the Gumbel–Hougaard (Gumbel (1960); Equation 4), and the Joe (Joe, 1997; Equation 5) copulas. 
For the elliptical copula, we consider the Gaussian copula (Schmidt & Stadtmüller, 2006; Equation 6). Table 1 
summarizes the bivariate CDFs of these copulas. In Table 1, θ is the parameter for copula, u1 and u2 are the cumu-
lative probabilities calculated by the marginal CDF of each pair of two target variables. In the case of 𝐴𝐴 𝐴𝐴 , it is the 
inverse function of the standard normal distribution.

Parameter θ for each copula is estimated by applying maximum likelihood estimation method (MLE) (Ko & 
Hjort, 2019; Weiß, 2011; J. Zhang et al., 2022) and estimated values are evaluated whether they are in a valid 
range. The parameter θ for the Clayton copula must be defined in [−1, ∞], except for zero, while the valid range 
for the Gumbel-Hougaard and Joe copula is [1, ∞]. The parameter θ for the Gaussian copula is valid within [−1, 
1], and Frank copula can be applied with any value of θ, except for zero.

Among these five copulas, this study selects one for the frequency analyses based on the Akaike information 
criterion (AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Stone, 1979). These two criteria 
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measure goodness-of-fit by maximum likelihood functions and penalize complexity by the number of parameters. 
The lower the AIC or BIC value, the better the fit.

This study uses R statistical package “stats” to calculate the maximum likelihood. The package utilizes the 
copula-based cumulative probability and empirical CDF as the inputs. The empirical cumulative probability of 
the given data was calculated here by computing their pseudo-observation, which is the normalized rank value.

The optimal copula determined by the lowest AIC and BIC is additionally tested with the Kolmogorov–Smirnov 
(K-S) statistic (Massey Jr, 1951). The K-S statistic is equal to the maximum absolute difference between the 
cumulative probability from copula and that from empirical equation. If the calculated K-S statistic is smaller 
than the critical value of the K-S test, the goodness-of-fit of the copula is guaranteed. For the critical value of the 
K-S test, the significance level is set to 5%. The critical value is calculated as 0.2242 for 35 years of records, and 
0.2417 for 30 years of records.

2.4.  Return Period Calculations

We use three frequency analysis methods—univariate, bivariate, and trivariate—to estimate the return period of 
a given hurricane event. The return period is the reciprocal of the exceedance probability. However, the method 
to calculate the exceedance probability depends on the method of frequency analysis.

2.4.1.  Univariate Return Period

The simplest method to calculate the exceedance probability is that of univariate frequency analysis. In this 
method, the exceedance probability can be obtained by calculating the upper area of target value in probability 
density function (PDF). Since the return period is the reciprocal of the exceedance probability, the univariate 
return period Tuni can be expressed as Equation 7.

𝑇𝑇uni =
1

1 − Pr(𝑋𝑋 𝑋 𝑋𝑋)
=

1

1 − 𝐹𝐹𝑋𝑋(𝑥𝑥)
� (7)

We use GEV distribution as the marginal PDF based on extreme value theory (Coles et al., 2001). For each vari-
able, MLE method (White, 1982) is applied for parameter estimation and K-S test for goodness-of-fit test. MLE 
method and K-S test are conducted with R package “fitdistrplus” (Delignette-Muller & Dutang, 2015).

Annual maximum series of flood volume, peak discharge, total rainfall depth, maximum wind speed, wave 
height, and storm surge are used for univariate frequency analyses. The univariate return periods are calculated 
for each variable and compared with each other. In addition, cumulative probability of these variables is used as 
the input variable in the bivariate and trivariate frequency analyses.

2.4.2.  Bivariate Return Period

This study calculates the bivariate return period based on the AND concept suggested by Yue and Rasmussen (2002) 
and Shiau (2003). Some studies have concluded that the AND return period is more reliable when it comes to 
modeling extreme events (Goel et al., 2000; Kurothe et al., 1997; Poulin et al., 2007), such as hurricanes that are 
our focus here. In the case of AND concept, the exceedance probability is calculated with the probability that both 
variables exceed target values. AND concept of return period Tbi is defined by Equation 8.

Copula Bivariate CDF Equation

Clayton 𝐴𝐴 𝐴𝐴(𝑢𝑢1, 𝑢𝑢2) =
(

𝑢𝑢−𝜃𝜃
1

+ 𝑢𝑢−𝜃𝜃
2

− 1
)−1∕𝜃𝜃  (2)

Frank �(�1, �2) = − 1
�
ln
[

1 + (exp(−��1)− 1)(exp(−��2)− 1)
exp(−�)−1

]

  (3)

Gumbel–Hougaard
𝐴𝐴 𝐴𝐴(𝑢𝑢1, 𝑢𝑢2) = exp

(

−
(

(−ln(𝑢𝑢1))
𝜃𝜃
+ (−ln(𝑢𝑢2))

𝜃𝜃
)1∕𝜃𝜃

)

  (4)

Joe 𝐴𝐴 𝐴𝐴(𝑢𝑢1, 𝑢𝑢2) = 1 −
(

(1 − 𝑢𝑢 1)
𝜃𝜃
+ (1 − 𝑢𝑢 2)

𝜃𝜃
− (1 − 𝑢𝑢 1)(1 − 𝑢𝑢 2)

𝜃𝜃
)1∕𝜃𝜃  (5)

Gaussian �(�1, �2) = ∫ Φ−1(�1)
−∞ ∫ Φ−1(�2)

−∞
1

2�
√

1− �2
exp

(

− �2 +�2 − 2���
2(1− �2)

)

dsdw 
(6)

Table 1 
Joint Cumulative Distribution Function (CDF) of Copula Models Considered in This Study
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𝑇𝑇𝑏𝑏𝑏𝑏 =
1

1 − 𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑌𝑌 (𝑦𝑦) + 𝐶𝐶(𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑌𝑌 (𝑦𝑦))
� (8)

where C(FX(x), FY(y)) is the bivariate cumulative probability calculated by the copula and FX(x) and FY(y) are the 
cumulative probabilities calculated by their marginal CDFs.

