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A B S T R A C T

This paper presents a novel approach for the safe control design of systems with parametric uncertainties in
both drift terms and control-input matrices. The method combines control barrier functions and adaptive laws
to generate a safe controller through a nonlinear program with an explicitly given closed-form solution. The
proposed approach verifies the non-emptiness of the admissible control set independently of online parameter
estimations, which can ensure that the safe controller is singularity-free. A data-driven algorithm is also
developed to improve the performance of the proposed controller by tightening the bounds of the unknown
parameters. The effectiveness of the control scheme is demonstrated through numerical simulations.
1. Introduction

Control barrier functions (CBFs) have been recently proposed as
a systematic approach to ensure the forward invariance of control-
affine systems [1,2]. By including the CBF condition into a convex
uadratic program (QP), a CBF-QP-based controller can act as a safety
ilter that modifies potentially unsafe control inputs in a minimally
nvasive fashion. However, most existing CBF works require precise
odel information, which is often challenging to obtain. Robust CBF
ontrol methods have been proposed to address this issue, ensuring
afety in the presence of bounded model uncertainties [3–7]. Never-
heless, the design of a robust CBF controller relies on the bounds
f the uncertainties or the Lipschitzness of the unknown dynamics,
aking it difficult to handle parametric uncertainties that are generally
nbounded.
Adaptive control aims to achieve stabilization or desired tracking

erformance for uncertain dynamic systems through an adaptive law,
nd has been extensively studied in the past decades [8–12]. Most
daptive control strategies are based on uncertainty parameterization
nd the certainty equivalence principle, which means that the es-
imated parameters are used as if they are the true parameters in
he feedback control design. For uncertain nonlinear systems in some
anonical forms, many adaptive control design techniques have been
eveloped using feedback linearization [13,14], backstepping [10,15],
r averaging [16,17]. A summary of the fundamental theoretical con-
cepts and technical issues involved in multivariable adaptive control is
documented in [18], and a historical overview of adaptive control and
ts intersection with learning is provided in [19].

✩ This work was supported in part by National Science Foundation Grant 2209791 and 2222541.
∗ Corresponding author.
E-mail addresses: yujie.wang@wisc.edu (Y. Wang), xiangru.xu@wisc.edu (X. Xu).

Inspired by the idea of adaptive control Lyapunov functions (aCLFs)
[20], the adaptive CBF (aCBF) approach, which estimates the unknown
parameters online to guarantee the safety of control affine systems with
parametric uncertainties via a QP-based safe controller, is first proposed
in [21]. In contrast to the aCLF-based stabilizing controller design, the
aCBF-based safe control design is more challenging partially because
the forward invariance of a predefined safe set must be ensured for all
time and aCBFs do not have the positive definiteness property possessed
by aCLFs. Following the pioneering work of [21], various aCBF-based
control methods are developed in the literature [22–31] and applied to
several practical scenarios, such as adaptive cruise control [21], aircraft
control [22], control of wing rock motion [29], and control of unicycle
vehicles [31]. Most of these works only take into account parametric
uncertainties in the drift term, while there are many physical systems
that have parametric uncertainties in the control-input matrices, such
as robotic systems with imprecise or time-varying mass and inertia pa-
rameters. In [30], a filtering-based concurrent learning algorithm in the
CBF framework is proposed to design safe controllers for single-input-
single-output systems with unknown control coefficients; the estimated
parameter converges to the true value exponentially, but system safety
is not guaranteed before the convergence of the parameter adaptations.
In [31], a zeroing CBF-based adaptive control algorithm is proposed to
solve the funnel control problem for systems with parametrically uncer-
tain control-input matrices, which can achieve tracking of a reference
trajectory within a pre-defined funnel; however, this method may fail in
singular configurations, as discussed in Remark 1 of that paper. Despite
vailable online 13 April 2024
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Fig. 1. Main results of this paper.

these early contributions, the aCBF-based control design for systems
with parametric uncertainties in control-input matrices is still an open
field and merits further investigation.

Consider a control-affine system 𝑥̇ = 𝑓 (𝑥)+𝑔(𝑥)𝑢 where 𝑓 , 𝑔 include
parametric uncertainties (e.g., 𝑓 and 𝑔 are identified by universal ap-
proximators such as neural networks). The main challenge of stabilizing
such a system using adaptive controllers arises from the so-called ‘‘loss
of controllability’’ problem; that is, although the system is controllable,
the identification model may lose its controllability at some points in
time, owing to parameter adaptations [11,32]. The same issue could
appen in the aCBF-based control design, which will result in the empti-
ess of the admissible safe control set and therefore, the infeasibility of
he QP. To the best of our knowledge, the singularity-free aCBF-based
afe controller is not yet developed in the literature, though relevant
tabilizing adaptive control schemes have been proposed in [10,11,32,
3]. To bridge this gap, this paper proposes a singularity-free aCBF-
based control design method for systems with parametric uncertainties
in both 𝑓 and 𝑔. In contrast to the existing results (e.g., the approach
developed in [31]) where the safety constraints (i.e., the CBF condi-
tions) include estimated parameters, the CBF condition of the proposed
method only relies on the nominal values of the unknown parameters.
Hence, the non-emptiness of the admissible safe control set can be
verified in advance, and the singular configuration can be avoided.
The safe control is obtained by solving a nonlinear program (NLP),
which has a closed-form solution. Furthermore, a data-driven approach
is developed to reduce the potential conservatism of the proposed
controller by tightening the parameter bounds. The effectiveness of the
proposed control strategy is demonstrated by numerical simulations.
Main results of this paper are shown in Fig. 1.

The rest of this paper is structured as follows. In Section 2, in-
roduction to CBFs and the problem formulation are provided; in
ection 3, the proposed aCBF-based control approaches are presented;
n Section 4, a data-driven method that aims to reduce the conservatism
f the proposed control methods is developed; in Section 5, numerical
simulation results that validate the proposed methods are presented;
and finally, the conclusion is drawn in Section 6.

. Preliminaries & problem statement

.1. Notation

For a positive integer 𝑛, denote [𝑛] = {1, 2,… , 𝑛}. For a column
ector 𝑥 ∈ R𝑛 or a row vector 𝑥 ∈ R1×𝑛, 𝑥𝑖 denotes the 𝑖th entry of 𝑥 and
𝑥‖ represents its 2-norm. For a given matrix 𝐴 ∈ R𝑛×𝑚, 𝐴𝑖𝑗 denotes the
𝑖, 𝑗)-th entry of the matrix 𝐴 and ‖𝐴‖ represents its Frobenius norm.
enote 𝟎 as a column vector of dimension 𝑚 whose entries are all
2

𝑚

ero, and 𝟎𝑚×𝑛 as a 𝑚 × 𝑛 matrix whose entries are all zero. Denote
iag(𝑎1, 𝑎2,… , 𝑎𝑛) ∈ R𝑛×𝑛 as a diagonal matrix with diagonal entries
1, 𝑎2,… , 𝑎𝑛 ∈ R. Given vectors 𝑥, 𝑦 ∈ R𝑛, 𝑥 ≤ 𝑦 is satisfied in the entry-
ise sense, i.e., 𝑥𝑖 ≤ 𝑦𝑖, ∀𝑖 ∈ [𝑛], and 𝑥 ⊙ 𝑦 represents the Hadamard
roduct (element-wise product) [34]. Denote the set of intervals on
by IR, the set of 𝑛-dimensional interval vectors by IR𝑛, and the

et of 𝑛 × 𝑚-dimensional interval matrices by IR𝑛×𝑚. The definition
f interval operations, e.g., addition, substraction, multiplication, etc.,
ollows those in [35]. Given two vectors 𝑥, 𝑦 ∈ R𝑛 and 𝑥 ≤ 𝑦, [𝑥, 𝑦] =
[

[𝑥1, 𝑦1] ⋯ [𝑥𝑛, 𝑦𝑛]
]⊤ ∈ IR𝑛 represents an interval vector. Consider the

gradient ℎ𝑥 ≜ 𝜕ℎ
𝜕𝑥 ∈ R𝑛×1 as a row vector, where 𝑥 ∈ R𝑛 and ℎ ∶ R𝑛 → R

s a function with respect to 𝑥.

.2. Control barrier function

Consider a control affine system

̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (1)

here 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ 𝑈 ⊂ R𝑚 is the control input,
∶ R𝑛 → R𝑛 and 𝑔 ∶ R𝑛 → R𝑛×𝑚 are locally Lipchitz continuous

unctions. Define a safe set 𝒞 = {𝑥 ∈ R𝑛 ∣ ℎ(𝑥) ≥ 0} where ℎ is a
continuously differentiable function. The function ℎ is called a (zeroing)
BF of relative degree 1, if there exists a constant 𝛾 > 0 such that

sup𝑢∈𝑈
[

𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛾ℎ(𝑥)
]

≥ 0 where 𝐿𝑓ℎ(𝑥) = 𝜕ℎ
𝜕𝑥𝑓 (𝑥) and

𝐿𝑔ℎ(𝑥) =
𝜕ℎ
𝜕𝑥 𝑔(𝑥) are Lie derivatives [36]. In this paper, we assume there

s no constraint on the input 𝑢, i.e., 𝑈 = R𝑚. For any given 𝑥 ∈ R𝑛,
the set of all control values that satisfy the CBF condition is defined as
𝐾(𝑥) = {𝑢 ∈ 𝑈 ∣ 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛾ℎ(𝑥) ≥ 0}. It was proven in [1]
hat any Lipschitz continuous controller 𝑢(𝑥) ∈ 𝐾(𝑥) will guarantee
he forward invariance of 𝒞, i.e., the safety of the closed-loop system.
he provably safe control law is obtained by solving a convex QP that
ncludes the CBF condition as its constraint. The time-varying CBF with
general relative degree and its safety guarantee for a time-varying
ystem are discussed in [37].

.3. Problem formulation

Consider the following system:
(

𝑥̇1
𝑥̇2

)

= 𝑓 (𝑥)+𝑓𝑢(𝑥) +
(

𝟎𝑚
𝑓𝜃(𝑥)

)

+
(

𝟎𝑚×𝑛
𝑔(𝑥) + 𝑔𝜆(𝑥)

)

𝑢, (2)

here 𝑥 =
(

𝑥1
𝑥2

)

∈ R𝑚+𝑛 is the state with 𝑥1 ∈ R𝑚 and 𝑥2 ∈ R𝑛,

∈ R𝑛 is the control input, 𝑓 ∶ R𝑚+𝑛 → R𝑚+𝑛 and 𝑔 ∶ R𝑚+𝑛 → R𝑛×𝑛 are
nown Lipschitz functions, 𝑓𝑢 ∶ R𝑚+𝑛 → R𝑚+𝑛 is an unknown Lipschitz
unction, and 𝑓𝜃 ∶ R𝑚+𝑛 → R𝑛 and 𝑔𝜆 ∶ R𝑚+𝑛 → R𝑛×𝑛 are parametric
ncertainties. We assume that 𝑓𝜃 , 𝑔, and 𝑔𝜆 have the following forms:

𝜃(𝑥) =
[

𝜃⊤1 𝜑1(𝑥), 𝜃⊤2 𝜑2(𝑥), … , 𝜃⊤𝑛 𝜑𝑛(𝑥)
]⊤ , (3a)

𝑔(𝑥) = diag(𝑔1(𝑥), 𝑔2(𝑥),… , 𝑔𝑛(𝑥)), (3b)
𝑔𝜆(𝑥) = diag(𝜆⊤1 𝜓1(𝑥), 𝜆⊤2 𝜓2(𝑥),… , 𝜆⊤𝑛 𝜓𝑛(𝑥)), (3c)

here 𝑔𝑖 ∶ R𝑚+𝑛 → R is a known Lipschitz function, 𝜃𝑖 ∈ R𝑝𝑖 and 𝜆𝑖 ∈
𝑞𝑖 are unknown parameters, and 𝜑𝑖 ∶ R𝑚+𝑛 → R𝑝𝑖 and 𝜓𝑖 ∶ R𝑚+𝑛 →
𝑞𝑖 are known Lipschitz functions (regressors) with 𝑝𝑖, 𝑞𝑖 appropriate
ositive integers and 𝑖 ∈ [𝑛]. Note that the functions 𝑓, 𝑔, 𝑓𝑢, 𝜑𝑖, 𝜓𝑖,
∈ [𝑛], are assumed to be Lipschitz continuous to ensure the existence
nd uniqueness of the solution to (2). Define a safe set 𝒞 ⊂ R𝑚+𝑛 as

= {𝑥 ∶ ℎ(𝑥) ≥ 0}, (4)

here ℎ ∶ R𝑚+𝑛 → R is a continuously differentiable function. We
lso make the following two assumptions on the boundedness of the
nknown function 𝑓𝑢 and the unknown parameters 𝜃𝑖, 𝜆𝑖.

ssumption 1. There exist known functions 𝑓
𝑢
(𝑥), 𝑓 𝑢(𝑥) ∶ R𝑚+𝑛 →

R𝑚+𝑛 such that 𝑓 (𝑥) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑥).

