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This paper presents a novel approach for the safe control design of systems with parametric uncertainties in
both drift terms and control-input matrices. The method combines control barrier functions and adaptive laws
to generate a safe controller through a nonlinear program with an explicitly given closed-form solution. The
proposed approach verifies the non-emptiness of the admissible control set independently of online parameter
estimations, which can ensure that the safe controller is singularity-free. A data-driven algorithm is also
developed to improve the performance of the proposed controller by tightening the bounds of the unknown

parameters. The effectiveness of the control scheme is demonstrated through numerical simulations.

1. Introduction

Control barrier functions (CBFs) have been recently proposed as
a systematic approach to ensure the forward invariance of control-
affine systems [1,2]. By including the CBF condition into a convex
quadratic program (QP), a CBF-QP-based controller can act as a safety
filter that modifies potentially unsafe control inputs in a minimally
invasive fashion. However, most existing CBF works require precise
model information, which is often challenging to obtain. Robust CBF
control methods have been proposed to address this issue, ensuring
safety in the presence of bounded model uncertainties [3-7]. Never-
theless, the design of a robust CBF controller relies on the bounds
of the uncertainties or the Lipschitzness of the unknown dynamics,
making it difficult to handle parametric uncertainties that are generally
unbounded.

Adaptive control aims to achieve stabilization or desired tracking
performance for uncertain dynamic systems through an adaptive law,
and has been extensively studied in the past decades [8-12]. Most
adaptive control strategies are based on uncertainty parameterization
and the certainty equivalence principle, which means that the es-
timated parameters are used as if they are the true parameters in
the feedback control design. For uncertain nonlinear systems in some
canonical forms, many adaptive control design techniques have been
developed using feedback linearization [13,14], backstepping [10,15],
or averaging [16,17]. A summary of the fundamental theoretical con-
cepts and technical issues involved in multivariable adaptive control is
documented in [18], and a historical overview of adaptive control and
its intersection with learning is provided in [19].

Inspired by the idea of adaptive control Lyapunov functions (aCLFs)
[20], the adaptive CBF (aCBF) approach, which estimates the unknown
parameters online to guarantee the safety of control affine systems with
parametric uncertainties via a QP-based safe controller, is first proposed
in [21]. In contrast to the aCLF-based stabilizing controller design, the
aCBF-based safe control design is more challenging partially because
the forward invariance of a predefined safe set must be ensured for all
time and aCBFs do not have the positive definiteness property possessed
by aCLFs. Following the pioneering work of [21], various aCBF-based
control methods are developed in the literature [22-31] and applied to
several practical scenarios, such as adaptive cruise control [21], aircraft
control [22], control of wing rock motion [29], and control of unicycle
vehicles [31]. Most of these works only take into account parametric
uncertainties in the drift term, while there are many physical systems
that have parametric uncertainties in the control-input matrices, such
as robotic systems with imprecise or time-varying mass and inertia pa-
rameters. In [30], a filtering-based concurrent learning algorithm in the
CBF framework is proposed to design safe controllers for single-input-
single-output systems with unknown control coefficients; the estimated
parameter converges to the true value exponentially, but system safety
is not guaranteed before the convergence of the parameter adaptations.
In [31], a zeroing CBF-based adaptive control algorithm is proposed to
solve the funnel control problem for systems with parametrically uncer-
tain control-input matrices, which can achieve tracking of a reference
trajectory within a pre-defined funnel; however, this method may fail in
singular configurations, as discussed in Remark 1 of that paper. Despite
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Fig. 1. Main results of this paper.

these early contributions, the aCBF-based control design for systems
with parametric uncertainties in control-input matrices is still an open
field and merits further investigation.

Consider a control-affine system x = f(x)+ g(x)u where f, g include
parametric uncertainties (e.g., f/ and g are identified by universal ap-
proximators such as neural networks). The main challenge of stabilizing
such a system using adaptive controllers arises from the so-called “loss
of controllability” problem; that is, although the system is controllable,
the identification model may lose its controllability at some points in
time, owing to parameter adaptations [11,32]. The same issue could
happen in the aCBF-based control design, which will result in the empti-
ness of the admissible safe control set and therefore, the infeasibility of
the QP. To the best of our knowledge, the singularity-free aCBF-based
safe controller is not yet developed in the literature, though relevant
stabilizing adaptive control schemes have been proposed in [10,11,32,
33]. To bridge this gap, this paper proposes a singularity-free aCBF-
based control design method for systems with parametric uncertainties
in both f and g. In contrast to the existing results (e.g., the approach
developed in [31]) where the safety constraints (i.e., the CBF condi-
tions) include estimated parameters, the CBF condition of the proposed
method only relies on the nominal values of the unknown parameters.
Hence, the non-emptiness of the admissible safe control set can be
verified in advance, and the singular configuration can be avoided.
The safe control is obtained by solving a nonlinear program (NLP),
which has a closed-form solution. Furthermore, a data-driven approach
is developed to reduce the potential conservatism of the proposed
controller by tightening the parameter bounds. The effectiveness of the
proposed control strategy is demonstrated by numerical simulations.
Main results of this paper are shown in Fig. 1.

The rest of this paper is structured as follows. In Section 2, in-
troduction to CBFs and the problem formulation are provided; in
Section 3, the proposed aCBF-based control approaches are presented;
in Section 4, a data-driven method that aims to reduce the conservatism
of the proposed control methods is developed; in Section 5, numerical
simulation results that validate the proposed methods are presented;
and finally, the conclusion is drawn in Section 6.

2. Preliminaries & problem statement
2.1. Notation

For a positive integer n, denote [n] = {1,2,...,n}. For a column
vector x € R" or a row vector x € R'*", x; denotes the ith entry of x and
[l x|| represents its 2-norm. For a given matrix A € R™", A;; denotes the
(i, j)-th entry of the matrix A and ||A|| represents its Frobenius norm.
Denote 0,, as a column vector of dimension m whose entries are all
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zero, and 0 as a m X n matrix whose entries are all zero. Denote

mxXn
diag(a;, as,...,a,) € R™" as a diagonal matrix with diagonal entries
ay,a,,...,a, € R. Given vectors x, y € R", x < y is satisfied in the entry-

wise sense, i.e., x; < y;, Vi € [n], and x © y represents the Hadamard
product (element-wise product) [34]. Denote the set of intervals on
R by IR, the set of n-dimensional interval vectors by IR", and the
set of n x m-dimensional interval matrices by IR™". The definition
of interval operations, e.g., addition, substraction, multiplication, etc.,
follows those in [35]. Given two vectors x,y € R” and x < y, [x,y] =
[[xl,yl] =[xy, yn]]T € IIR" represents an interval vector. Consider the
gradient h, £ % € R™! as a row vector, where x € R” and 2 : R" —» R
is a function with respect to x.