In this study, three bivariate cases are considered for the frequency analyses. The first case considers peak 
discharge and flood volume, the second case considers total rainfall and maximum wind speed, and the third 
case considers wave height and storm surge. Our framework can also accommodate exploration of other bivariate 
cases such as flood volume with maximum wind speed. However, these bivariate cases can be constructed only 
if data are available at geographically close weather stations and stream gauges and such close data points are 
seldom available. Therefore, we focus here on the three abovementioned bivariate cases.

The parameter θ is estimated for the three bivariate cases. Among four copulas, the optimal copula is selected as 
the one with the lowest AIC and BIC. Additionally, the optimal copula is verified with K-S test as explained in 
Subsection 3.2.1.

2.4.3.  Trivariate Return Period

The trivariate return period is calculated based on vine copula theory (Brechmann & Schepsmeier,  2013; In 
Joe & Kurowicka, 2011; Kraus & Czado, 2017). In vine copula theory, a joint CDF is decomposed into the 
combination of bivariate copula functions. In other words, a vine copula combines bivariate copulas to build 
a high-dimensional multivariate joint CDF. The most commonly used vine copula structures are the canoni-
cal or C-vine structure and drawable or D-vine structure (Aghatise et al., 2021; Nguyen et al., 2021; Shafaei 
et al., 2017). We use the D-vine structure to estimate the trivariate return period of hurricane events because of 
its broad range of applicability due to its higher flexibility compared to the C-vine structure (Aas et al., 2009; 
Daneshkhah et al., 2016). In addition, the D-vine structure is more effective when analyzing mutually correlated 
variables (Latif & Simonovic, 2022; Sun et al., 2020).

Based on Rosenblatt's transform (Rosenblatt, 1952), the trivariate PDF is given as:

𝑓𝑓𝑋𝑋𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓𝑌𝑌 |𝑋𝑋(𝑦𝑦|𝑥𝑥) ⋅ 𝑓𝑓𝑍𝑍|𝑋𝑋𝑋𝑋 (𝑧𝑧|𝑥𝑥𝑥 𝑥𝑥)� (9)

Here, fY|X(y|x) and fZ|XY(z|x,y) can be substituted by Equation 10 based on the theory of copula.

�� |�(�|�) = ��� ((��(�), �� (�)) ⋅ �� (�)

��|�� (�|�, �) = ���|�((�� |�(�|�), ��|�(�|�)) ⋅ ��� ((��(�), �� (�)) ⋅ �� (�)
� (10)

Combining the above equations, the trivariate PDF can be expressed as:

𝑓𝑓𝑋𝑋𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦) ⋅ 𝑓𝑓𝑍𝑍 (𝑧𝑧) ⋅ 𝑐𝑐𝑋𝑋𝑋𝑋 ((𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑌𝑌 (𝑦𝑦)) ⋅ 𝑐𝑐𝑋𝑋𝑋𝑋 ((𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑍𝑍 (𝑧𝑧))

⋅ 𝑐𝑐𝑌𝑌𝑌𝑌|𝑋𝑋((𝐹𝐹𝑌𝑌 |𝑋𝑋(𝑦𝑦|𝑥𝑥), 𝐹𝐹𝑍𝑍|𝑋𝑋(𝑧𝑧|𝑥𝑥) )
� (11)

Equation 10 is the trivariate PDF for a structure where X is in center. In the structure where Y and Z are centered, 
the trivariate PDF is determined via Equation 12.

𝑓𝑓𝑌𝑌−center(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦) ⋅ 𝑓𝑓𝑍𝑍 (𝑧𝑧) ⋅ 𝑐𝑐𝑋𝑋𝑋𝑋 ((𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑌𝑌 (𝑦𝑦)) ⋅ 𝑐𝑐𝑌𝑌𝑌𝑌 ((𝐹𝐹𝑌𝑌 (𝑦𝑦), 𝐹𝐹𝑍𝑍 (𝑧𝑧))

⋅ 𝑐𝑐𝑋𝑋𝑋𝑋|𝑌𝑌 ((𝐹𝐹𝑋𝑋|𝑌𝑌 (𝑥𝑥|𝑦𝑦), 𝐹𝐹𝑍𝑍|𝑌𝑌 (𝑧𝑧|𝑦𝑦) )

𝑓𝑓𝑍𝑍−center(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑓𝑓𝑋𝑋(𝑥𝑥) ⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦) ⋅ 𝑓𝑓𝑍𝑍 (𝑧𝑧) ⋅ 𝑐𝑐𝑋𝑋𝑋𝑋 ((𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑍𝑍 (𝑦𝑦)) ⋅ 𝑐𝑐𝑌𝑌𝑌𝑌 ((𝐹𝐹𝑌𝑌 (𝑦𝑦), 𝐹𝐹𝑍𝑍 (𝑧𝑧))

⋅ 𝑐𝑐𝑋𝑋𝑋𝑋 |𝑍𝑍 ((𝐹𝐹𝑋𝑋|𝑍𝑍 (𝑥𝑥|𝑧𝑧), 𝐹𝐹𝑌𝑌 |𝑍𝑍 (𝑦𝑦|𝑧𝑧) )

� (12)

The trivariate exceedance probability can be calculated by integrating the derived PDF with target values (x, y, 
z) as follows.

� (� > �, � > �,� > �) =

∞

∫
�

∞

∫
�

∞

∫
�

� (�, �, �)dxdydz� (13)

The trivariate return period is the reciprocal of the exceedance probability calculated in Equation 13.
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Trivariate frequency analyses are demonstrated in two cases. In the first case, we analyze the annual maximum 
series of peak discharge, total rainfall depth and maximum wind speed. In the second case, we examine the annual 
maximum series of total rainfall depth, maximum wind speed and wave height. As there are four variables to 
consider, one needs to be excluded for each trivariate analysis. To decide which variable to exclude, we calculate 
and compare their variance inflation factor (VIF). The variable with highest VIF is excluded to avoid multicol-
linearity issue (Folli et al., 2020; Lindsey & Sheather, 2010; Tay, 2017). In the first case, the flood volume has a 
higher VIF than the other three variables; hence it is omitted from the trivariate frequency analysis. In the second 
case, the storm surge has the highest VIF among the variables, so it is excluded from the trivariate frequency 
analysis.