𝑢 𝑢 𝑢
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Assumption 2. For every 𝑖 ∈ [𝑛], there exist known vectors 𝜃𝑖, 𝜃𝑖 ∈ R𝑝𝑖
and 𝜆𝑖, 𝜆𝑖 ∈ R𝑞𝑖 such that 𝜃𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖 and 𝜆𝑖 ≤ 𝜆𝑖 ≤ 𝜆𝑖.

emark 1. In the adaptive stabilizing control design problem, bounds
or the unknown parameters as given in Assumption 2 are not nec-
ssarily required to be known since the asymptotic stability of the
losed-loop system can be proven using Barbalat’s lemma when the
erivative of the Lyapunov function is negative semi-definite [38].
ecause CBFs do not have the favorable positive definiteness property
s Lyapunov functions, the CBF-based safe control design is more chal-
enging. Although an aCBF-based control approach is proposed in [21]
ithout assuming boundedness of the unknown parameters, its perfor-
ance is conservative as the system only operates in a subset of the
riginal safety set. In [22], a robust aCBF-based controller is developed
nder the assumption that is similar to Assumption 2, i.e., the unknown
arameters and the parameter estimation error both belong to known
losed convex sets; however, the system model considered there does
ot include the parametric uncertainty 𝑔𝜆 in the control-input matrix.

The main problem that will be investigated in this paper is stated
s follows.

roblem 1. Consider the system (2) with 𝑓𝜃 , 𝑔, and 𝑔𝜆 given in (3)
nd the safe set defined in (4) where ℎ has a relative degree 1. Suppose
hat Assumptions 1 and 2 hold. Design a feedback controller 𝑢 such that
he closed-loop system is always safe, i.e., ℎ(𝑥(𝑡)) ≥ 0 for all 𝑡 ≥ 0.

We will propose an aCBF-NLP-based method for solving Problem 1
n Section 3.1 and generalize it to the case where 𝑔 and 𝑔𝜆 are non-
iagonal in Section 3.3. Moreover, although we only consider the CBF ℎ
ith a relative degree 1 in this work, our results can be easily extended
o the higher relative degree cases by using techniques in [37,39,40];
mass–spring system that has a relative degree 2 will be shown in
xample 3 of Section 5.

3. aCBF-NLP-based safe control design

In this section, the main result of this work will be presented. In
Section 3.1, an aCBF-NLP-based safe control design approach will be
proposed to solve Problem 1; in Section 3.2, the closed-form solution
to the NLP will be presented; in Section 3.3, the proposed method is
extended to a more general class of systems.

3.1. aCBF-NLP-based control design

In this subsection, an aCBF-NLP-based control design method is
proposed to solve Problem 1. Recall that 𝑓𝜃 , 𝑔, 𝑔𝜆 have the forms given
in (3) where 𝜃𝑖 ∈ R𝑝𝑖 and 𝜆𝑖 ∈ R𝑞𝑖 are unknown parameters. We
choose arbitrary values 𝜃0𝑖 ∈ R𝑝𝑖 and 𝜆0𝑖 ∈ R𝑞𝑖 satisfying 𝜃𝑖 ≤ 𝜃0𝑖 ≤ 𝜃𝑖
nd 𝜆𝑖 ≤ 𝜆0𝑖 ≤ 𝜆𝑖 as the nominal values for 𝜃𝑖 and 𝜆𝑖, respectively.
Furthermore, we define

𝜇𝑖 ≜ ‖𝜃𝑖 − 𝜃0𝑖 ‖, 𝜈𝑖 ≜ ‖𝜆𝑖 − 𝜆0𝑖 ‖, ∀𝑖 ∈ [𝑛]. (5)

According to Assumption 2 and the definition of 2-norm,

𝜇𝑖 ≤ 𝜇̄𝑖 ≜

√

√

√

√

𝑝𝑖
∑

𝑗=1
max{((𝜃𝑖)𝑗 − (𝜃0𝑖 )𝑗 )2, ((𝜃𝑖)𝑗 − (𝜃0𝑖 )𝑗 )2},

𝜈𝑖 ≤ 𝜈̄𝑖 ≜

√

√

√

√

𝑞𝑖
∑

𝑗=1
max{((𝜆𝑖)𝑗 − (𝜆0𝑖 )𝑗 )2, ((𝜆𝑖)𝑗 − (𝜆0𝑖 )𝑗 )2},

where (𝜃𝑖)𝑗 , (𝜃𝑖)𝑗 , (𝜆𝑖)𝑗 , (𝜆𝑖)𝑗 denote the 𝑗th entry of 𝜃𝑖, 𝜃𝑖, 𝜆𝑖, 𝜆𝑖,
respectively. Note that in this paper the adaptive laws are used to
estimate parameters 𝜇𝑖 and 𝜈𝑖, which are scalars, rather than parameters
𝜃𝑖 and 𝜆𝑖, which are vectors. The following assumption assumes that
each diagonal entry of 𝑔(𝑥) + 𝑔 (𝑥) is away from zero.
3

𝜆

Assumption 3. Given functions 𝑔(𝑥), 𝑔𝜆(𝑥) in diagonal forms as shown
in (3), there exist constants 𝑏1,… , 𝑏𝑛 > 0 such that 𝑔𝑖(𝑥) + 𝜆⊤𝑖 𝜓𝑖(𝑥)
satisfies |𝑔𝑖(𝑥) + 𝜆⊤𝑖 𝜓𝑖(𝑥)| ≥ 𝑏𝑖 for any 𝑖 ∈ [𝑛] and any 𝑥 ∈ 𝒞. Moreover,
the sign of 𝑔𝑖(𝑥) + 𝜆⊤𝑖 𝜓𝑖(𝑥) is known, and without loss of generality, it
is assumed that 𝑔𝑖(𝑥) + 𝜆⊤𝑖 𝜓𝑖(𝑥) > 0 for any 𝑖 ∈ [𝑛] and 𝑥 ∈ 𝒞.

Remark 2. The condition |𝑔𝑖(𝑥) + 𝜆⊤𝑖 𝜓𝑖(𝑥)| ≥ 𝑏𝑖 in Assumption 3
is imposed to avoid the loss of controllability problem [32,33]. In
Section 3.3, Assumption 3 is relaxed to Assumption 5 for a more general
class of systems (i.e., 𝑔(𝑥), 𝑔𝜆(𝑥) are not diagonal). However, the safe
controller constructed under Assumption 3 (cf. Theorem 1) tends to
ave a less conservative performance than that under Assumption 5
cf. Theorem 2); see Remark 7 and Example 3 for more details.

The following theorem shows an aCBF-based controller that ensures
the safety of system (2).

Theorem 1. Consider the system (2) with 𝑓𝜃 , 𝑔, 𝑔𝜆 specified in (3) and the
safe set 𝒞 defined in (4). Suppose that
(i) Assumptions 1, 2 and 3 hold;
(ii) There exist positive constants 𝛾, 𝜖1, 𝜖2, 𝛾𝜃𝑖 , 𝛾

𝜆
𝑖 > 0 where 𝑖 ∈ [𝑛], such

that the following set is non-empty:

𝐾𝐵𝐹 (𝑥) ≜
{

u ∈ R𝑛 ∣ 𝛹0(𝑥) + 𝛹1(𝑥)u ≥ 0
}

, ∀𝑥 ∈ 𝒞, (6)

where 𝛹0(𝑥) = ℳ+
∑𝑛
𝑖=1 ℎ𝑥2 ,𝑖𝜃

0⊤
𝑖 𝜑𝑖−𝑛(𝜖1+𝜖2)+𝛾

[

ℎ −
∑𝑛
𝑖=1

(

𝜇̄2𝑖
2𝛾𝜃𝑖

+
𝜈̄2𝑖
2𝛾𝜆𝑖

)]

,

𝛹1(𝑥) = [ℎ2𝑥2 ,1(𝑔1 + 𝜆0⊤1 𝜓1)ℎ2𝑥2 ,2(𝑔2 + 𝜆0⊤2 𝜓2) ⋯ ℎ2𝑥2 ,𝑛(𝑔𝑛 + 𝜆0⊤𝑛 𝜓𝑛)], ℳ =

𝑥𝑓 +
∑𝑚+𝑛
𝑗=1 min{ℎ𝑥,𝑗𝑓 𝑢,𝑗 , ℎ𝑥,𝑗𝑓 𝑢,𝑗}, ℎ𝑥 = 𝜕ℎ

𝜕𝑥 , ℎ𝑥2 = 𝜕ℎ
𝜕𝑥2
, and ℎ𝑥,𝑖, ℎ𝑥2 ,𝑖,

𝑓
𝑢,𝑖
, 𝑓 𝑢,𝑖 denotes the 𝑖th entry of ℎ𝑥, ℎ𝑥2 , 𝑓 𝑢, 𝑓 𝑢, 𝑖 ∈ [𝑛], respectively;

iii) For any 𝑖 ∈ [𝑛], 𝜇̂𝑖 and 𝜈̂𝑖 are estimated parameters governed by the
ollowing adaptive laws:

̇̂
𝑖 = −𝛾𝜇̂𝑖 + 𝛾𝜃𝑖 |ℎ𝑥2 ,𝑖|‖𝜑𝑖‖, (7a)
̇̂𝜈𝑖 = −𝛾𝜈̂𝑖 + 𝛾𝜆𝑖 ℎ

2
𝑥2 ,𝑖

|𝑢0,𝑖|‖𝜓𝑖‖, (7b)

here 𝜇̂𝑖(0) > 0, 𝜈̂𝑖(0) > 0 and 𝑢0 = [𝑢0,1,… , 𝑢0,𝑛]⊤ is a Lipschitz function
atisfying 𝑢0 ∈ 𝐾𝐵𝐹 (𝑥);
iv) The following inequality holds:
ℎ(𝑥(0)) ≥

∑𝑛
𝑖=1

(

𝜇̂𝑖(0)2+𝜇̄2𝑖
2𝛾𝜃𝑖

+
𝜈̂𝑖(0)2+𝜈̄2𝑖

2𝛾𝜆𝑖

)

;

Then, the control input 𝑢 = ℎ⊤𝑥2 ⊙ 𝑠(𝑢0) ∈ R𝑛 will make ℎ(𝑥(𝑡)) ≥ 0 for
𝑡 > 0, where 𝑠(𝑢0) ≜ [𝑠1(𝑢0,1), 𝑠2(𝑢0,2),… , 𝑠𝑛(𝑢0,𝑛)]⊤ and

𝑠𝑖(𝑢0,𝑖) ≜ 𝑢0,𝑖 +
𝜅1,𝑖
𝑏𝑖

+
𝜅22,𝑖𝑢

2
0,𝑖

𝑏𝑖(𝜅2,𝑖|ℎ𝑥2 ,𝑖||𝑢0,𝑖| + 𝜖2)
, (8)

with 𝜅1,𝑖 =
𝜇̂2𝑖 ‖𝜑𝑖‖

2

𝜇̂𝑖‖𝜑𝑖‖|ℎ𝑥2 ,𝑖|+𝜖1
, 𝜅2,𝑖 = 𝜈̂𝑖‖𝜓𝑖‖|ℎ𝑥2 ,𝑖|, 𝑖 ∈ [𝑛].