2.2. Control barrier function

Consider a control affine system

x = f(x)+ g(x)u, (@)

where x € R” is the state, u € U C R™ is the control input,
f :R" > R"and g : R" —» R"™" are locally Lipchitz continuous
functions. Define a safe set € = {x € R" | h(x) > 0} where h is a
continuously differentiable function. The function 4 is called a (zeroing)
CBF of relative degree 1, if there exists a constant y > 0 such that
sup,ey [Lrh(o) + Lh(xu+yh(x)] > 0 where L h(x) = 2 f(x) and
Lyh(x) = %g(x) are Lie derivatives [36]. In this paper, we assume there
is no constraint on the input u, i.e., U = R™. For any given x € R”,
the set of all control values that satisfy the CBF condition is defined as
K(x) ={u € U | Lyh(x) + Lyh(x)u + yh(x) = 0}. It was proven in [1]
that any Lipschitz continuous controller u(x) € K(x) will guarantee
the forward invariance of €, i.e., the safety of the closed-loop system.
The provably safe control law is obtained by solving a convex QP that
includes the CBF condition as its constraint. The time-varying CBF with
a general relative degree and its safety guarantee for a time-varying
system are discussed in [37].

2.3. Problem formulation

Consider the following system:

xl _ 0m 0m><n
<>‘cz> =/ + (fg(x)> * (g(x) + gm)) . @

X . .
where x = (') € R"™" is the state with x, € R” and x, € R”,
X

u € R" is the control input, f : R"™" - R™" and g : R™" — R"™" are
known Lipschitz functions, f, : R™" — R™*" is an unknown Lipschitz
function, and f, : R™" — R" and g, : R™" — R"™" are parametric
uncertainties. We assume that fy, g, and g, have the following forms:

fo) = [T @10, 0]@a(x). oo 00,0 (3a)
g(x) = diag(g(x), §2(x), ..., g,(x)), (3b)
(%) = diag(A] w(x), 4 yp(x), ... Al w, (x)), (30)

where g; : R™" — R is a known Lipschitz function, §, € R and 4; €
RY% are unknown parameters, and ¢; : R™*" - R? and y; : R"™" —
R% are known Lipschitz functions (regressors) with p;,q; appropriate
positive integers and i € [n]. Note that the functions f,g, f,. ;. v,
i € [n], are assumed to be Lipschitz continuous to ensure the existence
and uniqueness of the solution to (2). Define a safe set € c R"*" as

€ = {x : h(x) >0}, 4

where 2 : R™" — R is a continuously differentiable function. We
also make the following two assumptions on the boundedness of the
unknown function f, and the unknown parameters 6;, 4;.

Assumption 1. There exist known functions j_‘u (x), fu(x) : Rm™ —
R™*" such that £ O fuln) < TulX).
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Assumption 2. For every i € [n], there exist known vectors 5,-, 0, eRP
and E,-,ili € R¥ such that 9, < 6, < 6, and 4 <4< 7.

Remark 1. In the adaptive stabilizing control design problem, bounds
for the unknown parameters as given in Assumption 2 are not nec-
essarily required to be known since the asymptotic stability of the
closed-loop system can be proven using Barbalat’s lemma when the
derivative of the Lyapunov function is negative semi-definite [38].
Because CBFs do not have the favorable positive definiteness property
as Lyapunov functions, the CBF-based safe control design is more chal-
lenging. Although an aCBF-based control approach is proposed in [21]
without assuming boundedness of the unknown parameters, its perfor-
mance is conservative as the system only operates in a subset of the
original safety set. In [22], a robust aCBF-based controller is developed
under the assumption that is similar to Assumption 2, i.e., the unknown
parameters and the parameter estimation error both belong to known
closed convex sets; however, the system model considered there does
not include the parametric uncertainty g, in the control-input matrix.

The main problem that will be investigated in this paper is stated
as follows.

Problem 1. Consider the system (2) with f,, g, and g, given in (3)
and the safe set defined in (4) where A has a relative degree 1. Suppose
that Assumptions 1 and 2 hold. Design a feedback controller u such that
the closed-loop system is always safe, i.e., A(x(r)) > 0 for all 7 > 0.

We will propose an aCBF-NLP-based method for solving Problem 1
in Section 3.1 and generalize it to the case where g and g, are non-
diagonal in Section 3.3. Moreover, although we only consider the CBF h
with a relative degree 1 in this work, our results can be easily extended
to the higher relative degree cases by using techniques in [37,39,40];
a mass-spring system that has a relative degree 2 will be shown in
Example 3 of Section 5.

3. aCBF-NLP-based safe control design

In this section, the main result of this work will be presented. In
Section 3.1, an aCBF-NLP-based safe control design approach will be
proposed to solve Problem 1; in Section 3.2, the closed-form solution
to the NLP will be presented; in Section 3.3, the proposed method is
extended to a more general class of systems.

3.1. aCBF-NLP-based control design

In this subsection, an aCBF-NLP-based control design method is
proposed to solve Problem 1. Recall that f,, g, g, have the forms given
in (3) where 9, € R? and 4, € RY% are unknown parameters. We
choose arbitrary values 6° € R? and 1" € R% satisfying §, < 6° < 0,
and 4, < A? < 7,; as the nominal values for 6, and 4, respectively.
Furthermore, we define

w200, =001, vi 214 = AN, Vi€ nl. )

According to Assumption 2 and the definition of 2-norm,

1>

=l

i
\J 3 max{(@); - 00),2.(@,); - 69),)?).

gi
v <7 2 J D max{((4); = (A2, (4); = (A},
j=1
where (Ef)j, ) (E,)j, (4,); denote the jth entry of 5,-, 0. 71[, Ais
respectively. Note that in this paper the adaptive laws are used to
estimate parameters y; and v;, which are scalars, rather than parameters
0; and 4;, which are vectors. The following assumption assumes that
each diagonal entry of g(x) + g,(x) is away from zero.
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Assumption 3. Given functions g(x), g;(x) in diagonal forms as shown
in (3), there exist constants b,,...,b, > 0 such that g;(x) + AiTu/,.(x)
satisfies |g;(x) + /1,.Tv/,-(x)| > b; for any i € [n] and any x € €. Moreover,
the sign of g;(x) + AiTy/,(x) is known, and without loss of generality, it
is assumed that g;(x) + AiTwi(x) >0 for any i € [n] and x € €.

Remark 2. The condition |g,-(x)+/11.Tu/,-(x)| > b; in Assumption 3
is imposed to avoid the loss of controllability problem [32,33]. In
Section 3.3, Assumption 3 is relaxed to Assumption 5 for a more general
class of systems (i.e., g(x), g,(x) are not diagonal). However, the safe
controller constructed under Assumption 3 (cf. Theorem 1) tends to
have a less conservative performance than that under Assumption 5

(cf. Theorem 2); see Remark 7 and Example 3 for more details.