The three variables can be composed of three D-vine structures and each structure is classified according to the 
variable located in the center. For example, structures in which the total rainfall depth, flood volume and maxi-
mum wind speed is in the center are denoted as are R-centered, Q-centered and W-centered, respectively. Figure 
S1 in Supporting Information S1 shows constructions of three D-vine structures with peak discharge, total rainfall 
depth, and maximum wind speed.

The black rectangle represents a variable and the white circle represents the copula function. That is, the 
second line, the copula, is constructed using two variables in the first line. The third line shows the conditional 
non-exceedance probabilities calculated with the copula in the second line. Then, the copula in the fourth line 
can be constructed by combining the two conditional non-exceedance probabilities; through this, the trivariate 
exceedance probability can be calculated.

The parameter θ is estimated consistent with our bivariate frequency analyses. The best copula is selected based 
on AIC and BIC. Also, the K-S test is performed with the selected copula.

3.  Study Area
We demonstrate the framework on Hurricane Ian that occurred in October 2022. Hurricane Ian gathered strength 
over the warmer-than-normal waters of the Caribbean and in an environment of abundant moisture and light 
winds. Ian tracked northward over Western Cuba as a category 3 hurricane and then continued north, intensified 
further, before making landfall south of Punta Gorda, Florida. The hurricane brought dangerous storm surge, 
meters of rain, and category 5 winds to Florida and damaged buildings, trees, and public facilities. Ian had a 
huge impact on many cities in Florida, including Orlando, Sanford, and Melbourne. In addition, numerous struc-
tures, including the Sanibel Causeway and bridge to Pine Island were destroyed by the storm surge (Baker & 
Osorio, 2022; Treisman, 2022). Despite substantial damages throughout western Cuba and across the southeast 
United States, more than 95% of the casualties occurred in Florida. Therefore, we selected Florida as a study area 
for the frequency analyses of this hurricane event.

3.1.  Data Preparation

We collected data on four variables: rainfall, flow discharge, wind speed and sea level. Local climatological data 
provided by NOAA's National Center for Environmental Information (NCEI) are used for hourly rainfall and 
wind speed (NOAA NCEI, 2017), while data provided by USGS’ National Water Information System (NWIS) 
are used for hourly flow discharge (USGS NWIS, 2016). Data provided by NOAA's National Ocean Service 
(NOS) are used for hourly sea level (NOAA NOS, 2020).

For the spatial analyses, we collected observed data from weather stations, stream gauges and tidal gauges with 
more than 30 years of record. Of the 1,411 stream gauges, 93 weather stations and 21 tidal gauges in Florida, 
only 53 stream gauges, 13 weather stations and 10 tidal gauge have sufficient data; these were chosen for our 
frequency analyses (Figure 2).

For the point-based analyses, we identified weather stations, stream gauges and tidal gauges that are: (a) located 
in area affected by Hurricane Ian; and (b) close to each other as defined by the same HUC8 basin. We found 
only two cases that meet these criteria: (a) Daytona Beach International Airport station from NOAA and Tomoka 
River near Holly Hill gauge from USGS; and (b) Key West International Airport station from NOAA and Key 
West tidal gauge form NOAA. From these stations and gauge, total rainfall depth, maximum wind speed, peak 
discharge, flood volume, wave height and storm surge for Hurricane Ian are extreme and used for the point-based 
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analyses. The distance between the first trivariate case is approximately 5.8 km, both belonging to the same HUC8 
basin, Daytona-St. Augustine Basin (HUC 03080201). The distance between the second trivariate case is approx-
imately 5.3 km, both belonging to the same HUC8 basin, Florida Bay-Florida Keys Basin (HUC 03090203).

Rainfall and wind speed data from the Daytona Beach International Airport and Key West International Airport 
stations have been observed since 1 January 1948, and flow data at Tomoka River near Holly Hill stream gauge 
have been measured since 1 October 1986. Sea level data at Key West tidal gauge have been measured since 1 
January 1943. Therefore, frequency analyses are performed using 35-year data from 1 January 1987 to 31 Decem-
ber 2021, which is their common observation period. Observed data in 2022 are excluded for frequency analyses 
and used separately to calculate the return period of Hurricane Ian.

Frequency analyses are performed for events using rainfall, wind speed, flow discharge, and sea level data. We 
define an event for each variable as follows. For rainfall, an event can be determined by the concept of inter-event 
time definition (IETD) and threshold (USEPA, 1986). This study applies 10 hr of IETD and 5 mm of threshold 
to define a rainfall event based on recommendations from previous studies (Guo & Baetz,  2007; Hassini & 
Guo, 2016). Then, each rainfall event can be characterized with its total depth and duration. The maximum wind 
speed for each event is calculated by selecting maximum hourly wind speed during the rainfall period. For flow 
discharge, we separate the baseflow for each event. The direct runoff and baseflow of the streamflow data is sepa-
rated by applying the recursive digital filter (Eckhardt, 2005). Finally, the flood event can be prepared with direct 
runoff of the flow discharge data. In the case of a flood event, both peak discharge and flood volume are used 
for the analyses. For sea level, wave height is generally considered as raw sea level and storm surge is defined 
with sea level minus astronomical tide (Quinn et al., 2014; Shimura et al., 2022; Vousdoukas et al., 2016). Thus, 
we calculate astronomical tide using harmonic constituents provided by NOAA gauges. Then, storm surge time 
series are generated by separating astronomical tide from sea level data.

The block maxima approach is applied to sample annual maximum series from rainfall events, flood events and 
sea level data. For all cases, we consider two variables for selecting annual maximum series. For the rainfall 
events, total rainfall and maximum wind speed are considered, while peak discharge and flood volume are used 
for choosing annual maximum series. Wave height and storm surge are used for choosing annual maximum series 
of sea level time series. Exceedance probability of each event is calculated using non-parametric empirical copula 
method. For a given year, the event with the highest exceedance probability is selected as the annual maximum 
event in our analyses. From 1992 to 2021, a total of 30 annual maximum series from 53 stream gauges (for peak 
flow and flood volume), 13 weather stations (for total rainfall depth and maximum wind), and 10 tidal gauges (for 
wave height and storm surge) are determined for the spatial analyses (Figure 3).