Proof. From (7), ̇̂𝜇𝑖 ≥ −𝛾𝜇̂𝑖, ̇̂𝜈𝑖 ≥ −𝛾𝜈̂𝑖 hold. Since 𝜇̂𝑖(0) > 0, 𝜈̂𝑖(0) > 0,
t is easy to see that 𝜇̂𝑖(𝑡) ≥ 0 and 𝜈̂𝑖(𝑡) ≥ 0 for any 𝑡 > 0 by the
omparison Lemma [38, Lemma 2.5]. Define a new candidate CBF ℎ̄ as
̄ (𝑥, 𝑡) = ℎ(𝑥)−

∑𝑛
𝑖=1

(

𝜇̃2𝑖
2𝛾𝜃𝑖

+
𝜈̃2𝑖
2𝛾𝜆𝑖

)

, where 𝜇̃𝑖 = 𝜇𝑖−𝜇̂𝑖 and 𝜈̃𝑖 = 𝜈𝑖− 𝜈̂𝑖. It can

be seen that ℎ̄(𝑥(0), 0) = ℎ(𝑥(0))−
∑𝑛
𝑖=1

(

(𝜇𝑖−𝜇̂𝑖(0))2

2𝛾𝜃𝑖
+ (𝜈𝑖−𝜈̂𝑖(0))2

2𝛾𝜆𝑖

)

≥ ℎ(𝑥(0))−

∑𝑛
𝑖=1

(

𝜇2𝑖 +𝜇̂
2
𝑖 (0)

2𝛾𝜃𝑖
+

𝜈2𝑖 +𝜈̂
2
𝑖 (0)

2𝛾𝜆𝑖

)

≥ ℎ(𝑥(0)) −
∑𝑛
𝑖=1

(

𝜇̄2𝑖 +𝜇̂
2
𝑖 (0)

2𝛾𝜃𝑖
+

𝜈̄2𝑖 +𝜈̂
2
𝑖 (0)

2𝛾𝜆𝑖

)

≥ 0,
where the first inequality comes from the fact that 𝜇𝑖, 𝜈𝑖, 𝜇̂𝑖(0), 𝜈̂𝑖(0) ≥ 0,
he second one arises from the definitions of 𝜇̄𝑖, 𝜈̄𝑖, and the last one
olds because of condition (iv).
We claim that ̇̄ℎ ≥ −𝛾ℎ̄ where ̇̄ℎ is the time derivative of ℎ̄. Indeed,

̇̄ = ℎ𝑥(𝑓 + 𝑓𝑢) +
∑𝑛
𝑖=1(ℎ𝑥2 ,𝑖(𝜃

⊤
𝑖 𝜑𝑖 + (𝑔𝑖 + 𝜆⊤𝑖 𝜓𝑖)𝑢𝑖) +

𝜇̃𝑖 ̇̂𝜇𝑖
𝛾𝜃𝑖

+ 𝜈̃𝑖 ̇̂𝜈𝑖
𝛾𝜆𝑖

) ≥ ℳ +

∑𝑛
𝑖=1

(

ℎ𝑥2 ,𝑖(𝜃
⊤
𝑖 𝜑𝑖 + (𝑔𝑖 + 𝜆⊤𝑖 𝜓𝑖)𝑢𝑖) +

𝜇̃𝑖 ̇̂𝜇𝑖
𝛾𝜃𝑖

+ 𝜈̃𝑖 ̇̂𝜈𝑖
𝛾𝜆𝑖

)

. Substituting (8) into the
inequality above and recalling Assumption 3, we have

̇̄ℎ ≥ ℳ +
𝑛
∑

(

ℎ𝑥2 ,𝑖𝜃
⊤
𝑖 𝜑𝑖 +

𝜇̃𝑖 ̇̂𝜇𝑖
𝜃 +

𝜈̃𝑖 ̇̂𝜈𝑖
𝜆

)

𝑖=1 𝛾𝑖 𝛾𝑖
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+
𝑛
∑

𝑖=1
ℎ2𝑥2 ,𝑖

(

(𝑔𝑖 + 𝜆⊤𝑖 𝜓𝑖)𝑢0,𝑖 + 𝜅1,𝑖 +
𝜅22,𝑖𝑢

2
0,𝑖

𝜅2,𝑖|ℎ𝑥2 ,𝑖 ∥ 𝑢0,𝑖| + 𝜖2

)

≥ ℳ +
𝑛
∑

𝑖=1

(

ℎ𝑥2 ,𝑖𝜃
0⊤
𝑖 𝜑𝑖 + ℎ2𝑥2 ,𝑖(𝑔𝑖 + 𝜆

0⊤
𝑖 𝜓𝑖)𝑢0,𝑖

)

+
𝑛
∑

𝑖=1

(

𝜇̃𝑖 ̇̂𝜇𝑖
𝛾𝜃𝑖

+
𝜈̃𝑖 ̇̂𝜈𝑖
𝛾𝜆𝑖

+ ℎ2𝑥2 ,𝑖

(

𝜅1,𝑖 +
𝜅22,𝑖𝑢

2
0,𝑖

𝜅2,𝑖|ℎ𝑥2 ,𝑖 ∥ 𝑢0,𝑖| + 𝜖2

))

+
𝑛
∑

𝑖=1
(ℎ𝑥2 ,𝑖(𝜃𝑖 − 𝜃

0
𝑖 )
⊤𝜑𝑖 + ℎ2𝑥2 ,𝑖(𝜆𝑖 − 𝜆

0
𝑖 )
⊤𝜓𝑖𝑢0,𝑖)

≥ 𝛹0 + 𝛹1𝑢0 + 𝑛(𝜖1 + 𝜖2) − 𝛾
[

ℎ −
𝑛
∑

𝑖=1

( 𝜇̄2𝑖
2𝛾𝜃𝑖

+
𝜈̄2𝑖
2𝛾𝜆𝑖

)]

+
𝑛
∑

𝑖=1

(

𝜇̃𝑖 ̇̂𝜇𝑖
𝛾𝜃𝑖

+
𝜈̃𝑖 ̇̂𝜈𝑖
𝛾𝜆𝑖

)

+
𝑛
∑

𝑖=1

(

−𝜇𝑖‖𝜑𝑖‖|ℎ𝑥2 ,𝑖| + 𝜅1,𝑖ℎ
2
𝑥2 ,𝑖

− 𝜈𝑖‖𝜓𝑖‖|𝑢0,𝑖|ℎ2𝑥2 ,𝑖 +
𝜅22,𝑖𝑢

2
0,𝑖ℎ

2
𝑥2 ,𝑖

𝜅2,𝑖|ℎ𝑥2 ,𝑖 ∥ 𝑢0,𝑖| + 𝜖2

)

, (9)

here the third inequality arises from Cauchy–Schwarz inequality. It is
asy to check that −𝜇̂𝑖‖𝜑𝑖‖|ℎ𝑥2 ,𝑖| + 𝜅1,𝑖ℎ

2
𝑥2 ,𝑖

= −
𝜇̂𝑖‖𝜑𝑖‖|ℎ𝑥2 ,𝑖|𝜖1
𝜇̂𝑖‖𝜑𝑖‖|ℎ𝑥2 ,𝑖|+𝜖1

≥ −𝜖1 and

𝜈̂𝑖‖𝜓𝑖‖|𝑢0,𝑖|ℎ2𝑥2 ,𝑖+
𝜅22,𝑖𝑢

2
0,𝑖ℎ

2
𝑥2 ,𝑖

𝜅2,𝑖|ℎ𝑥2 ,𝑖||𝑢0,𝑖|+𝜖2
= −

𝜅2,𝑖|ℎ𝑥2 ,𝑖||𝑢0,𝑖|𝜖2
𝜅2,𝑖|ℎ𝑥2 ,𝑖||𝑢0,𝑖|+𝜖2

≥ −𝜖2; furthermore,

0 + 𝛹1𝑢0 ≥ 0 because 𝑢0 ∈ 𝐾𝐵𝐹 . Based on these two facts and
ecalling that 𝜇𝑖 = 𝜇̃𝑖 + 𝜇̂, 𝜈𝑖 = 𝜈̃𝑖 + 𝜈̂𝑖, one can see that (9) can be ex-
ressed as ̇̄ℎ ≥

∑𝑛
𝑖=1

(

𝜇̃𝑖

(

1
𝛾𝜃𝑖
̇̂𝜇𝑖−‖𝜑𝑖‖|ℎ𝑥2 ,𝑖|

)

+𝜈̃𝑖

(

1
𝛾𝜆𝑖
̇̂𝜈𝑖−‖𝜓𝑖‖|𝑢0,𝑖|ℎ2𝑥2 ,𝑖

))

−

𝛾
[

ℎ −
∑𝑛
𝑖=1

(

𝜇̄2𝑖
2𝛾𝜃𝑖

+
𝜈̄2𝑖
2𝛾𝜆𝑖

)]

. Substituting (7) into the inequality above

yields ̇̄ℎ ≥ −𝛾
∑𝑛
𝑖=1

(

𝜇̃𝑖𝜇̂𝑖
𝛾𝜃𝑖

+ 𝜈̃𝑖 𝜈̂𝑖
𝛾𝜆𝑖

)

− 𝛾
[

ℎ −
∑𝑛
𝑖=1

(

𝜇̄2𝑖
2𝛾𝜃𝑖

+
𝜈̄2𝑖
2𝛾𝜆𝑖

)]

. Since

̂𝑖𝜇̃𝑖 = (𝜇𝑖 − 𝜇̃𝑖)𝜇̃𝑖 ≤
𝜇2𝑖 −𝜇̃

2
𝑖

2 ≤ 𝜇̄2𝑖 −𝜇̃
2
𝑖

2 and 𝜈̂𝑖𝜈̃𝑖 = (𝜈𝑖 − 𝜈̃𝑖)𝜈̃𝑖 ≤
𝜈2𝑖 −𝜈̃

2
𝑖

2 ≤ 𝜈̄2𝑖 −𝜈̃
2
𝑖

2 ,

e have ̇̄ℎ ≥ −𝛾
[

ℎ −
∑𝑛
𝑖=1

(

𝜇̃2𝑖
2𝛾𝜃𝑖

+
𝜈̃2𝑖
2𝛾𝜆𝑖

)]

= −𝛾ℎ̄, which shows the
correctness of the claim.