The following theorem shows an aCBF-based controller that ensures
the safety of system (2).

Theorem 1. Consider the system (2) with f, g, g, specified in (3) and the
safe set € defined in (4). Suppose that

(i) Assumptions 1, 2 and 3 hold;

(i) There exist positive constants vy, el,ez,yf,yf > 0 where i € [n], such
that the following set is non-empty:

Kpr(x) 2 {ueR" |Py(x)+ ¥ (x)u >0}, Vx €, (6)

7 2
where Wo(x) = M+ Y by, ;077 @, —n(e +e)+y [h Yo 1( -+ M)]’

Vi) = [, (81 + ATwDR, (8 + lgTWz;h hy,. n<§2 + ATy M =
h f+zm+1”min{hxjf heifuib b = 50 by = 50 and hy;, hy,

f f «i denotes the zth entry of hy, th, f f w i € [n], respectively;
(lll) For any i € [n], f; and ¥; are estimated parameters governed by the
following adaptive laws:

fir = =i + 7] 1y illloill, (72)
v =-rb + V,-Ahiz’i|u0,i|||‘l/i||’ (7b)

where 3;(0) > 0,9;(0) > 0 and uy = [u ., ...,
satisfying uy € Kgp(x);
(iv) The following inequality holds:

O +a2 002 +72
h(x(©0) > ¥, <'2—9 + T ;

Then, the control input u = hT O s(ug) € R" will make h(x(t)) > 0 for
1> 0, where s(uy) 2 [s,(ug)), sz(uoz) . Sp(ug,)1T and

ug 17 is a Lipschitz function

© 2 2
A 1,i 21 0[
si(ug,) = ug; + ——

+ ; (€)
b by lhy, illug,l +€2)

2lle; 112

Wlth K, =
LT il i1+e”

ki = Villwlllhy, ;1 i € [n].

Proof. From (7), fi; > —vfi;,V; = —y¥; hold. Since #,(0) > 0,9,(0) > 0,
it is easy to see that 2;(r) > 0 and 9;(r) > O for any > 0 by the
Comparison Lemma [38, Lemma 2.5]. Define a new candidate CBF # as
— L

h(x.1) = h(x)= X, (W+p>

where ji; = y;—j; and ¥; = v;—9;. It can

be seen that 2(x(0),0) = h(x(0)— X, (w + %) > h(x(0))—

2;/,

2452 o
Z,n 1 4 ;:9 (0) . ;VA(O) > h(x(0)) — Zn 2 .9 27 >
where the first mequahty comes from the fact that Hi. Vi, f; (0) ,(0) >0,
the second one arises from the definitions of fi;,V;, and the last one
holds because of condmon (iv).
We claim that 7 > —yh where h is the time derivative of h. Indeed,

h=h(f + £,)+ X0 (hy, (0T @ + (g + ATwuy) + “;;" + ”;X') > M+

i i

A2HA20) | P2402(0) >0,

zL (th,( @i+ (8 + 4] wou) + ";"' + ;?)
inequality above and recalling Assumptlon 3, we have

/414, Ui
h>.ﬂ+z<x2,,(ﬂ,+y 7)
i

i=1 i

Substituting (8) into the
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2

2,i 0,
+Ynh R T L E—
Z W(“"‘ Y Rt e a6

> M+ Z ( 0P+ h,z(z,,-(gi + )»?Tllli)uo,i)
Hi H, i 2 Kgl 3,
+Z< +hx2'( fut Koy i |l uO,i|+€2>>
+ Z(hm.(e, =0 @i + 1 (B = A Twiug,)
i=1
> W+ Py + +e)— h—n<ﬁ—"2+‘7—"2
2 P+ Fiug +ney +ep) 7[ Z; 20 " 2 >]

n
A
+Z< '+T )+Z<—u,-||<p;|||hx2,|+K1,h§2,
i i i=1
2 2 2
21 ()Ahle ) (9)

2
—vllwlllug 105, . + ————————
TR e il i L ug sl + €

where the third inequality arises from Cauchy-Schwarz inequality. It is

B s Ailleilllhgy e

easy to check that Ailloillhy, i1 + Ky ,hxz, = o Torlli e = —¢; and
2 2 2
K00 kil illugle

-V uy ;| h2 = > —e,; furthermore
illvillluo, | YRy Iy illitgil+es —  Kaglhyy illug,1+e; » ?
Y, + Piuy > 0 because u, € Kpp. Based on these two facts and

recalling that u; = f; + {1, v; = V; + ¥;, one can see that (9) can be ex-
1 ~ 12
A= llilll Ay, il )+ V1_||Wi|||u0_i|h)2(2’,'>> -

i i

pressed as h > . <ﬁ,-

[h - < ) ) . Substituting (7) into the inequality above

yields h > —y X", #+%> -7 [h— - <%+%>] Since
iy = Gy — iy < 2 ;ﬂ"z < B and 07, = (v, — 9V, < - ;G < v"zj‘z,
we have h > —y [h_z:,:l % + %)] = —yh, which shows the
correctness of the claim.

Because h(x(0),0) > 0, it is easy to see that A(r) > 0 for ¢ > 0. Since
h < h by definition, we have h(r) > 0 for t > 0, which completes the
proof. [J

Remark 3. It should be noticed that the CBF condition ¥,(x)+%, (x)u >
0 shown in (6) is imposed on the intermediate variable, u,, instead
of the real control input, u. Furthermore, the CBF condition (6) only
relies on the nominal values of the unknown parameters, which implies
that the CBF condition (i.e., the non-emptiness of the set Kpr) can
be verified conveniently by selecting the variables in Condition (ii)
appropriately.

In [20], the problem of adaptive stabilization of a nonlinear system
is converted to the nonadaptive stabilization of a modified system by
utilizing an aCLF. While the idea of [20] may be extended to develop
an aCBF-based safe control law for (2), the resulting CBF condition
would need to be verified for any 6, and 4; satisfying 6, < 6, < 9,
and A4, <2< 71‘-, which is much more restrictive than the CBF condition
given in Theorem 1 above. On the other hand, the CBF condition given
in [31] relies on estimated parameters (i.e., ¥, and ¥, are functions
of the estimated parameters in the adaptive laws), which renders the
singular configuration (i.e., the set K 5 is empty) difficult to verify; see
the discussion in Remark 1 of [31].