Figure 2.  Selected weather stations, stream gauges, and tidal gauges across the study area, Florida.
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Among the 53 stream gauges, the maximum flood volume during Hurricane Ian is 192.0 Mm 3, the largest volume 
in our period of record. Peak discharge of Hurricane Ian is measured as 390.7 m 3/s, the second highest after that 
of Hurricane Irma in 2017. However, the total rainfall depth, maximum wind speed, wave height and storm surge 
associated with Hurricane Ian appear to be less extreme than the flow characteristics.

Figure S2 in Supporting Information S1 illustrates the annual maximum series from 1987 to 2021 and the char-
acteristics of Hurricane Ian in Daytona Beach International airport station and Tomoka River Near Holly Hill 
stream gauge. Total rainfall depth, maximum wind speed, peak discharge, and flood volume of Hurricane Ian 
are higher than most of the historical annual maximum series. The total rainfall and maximum wind speed of 
Hurricane Ian are the second highest at Daytona Beach International airport station with 333.5 mm and 23.7 m/s, 
respectively. For peak flow and flood volume, Hurricane Ian recorded 61.9 m 3/s and 7.2 Mm 3 in Tomoka River 
Near Holly Hill stream gauge as the greatest values. Consequently, these data indicate that Hurricane Ian caused 
rare extreme wind, rain and flood conditions in this area.

Figure S3 in Supporting Information S1 displays the annual maximum series from 1987 to 2021 along with the 
features of Hurricane Ian at Key West International Airport station and Key West tidal gauge. Hurricane Ian's 
total rainfall and maximum wind speed are 167.4 mm and 21.6 m/s, respectively. For wave height and storm surge, 
Hurricane Ian recorded as 2.9 and 1.9 m at Key West tidal gauge. The maximum wind speed in Key West is the 
second highest, and both wave height and storm surge are also the second highest on record. As a result, this infor-
mation shows that Hurricane Ian also generated extreme wind, rainfall, and sea level conditions in near Key West.

4.  Results
4.1.  Univariate Frequency Analyses

The procedure of applying univariate frequency analysis is demonstrated using data from Daytona Beach Interna-
tional Airport weather station and Tomoka River Near Holly Hill stream gauge. Annual maximum series of four 
independent variables—total rainfall, maximum wind speed, flood volume and peak discharge—are constructed 
and fit with the GEV distribution.

Table S1 in Supporting Information S2 shows the parameters of GEV distribution estimated for each variable and 
p-value of the K-S test. In Table S1 in Supporting Information S2, p-values of all variables are >0.05, suggest-
ing that GEV distribution is statistically significant (5% significance level). Figure 4 shows the histogram and 
the fitted GEV of the four variables. In Figure 4, the overall shape of the GEV for each variable is visually well 
aligned with the histogram and the difference of their peak relative frequency is less than 10% of the peak value 
of the fitted GEV distribution.

Since the return period in the univariate frequency analysis method is the reciprocal of exceedance probability, the 
return period is calculated with the GEV distribution in Figure 4. First, the total rainfall during Hurricane Ian is 
333.5 mm and the exceedance probability is calculated as 0.0255, suggesting a return period of 39.2 years, with a 
95% confidence interval ranging from 34.1 to 45.0 years. Following the similar procedure for maximum wind speed, 
peak discharge, and flood volume, the return periods are calculated as 77.3 years, 60.2 and 85.2 years, respectively. 
The 95% confidence interval ranges are 54.2–110.1 years, 55.6–65.0 years and 82.1–88.3 years, respectively.

This procedure is repeated for the 53 stream gauges, 13 weather stations, and 10 tidal gauges for the spatial analyses. 
For all these stations, GEV distribution is confirmed to be a valid choice based on K-S test (0.05 significance level). 
Figure 5 shows the results of univariate frequency analyses from all weather stations, stream gauges and tidal gauges.

In Figures 5a and 5b, the spatial distribution of return period is different for peak discharge and flood volume. 
The derived return periods for flood volume are much shorter than those from peak discharge. The spatial average 
of the return period for peak discharge is 24.2 years, while it is 10.4 years for flood volume. In the case of peak 
discharge, stream gauges with a high return period (>30-year) show spatial patterns similar to the reported path 
of Hurricane Ian. However, the spatial pattern from the results of flood volume is unclear and inconsistent with 
the reported path of Hurricane Ian.

The spatial patterns of return periods from the total rainfall and maximum wind speed are also not consistent with 
each other. For total rainfall depth, the spatial average of return period is 7.1 years, whereas it is 11.0 years for 
maximum wind speed. In addition, it is common for weather stations to have large differences between the two 
return periods. For example, in Key West Naval Air weather station, the return period calculated by total rainfall 
depth is 8.5 years, whereas that calculated by the maximum wind speed is 43.4 years. Similarly, the return period 
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Figure 3.  Boxplots derived by annual maximum series from 53 stream gauges, 13 weather stations, and 10 tidal gauges.
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calculated by total rainfall depth at Orlando International Airport station is only 10.7 years, while the return 
period calculated by maximum wind speed is 33.8 years.

In contrast to other cases, the return periods for wave height and storm surge show similar spatial patterns as each 
other. In the case of wave height, the spatial average of return period is 25.2 years, while it is 18.6 years for storm 
surge. Hurricane Ian predominantly affected the area around Fort Myers. Additionally, the return period of both 
wave height and storm surge near Key West and Jacksonville are calculated to be >10 years.

Even though the analyses are for the same hurricane, return periods are very different depending on the selected 
variable. This is the major limitation of univariate frequency analyses that has been identified in previous studies 
too (Balistrocchi et al., 2017; Muthuvel & Mahesha, 2021; Xiao et al., 2009; Yin et al., 2018).