Because ℎ̄(𝑥(0), 0) ≥ 0, it is easy to see that ℎ̄(𝑡) ≥ 0 for 𝑡 > 0. Since
ℎ̄ ≤ ℎ by definition, we have ℎ(𝑡) ≥ 0 for 𝑡 > 0, which completes the
roof. □

emark 3. It should be noticed that the CBF condition 𝛹0(𝑥)+𝛹1(𝑥)u ≥
shown in (6) is imposed on the intermediate variable, 𝑢0, instead
f the real control input, 𝑢. Furthermore, the CBF condition (6) only
relies on the nominal values of the unknown parameters, which implies
that the CBF condition (i.e., the non-emptiness of the set 𝐾𝐵𝐹 ) can
e verified conveniently by selecting the variables in Condition (ii)
ppropriately.
In [20], the problem of adaptive stabilization of a nonlinear system

s converted to the nonadaptive stabilization of a modified system by
tilizing an aCLF. While the idea of [20] may be extended to develop
n aCBF-based safe control law for (2), the resulting CBF condition
ould need to be verified for any 𝜃𝑖 and 𝜆𝑖 satisfying 𝜃𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖
nd 𝜆𝑖 ≤ 𝜆 ≤ 𝜆𝑖, which is much more restrictive than the CBF condition
given in Theorem 1 above. On the other hand, the CBF condition given
in [31] relies on estimated parameters (i.e., 𝛹0 and 𝛹1 are functions
f the estimated parameters in the adaptive laws), which renders the
ingular configuration (i.e., the set 𝐾𝐵𝐹 is empty) difficult to verify; see
he discussion in Remark 1 of [31].

emark 4. The number of ODEs for parameter estimation in The-
rem 1 is much less than that in other aCBF-based approaches such
s [21,22,31]. As can be seen from the adaptive laws shown in (7),
ur method only requires solving 2𝑛 ODEs that estimate scalars 𝜇𝑖 ∈ R
nd 𝜈𝑖 ∈ R for 𝑖 ∈ [𝑛] (cf. (5)); in contrast, other aCBF methods have
o estimate the original unknown parameters 𝜃𝑖 ∈ R𝑝𝑖 and 𝜆𝑖 ∈ R𝑞𝑖
for 𝑖 ∈ [𝑛], which results in a total of 2𝑛

∑𝑛
𝑗=1(𝑝𝑗 + 𝑞𝑗 ) ODEs. This

reduction of number of ODEs is particularly useful when 𝑝𝑖 and 𝑞𝑖 are
4

large, e.g., when 𝜃𝑖 and 𝜆𝑖 are weights of deep neural networks.
The safe control law 𝑢(𝑥) ≜ [𝑢1,… , 𝑢𝑛]⊤ in Theorem 1 can be
obtained pointwise for any 𝑥 ∈ 𝒞. Specifically, each 𝑢𝑖, 𝑖 ∈ [𝑛], can
be obtained by solving the following optimization problem:

min
𝑢𝑖∈R

(𝑢𝑖 − 𝑢𝑑,𝑖)2 (aCBF-NLP)

s.t. 𝛷𝑖
0(𝑥) +𝛷

𝑖
1(𝑥)𝑢0,𝑖 ≥ 0,

𝑢𝑖 = ℎ𝑥2 ,𝑖𝑠𝑖(𝑢0,𝑖),

where 𝑠𝑖(⋅) is the function defined in (8), 𝑢𝑑,𝑖 is the 𝑖th entry of the
nominal controller,

𝛷𝑖
0 =

⎧

⎪

⎨

⎪

⎩

𝜌𝑖ℎ2𝑥2 ,𝑖
|𝑔𝑖+𝜆0⊤𝑖 𝜓𝑖|

∑𝑛
𝑗=1 𝜌𝑗ℎ

2
𝑥2 ,𝑗

|𝑔𝑗+𝜆0⊤𝑗 𝜓𝑗 |
𝛹0, if 𝛹1 ≠ 0,

𝛹0∕𝑛, otherwise,
(10a)

𝛷𝑖
1 = ℎ2𝑥2 ,𝑖(𝑔𝑖 + 𝜆

0⊤
𝑖 𝜓𝑖), (10b)

with 𝛹0, 𝛹1 defined in Theorem 1, and 𝜌𝑖 > 0, 𝑖 ∈ [𝑛], are tuning
parameters. Note that (10a) is well-defined as ∑𝑛

𝑗=1 𝜌𝑗ℎ
2
𝑥,𝑗 |𝑔𝑗 + 𝜆

0⊤
𝑗 𝜓𝑗 | ≠

if 𝛹1 ≠ 0 and ∑𝑛
𝑖=1𝛷

𝑖
0 = 𝛹0,

∑𝑛
𝑖=1𝛷

𝑖
1𝑢0,𝑖 = 𝛹1𝑢0.

Different from the traditional CBF-QP formulation [1,2], the opti-
ization (aCBF-NLP) is an NLP because of the nonlinear function 𝑠𝑖(⋅).
olving an NLP is computationally challenging in general; however,
ptimization (aCBF-NLP) has a closed-form solution, which will be
iscussed in the next subsection.

emark 5. An alternative optimization to obtain the safe control law
(𝑥) can be formulated as:

min
∈R𝑛

‖𝑢 − 𝑢𝑑‖2 (11)

s.t. 𝛹0 + 𝛹1𝑢0 ≥ 0,

𝑢 = ℎ⊤𝑥2 ⊙ 𝑠(𝑢0),

here 𝛹0, 𝛹1, 𝑠(⋅) are defined in Theorem 1 and 𝑢𝑑 is the nominal
ontroller. The admissible set of 𝑢0 in (11) is larger than that of (aCBF-
LP), but the existence of a closed-form solution to (11) is still unclear
o us.

emark 6. The main idea behind the formulation of (aCBF-NLP) is to
plit the set 𝐾𝐵𝐹 into 𝑛 independent set 𝐾 𝑖

𝐵𝐹 ≜ {u ∈ R ∶ 𝛷𝑖
0 +𝛷

𝑖
1u ≥ 0},

uch that 𝑢𝑖 ∈ 𝐾 𝑖
𝐵𝐹 ,∀𝑖 ∈ [𝑛] ⟹ 𝑢 ∈ 𝐾𝐵𝐹 . It is easy to see that if

𝐵𝐹 ≠ ∅, then 𝐾 𝑖
𝐵𝐹 ≠ ∅ for any 𝑖 ∈ [𝑛] and any 𝑥 ∈ 𝒞: if 𝛹1 ≠ 0, then

𝑖
1 = 0 ⟹ 𝛷𝑖

0 = 0 ⟹ 𝛷𝑖
0(𝑥) + 𝛷

𝑖
1(𝑥)𝑢0,𝑖 ≥ 0 always holds; if 𝛹1 = 0

nd 𝐾𝐵𝐹 ≠ ∅ ⟹ 𝛷𝑖
1(𝑥) = 0 and 𝛹0 ≥ 0 ⟹ 𝛷𝑖

0 = 𝛹0
𝑛 ≥ 0 ⟹

𝛷𝑖
0(𝑥) +𝛷

𝑖
1(𝑥)𝑢0,𝑖 ≥ 0 always holds.

3.2. Closed-form solution to the aCBF-NLP

In this subsection, we will discuss the closed-form solution to (aCBF-
NLP). We will focus on the case 𝑛 = 1 because the 𝑛 > 1 case can be
easily solved by considering the 𝑛 NLPs in (aCBF-NLP) independently.

When 𝑛 = 1, the subscript 𝑖 for all relevant variables defined in
heorem 1 will be discarded for the sake of simplicity. It is also easy
o see that 𝛷0 = 𝛹1, 𝛷1 = 𝛹1, and ℎ𝑥2 = 0 ⟹ 𝑢 = 0 according to
heorem 1. Thus, without loss of generality, we assume that ℎ𝑥2 ≠ 0
n the analysis of this subsection. By substituting 𝑢 = ℎ𝑥2𝑠(𝑢0) into the
bjective function of (aCBF-NLP), it is easy to see that (aCBF-NLP) is
quivalent to the following optimization when 𝑛 = 1:

min
0∈R

(𝑠(𝑢0) − 𝑢̄𝑑 )2 (12)

s.t. 𝛹0 + 𝛹1𝑢0 ≥ 0,

here 𝑢̄𝑑 = 𝑢𝑑∕ℎ𝑥2 and 𝛹0, 𝛹1, 𝑠(⋅) are defined in Theorem 1. Based on
he properties of the function 𝑠(⋅) presented in Lemma 1 (see Appendix),
he optimal solution to (12) can be obtained, from which the closed-
orm solution to (aCBF-NLP) can be obtained, as shown in the following
roposition.
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Proposition 1. The closed-form solution to (aCBF-NLP) can be repre-
sented as

𝑢 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ℎ𝑥2 max
(

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
)

, if 𝒜1 holds,

ℎ𝑥2 min
(

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
)

, if 𝒜2 holds,

ℎ𝑥2 max(𝑠(𝑦∗), 𝑢̄𝑑 ), if 𝒜3 holds,

𝑢𝑑 , if 𝛹1 = 0 ∧ 𝑏̄ − 𝜅2 ≥ 0,

0, if ℎ𝑥2 = 0,

here 𝜅2, 𝛹0, 𝛹1 are given in Theorem 1, 𝑏̄ = 𝑏|ℎ𝑥2 |, 𝜖2 = 𝜖2∕|ℎ𝑥2 |,
∗ = 𝜖2[(𝜅2−𝑏̄)−

√

𝜅2(𝜅2−𝑏̄)]
𝜅2(𝜅2−𝑏̄)

, 𝒜1 ∶ ℎ𝑥2 ≠ 0 ∧ ((𝑏̄ − 𝜅2 ≥ 0 ∧ 𝛹1 > 0) ∨ (𝑏̄ − 𝜅2 <
0 ∧ 𝛹0 + 𝛹1𝑦∗ < 0)), 𝒜2 ∶ ℎ𝑥2 ≠ 0 ∧ 𝑏̄ − 𝜅2 ≥ 0 ∧ 𝛹1 < 0, and

3 ∶ ℎ𝑥2 ≠ 0 ∧ 𝑏̄ − 𝜅2 < 0 ∧ 𝛹0 + 𝛹1𝑦∗ ≥ 0.

roof. Note that similar to the aCBF-QPs presented in [21,22], the
ptimization (aCBF-NLP) is solved pointwise for a given (𝑥, 𝜇̂, 𝜈̂), such
hat 𝜅1, 𝜅2 defined in (8) and ℎ𝑥2 should be considered as constants
when solving (12). If 𝑏̄ − 𝜅2 ≥ 0, 𝑠(𝑦) is monotonically increasing,
according to Lemma 1. When 𝛹1 > 0, one can see that 𝐾𝐵𝐹 = {u ∶
u ≥ −𝛹0

𝛹1
} and 𝑠(𝑢0) ∈

[

𝑠
(

−𝛹0
𝛹1

)

,+∞
]

for any 𝑢0 ∈ 𝐾𝐵𝐹 . It is easy to

verify that 𝑠(𝑢∗0) = 𝑢̄𝑑 if 𝑢̄𝑑 ≥ 𝑠
(

−𝛹0
𝛹1

)

and 𝑠(𝑢∗0) = 𝑠
(

−𝛹0
𝛹1

)

when 𝑢̄𝑑 <
(

−𝛹0
𝛹1

)