Remark 4. The number of ODEs for parameter estimation in The-
orem 1 is much less than that in other aCBF-based approaches such
as [21,22,31]. As can be seen from the adaptive laws shown in (7),
our method only requires solving 2n ODEs that estimate scalars y; € R
and v; € R for i € [n] (cf. (5)); in contrast, other aCBF methods have
to estimate the original unknown parameters ¢, € R? and 4, € R%
for i € [n], which results in a total of 2n Z;;l(pj + ¢;) ODEs. This
reduction of number of ODEs is particularly useful when p; and ¢; are
large, e.g., when 6; and A; are weights of deep neural networks.
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The safe control law u(x) £ [u,...,u,]’ in Theorem 1 can be
obtained pointwise for any x € €. Specifically, each u;,i € [n], can
be obtained by solving the following optimization problem:

min - (u; - ug ;) (aCBF-NLP)

U€
s.t. @) (x) + D (g, > 0,
u; = hle l(u()l)
where s,(-) is the function defined in (8), u,; is the ith entry of the

nominal controller,

ol et 4] T wil

¥,, if ¥, #0,
A?ijl 0, 1f ¥ #

D) = Timioihy, le+ (10a)
¥, /n, otherwise,
D) = 1 (g + A Tw), (10b)

with ¥,, ¥, defined in Theorem 1, and p; > 0,i € [n], are tuning
parameters. Note that (10a) is well-defined as Z i+ A?Ty/jl *
0if ¥, #0and 3| @) =¥y, Y| Plug; = ‘{’luo

Different from the traditional CBF-QP formulation [1,2], the opti-
mization (aCBF-NLP) is an NLP because of the nonlinear function s;(-).
Solving an NLP is computationally challenging in general; however,
optimization (aCBF-NLP) has a closed-form solution, which will be
discussed in the next subsection.

lpj le

Remark 5. An alternative optimization to obtain the safe control law
u(x) can be formulated as:

: 2
- 11
min - {lu = uyl an
s.t. l[’() + W] Uy >0,
T
u= hx2 O s(ugp),

where ¥,,%¥,,s(-) are defined in Theorem 1 and u, is the nominal
controller. The admissible set of u, in (11) is larger than that of (aCBF-
NLP), but the existence of a closed-form solution to (11) is still unclear
to us.

Remark 6. The main idea behind the formulation of (aCBF-NLP) is to
split the set Kpr into n independent set K}, . L2{ueR: <D6+<D’iu > 0},
such that u; € KBF,Vi € [n] = u € Kpp. It is easy to see that if
Kgr # 0, thenK ;ﬁﬂforanyie[n] and any x € §: if ¥, # 0, then
<D’ =0 = 45’ = 0 = P! (x)+<D (xX)ug; > 0 always holds; if ¥, =0
and Kyp # 9 — cb’l(x)_OandY’O_O = oj=L>0 =
Qg(x) + ‘ﬁi(x)“o,i > 0 always holds.

3.2. Closed-form solution to the aCBF-NLP

In this subsection, we will discuss the closed-form solution to (aCBF-
NLP). We will focus on the case n = 1 because the n > 1 case can be
easily solved by considering the n NLPs in (aCBF-NLP) independently.

When n = 1, the subscript i for all relevant variables defined in
Theorem 1 will be discarded for the sake of simplicity. It is also easy
to see that @) = ¥, @; = ¥, and h,, =0 = u = 0 according to
Theorem 1. Thus, without loss of generality, we assume that hy, #0
in the analysis of this subsection. By substituting u = h, s(u,) into the
objective function of (aCBF-NLP), it is easy to see that (aCBF-NLP) is
equivalent to the following optimization when n = 1:

min  (s(up) — ) (12)
up€R
st Wy + W >0,

where @; = u,/h,, and ¥, ¥, s() are defined in Theorem 1. Based on
the properties of the function s(-) presented in Lemma 1 (see Appendix),
the optimal solution to (12) can be obtained, from which the closed-
form solution to (aCBF-NLP) can be obtained, as shown in the following
proposition.
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Proposition 1.
sented as

The closed-form solution to (aCBF-NLP) can be repre-

oy max (s (=32 )4 ) . if ) holds,
1
h,, min (s (-Z-f) ,ad) . if o, holds,
u=-x .
th max(s(y*), iy), if /3 holds,
uy, if ¥, =0Ab—x, >0,
0, if h,, =0,
where «,,%,,"¥, are given in Theorem 1, b = bl |, & = eflh,l

[(ky—b)— (ky—b)] - _
y* = el Al oyt hy 20N (B =k 20N > 0)V (B—k, <

OAYy+¥ )y <O o t h, #0Ab—x, 2 0AY, <0, and
sy hy, FOAb =iy <OAWy+ ¥y 2 0.

Proof. Note that similar to the aCBF-QPs presented in [21,22], the
optimization (aCBF-NLP) is solved pointwise for a given (x, 4, ), such
that k|, «, defined in (8) and h,, should be considered as constants
when solving (12). If b — x, > 0, s(y) is monotonically increasing,
according to Lemma 1. When ¥ > 0, one can see that Kz = {u :
u> —i—‘l’} and s(yy) € [s (_g_?)’-'—oo] for any uy, € Kpp. It is easy to

verify that s(u*) =a, ifa, >s <—$7) and s(u )= (—?) when i, <
1 1
s (—;1'7) where ”0
one has s(u*) = max {s (—Z—) iy }, such that the closed-form solution
1

to (aCBF-NLP) is u = h, max{v —3170 s . Performing the similar
analysis one can see that the closed- forrn solution to (aCBF-NLP) is
u=h, mln{s(—;‘l’),ﬁd} when ¥, < 0. If ¥, = 0, Kz = R and
s(ug) € R for any uy € Kgp, such that u = u,.

On the other hand, if b — x, < 0, one knows that s(y) has a global
minimal y*, according to Lemma 1 Note that ¥, + ¥,y* < 0 indicates
y* & Kgp, such that s(u) € [s +oo] for any u, € Ky (note that
the non-emptiness of K indicates ¥, > 0if ¥, = 0). Then, one can see
that s(u*) =s (_Z_1> ifiay <s (_"’_1) and s(u ) =i, when iy > s (—ﬁ),

7
such that s(ug) = max{s (—

denotes the solution to (12). Hence, in conclusion,

::’7) ,ud} and the closed-form solution to
1

(12) is u = h,, max { s —3’7‘]’ . Furthermore, ¥, + ¥,y* > 0 implies
y* € Kgp, such that s(uy) € [s(y*),+o0] for any u, € Kpp. Using the
similar procedure shown above, one can conclude that the closed-form
solution to (12) is u = h,, max {s(x*),d,}. [

3.3. Extension to more general systems

In this subsection, we will generalize the aCBF-based control design
method proposed in Section 3.1 to more general systems. Specifically,
we will design a safe controller u for the system (2) with the same f,,
0;, ¢;, i € [n], as those defined in (3) and non-diagonal g and g; whose
(i, j)-th entries can be expressed as

(g)ij = gij(x)’ (g,l)ij = A;;Wij(x)a 13)

where g;; : R™" - R, y;; : R"*" — R% are known Lipschitz functions
and 4; ;€ RY% are vectors of unknown parameters, i € [n],j € [n].

Similar to Assumption 2, we assume that 6, and 4;; are upper and
lower bounded by known vectors.