4.2.  Bivariate Frequency Analyses

The bivariate frequency analyses are demonstrated using the same data from Daytona Beach International Airport 
weather station and Tomoka River Near Holly Hill stream gauge. Figure 6 shows scatter plots of two bivariate 
cases from the selected weather station and stream gauge. In this figure, the peak discharge and flood volume 

Figure 4.  Histogram and probability distribution of (a) total rainfall depth, (b) maximum wind speed, (c) flood volume, and (d) peak discharge.
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show a strong positive correlation, while maximum wind speed and total rainfall depth have rather a weak posi-
tive correlation. For those bivariate cases, parameter estimation is performed for copula candidates by applying 
MLE. Table 2 summarizes the results of parameter estimation with AIC and BIC.

Among the four copulas, we select the best copula based on AIC and BIC (Table 2). It is found that Clayton 
copula has the lowest AIC and BIC for peak discharge and flood volume case (AIC < −120 and BIC < −116). In 

Figure 5.  Univariate return period calculated across the study area based on: (a) peak discharge, (b) flood volume, (c) total rainfall depth, (d) maximum wind speed, (e) 
wave height, and (f) storm surge.
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the case of maximum wind speed and total rainfall, the Clayton copula is the one with the lowest AIC and BIC 
(AIC < −46 and BIC < −42).

The selected copula is further tested with the K-S statistic to evaluate the goodness-of-fit. Figure S4 in Supporting 
Information S1 is the scatter plot indicating the cumulative probability calculated by the empirical copula and 

the optimal copula. In Figure S4 in Supporting Information S1, dotted lines 
represent the critical value to examine the goodness-of-fit of copula. The crit-
ical value is calculated as 0.2242 for 35 years of records. All the points from 
the two bivariate cases are found to be within the upper and lower limits of 
the K-S test, suggesting that all selected copulas are statistically significant.

Finally, the bivariate return periods of Hurricane Ian are calculated with 
the verified copula. Figure  7 shows the scatter plot and results of bivari-
ate frequency analyses across the study area. This figure provides us with a 
better understanding of how extreme Hurricane Ian was. Our analyses show 
that Hurricane Ian has a return period of >500 years in both cases, which 
are calculated as 824.1 and 1,592.6  years, respectively. Their 95% confi-
dence intervals are computed as 737.4–918.6 years and 974.5–2,593.3 years, 
respectively. In addition, Figure 7b demonstrates the advantage of bivariate 
frequency analyses over univariate analyses. In Figure  7b, there are cases 
where the total rainfall or maximum wind speed is greater than that of Hurri-
cane Ian. However, when both variables are considered, the return period of 
Hurricane Ian is calculated to be the longest by far. Uncovering these latent 
characteristics of hurricanes cannot be achieved through univariate analyses 
alone.

Figure 8 shows the spatial distribution of the estimated bivariate return peri-
ods across the study area using annual maximum series from the 53 stream 
gauges, 13 weather stations and 10 tidal gauges. The path of Hurricane Ian 
is more apparent in Figure  8 compared to the map based on the univari-
ate results (Figure 5). The bivariate return period map enables us to identify 
areas that are affected by hurricanes at various return periods. As an example, 
the return periods at Tampa are relatively low compared to the area south 
of Tampa to Orlando and Daytona Beach where many weather stations and 

Figure 6.  Scatter plots of two cases for bivariate frequency analyses: (a) peak discharge–flood volume, and (b) maximum wind speed–total rainfall depth. Open circles 
show the annual maximum series from 1987 to 2021. These are based on data from Daytona Beach International Airport weather station and Tomoka River Near Holly 
Hill stream gauge.

Bivariate case

Peak 
discharge 
& flood 
volume

Maximum 
wind speed 

& total 
rainfall 
depth

Parameter estimation Parameter θ Gumbel 3.887 1.412

Clayton 5.723 0.937

Frank 15.672 2.982

Joe 4.345 1.550

Gaussian 0.933 0.501

Comparison of fitness AIC Gumbel −114.0 −44.1

Clayton −120.8 −46.9

Frank −111.2 −44.2

Joe −106.6 −44.6

Gaussian −116.7 −44.4

BIC Gumbel −109.3 −39.4

Clayton −116.1 −42.2

Frank −106.5 −39.5

Joe −101.9 −40.0

Gaussian −112.0 −39.7

Table 2 
Parameter Estimations, AIC, and BIC for Bivariate Frequency Analysis 
Cases, Based on Data From Daytona Beach International Airport Weather 
Station and Tomoka River Near Holly Hill Stream Gauge
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stream gauges reported high return periods (>30 years). In addition, bivariate return period of tidal gauges near 
Fort Meyers are much higher than 30 years. Interestingly, bivariate return period >30 years is also found in 
weather stations near Key West, because of their high maximum wind speed. The number of weather stations, 
stream gauges and tidal gauges with return periods longer than 30 years is 27 and the spatial average return period 
of these is 206.9 years.

4.3.  Trivariate Frequency Analyses

Peak discharge, total rainfall depth, and maximum wind speed from Daytona Beach International Airport station 
and Tomoka River Near Holly Hill gauge are used here to demonstrate the trivariate frequency analysis. The 
analyses are conducted with R-centered, Q-centered, and W-centered D-vine structures. Table S2 in Supporting 
Information S2 shows the estimated parameters, selected copula and K-S test results used for copula construction 
for each of the three D-vine structures.

Figure 7.  Scatter plots and contours of bivariate return period based on two pair cases: (a) peak discharge–flood volume and 
(b) maximum wind speed–total rainfall. These are based on data from Daytona Beach International Airport weather station 
and Tomoka River Near Holly Hill stream gauge.

Figure 8.  Return period map with bivariate return period from the peak discharge and flood volume of stream gauges 
(indicated by circles), total rainfall depth and maximum wind speed of weather stations (indicated by triangles) and wave 
height and storm surge of tidal gauges (indicated by squares).
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The return periods via the trivariate frequency analyses are derived using the constructed copulas and D-vine 
structure. The return period varies strongly by structure of D-vine tree. When R is centered, the trivariate return 
period is 332.1  years. The Q-centered return period was 896.48  years, while W-centered return period was 
1722.9 years. The 95% confidence intervals for them are calculated to be 216.8–576.0 years, 537.4–1232.8 years, 
and 866.0–3602.2 years, respectively.