, where 𝑢∗0 denotes the solution to (12). Hence, in conclusion,

ne has 𝑠(𝑢∗0) = max
{

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
}

, such that the closed-form solution

to (aCBF-NLP) is 𝑢 = ℎ𝑥2 max
{

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
}

. Performing the similar
analysis one can see that the closed-form solution to (aCBF-NLP) is

= ℎ𝑥2 min
{

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
}

when 𝛹1 < 0. If 𝛹1 = 0, 𝐾𝐵𝐹 = R and
(𝑢0) ∈ R for any 𝑢0 ∈ 𝐾𝐵𝐹 , such that 𝑢 = 𝑢𝑑 .
On the other hand, if 𝑏̄ − 𝜅2 < 0, one knows that 𝑠(𝑦) has a global
inimal 𝑦∗, according to Lemma 1. Note that 𝛹0 + 𝛹1𝑦∗ < 0 indicates
∗ ∉ 𝐾𝐵𝐹 , such that 𝑠(𝑢0) ∈

[

𝑠
(

−𝛹0
𝛹1

)

,+∞
]

for any 𝑢0 ∈ 𝐾𝐵𝐹 (note that
he non-emptiness of 𝐾𝐵𝐹 indicates 𝛹0 ≥ 0 if 𝛹1 = 0). Then, one can see
that 𝑠(𝑢∗0) = 𝑠

(

−𝛹0
𝛹1

)

if 𝑢̄𝑑 ≤ 𝑠
(

−𝛹0
𝛹1

)

and 𝑠(𝑢∗0) = 𝑢̄𝑑 when 𝑢̄𝑑 > 𝑠
(

−𝛹0
𝛹1

)

,

such that 𝑠(𝑢∗0) = max
{

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
}

and the closed-form solution to

(12) is 𝑢 = ℎ𝑥2 max
{

𝑠
(

−𝛹0
𝛹1

)

, 𝑢̄𝑑
}

. Furthermore, 𝛹0 + 𝛹1𝑦∗ ≥ 0 implies
𝑦∗ ∈ 𝐾𝐵𝐹 , such that 𝑠(𝑢0) ∈ [𝑠(𝑦∗),+∞] for any 𝑢0 ∈ 𝐾𝐵𝐹 . Using the
similar procedure shown above, one can conclude that the closed-form
solution to (12) is 𝑢 = ℎ𝑥2 max

{

𝑠(𝑥∗), 𝑢̄𝑑
}

. □

3.3. Extension to more general systems

In this subsection, we will generalize the aCBF-based control design
method proposed in Section 3.1 to more general systems. Specifically,
we will design a safe controller 𝑢 for the system (2) with the same 𝑓𝜃 ,
𝜃𝑖, 𝜑𝑖, 𝑖 ∈ [𝑛], as those defined in (3) and non-diagonal 𝑔 and 𝑔𝜆 whose
(𝑖, 𝑗)-th entries can be expressed as

(𝑔)𝑖𝑗 = 𝑔𝑖𝑗 (𝑥), (𝑔𝜆)𝑖𝑗 = 𝜆⊤𝑖𝑗𝜓𝑖𝑗 (𝑥), (13)

where 𝑔𝑖𝑗 ∶ R𝑚+𝑛 → R, 𝜓𝑖𝑗 ∶ R𝑚+𝑛 → R𝑞𝑖𝑗 are known Lipschitz functions
and 𝜆𝑖𝑗 ∈ R𝑞𝑖𝑗 are vectors of unknown parameters, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛].

Similar to Assumption 2, we assume that 𝜃𝑖 and 𝜆𝑖𝑗 are upper and
lower bounded by known vectors.

Assumption 4. For every 𝑖, 𝑗 ∈ [𝑛], there exist known vectors 𝜃𝑖, 𝜃𝑖 ∈
R𝑝𝑖 and 𝜆𝑖𝑗 , 𝜆𝑖𝑗 ∈ R𝑞𝑖𝑗 , such that 𝜃𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖 and 𝜆𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝜆𝑖𝑗 .

Similar to [33, Assumption 1], we assume that 𝑔̃ ≜ 𝑔 + 𝑔𝜆 is away
from the singularity point by letting the smallest singular value of
𝑔̃(𝑥)+𝑔̃⊤(𝑥) lower bounded by some known positive constant.
5

2

Assumption 5. Given functions 𝑔(𝑥), 𝑔𝜆(𝑥) in the forms as shown
n (13), the matrix 𝑔̃(𝑥)+𝑔̃⊤(𝑥)

2 is either uniformly positive definite or
uniformly negative definite for all 𝑥 ∈ 𝒳, where 𝒳 ⊃ 𝒞, 𝑔̃ = 𝑔 + 𝑔𝜆
and 𝒳 ∈ R𝑚+𝑛 is a compact set, i.e., there exists a positive constant
𝑏∗ > 0 such that 𝜎

(

𝑔̃(𝑥)+𝑔̃⊤(𝑥)
2

)

≥ 𝑏∗,∀𝑥 ∈ 𝒳, where 𝜎(⋅) represents the
smallest singular value of a matrix.

Without loss of generality, we assume that 𝑔̃(𝑥)+𝑔̃⊤(𝑥)
2 is positive

definite for any 𝑥 ∈ 𝒞 in this subsection. We select arbitrary values
𝜃0𝑖 ∈ R𝑝𝑖 , 𝜆0𝑖𝑗 ∈ R𝑞𝑖𝑗 satisfying 𝜃𝑖 ≤ 𝜃0𝑖 ≤ 𝜃𝑖, 𝜆𝑖𝑗 ≤ 𝜆0𝑖𝑗 ≤ 𝜆𝑖𝑗 , 𝑖, 𝑗 ∈ [𝑛], as
he nominal values of 𝜃𝑖 and 𝜆𝑖𝑗 , respectively. We define

𝛩 =
[

𝜃⊤1 𝜃⊤2 ⋯ 𝜃⊤𝑛

]⊤
, 𝛩0 =

[

𝜃0⊤1 𝜃0⊤2 ⋯ 𝜃0⊤𝑛

]⊤
, (14a)

𝛬 =
[

𝜆⊤11 𝜆⊤12 ⋯ 𝜆⊤𝑛𝑛

]⊤
, 𝛬0 =

[

𝜆0⊤11 𝜆0⊤12 ⋯ 𝜆0⊤𝑛𝑛

]⊤
, (14b)

𝜑 =
[

𝜑⊤1 𝜑⊤2 ⋯ 𝜑⊤𝑛

]⊤
, 𝛺𝜓 =

[

𝜓⊤11 𝜓⊤12 ⋯ 𝜓⊤𝑛𝑛

]⊤
, (14c)

𝑓 0
𝜃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜃01𝜑1

𝜃02𝜑2

⋮

𝜃0𝑛𝜑𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑔0𝜆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆0⊤11 𝜓11 𝜆0⊤12 𝜓12 ⋯ 𝜆0⊤1𝑛 𝜓1𝑛

𝜆0⊤21 𝜓21 𝜆0⊤22 𝜓22 ⋯ 𝜆0⊤2𝑛 𝜓2𝑛

⋯ ⋯ ⋯ ⋯

𝜆0⊤𝑛1 𝜓𝑛1 𝜆0⊤𝑛2 𝜓𝑛2 ⋯ 𝜆0⊤𝑛𝑛 𝜓𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (14d)

and

𝜇 = ‖𝛩 − 𝛩0
‖, 𝜈 = ‖𝛬 − 𝛬0

‖. (15)

ccording to Assumption 4, one can see that

≤ 𝜇̄ ≜

√

√

√

√

√

𝑀
∑

𝑗=1
max{(𝛩𝑗 − 𝛩0

𝑗 )2, (𝛩𝑗 − 𝛩
0
𝑗 )2},

≤ 𝜈̄ ≜

√

√

√

√

√

𝑁
∑

𝑗=1
max{(𝛬𝑗 − 𝛬0

𝑗 )2, (𝛬𝑗 − 𝛬
0
𝑗 )2},

where 𝑀 =
∑𝑛
𝑖=1 𝑝𝑖 and 𝑁 =

∑𝑛
𝑗=1

∑𝑛
𝑖=1 𝑞𝑖𝑗 . Analogous to Theorem 1,

the following theorem provides an aCBF-based controller that ensures
the safety of system (2) with 𝑔 and 𝑔𝜆 defined in (13).

Theorem 2. Consider the system (2) with 𝑓𝜃 defined in (3) and 𝑔, 𝑔𝜆
defined in (13), as well as the safe set 𝒞 defined in (4). Suppose that

(i) Assumptions 1, 4 and 5 hold;
(ii) There exist positive constants 𝛾, 𝜖1, 𝜖2, 𝛾𝜃 , 𝛾𝜆 > 0, such that the

following set is non-empty:

𝐾𝑔
𝐵𝐹 ≜ {u ∈ R ∣ 𝛹0 + 𝛹1u ≥ 0}, ∀𝑥 ∈ 𝒞, (16)

where 𝛹0 = ℳ+ℎ𝑥2𝑓
0
𝜃 −(𝜖1+𝜖2)+𝛾

(

ℎ − 𝜇̄2

2𝛾𝜃
− 𝜈̄2

2𝛾𝜆

)

, 𝛹1 = ℎ𝑥2 (𝑔+𝑔
0
𝜆)ℎ

⊤
𝑥2
,

ℎ𝑥2 = 𝜕ℎ
𝜕𝑥2
, and ℳ is the same as that defined in Theorem 1;

(iii) 𝜇̂ and 𝜈̂ are parameter estimations governed by the following
daptive laws:

̇̂ = −𝛾𝜇̂ + 𝛾𝜃‖ℎ𝑥2‖‖𝛺𝜑‖, (17a)
̇̂𝜈 = −𝛾𝜈̂ + 𝛾𝜆‖ℎ𝑥2‖

2
|𝑢0|‖𝛺𝜓‖, (17b)

where 𝜇̂(0), 𝜈̂(0) > 0 and 𝑢0 ∈ R is a Lipschitz function satisfying 𝑢0 ∈
𝐾𝑔
𝐵𝐹 (𝑥);
(iv) The following inequality holds: ℎ(𝑥(0)) ≥ 𝜇̂(0)2+𝜇̄2

2𝛾𝜃
+ 𝜈̂(0)2+𝜈̄2

2𝛾𝜆
.

Then, the control input 𝑢 = 𝑠𝑔(𝑢0)ℎ⊤𝑥2 ∈ R𝑛 will make ℎ(𝑥(𝑡)) ≥ 0 for
ny 𝑡 > 0, where

𝑔(𝑢0) ≜ 𝑢0 +
𝜅1,𝑔
𝑏∗

+
𝜅22,𝑔𝑢

2
0

𝑏∗(𝜅2,𝑔‖ℎ𝑥2‖|𝑢0| + 𝜖2)
, (18)

with 𝜅1,𝑔 =
𝜇̂2‖𝛺𝜑‖2

‖ ‖

and 𝜅2,𝑔 = 𝜈̂‖𝛺𝜓‖‖ℎ𝑥2‖.
𝜇̂‖𝛺𝜑‖‖
‖

ℎ𝑥2 ‖‖+𝜖1
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ℱ

Proof. Assumption 5 indicates that, for any 𝑣 ∈ R𝑛, 𝑣⊤(𝑔 + 𝑔𝜆)𝑣 ≥
∗
‖𝑣‖2 [33]. Similar to the proof of Theorem 1, one can see that 𝜇̂(𝑡) ≥
, 𝜈̂(𝑡) ≥ 0,∀𝑡 > 0. Define a candidate CBF ℎ̄ as ℎ̄ = ℎ − 1

2𝛾𝜃
𝜇̃2 − 1

2𝛾𝜆
𝜈̃2,

where 𝜇̃ = 𝜇 − 𝜇̂ and 𝜈̃ = 𝜈 − 𝜈̂.
We claim that ̇̄ℎ ≥ −𝛾ℎ̄ where ̇̄ℎ is the time derivative of ℎ̄. Indeed,

it is easy to see that ̇̄ℎ ≥ ℳ + ℎ𝑥2 (𝑓𝜃 + (𝑔 + 𝑔𝜆)𝑢) +
1
𝛾𝜃
𝜇̃ ̇̂𝜇 + 1

𝛾𝜆
𝜈̃ ̇̂𝜈.