Assumption 4. For every i, j € [n], there exist known vectors Ei,gi S
R? and 4, 4,; € R, such that 9, < 6, <, and 4, < 4 <A

ijr 2 ij =

Similar to [33, Assumption 1], we assume that § £ g + g, is away
from the singularity point by letting the smallest singular value of
5 5T
w lower bounded by some known positive constant.
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Assumption 5.
. s FOHET(X) s n . ‘s ..

in (13), the matrix s s either uniformly positive definite or
uniformly negative definite for all x € &, where & > 4,8 = g + g,
and & € R™" is a comgact set, i.e., there exists a positive constant
b* > 0 such that g( HEIL (")) > b*,Vx € I, where o(-) represents the
smallest singular value of a matrix.

Given functions g(x),g,(x) in the forms as shown

5 5T

Without loss of generality, we assume that M is positive
definite for any x € € in this subsection. We select arbitrary values
00 € R, /19 € R satisfying 9, < 6% < 0,, A < ,1?/. < Ay, i.j € [n], as

the nommal values of 6; and 4;;, respectively. We define

ijs

T T
0 = [ T T T] 0% = [ 0T 0T OT] , 14a
o7 6] o] 0T 69 6" (14a)
T, T b
A:[T T T],A:[OT oT OT], 1
ﬂll AIZ Ann 4 4 'lnn ( 4 )
T T
Q=lor o] ol =l v ) a0
0o, Ay A ATy,
70 = 09, 0 = Mlwa wn = A, (14d)
0= 2 &= .
GSQ’n AOT Yl AOZ Y2 AOTWnn
and
p=16-0 v=I4-A4. (15)

According to Assumption 4, one can see that

M
u<p Z]max{(@j—@?)z,(gj—@?)z},
iz

N
oA A _ A0\2 _ 40y2
vV A Zlmax{(/lj A0, (A, - A0},
iz

where M = ¥ p; and N = 37, 3, ¢;;. Analogous to Theorem 1,
the following theorem provides an aCBF-based controller that ensures
the safety of system (2) with g and g, defined in (13).

Theorem 2. Consider the system (2) with f, defined in (3) and g, g,
defined in (13), as well as the safe set € defined in (4). Suppose that

(i) Assumptions 1, 4 and 5 hold;

(ii) There exist positive constants y,e|,¢e,,v9.7; > 0, such that the
following set is non-empty:

Ki. 2{ueR|¥+¥u=0}, Vx€G, (16)
where Wy = Ml +h, [0~ (e, +ey)+7 (h - E - Z) Wy = hy(g+eDh],
hy, = ;Xh and J is the same as that defined in Theorem 1;

(iii) 4 and V¥ are parameter estimations governed by the following
adaptive laws:
o= =y +7gllhy, 12,1, (17a)
0= =047l Pl 192,11, (17b)

where £(0),9(0) > 0 and u, € R is a Lipschitz function satisfying u, €
ey
(lV) The following mequallty holds: h(x(0)) > "(O>y+“ + V«J;z”
0
Then, the control input u = s (uo)hT € R" will make h(x(t)) > 0 for

any t > 0, where

2 2
K Yo

Lg
Mg | , (18)
b* bk gl llugl + €2)

sg(ug) 2+

S 2
2112, 117

with x| , = W

and xy , = 9112, Iy, Il



Y. Wang and X. Xu

Proof. Assumption 5 indicates that, for any v € R", v"(g + g,)v >
b*||v]|? [33]. Similar to the proof of Theorem 1, one can see that 4() >
0,9(t) > 0,Vr > 0. Define a candidate CBF h as h = h — e Lo i_fﬂ,
where ji=p—pgand v=v-7.

We claim that 7 > yh where  is the time derivative of h Indeed

it is easy to see that h > # + hxq(fg + (g + guw) + —;m + —vv

Substituting (18) into the inequality above yields ho> /% + hy, fg
7112,
hy,(g + g},)thuO + zﬂll + ;VV + hy,(g + gﬁ)th<—,,*(ﬂ”_Q Mhelten
02 2 2,2
1122, 17l Ay 11
il 4 2 %o )2/%+hx2f£+hx2(g+g4)h y + - ;m+ v+

b*@lugl 12, Ml [2+e)
ANk, 17112, 117 ||:zw|| Huhxzu“ 3
Al Ny, l+er  Dluglll2y, My, P+e; =

by, (fo = f) + hy, (8, —
1 1-x

Fo+ Pt +e) =y (= i = 50 )+y i+ L=l 12,1~

2 AZ

20 i Hhlel II-Q Il 12, 11115 II u

Wi, P12y Mol + Zra 5o, + Tt T, P

inequality is from Assumptlon 5 and the third 1nequahty comes from

Lemma 2 shown in Appendlx Selecting u, € K we have h > € +
1 (= gy = 59 )+ (A= vl e, ||) Lo (0= rillng, I

i thzll 12,1

)h Lo +

, where the second

||-Q.,,|||“0|) Al 1182, 1l RN A, 121192, lugl +
212, 1P 1Ay, 1443 (h 1 \-/z)_'_ 1 ~<; A (e ”)+
O1ug 112, Ay ||2+e, = 279” 7, 7o LA = Yollhy, lI11$2,

Ly (v —7allng 12012, I |u0|) Substituting (17a) into the inequality

above, we have i > —y (h - L2 L\/2> —1;4/4— L), Sirnilar to the
2yp 2y; 17 »

proof of Theorem 1, one can see fjiji < "— -£ and V< 7 — —, which

implies that h> —yh. Our claim is thus proven. Note that h(x(O), 0)>0

because of condition (iv). Hence, one can conclude that a(t) > 0, V7 > 0,

and thus, A(x(t)) > 0,¥t>0. [J

Remark 7. Compared with Theorem 1, Theorem 2 provides a safety
guarantee for a more general class of systems but the resulting safe
controller tends to have more conservative performance. This is be-
cause the control u € R” is designed to have a particular structure
u= Sg(uo)hIZ: which requires u always proportional to hI , to deal with
the non-diagonal structures of g and g,. How to improve the design to
generate a less conservative safe controller will be our future work.

The safe controller u(x) in Theorem 2 can be obtained pointwise for
any x € € via solving the following optimization problem:

: 2
- 19
min - [lu—ug| (19)

s.t. Wy +Wuy >0,
— T
u= sg(uo)hxz,

where ¥, and ¥, are defined in Theorem 2. The closed-form solution
of (19) can be obtained by using Proposition 1.

4. Tightening parameter bounds via a data-driven approach

The controller design proposed in Section 3 relies on the bounds
of unknown parameters as shown in Assumptions 2 and 4. If the prior
knowledge of the parameter bounds is poor, the control performance
tends to be conservative (see simulation examples in Section 5). In
this section, we present a data-driven approach to get tighter bounds
and more accurate nominal values for the unknown parameters. Com-
bining the aCBF-based control design and the data-driven parameter
tightening approach provides a mechanism to achieve safety with less
conservatism.