It is found that all trivariate return periods of Hurricane Ian are greater than 300 years. In addition, trivariate 
return periods follow the same rank order as the univariate return period for the variable located in the center. For 
example, the variable with the greatest univariate return period is the maximum wind speed, and the W-centered 
trivariate return period is also the greatest. The lowest return period is also found from the total rainfall case of 
the univariate analyses and R-centered structure of the trivariate analyses.

4.4.  Spatial Pattern of Hurricane Ian's Return Period

The spatial pattern of the return period of Hurricane Ian is generated by averaging the results of our bivariate 
frequency analyses. We use HUC8 boundaries as the base map for hurricane return period map. For each HUC8 
basin, the average of bivariate return period is calculated using stream gauges or weather stations or tidal gauges 
located in that area. Figure 9 shows the hurricane return period map based on the results of bivariate frequency 
analyses.

Among the 50 HUC8 basins in Florida, nine basins have an average return period >30 years, while 19 basins 
have an average return period of <20 years. Orlando is the only large population center with a high average return 
period (>30 years). Other large population centers—Jacksonville, Tampa, and Miami—are located in counties 
with lower average return periods (<20 years).

The Sarasota Bay Basin has a bivariate return period of 14.4 years, even though it is in the path of Hurricane Ian. 
This is due to the low univariate return period of peak discharge variable, which is only 2.1 years and is likely 
not representative of the multivariate return period. If we were able to analyze rainfall and wind characteristics 
for this basin, we would likely determine a longer return period. Unfortunately, there are no weather stations in 
this basin with at least 30 years of observations. This indicates the importance of multivariate frequency analyses 
considering rain, wind speed, and flood variables together.

Figure 9.  Hurricane Ian's return period map based on the average of three bivariate frequency analysis cases.
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5.  Discussion
5.1.  Comparisons of the Estimated Return Periods and Interpretations

This study conducts a comparative analysis of point-based return periods within two specified basins—the 
Daytona-St. Augustine basin and the Florida Bay-Florida Keys Basin. The results of the three frequency analy-
sis methods—univariate, bivariate and trivariate—are compared and their implications are discussed. Figure 10 
summarizes all return periods and their 95% confidence intervals of Hurricane Ian calculated by applying the 
three frequency analysis methods. In Figure 10, the terms R-centered, Q-centered, W-centered, and H-centered 
refer to the configuration of trivariate analysis structures where R, Q, W, and H is positioned at the center.

Figure 10 shows a large variability in the return period estimates depending on the frequency analysis method and 
the selected variable(s). It should be noted that the results from different frequency analysis methods—univariate, 
bivariate, or trivariate—are not directly comparable (Serinaldi, 2015; Volpi et al., 2015) because the values of 
return period are significantly dependent on the applied methodology. However, by comparing their magnitudes 
depending on the selected variable(s) in the same frequency analysis method, we can gain a fuller picture of the 
characteristics and implications of the estimated return periods.

First, the results of Daytona-St. Augustine Basin show that selection of flood volume led to the greatest return 
period (85.2  years) in the univariate frequency analysis method. However, pairing this variable with peak 
discharge does not lead to the greatest return period estimated through bivariate frequency analyses. In the case 
of bivariate frequency analysis method, the combination of total rainfall depth and wind speed yields the greatest 
return period (1,592.6 years). In other words, the estimated return period of Hurricane Ian via the combination 
of total rainfall depth and maximum wind speed leads to more conservative return period than using the two 
flood variables. Further, the trivariate frequency analyses indicate that Hurricane Ian had an extremely high wind 
speed, with the greatest return period in the case of a W-centered structure (using maximum wind speed as the 
central variable).

The results of Florida Bay-Florida Keys Basin show that the return period of total rainfall depth is the lowest 
(7.5 years) in the univariate frequency analysis method. However, its combination with maximum wind speed 
yields to the greatest bivariate return period as 114.9 years, because of the greatest univariate return period of 
maximum wind speed (32.9 years). Additionally, the trivariate frequency analyses reveal that Hurricane Ian had 
an exceptionally high wind speeds, with the greatest return period in the case of a W-centered structure (using 
maximum wind speed as the central variable).

Figure 10.  Comparison of univariate, bivariate, and trivariate return periods of Hurricane Ian in (a) Daytona-St. Augustine 
Basin and (b) Florida Bay-Florida Keys Basin. Q, V, W, R, H and S represent peak discharge, flood volume, maximum wind 
speed, total rainfall depth, wave height and storm surge.

uncor
rec

ted
 proo

f



Water Resources Research

CHO ET AL.

10.1029/2023WR034786

17 of 24

According to the comparison of confidence intervals, the intervals become wider as more variables are consid-
ered for the frequency analyses. For univariate, bivariate, and trivariate analyses, the average length of the confi-
dence intervals is 20.6 years, 900.0 years, and 1263.6 years from the results of Daytona-St. Augustine Basin. 
The results of Florida Bay-Florida Keys Basin also have 10.3 years, 80.2 and 355.9 years of average length of 
the confidence intervals for univariate, bivariate, and trivariate analyses. It is important to note that bivariate and 
trivariate analyses yield great return periods, but their uncertainty is also high. It may also be referred to as the 
uncertainty caused by the limited years (35 years) of historical data, which is much shorter than the calculated 
return periods from the bivariate and trivariate analyses.

Furthermore, it is found that the confidence intervals including maximum wind speed are wider than other inter-
vals in both the Daytona-St. Augustine Basin and Florida Bay-Florida Keys Basin. For example, among the results 
of the univariate frequency analyses, the length of the confidence interval for wind speed is the widest (55.9 and 
15.1 years). The confidence interval for the bivariate case with maximum wind speed (1,618.8 and 138.2 years) 
is much wider than the other case (181.2 and 22.2 years). In our trivariate frequency analyses, W-centered results 
have the widest confidence interval (2736.2 years and 684.3 years). Although the maximum wind speed clearly 
shows the extremes of Hurricane Ian, the results with that data are subject to the highest level of uncertainty.