Substituting (18) into the inequality above yields ̇̄ℎ ≥ ℳ + ℎ𝑥2𝑓𝜃 +

ℎ𝑥2 (𝑔 + 𝑔𝜆)ℎ⊤𝑥2𝑢0 + 1
𝛾𝜃
𝜇̃ ̇̂𝜇 + 1

𝛾𝜆
𝜈̃ ̇̂𝜈 + ℎ𝑥2 (𝑔 + 𝑔𝜆)ℎ⊤𝑥2

(

𝜇̂2‖𝛺𝜑‖2

𝑏∗(𝜇̂‖𝛺𝜑‖‖ℎ𝑥2 ‖+𝜖1)
+

𝜈̂2‖𝛺𝜓 ‖2‖∥ℎ𝑥2 ‖
2𝑢20

𝑏∗(𝜈̂|𝑢0|‖𝛺𝜓 ‖∥‖ℎ𝑥2 ‖
2+𝜖2)

)

≥ ℳ + ℎ𝑥2𝑓
0
𝜃 + ℎ𝑥2 (𝑔 + 𝑔

0
𝜆)ℎ

⊤
𝑥2
𝑢0 +

1
𝛾𝜃
𝜇̃ ̇̂𝜇 + 1

𝛾𝜆
𝜈̃ ̇̂𝜈 +

ℎ𝑥2 (𝑓𝜃 − 𝑓 0
𝜃 ) + ℎ𝑥2 (𝑔𝜆 − 𝑔0𝜆)ℎ

⊤
𝑥2
𝑢0 +

𝜇̂2‖ℎ𝑥2 ‖
2
‖𝛺𝜑‖2

𝜇̂‖𝛺𝜑‖‖ℎ𝑥2 ‖+𝜖1
+

𝜈̂2‖𝛺𝜓 ‖2∥‖ℎ𝑥2 ‖
4𝑢20

𝜈̂|𝑢0|‖𝛺𝜓 ‖∥‖ℎ𝑥2 ‖
2+𝜖2

≥

𝛹0+𝛹1𝑢0+(𝜖1+𝜖2)−𝛾
(

ℎ − 1
2𝛾𝜃
𝜇̄2 − 1

2𝛾𝜆
𝜈̄2
)

+ 1
𝛾𝜃
𝜇̃ ̇̂𝜇+ 1

𝛾𝜆
𝜈̃ ̇̂𝜈−𝜇‖ℎ𝑥2‖‖𝛺𝜑‖−

𝜈‖ℎ𝑥2‖
2
‖𝛺𝜓‖|𝑢0| +

𝜇̂2‖ℎ𝑥2 ‖
2
‖𝛺𝜑‖2

𝜇̂‖𝛺𝜑‖‖ℎ𝑥2 ‖+𝜖1
+

𝜈̂2‖𝛺𝜓 ‖2‖ℎ𝑥2 ‖
4𝑢20

𝜈̂|𝑢0|‖𝛺𝜓 ‖‖ℎ𝑥2 ‖
2+𝜖2

, where the second
inequality is from Assumption 5 and the third inequality comes from
emma 2 shown in Appendix. Selecting 𝑢0 ∈ 𝐾𝑔

𝐵𝐹 we have ̇̄ℎ ≥ 𝜖1 +

2−𝛾
(

ℎ − 1
2𝛾𝜃
𝜇̄2 − 1

2𝛾𝜆
𝜈̄2
)

+ 1
𝛾𝜃
𝜇̃
(

̇̂𝜇 − 𝛾𝜃‖ℎ𝑥2‖‖𝛺𝜑‖
)

+ 1
𝛾𝜆
𝜈̃
(

̇̂𝜈 − 𝛾𝜆‖ℎ𝑥2‖
2

‖𝛺𝜓‖|𝑢0|
)

− 𝜇̂‖ℎ𝑥2‖‖𝛺𝜑‖ +
𝜇̂2‖ℎ𝑥2 ‖

2
‖𝛺𝜑‖2

𝜇̂‖𝛺𝜑‖‖ℎ𝑥2 ‖+𝜖1
− 𝜈̂‖ℎ𝑥2‖

2
‖𝛺𝜓‖|𝑢0| +

𝜈̂2‖𝛺𝜓 ‖2‖ℎ𝑥2 ‖
4𝑢20

𝜈̂|𝑢0|‖𝛺𝜓 ‖‖ℎ𝑥2 ‖
2+𝜖2

≥ −𝛾
(

ℎ − 1
2𝛾𝜃
𝜇̄2 − 1

2𝛾𝜆
𝜈̄2
)

+ 1
𝛾𝜃
𝜇̃
(

̇̂𝜇 − 𝛾𝜃‖ℎ𝑥2‖‖𝛺𝜑‖
)

+
1
𝛾𝜆
𝜈̃
(

̇̂𝜈 − 𝛾𝜆‖ℎ𝑥2‖
2
‖𝛺𝜓‖|𝑢0|

)

. Substituting (17a) into the inequality

bove, we have ̇̄ℎ ≥ −𝛾
(

ℎ − 1
2𝛾𝜃
𝜇̄2 − 1

2𝛾𝜆
𝜈̄2
)

− 𝛾
𝛾𝜃
𝜇̃𝜇̂− 𝛾

𝛾𝜆
𝜈̃𝜈̂. Similar to the

proof of Theorem 1, one can see 𝜇̂𝜇̃ ≤ 𝜇̄2

2 − 𝜇̃2

2 and 𝜈̂𝜈̃ ≤ 𝜈̄2

2 − 𝜈̃2

2 , which
implies that ̇̄ℎ ≥ −𝛾ℎ̄. Our claim is thus proven. Note that ℎ̄(𝑥(0), 0) ≥ 0
ecause of condition (iv). Hence, one can conclude that ℎ̄(𝑡) ≥ 0,∀𝑡 > 0,
nd thus, ℎ(𝑥(𝑡)) ≥ 0,∀𝑡 > 0. □

emark 7. Compared with Theorem 1, Theorem 2 provides a safety
uarantee for a more general class of systems but the resulting safe
ontroller tends to have more conservative performance. This is be-
ause the control 𝑢 ∈ R𝑛 is designed to have a particular structure
= 𝑠𝑔(𝑢0)ℎ⊤𝑥2 , which requires 𝑢 always proportional to ℎ

⊤
𝑥2
, to deal with

he non-diagonal structures of 𝑔 and 𝑔𝜆. How to improve the design to
enerate a less conservative safe controller will be our future work.

The safe controller 𝑢(𝑥) in Theorem 2 can be obtained pointwise for
ny 𝑥 ∈ 𝒞 via solving the following optimization problem:

min
∈R𝑛

‖𝑢 − 𝑢𝑑‖2 (19)

s.t. 𝛹0 + 𝛹1𝑢0 ≥ 0,

𝑢 = 𝑠𝑔(𝑢0)ℎ⊤𝑥2 ,

here 𝛹0 and 𝛹1 are defined in Theorem 2. The closed-form solution
f (19) can be obtained by using Proposition 1.

. Tightening parameter bounds via a data-driven approach

The controller design proposed in Section 3 relies on the bounds
f unknown parameters as shown in Assumptions 2 and 4. If the prior
nowledge of the parameter bounds is poor, the control performance
ends to be conservative (see simulation examples in Section 5). In
his section, we present a data-driven approach to get tighter bounds
nd more accurate nominal values for the unknown parameters. Com-
ining the aCBF-based control design and the data-driven parameter
ightening approach provides a mechanism to achieve safety with less
onservatism.
Our data-driven method is inspired by the differential inclusion

echnique proposed in [5]. To better illustrate the main idea, we
onsider the system (2) with 𝑚 = 0 and 𝑛 = 1 shown as follows:

̇ = 𝑓 (𝑥) + 𝑓𝑢(𝑥) + 𝜃⊤𝜑(𝑥) + (𝑔(𝑥) + 𝜆⊤𝜓(𝑥))𝑢, (20)

here 𝑥 ∈ R is the state, 𝑢 ∈ R is the control input, 𝑓 ∶ R → R and
∶ R → R are known Lipschitz functions, 𝑓 ∶ R → R is an unknown
6

𝑢

globally) Lipschitz function satisfying Assumption 1, 𝜑 ∶ R → R𝑝,
𝜓 ∶ R → R𝑞 are known functions, and 𝜃 ∈ R𝑝, 𝜆 ∈ R𝑞 are unknown
parameters. The proposed method can be readily extended to systems
with multiple inputs by considering each control channel separately.

Recall that 𝑥𝑖 denotes the 𝑖th entry of 𝑥 where 𝑥 is either a column
or a row vector. Given a dataset ℰ = {𝑥𝑖, 𝑥̇𝑖, 𝑢𝑖}𝑁𝑖=1, the bounds of 𝜃, 𝜆,
and 𝑓𝑢 can be tightened as shown by the following theorem.