Our data-driven method is inspired by the differential inclusion
technique proposed in [5]. To better illustrate the main idea, we
consider the system (2) with m = 0 and n = 1 shown as follows:

X = £+ £, + 0T o(x) + (g(x) + ATy (), (20

where x € R is the state, u € R is the control input, f : R - R and
g : R - R are known Lipschitz functions, f, : R - R is an unknown
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(globally) Lipschitz function satisfying Assumption 1, ¢ : R — R?,
v : R - R? are known functions, and § € R?, 1 € R? are unknown
parameters. The proposed method can be readily extended to systems
with multiple inputs by considering each control channel separately.

Recall that x; denotes the ith entry of x where x is either a column
or a row vector. Given a dataset & = {x, x',u }N the bounds of 9, A,
and f, can be tightened as shown by the followmg theorem.

Theorem 3. Consider the system given in (20). Suppose that (i) Assump-
tions 1 and 2 hold; (ii) f, has a known Lipschitz constants L; (iiQ) a
dataset & = {xi=xi’”i}1]i1 is given. Define intervals ° = [9,0]T € IR
and @° = [A,A]T € IR™. Let x° be an arbitrary state in € and define

F0 = [[u(xo)ju(xo)L For i € [N], r € [p), s € lq], define

i—1
= (ﬂ{w +Lix = % ||[~1., 1]}) N

j=0
s <x">,7u<x">] 0 - 2% - @), (21a)
= - F - Q') n (P gh), (21b)
14
v, = (v, —@"l(ﬂi)ﬂ( > 9’1""0’5)’ (219
I=r+1
@ =3 P e n (Pl L, it ¢l #0,
tg;l — .rll I=r+1 71 1 r 7 gl r . (21d)
9;" ) otherwise,
and
wy = o = F = 2Vehn (@i, (22a)
q
wh =@ - @;wl;'u")n< D @;’-'w;u‘), (22b)
I=s+1
(CARED s+ @i_l"’/i”i)n
Q= (@~ 'ylu) - ik if yiu' #0, (22¢)
@; L otherwise,

Wwhere ¢ = p(x'), y' = w(x!), and y' = x'— f(x')—g(x")u'. Then, 67 € PV,
AT € @V, and f,(x) € F(x) £ L {F/ + Lllx - ¥||[-1.11}, for any
X E®G.

Proof. Note that f,(x') € [ f u(xi ). fu(x5)] from Assumption 1 and
fu(x)) € ¥ =P - @ v from f,(x') = y—0T o' = ATy'ul, 7 € PO, and
AT € @°. One can see that f,(x') € f,(x)) + L||x' — x/||[-1, 1] holds for
any i € [N]and j =0,1,...,i — | because |f,(x") — f,(x)] < L|lx' — x/||
by the Lipschitzness of f,. Hence, it is obvious that for any i € [N],
£y € (MU U6 + Llxt = =111 ) L, 6D, Fux1 )

(' = PV — @ 'u') [51, which indicates f,(x') € %' provided f,(x*) €
F* for any 0 < k < i. Since f,(x?) € 0, using mathematical induction
one can conclude that f,(x') € &', Vi € [N]; thus, for any x € @,
fu) € MLy {fu) + Lilx = X [I[=1, 11} € F ().

Next, we will prove that if 67 € %!, then 67¢' — ¥|_ 10,(p[ € v
holds for any 0 < r < p. When r = 0, one can see that 8¢’ € U smce
0T¢' =y — f,x) = ATyl € y — F' — @ 'u and 07 ¢' € Pl
Then, we assume 67 ¢’ — 3| 0,9} € vl_, holds. It can be seen that
0T =31, 0,0, =0T ¢!~ X1 0,0}~ 0,0} € 1, 0o €U, -2,
On the other hand, one can see 6'¢' — Z; 100, = 21 1 019 €

;’ o 95’ ‘(p[ Summarizing the discussion above, one can conclude
that@T(ﬂ - Y09 €W —F o0 (] AT 'qo,)—v

Finally, we will prove GT S 9” for any 0 < i < N using mathematical
inductlon. Fori=0,0" € 2" because of Assumptlon 2. Then we assume

€ 2! Note that 0T¢' = )/ — f,(x) = ATy'u' € y' = F' - @'u
and 0T(p e P-1¢!, which implies that GT(p € v} It can be seen
that for any r € [p] one has 6,9 = 07¢' — Y~ 19,(01 ) - 6,9, €

v - fr+1 P~ ¢!. Moreover, noticing that 6,9’ € #~'¢!, we have
0, € 9’; for any r € [p], which indicates 87 € %'. Followmg the similar

procedure above, one can prove that AT € @. [
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Remark 8. With tighter bounds on 0, 4 and f, provided by Theorem 3,
a larger admissible set Kz (x) as defined in (6) can be obtained. As a
result, the data-driven-augmented aCBF-NLP controller tends to have a
better control performance while always ensuring safety. It is expected
that the system’s performance will be improved if the dataset & is large
enough and the data in & are sufficiently “diverse” (i.e., the whole
state space is sufficient explored), but a formal proof is still under
our investigation. The Lipschitz constant L is needed in Theorem 3
to induce the bounds of f, from a finite number of data. A lot of
existing work can be leveraged to estimating the Lipschitz constant
of an unknown function, such as [41,42]. Moreover, the data-driven
approach can be also combined with the aCBF-based controller shown
in (19) to reduce its conservatism.

5. Simulation

In this section, three examples are provided to demonstrate the
effectiveness of the proposed control method. More details about sim-
ulations can be found at https://arxiv.org/abs/2302.08601.

Example 1. Consider the following single-input system:

%= f, + 0, sin(x) + 0,57 + (4 + A,x7)u, (23)

where x € R is the state and u € R is the control input. The function
f, = cos(x) is unknown in the controller design; we choose the bounds
of f, as f, € [-2,2] such that Assumption 1 holds. The true values of
the parameters 6, = 6, = 2, 4, = 1, 4, = 2 are unknown in the controller
design; we choose the bounds of these parameters as 6;,0,,1;,4, €
[-10, 10] such that Assumption 2 holds. Note that loose bounds of the
unknown parameters and the function are chosen deliberately. It is easy
to verify that Assumption 3 is satisfied with b = 0.5. We choose the safe
set as € = {x : h(x) > 0} where h(x) = x — 1, that is, we aim to make
x(#) > 1 for all # > 0. The initial condition of 1 is chosen as x(0) = 2, the
reference trajectory is selected as x,; = 3sin(r) and the nominal control
u, is designed via feedback linearization.