This study has demonstrated the high sensitivity of return period to the type of analysis and the combination of 
hurricane hazard variables included. This raises the broader question of which method is more suitable or reliable 
for risk management. Answering this question would necessarily involve study of the specific information needs 
and decision-making contexts of risk managers. For example, insurance companies that only insure wind losses 
may focus on univariate wind risk, whereas emergency managers may desire inclusion of flood measures, both 
surge and inland flooding. The important interdisciplinary work required to understand the societal integration of 
the multiple analysis methods presented here is recommended for future research.

Our method is complementary to existing approaches to risk quantification. FEMA, for example, uses a variety 
of risk assessment tools to quantify hurricane risk with emphasis on wind and flood. FEMA's Hazus Hurricane 
Model, for example, represents a class of risk assessment models that quantifies primarily hurricane wind risk 
based on large samples of synthetic hurricane events (FEMA, 2022). These synthetic events are based on large 
Monte Carlo sampling of historical data to generate robust return periods. While our approach is based on a small 
observational data size and may suffer from larger uncertainty bounds, our method includes additional hurricane 
risk variables in a manner that retains physical consistency between all considered hurricane variables.

To demonstrate how our results compare with an existing risk assessment, we provide here a comparison of rain-
fall with the NOAA Atlas 14 point precipitation frequency estimates (Perica et al., 2013). First, at Daytona Beach 
International Airport weather station, total rainfall depth and duration are 333.5 mm and 43 hr, respectively, 
during Hurricane Ian period. According to by Perica et al. (2013), the return period for this event, was estimated 
to be from 50 to 100 years when considering a fixed duration of 48 hr. In contrast, our univariate return period 
is calculated to be 39.2 years. Second, the rainfall event is characterized by a 52-hr duration and a 167.4 mm 
total rainfall depth at the Key West International Airport weather station. Perica et al. (2013) provided its return 
period from 2 to 5 years when using a fixed duration of 48 hr, while our univariate return period is calculated as 
7.5 years. It should be noted that the rainfall duration at the Daytona Beach International Airport weather station 
(43 hr) is shorter than the fixed duration provided by NOAA (48 hr), while the duration in Key West International 
Airport weather station (52 hr) is longer than NOAA's fixed duration (48 hr). Consequently, a direct and accurate 
comparison between our results and estimates by Perica et al. (2013) is not possible due to these differences in 
rainfall duration. This highlights the primary limitation of the existing method, which does not offer continuous 
rainfall durations for estimating return periods.

In addition, we are not aware of any prior studies that estimate Hurricane Ian's return period. Thus, we compare 
our results with those by previous studies estimating the return period of major hurricanes, which have the 
same wind speed-based category as Hurricane Ian (category 5). Hurricane Katrina's return period was estimated 
<100 years (Elsner et al., 2006; Grinsted et al., 2012; Parisi & Lund, 2008) based on univariate frequency anal-
yses on wind speed, central pressure and storm surge. Its return period was also calculated to exceed 100 years, 
112.4 years by Needham et al. (2012) and 111.0 years Resio et al. (2009) based on univariate frequency analyses 
on storm surge. Another category 5 hurricane, Hurricane Maria's return period was also estimated as 115 years by 
Keellings and Hernández Ayala (2019) based on univariate frequency analyses on precipitation. The return period 
of Hurricane Irma ranged from 110 to 283 years (Bacopoulos, 2019) based on univariate frequency analyses on 
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sea levels. Although most return period estimates were <1,000 years, there were cases where even a Category four 
hurricane, like Hurricane Harvey, had an estimated return period >1,000 years (Nyaupane et al., 2018; Sebastian 
et al., 2017) based on univariate frequency analyses on peak discharge and precipitation, and >9,000 years (van 
Oldenborgh et al., 2017) based on univariate frequency analyses on precipitation. These discrepancies are caused 
by unique physical mechanisms of each hurricane and the frequency analysis method. Given the wide range of 
return period estimated for hurricane event, our results for Hurricane Ian can be considered valid within this 
context.

5.2.  Limitations and Future Research

The granularity of the spatial analyses is limited by the scarcity of weather stations, stream gauges and tidal 
gauges for the multivariate frequency analyses. Among the 53 stream gauges, 13 weather stations and 10 tidal 
gauges considered here, there are only two cases that can be coupled for the multivariate analyses. Other gauges 
and stations are not affected by Hurricane Ian or are not located in the same HUC8 basin. This hinder us from 
performing comprehensive spatial trivariate frequency analyses. Further applications of the framework can 
extend to other datasets beyond our study area to conduct additional trivariate frequency analyses. However, the 
presented trivariate analyses for the case of Daytona Beach and Key West can serve as an example for hurricanes 
in other locations where such data are available. Our goal here was to demonstrate the approach with the expec-
tation of further verification and development as the number of additional analyses increases.

Another limitation of this study is that it does not consider other environmental compounding factors of hurricane 
risk beyond rainfall, wind speed, flow discharge and sea level. These factors, such as groundwater (which is very 
shallow in most of South Florida that was impacted by Hurricane Ian) should be analyzed alongside rainfall, wind 
speed, flow discharge and sea level. We were not able to incorporate these variables because of a lack of readily 
available data.

As a future study, various combinations of bivariate analyses can be calculated and compared. In fact, there are 
three combinations of bivariate cases with the six independent variables considered here. In addition, there are 
other concepts of bivariate return period other than AND concept, such as OR concept, conditional concept, and 
survival Kendall's return period (Salvadori et al., 2013). Since the authors are not aware of prior work estimating 
return period of hurricanes with these various concepts, it would be novel to conduct research to compare them 
with our framework.

The presented approach to estimate the return period of a hurricane event is based on the assumption of a station-
ary climate. As discussed earlier, climate change and subsequent changes in weather patterns and sea levels are 
driving nonstationary behavior. Addressing this issue, Bracken et al. (2018) conducted nonstationary multivar-
iate hydrologic frequency analyses, which focused on temporal changes and complex interdependencies among 
hydrologic variables. Other researchers also applied nonstationary frequency analysis methods (e.g., Kwon & 
Lall,  2016; Obeysekera & Salas, 2016; Villarini et  al.,  2009). To improve our framework, this nonstationary 
frequency analysis method can be incorporated in future study.