Theorem 3. Consider the system given in (20). Suppose that (i) Assump-
tions 1 and 2 hold; (ii) 𝑓𝑢 has a known Lipschitz constants 𝐿; (iii) a
dataset ℰ = {𝑥𝑖, 𝑥̇𝑖, 𝑢𝑖}𝑁𝑖=1 is given. Define intervals 𝒫

0 = [𝜃, 𝜃]⊤ ∈ IR1×𝑝

and 𝒬0 = [𝜆, 𝜆]⊤ ∈ IR1×𝑞 . Let 𝑥0 be an arbitrary state in 𝒞 and define
0 = [𝑓

𝑢
(𝑥0), 𝑓 𝑢(𝑥0)]. For 𝑖 ∈ [𝑁], 𝑟 ∈ [𝑝], 𝑠 ∈ [𝑞], define

ℱ𝑖 =

( 𝑖−1
⋂

𝑗=0
{ℱ𝑗 + 𝐿‖𝑥𝑖 − 𝑥𝑗‖[−1, 1]}

)

⋂

[𝑓
𝑢
(𝑥𝑖), 𝑓 𝑢(𝑥𝑖)]

⋂

(𝑦𝑖 −𝒫0𝜑𝑖 − 𝒬0𝜓 𝑖𝑢𝑖), (21a)

𝑣𝑖0 = (𝑦𝑖 −ℱ𝑖 − 𝒬0𝜓 𝑖𝑢𝑖) ∩ (𝒫𝑖−1𝜑𝑖), (21b)

𝑣𝑖𝑟 = (𝑣𝑖𝑟−1 −𝒫𝑖−1
𝑟 𝜑𝑖𝑟) ∩

( 𝑝
∑

𝑙=𝑟+1
𝒫𝑖−1
𝑙 𝜑𝑖𝑙

)

, (21c)

𝒫𝑖
𝑟 =

{

((𝑣𝑖𝑟−1 −
∑𝑝
𝑙=𝑟+1 𝒫

𝑖−1
𝑙 𝜑𝑖𝑙) ∩ (𝒫𝑖−1

𝑟 𝜑𝑖𝑟))
1
𝜑𝑖𝑟
, if 𝜑𝑖𝑟 ≠ 0,

𝒫𝑖−1
𝑟 , otherwise,

(21d)

and

𝑤𝑖0 = (𝑦𝑖 −ℱ𝑖 −𝒫𝑁𝜑𝑖) ∩ (𝒬𝑖−1𝜓 𝑖𝑢𝑖), (22a)

𝑤𝑖𝑠 = (𝑤𝑖𝑠−1 − 𝒬𝑖𝑠𝜓
𝑖
𝑠𝑢
𝑖) ∩

( 𝑞
∑

𝑙=𝑠+1
𝒬𝑖−1𝑙 𝜓 𝑖𝑙 𝑢

𝑖

)

, (22b)

𝒬𝑖𝑠 =

⎧

⎪

⎨

⎪

⎩

((𝑤𝑖𝑠−1 −
∑𝑞
𝑙=𝑠+1 𝒬

𝑖−1
𝑙 𝜓 𝑖𝑙 𝑢

𝑖)∩
(𝒬𝑖−1𝑠 𝜓 𝑖𝑠𝑢

𝑖)) 1
𝜓 𝑖𝑠𝑢𝑖

, if 𝜓 𝑖𝑠𝑢
𝑖 ≠ 0,

𝒬𝑖−1𝑠 , otherwise,

(22c)

where 𝜑𝑖 = 𝜑(𝑥𝑖), 𝜓 𝑖 = 𝜓(𝑥𝑖), and 𝑦𝑖 = 𝑥̇𝑖−𝑓 (𝑥𝑖)−𝑔(𝑥𝑖)𝑢𝑖. Then, 𝜃⊤ ∈ 𝒫𝑁 ,
𝜆⊤ ∈ 𝒬𝑁 , and 𝑓𝑢(𝑥) ∈ ℱ(𝑥) ≜

⋂𝑁
𝑗=0{ℱ

𝑗 + 𝐿‖𝑥 − 𝑥𝑗‖[−1, 1]}, for any
𝑥 ∈ 𝒞.

Proof. Note that 𝑓𝑢(𝑥𝑖) ∈ [𝑓
𝑢
(𝑥𝑖), 𝑓 𝑢(𝑥𝑖)] from Assumption 1 and

𝑓𝑢(𝑥𝑖) ∈ 𝑦𝑖−𝒫0𝜑𝑖−𝒬0𝜓 𝑖𝑢𝑖 from 𝑓𝑢(𝑥𝑖) = 𝑦𝑖−𝜃⊤𝜑𝑖−𝜆⊤𝜓 𝑖𝑢𝑖, 𝜃⊤ ∈ 𝒫0, and
𝜆⊤ ∈ 𝒬0. One can see that 𝑓𝑢(𝑥𝑖) ∈ 𝑓𝑢(𝑥𝑗 ) + 𝐿‖𝑥𝑖 − 𝑥𝑗‖[−1, 1] holds for
any 𝑖 ∈ [𝑁] and 𝑗 = 0, 1,… , 𝑖 − 1 because |𝑓𝑢(𝑥𝑖) − 𝑓𝑢(𝑥𝑗 )| ≤ 𝐿‖𝑥𝑖 − 𝑥𝑗‖
by the Lipschitzness of 𝑓𝑢. Hence, it is obvious that for any 𝑖 ∈ [𝑁],
𝑓𝑢(𝑥𝑖) ∈

(

⋂𝑖−1
𝑗=0{𝑓𝑢(𝑥

𝑗 ) + 𝐿‖𝑥𝑖 − 𝑥𝑗‖[−1, 1]}
)

⋂

[𝑓
𝑢
(𝑥𝑖), 𝑓 𝑢(𝑥𝑖)]

⋂

(𝑦𝑖 −𝒫0𝜑𝑖 −𝒬0𝜓 𝑖𝑢𝑖) [5], which indicates 𝑓𝑢(𝑥𝑖) ∈ ℱ𝑖 provided 𝑓𝑢(𝑥𝑘) ∈
ℱ𝑘 for any 0 ≤ 𝑘 < 𝑖. Since 𝑓𝑢(𝑥0) ∈ ℱ0, using mathematical induction
one can conclude that 𝑓𝑢(𝑥𝑖) ∈ ℱ𝑖, ∀𝑖 ∈ [𝑁]; thus, for any 𝑥 ∈ 𝒞,
𝑓𝑢(𝑥) ∈

⋂𝑁
𝑗=0{𝑓𝑢(𝑥

𝑗 ) + 𝐿‖𝑥 − 𝑥𝑗‖[−1, 1]} ⊂ ℱ(𝑥).
Next, we will prove that if 𝜃⊤ ∈ 𝒫𝑖−1, then 𝜃⊤𝜑𝑖 − ∑𝑟

𝑙=1 𝜃𝑙𝜑
𝑖
𝑙 ∈ 𝑣𝑖𝑟

holds for any 0 ≤ 𝑟 ≤ 𝑝. When 𝑟 = 0, one can see that 𝜃⊤𝜑𝑖 ∈ 𝑣𝑖0 since
𝜃⊤𝜑𝑖 = 𝑦𝑖 − 𝑓𝑢(𝑥𝑖) − 𝜆⊤𝜓 𝑖𝑢𝑖 ∈ 𝑦𝑖 − ℱ𝑖 − 𝒬0𝜓 𝑖𝑢𝑖 and 𝜃⊤𝜑𝑖 ∈ 𝒫𝑖−1𝜑𝑖.
Then, we assume 𝜃⊤𝜑𝑖 − ∑𝑟−1

𝑙=1 𝜃𝑙𝜑
𝑖
𝑙 ∈ 𝑣𝑖𝑟−1 holds. It can be seen that

𝜃⊤𝜑𝑖−
∑𝑟
𝑙=1 𝜃𝑙𝜑

𝑖
𝑙 = 𝜃⊤𝜑𝑖−

∑𝑟−1
𝑙=1 𝜃𝑙𝜑

𝑖
𝑙 −𝜃𝑟𝜑

𝑖
𝑟 ∈ 𝑣𝑖𝑟−1−𝜃𝑟𝜑

𝑖
𝑟 ∈ 𝑣𝑖𝑟−1−𝒫𝑖−1

𝑟 𝜑𝑖𝑟.
On the other hand, one can see 𝜃⊤𝜑𝑖 −

∑𝑟
𝑙=1 𝜃𝑙𝜑

𝑖
𝑙 =

∑𝑝
𝑙=𝑟+1 𝜃𝑙𝜑

𝑖
𝑙 ∈

∑𝑝
𝑙=𝑟+1 𝒫

𝑖−1
𝑙 𝜑𝑖𝑙. Summarizing the discussion above, one can conclude

that 𝜃⊤𝜑𝑖 −∑𝑟
𝑙=1 𝜃𝑙𝜑

𝑖
𝑙 ∈ (𝑣𝑖𝑟−1 −𝒫𝑖−1

𝑟 𝜑𝑖𝑟) ∩ (
∑𝑝
𝑙=𝑟+1 𝒫

𝑖−1
𝑙 𝜑𝑖𝑙) = 𝑣𝑖𝑟.

Finally, we will prove 𝜃⊤ ∈ 𝒫𝑖 for any 0 ≤ 𝑖 ≤ 𝑁 using mathematical
induction. For 𝑖 = 0, 𝜃⊤ ∈ 𝒫0 because of Assumption 2. Then we assume
𝜃⊤ ∈ 𝒫𝑖−1. Note that 𝜃⊤𝜑𝑖 = 𝑦𝑖 − 𝑓𝑢(𝑥𝑖) − 𝜆⊤𝜓 𝑖𝑢𝑖 ∈ 𝑦𝑖 − ℱ𝑖 − 𝒬0𝜓 𝑖𝑢𝑖

and 𝜃⊤𝜑𝑖 ∈ 𝒫𝑖−1𝜑𝑖, which implies that 𝜃⊤𝜑𝑖 ∈ 𝑣𝑖0. It can be seen
that for any 𝑟 ∈ [𝑝] one has 𝜃𝑟𝜑𝑖𝑟 = 𝜃⊤𝜑𝑖 −

∑𝑟−1
𝑙=1 𝜃𝑙𝜑

𝑖
𝑙 −

∑𝑝
𝑙=𝑟+1 𝜃𝑙𝜑

𝑖
𝑙 ∈

𝑣𝑖𝑟−1 −
∑𝑝
𝑙=𝑟+1 𝒫

𝑖−1
𝑙 𝜑𝑖𝑙. Moreover, noticing that 𝜃𝑟𝜑

𝑖
𝑟 ∈ 𝒫𝑖−1

𝑟 𝜑𝑖𝑟, we have
𝜃𝑟 ∈ 𝒫𝑖

𝑟 for any 𝑟 ∈ [𝑝], which indicates 𝜃⊤ ∈ 𝒫𝑖. Following the similar
⊤ 𝑖
procedure above, one can prove that 𝜆 ∈ 𝒬 . □
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Remark 8. With tighter bounds on 𝜃, 𝜆 and 𝑓𝑢 provided by Theorem 3,
larger admissible set 𝐾𝐵𝐹 (𝑥) as defined in (6) can be obtained. As a
esult, the data-driven-augmented aCBF-NLP controller tends to have a
etter control performance while always ensuring safety. It is expected
hat the system’s performance will be improved if the dataset ℰ is large
nough and the data in ℰ are sufficiently ‘‘diverse’’ (i.e., the whole
tate space is sufficient explored), but a formal proof is still under
ur investigation. The Lipschitz constant 𝐿 is needed in Theorem 3
o induce the bounds of 𝑓𝑢 from a finite number of data. A lot of
xisting work can be leveraged to estimating the Lipschitz constant
f an unknown function, such as [41,42]. Moreover, the data-driven
pproach can be also combined with the aCBF-based controller shown
n (19) to reduce its conservatism.