First, we demonstrate the performance of the safe controller ob-
tained from (aCBF-NLP). The nominal values of the unknown param-
eters are 0? = 0;’ = Ag = 0, /1‘1) = 0.5, such that Condition (ii) of
Theorem 1 holds because ¥, = A% + A9x> = 0.5 # 0 for any x € &,
which implies that Kz, # . Other control parameters are selected
such that Condition (iv) of Theorem 1 holds. Therefore, all conditions
of Theorem 1 are satisfied. Applying the safe controller obtained from
(aCBF-NLP), the state evolution of the closed-loop system is shown as
the blue line in Fig. 2. Then, we consider the aCBF-NLP-based safe
controller combined with the data-driven approach. We assume that
f, has a Lipschitz constant L = 1 and a dataset of 10 points is given.
Applying the data-driven augmented, aCBF-NLP-based safe controller,
the state evolution of the closed-loop system is shown as the pink line
in Fig. 2.

From Fig. 2, one can observe that the proposed aCBF-NLP controller,
either with or without the data-driven technique, can ensure the safety
of the system because the trajectory of x always stays inside the safe
region whose boundary is represented by the dashed red line, and the
reference trajectory is well-tracked within the safe set. Moreover, the
performance of the data-driven augmented aCBF-NLP-based controller
is less conservative since the tracking performance of the desired con-
troller is better preserved inside the safe region and the state trajectory
is allowed to approach the boundary of the safe set when the reference
trajectory is outside the safe region.

Example 2. Consider the following adaptive cruise control system [1]:

d D vy — Uy 0
o v | = a +( 0 |u, 24)

1 1

vy ——(fo+ f1vr +f20§) -
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Fig. 2. Evolution of the state variable x of Example 1. It can be seen that both the
aCBF-NLP controller and the data-driven augmented aCBF-NLP controller can ensure
safety as the trajectories of x always stay in the safe region (i.e., above the dashed red
line). One can also see that, when the data-driven technique developed in Theorem 3
is adopted, the aCBF-NLP controller has a better control performance.

where v; and v, are the velocities of the lead car and the following car,
respectively, D is the distance between the two vehicles, u is the control
input, F, £ fo+fiv,+/, ui is the aerodynamic drag term with constants
fo» f1, 2, and m is the mass of the following car. The true values of the
parameters f, = 0.1 N, f; = 5 N s/m, f, = 0.25 Ns?>/m,m = 1650 kg
are unknown in the controller design. We assume that f, € [0,10],
/1 €10,50], £, €1[0,20], m € [100,3000], and let 0 = [~ £, — f, = £,17,
e, = [l v, 21T, 4 = i; one can easily see that Assumption 2
is satisfied with 6, € [-0.1,0], 8, € [-0.5,0], 83 € [-0.2,0], 4 €
[0.00033,0.01]. Note that in (24) f, = 0, such that we selected iu = 7,, =
0, from which one can see Assumption 1 is satisfied. Meanwhile, from
(24) one can easily verify that Assumption 3 holds with 5 = 1/3000. The
safety constraint of the following car is to keep a safe distance from the
lead car, which can be expressed as D/v, > 1.8 where 1.8 is the desired
time headway in seconds. Therefore, the safe set is € = {x : h(x) > 0}
where 1 = D — 1.8v,. The nominal controller u, is designed to keep
the following car at a desired speed v, ;,, = 22 m/s. We choose the
nominal parameters 8° = [-0.05 — 0.5 —0.2]T and A° = 1/3000, such
that ¥, = 1.82/3000 # 0 for any x € %; thus, Kpp defined in (6) is
non-empty, implying that Condition (ii) of Theorem 1 holds.

Applying the safe controller obtained from (aCBF-NLP), the state
and CBF evolution are shown as the blue lines in Fig. 3. Next, we
consider the aCBF-NLP-based controller augmented with a dataset of
5 datapoints. The state and CBF evolution of the closed-loop system
with the data-driven-augmented aCBF-NLP controller are shown as the
brown lines in Fig. 3. One can see that both controllers can ensure
safety in the presence of parametric uncertainties since ha(t) > 0 for
any ¢+ > 0, and the tracking performance is satisfactory when the
reference trajectory is inside the safe region. Furthermore, the data-
driven augmented aCBF-NLP controller has a slightly better control
performance in terms of maintaining the desired velocity because the
bounds of the unknown parameters are tightened by the data-driven
approach, as discussed in Remark 8.

Example 3. Consider the mass-spring system as follows:

X 0 0o 1 of[x] [0 o
0 0 0 1 0 0
(% 2= kitky Ky 2+ 1 . (25)
ql 177 w5 w0 |l
. ks ks . 1
X m_2 —m—z 0 0 X9 0 m—z

where x;,x, € R denote the position of two mass points, u;,u, € R are
control inputs, m; = m, = 0.2 represent the mass, and k; = k, = 1
denote the stiffness of two springs. We assume that all functions in
(25) are known, that is, f, = 0. Define 8, = [- %2 ,’;—ZI]T =[-10 5T,

my
—rk _kyt_5 _g5T -1 _ -1 _ i
n92_[m2 mz] =[5 =51, 4 = s =5,and 4, = p = 5, which
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Fig. 3. Simulation results of Example 2. The aCBF-NLP controller, either with or
without the data-driven technique, can ensure safety of the system. When combined
with the data-driven techniques, the aCBF-NLP controller has a slightly better control
performance in terms of maintaining the desired velocity.

are unknown parameters in control design. One can easily verify that
Assumption 2 is fulfilled with m;,m, € [0.1,0.5] and k,, k, € [0, 5], such
that [-100 0] <0, <[050]", [0 —50]T <6, <[50 0], 4, € [2,10], and
A, € [2,10]. It is obvious that Assumption 3 is fulfilled with b; = b, = 1.
The desired trajectories are selected as x;;, = 0, x,; = 1 + sin(r), with
a nominal PD controller u, designed to track x,;, x,4, The safe set is
defined as € = {x : h(x) > 0} with A = x, —x, —0.5, which aims to keep
the distance between two masses. The initial conditions are selected
as x;(0) = %,(0) = %,(0) = 0 and x,(0) = 1. Since the relative degree
of h is equal to 2, an exponential CBF that has a relative degree 1 is
constructed as & = A+ 15h = %, —%; +15(x, —x; —0.5). One can easily see
that 2 > 0 implies i > 0 because h(x;(0), x;(0), x,(0), x,(0)) > 0. Hence,
we can use h to replace h in Theorems 1 and 2.

We first consider the aCBF-NLP-based controller proposed in The-
orem 1. The nominal values of the unknown parameters are selected
as 09 = [-50 25]7, 69 = [25 —25]7, and ) = 49 = 6. Therefore, one
can see that Condition (ii) of Theorem 1 holds (i.e., Kgy defined in (6)
is non-empty) because ¥, = [6 6] # 0 for any x € €. Applying the
safe controller obtained from (aCBF-NLP), the state and CBF evolution
are shown as the blue lines in Fig. 4. Then, the aCBF-NLP-based
controller is augmented with a dataset of 4 datapoints. The state and
CBF evolution are represented by the brown lines in Fig. 4. It can be
seen that both controllers can guarantee the safety since h(x(t)) > 0
for any ¢ > 0, while the performance of the aCBF-NLP controller is
improved if the data-driven approach is adopted.