Another future study will be to develop hurricane hazard indices based on the results of our frequency analyses. 
For example, Rezapour and Baldock (2014) developed a hurricane hazard index that estimated hurricane severity 
by considering factors such as wind, rainfall, and storm surge characteristics. Additionally, Song, Alipour, 
et al. (2020) and Song, Duan, and Klotzbach (2020) introduced a multi-hazard hurricane index based on the joint 
probability of rainfall and wind speed associated with Atlantic tropical cyclones in the US. Using our univariate, 
bivariate, and trivariate frequency analysis methods, an advanced hurricane hazard index may be developed, 
which would provide a comprehensive, relevant, and accurate assessment of hurricane-related risks.

Finally, our frequency analyses on historical data are not constrained to only include hurricane conditions. 
Particularly, in years without a hurricane event at a given location, the annual maximum values may be 
contributed by other weather systems such as strong frontal passages. Since the return period of Hurricane 
Ian is estimated using these annual maximum series, there may be uncertainties associated with these factors. 
The data distribution shapes may be dependent on the contributing weather systems. This presents an oppor-
tunity to combine our statistical framework with an understanding of the driving physical processes to build 
new frequency analysis methods to better quantify and understand the return periods. New methods may 
also consider incorporating physical constraints to the fitted distributions to better inform tail behavior in 

uncor
rec

ted
 proo

f



Water Resources Research

CHO ET AL.

10.1029/2023WR034786

19 of 24

the absence of long data records. The data scarcity problem may also be approached through the inclusion 
of large synthetic hurricane datasets such as provided for wind by the Synthetic Tropical cyclOne geneRa-
tion Model (STORM; Bloemendaal et al., 2020) and for rainfall by the TC rainfall model (Lu et al., 2018). 
Harr et al. (2022) demonstrated the value of using such large synthetic datasets for bivariate hurricane risk 
analyses.

6.  Summary and Conclusions
This study developed and proposed a new framework for calculating multivariate return periods of hurricanes 
using event-based approach. The point-based and spatial analysis of Hurricane Ian was conducted to verify the 
applicability of the proposed framework. Using GEV and copula, we performed univariate, bivariate, and trivari-
ate frequency analyses on annual maximum series of flood volume, peak discharge, total rainfall depth, maximum 
wind speed, wave height and storm surge. For point-based analyses, this study selected representative two cases 
and annual maximum series from 1987 to 2021 were analyzed. In the case of spatial analyses, annual maximum 
series from 1992 to 2021 were secured from 53 stream gauges, 13 weather stations and 10 tidal gauges, which 
are all located in Florida.

The novelty of this study can be summarized as follows. First, our research presents event-based frequency analy-
ses for assessing hurricane risks, providing a more realistic perspective compared to conventional methods which 
rely on the point times of observation. Second, by encompassing a broader range of variables, such as precipi-
tation, wind speed, flow discharge and sea level, our approach offers a comprehensive assessment of hurricane 
risks. Third, our framework expands upon existing methods by incorporating various frequency analysis method 
(i.e., univariate, bivariate and trivariate analyses method) and consistently applying these approaches at an hourly 
time scale. This innovation allows for a deeper understanding of hurricane risks and more detailed insights into 
its effects. The notable conclusions of this study can be summarized as follows.

1.	 �This study demonstrated that the framework of event-based frequency analyses can be employed to calculate 
the multivariate return periods of hurricane events. As part of this framework, block maxima methods were 
applied to sample annual maximum series. After that, GEV distribution, general copula and D-vine copula 
were used for return period calculation. Using this framework, multivariate return periods and their maps for 
Hurricane Ian can be derived.

2.	 �Through point-based analyses, our framework was shown to be applicable for the calculation of multivariate 
return periods. In the Daytona-St. Augustine Basin, univariate return periods were calculated from 39.2 to 
60.2 years. Bivariate return periods for this basin were estimated from 824.1 to 1592.6 years, while trivariate 
return periods ranged from 332.1 to 1722.9 years. In the Florida Bay-Florida Keys Basin, univariate return 
periods were estimated from 7.5 to 32.9 years. Bivariate return periods for this basin ranged from 36.5 to 
114.9 years, and trivariate return periods were calculated from 25.0 to 214.8 years.

3.	 �Through the framework of spatial analyses, we were able to generate a new return period map for Hurricane 
Ian. In these analyses, the return period map of Hurricane Ian was created based on the results of bivariate 
frequency analyses. Among the 50 HUC8 basins in Florida, nine had an average return period of >30 years, 
while 19 basins had an average return period of <20 years. Orlando was the only large city with the average 
return period of >30 years.

Based on our results, it can be shown that multivariate return periods and return period maps can be generated 
using the proposed framework. However, we also identified several sources of uncertainty. First, the length of the 
data for point-based analyses was 35 years, which is much lower than the calculated return periods from bivariate 
and trivariate analyses. Additionally, the framework for estimating the return period of a hurricane event is based 
on the assumption of stationarity, which is another source of uncertainty. Furthermore, there is a possibility that 
other weather systems may affect the annual maximum series used to estimate Hurricane Ian's return period.

Nevertheless, we believe that the results of this study provide disaster responders and managers with valuable 
insights and useful information. The new hurricane return period map can be useful for disaster response and 
recovery efforts. Emergency response personnel and managers, such as FEMA and state emergency management 
departments in the United States, will be able to use the map to prioritize response efforts. Our results may also 
help climate resilient finance by providing return period maps to help financial risk managers understand their 
losses and exposures to future events.
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Data Availability Statement
Hourly rainfall and wind speed data provided by NOAA's NCEI is available at: https://www.ncdc.noaa.gov/
cdo-web/datasets/LCD/locations/FIPS:12/detail.

Hourly flow discharge data (streamflow) provided by USGS’ NWIS is available at https://waterdata.usgs.gov/
nwis/uv?referred_module=sw&state_cd=fl&format=station_list&group_key=NONE.

Hourly sea level data (mean sea level) provided by NOAA's NOS is available at https://tidesandcurrents.noaa.
gov/map/index.html?region=Florida.
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