Finally, we show how the results of Theorem 2 can be applied to
(25). From now on we do not assume g and g, are diagonal matrices.
It is easy to verify that Assumptions 1, 4, 5 hold true with »* = 1,
Misdn € [=1,11, Ap, Ay € [2,10], [-100 0]T < 6, < [0 50]7, and
[0 —50]" < 6, < [50 0]". We select the nominal parameters 0‘1) =
[-50 251, 69 = [25 —25]", 2% = A%, = 6, A%, = 1), = 0 and
use the aforementioned exponential CBF A. Thus, it is easy to verify
that Condition (ii) of Theorem 2 holds (i.e., Klg; F defined in (16) is
non-empty) because ¥, = 12 # 0 for any x € €.
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Fig. 4. Simulation results of Example 3 using the control scheme shown in (aCBF-NLP).
From (c) it can be seen that the proposed aCBF-NLP-based controller can guarantee
safety as h is always non-negative; from (a) it can be seen that, if the data-driven
techniques are adopted, the control performance becomes less conservative since x,
can track the reference trajectory better inside the safe region.

Applying the safe control law obtained from (19), the state and CBF
evolution are shown in Fig. 5, from which one can see that the safety
is ensured since h(x(t)) > O for any ¢+ > 0. However, from Fig. 5(a)
and 5(b), it can be seen that the control performance is conservative,
i.e., the desired control performance is not well preserved inside the
safe region. This phenomenon verifies what we discussed in Remark 7,
i.e.,, u might not be close to u, since it is always proportional to the
partial derivative of A.

6. Conclusion

This paper proposes a singularity-free aCBF-NLP-based control strat-
egy for systems with parametric uncertainties in both drift terms and
control-input matrices, where the aCBF-NLP has a closed-form solu-
tion. Furthermore, a data-driven approach is developed to tighten
the bounds of the unknown parameters and functions such that the
performance of the proposed controller can be improved. Simulation
results are also presented to validate the proposed approach. Future
work includes relaxing the assumptions of this paper and integrating
this control method into learning-based control frameworks.
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Fig. 5. Simulation results of Example 3 using the control strategy shown in (19).
From (c) it can be seen that the aCBF-NLP-based controller obtained by solving (19)
can guarantee safety; however, the control performance is unsatisfactory (i.e., the
tracking performance of the desired controller is not well-preserved) due to the intrinsic
conservatism discussed in Remark 7.
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Appendix

Lemma 1. Define a function s(-) as

2.2
Ky Kyy
sM=y+—+—"-—, (A1)
b bly|hy, |yl +€)
where k,k, > 0 and b, e,, |hX2| > 0 are considered as constants. The
function s(-) has the following properties:
(i) When b -k, > 0, where b = b|h
with respect to y, and lim,_,_, s(y) =

X2 |, s(») is monotonically increasing
—0o0, llmy_,+°° s(y) = +o0;

_ 8ln-b)—-VK(-b)]

(ii) When b—x, < 0, s(y) has a global minimum y* = Py
2k =

where ¢, = 52/|hx2 l, and lim,_,_ s(y) = lim,_, o, s(y) = +co.

Proof. Note that the derivative of s(y) with respect to y can be
expressed as

2 . —
(kp y+26) .
d K%y sz_ 622 . if >0,
S _ bk y+&2) (A.2)

dy (B—Kz)l(§ V2 =2K26(b—k> )y+13€'§
b(—ryy+67)?

@ If x, = 0, then s(y) = %‘ + y, from which one can see that

the statement is true. We assume x, # O in the following analy-

sis. It can be seen that if b — x, > 0, (? > 0 for any y € R,

, if y<O.

such that s(y) is monotonically increasing. Meanwhlle one can see
yh(— K2Y+€2)+K2y2

llmy4,+°° S(y) = 400 and llmya,w S(y) = llmy%,w W

% 24z 2.2
KL ==y . —b(kp z +€21)+KZZ K . _ 1 3 _
y =—lim,_ v i Define a(z) = ) b(kyz” + 6,2) +
g B(z) = b(xzz + &), and I = (0,+0), from which one can see
lim,__ s(y) = =L +1lim,_ "EZ; Since «, § are differentiable with

respect to z and ﬂ (z) # 0 for any z € I, applying L’Hopital’s rule gives

. —2(b—Ky)krz—bé KL
lim,__, s() = lim,_ T +

G) Ifb-x, <O, —; > 0 still holds when y >

= —o0.
0. When y < 0,

asking & d = 0 gives a stationary point y*. It can be verified — d =
y=y*

S22

2k (k2=b)) 2
Kkpbéy

prove lim,_, o s(y) =

> 0, such that y* is a global minimum. Similarly, one can

K2 (kn—b)z2—bér z
Zoto0 b(&y+Ko2)
oo b = 400, where the second equality arises
from L’Hopital’s rule (the conditions of L’Hopital’s rule can be verified
using the similar procedure in (i)). [

. ==y .
= oo and llmy_>_°o s(y)=—=lim

b L — lim 2)(2()(2 b)z—bé, +

Lemma 2. For any a € R", b € R", ¢ € R, the following inequalities hold:

2

a'(fo = f9) = —ullallllL2,|l.
b7(g; —gDbe > v, [1bl1*|cl.

(A.3a)
(A.3b)

where f, is defined in (3), g, is defined in (13), f ;’, gg, Q,, Q, are defined
in (14a), and u, v are defined in (15).

Proof. One can verify that a"(f, — /) > —llallllfy — fill = —llal

VE@ =T > _Ilall\/ZLl||9,~—9?|I2|I<ﬂi||2 2 |l

\/Zf;l 16; = 601121/ i llwil?2 = =llalll© — 6°1IL2,ll = —pullallll2,]l,
where the first and second inequality are derived from Cauchy-Schwarz
inequality and the third inequality comes from the fact }_, x2y? <
(Zhoi x2) (X1 »2) » Vx;. y, € R. Therefore, (A.3a) holds.

Similarly, using Cauchy-Schwarz inequality, one can get b'(g; —
g;’)bc >—|bT(g; — gg)bllcl >—lg; - gA||||b|| |c|. Invoking the definition
of the Frobenius norm, |[g; — ga” satisfies |lg, — g, Ol

Vi i Gy = ) Twy Vi Ty = Pl P <

\/Z:' 12,1 1 ||Wij||2

\/Z, 12, 4 = /1?,-||2 =[A- AOIIIIQV,II = v[|2,||. Therefore, (A.3b)
holds. [
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