. Simulation

In this section, three examples are provided to demonstrate the
ffectiveness of the proposed control method. More details about sim-
lations can be found at https://arxiv.org/abs/2302.08601.

xample 1. Consider the following single-input system:

̇ = 𝑓𝑢 + 𝜃1 sin(𝑥) + 𝜃2𝑥2 + (𝜆1 + 𝜆2𝑥2)𝑢, (23)

here 𝑥 ∈ R is the state and 𝑢 ∈ R is the control input. The function
𝑢 = cos(𝑥) is unknown in the controller design; we choose the bounds
f 𝑓𝑢 as 𝑓𝑢 ∈ [−2, 2] such that Assumption 1 holds. The true values of
he parameters 𝜃1 = 𝜃2 = 2, 𝜆1 = 1, 𝜆2 = 2 are unknown in the controller
esign; we choose the bounds of these parameters as 𝜃1, 𝜃2, 𝜆1, 𝜆2 ∈
−10, 10] such that Assumption 2 holds. Note that loose bounds of the
nknown parameters and the function are chosen deliberately. It is easy
o verify that Assumption 3 is satisfied with 𝑏 = 0.5. We choose the safe
et as 𝒞 = {𝑥 ∶ ℎ(𝑥) ≥ 0} where ℎ(𝑥) = 𝑥 − 1, that is, we aim to make
(𝑡) ≥ 1 for all 𝑡 ≥ 0. The initial condition of 1 is chosen as 𝑥(0) = 2, the
eference trajectory is selected as 𝑥𝑑 = 3 sin(𝑡) and the nominal control
𝑑 is designed via feedback linearization.
First, we demonstrate the performance of the safe controller ob-

ained from (aCBF-NLP). The nominal values of the unknown param-
ters are 𝜃01 = 𝜃02 = 𝜆02 = 0, 𝜆01 = 0.5, such that Condition (ii) of
heorem 1 holds because 𝛹1 = 𝜆01 + 𝜆02𝑥

2 = 0.5 ≠ 0 for any 𝑥 ∈ 𝒞,
hich implies that 𝐾𝐵𝐹 ≠ ∅. Other control parameters are selected
uch that Condition (iv) of Theorem 1 holds. Therefore, all conditions
f Theorem 1 are satisfied. Applying the safe controller obtained from
aCBF-NLP), the state evolution of the closed-loop system is shown as
he blue line in Fig. 2. Then, we consider the aCBF-NLP-based safe
ontroller combined with the data-driven approach. We assume that
𝑢 has a Lipschitz constant 𝐿 = 1 and a dataset of 10 points is given.
pplying the data-driven augmented, aCBF-NLP-based safe controller,
he state evolution of the closed-loop system is shown as the pink line
n Fig. 2.
From Fig. 2, one can observe that the proposed aCBF-NLP controller,

ither with or without the data-driven technique, can ensure the safety
f the system because the trajectory of 𝑥 always stays inside the safe
egion whose boundary is represented by the dashed red line, and the
eference trajectory is well-tracked within the safe set. Moreover, the
erformance of the data-driven augmented aCBF-NLP-based controller
s less conservative since the tracking performance of the desired con-
roller is better preserved inside the safe region and the state trajectory
s allowed to approach the boundary of the safe set when the reference
rajectory is outside the safe region.

xample 2. Consider the following adaptive cruise control system [1]:

d
d𝑡

⎡

⎢

⎢

⎣

𝐷
𝑣𝑙
𝑣

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

𝑣𝑙 − 𝑣𝑓
𝑎

− 1 (𝑓 + 𝑓 𝑣 + 𝑓 𝑣2 )

⎤

⎥

⎥

⎥

+
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

𝑢, (24)
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𝑓
⎣ 𝑚 0 1 𝑓 2 𝑓

⎦ 𝑚
Fig. 2. Evolution of the state variable 𝑥 of Example 1. It can be seen that both the
aCBF-NLP controller and the data-driven augmented aCBF-NLP controller can ensure
safety as the trajectories of 𝑥 always stay in the safe region (i.e., above the dashed red
line). One can also see that, when the data-driven technique developed in Theorem 3
is adopted, the aCBF-NLP controller has a better control performance.

where 𝑣𝑙 and 𝑣𝑓 are the velocities of the lead car and the following car,
respectively, 𝐷 is the distance between the two vehicles, 𝑢 is the control
nput, 𝐹𝑟 ≜ 𝑓0+𝑓1𝑣𝑓+𝑓2𝑣2𝑓 is the aerodynamic drag term with constants
0, 𝑓1, 𝑓2, and 𝑚 is the mass of the following car. The true values of the
arameters 𝑓0 = 0.1 N, 𝑓1 = 5 N s∕m, 𝑓2 = 0.25 Ns2∕m, 𝑚 = 1650 kg
re unknown in the controller design. We assume that 𝑓0 ∈ [0, 10],
𝑓1 ∈ [0, 50], 𝑓2 ∈ [0, 20], 𝑚 ∈ [100, 3000], and let 𝜃 = 1

𝑚 [−𝑓0 −𝑓1 −𝑓2]⊤,
𝜑(𝑣𝑓 ) = [1 𝑣𝑓 𝑣2𝑓 ]

⊤, 𝜆 = 1
𝑚 ; one can easily see that Assumption 2

s satisfied with 𝜃1 ∈ [−0.1, 0], 𝜃2 ∈ [−0.5, 0], 𝜃3 ∈ [−0.2, 0], 𝜆 ∈
[0.00033, 0.01]. Note that in (24) 𝑓𝑢 = 0, such that we selected 𝑓

𝑢
= 𝑓 𝑢 =

0, from which one can see Assumption 1 is satisfied. Meanwhile, from
(24) one can easily verify that Assumption 3 holds with 𝑏 = 1∕3000. The
afety constraint of the following car is to keep a safe distance from the
ead car, which can be expressed as 𝐷∕𝑣𝑓 ≥ 1.8 where 1.8 is the desired
ime headway in seconds. Therefore, the safe set is 𝒞 = {𝑥 ∶ ℎ(𝑥) ≥ 0}
here ℎ = 𝐷 − 1.8𝑣𝑓 . The nominal controller 𝑢𝑑 is designed to keep
he following car at a desired speed 𝑣𝑓,𝑑𝑒𝑠 = 22 m∕s. We choose the
ominal parameters 𝜃0 = [−0.05 − 0.5 − 0.2]⊤ and 𝜆0 = 1∕3000, such
hat 𝛹1 = 1.82∕3000 ≠ 0 for any 𝑥 ∈ 𝒞; thus, 𝐾𝐵𝐹 defined in (6) is
on-empty, implying that Condition (ii) of Theorem 1 holds.
Applying the safe controller obtained from (aCBF-NLP), the state

nd CBF evolution are shown as the blue lines in Fig. 3. Next, we
onsider the aCBF-NLP-based controller augmented with a dataset of
datapoints. The state and CBF evolution of the closed-loop system
ith the data-driven-augmented aCBF-NLP controller are shown as the
rown lines in Fig. 3. One can see that both controllers can ensure
afety in the presence of parametric uncertainties since ℎ(𝑡) ≥ 0 for
ny 𝑡 > 0, and the tracking performance is satisfactory when the
eference trajectory is inside the safe region. Furthermore, the data-
riven augmented aCBF-NLP controller has a slightly better control
erformance in terms of maintaining the desired velocity because the
ounds of the unknown parameters are tightened by the data-driven
pproach, as discussed in Remark 8.

xample 3. Consider the mass–spring system as follows:

d
d𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1

𝑥2

𝑥̇1

𝑥̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

− 𝑘1+𝑘2
𝑚1

𝑘2
𝑚1

0 0

𝑘2
𝑚2

− 𝑘2
𝑚2

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1

𝑥2

𝑥̇1

𝑥̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0
1
𝑚1

0

0 1
𝑚2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢1

𝑢2

⎤

⎥

⎥

⎦

, (25)

where 𝑥1, 𝑥2 ∈ R denote the position of two mass points, 𝑢1, 𝑢2 ∈ R are
ontrol inputs, 𝑚1 = 𝑚2 = 0.2 represent the mass, and 𝑘1 = 𝑘2 = 1
enote the stiffness of two springs. We assume that all functions in
25) are known, that is, 𝑓𝑢 = 0. Define 𝜃1 = [− 𝑘1+𝑘2

𝑚1

𝑘2
𝑚1

]⊤ = [−10 5]⊤,
= [ 𝑘2 − 𝑘2 ]⊤ = [5 − 5]⊤, 𝜆 = 1 = 5, and 𝜆 = 1 = 5, which
2 𝑚2 𝑚2

1 𝑚1
2 𝑚2
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Fig. 3. Simulation results of Example 2. The aCBF-NLP controller, either with or
without the data-driven technique, can ensure safety of the system. When combined
with the data-driven techniques, the aCBF-NLP controller has a slightly better control
performance in terms of maintaining the desired velocity.

are unknown parameters in control design. One can easily verify that
Assumption 2 is fulfilled with 𝑚1, 𝑚2 ∈ [0.1, 0.5] and 𝑘1, 𝑘2 ∈ [0, 5], such
that [−100 0]⊤ ≤ 𝜃1 ≤ [0 50]⊤, [0 − 50]⊤ ≤ 𝜃2 ≤ [50 0]⊤, 𝜆1 ∈ [2, 10], and
𝜆2 ∈ [2, 10]. It is obvious that Assumption 3 is fulfilled with 𝑏1 = 𝑏2 = 1.
he desired trajectories are selected as 𝑥1𝑑 = 0, 𝑥2𝑑 = 1 + sin(𝑡), with
a nominal PD controller 𝑢𝑑 designed to track 𝑥1𝑑 , 𝑥2𝑑 , The safe set is
efined as 𝒞 = {𝑥 ∶ ℎ(𝑥) ≥ 0} with ℎ = 𝑥2−𝑥1−0.5, which aims to keep
the distance between two masses. The initial conditions are selected
as 𝑥1(0) = 𝑥̇1(0) = 𝑥̇2(0) = 0 and 𝑥2(0) = 1. Since the relative degree
of ℎ is equal to 2, an exponential CBF that has a relative degree 1 is
constructed as ℎ̄ = ℎ̇+15ℎ = 𝑥̇2−𝑥̇1+15(𝑥2−𝑥1−0.5). One can easily see
that ℎ̄ ≥ 0 implies ℎ ≥ 0 because ℎ̄(𝑥1(0), 𝑥̇1(0), 𝑥2(0), 𝑥̇2(0)) ≥ 0. Hence,
we can use ℎ̄ to replace ℎ in Theorems 1 and 2.

We first consider the aCBF-NLP-based controller proposed in The-
rem 1. The nominal values of the unknown parameters are selected
s 𝜃01 = [−50 25]⊤, 𝜃02 = [25 − 25]⊤, and 𝜆01 = 𝜆02 = 6. Therefore, one
an see that Condition (ii) of Theorem 1 holds (i.e., 𝐾𝐵𝐹 defined in (6)
s non-empty) because 𝛹1 = [6 6] ≠ 0 for any 𝑥 ∈ 𝒞. Applying the
afe controller obtained from (aCBF-NLP), the state and CBF evolution
re shown as the blue lines in Fig. 4. Then, the aCBF-NLP-based
ontroller is augmented with a dataset of 4 datapoints. The state and
BF evolution are represented by the brown lines in Fig. 4. It can be
een that both controllers can guarantee the safety since ℎ(𝑥(𝑡)) ≥ 0
or any 𝑡 > 0, while the performance of the aCBF-NLP controller is
mproved if the data-driven approach is adopted.
Finally, we show how the results of Theorem 2 can be applied to

25). From now on we do not assume 𝑔 and 𝑔𝜆 are diagonal matrices.
t is easy to verify that Assumptions 1, 4, 5 hold true with 𝑏∗ = 1,
11, 𝜆22 ∈ [−1, 1], 𝜆12, 𝜆21 ∈ [2, 10], [−100 0]⊤ ≤ 𝜃1 ≤ [0 50]⊤, and
0 − 50]⊤ ≤ 𝜃2 ≤ [50 0]⊤. We select the nominal parameters 𝜃01 =
−50 25]⊤, 𝜃02 = [25 − 25]⊤, 𝜆011 = 𝜆022 = 6, 𝜆012 = 𝜆021 = 0 and
se the aforementioned exponential CBF ℎ̄. Thus, it is easy to verify
hat Condition (ii) of Theorem 2 holds (i.e., 𝐾𝑔

𝐵𝐹 defined in (16) is
on-empty) because 𝛹 = 12 ≠ 0 for any 𝑥 ∈ 𝒞.
8

1 t
Fig. 4. Simulation results of Example 3 using the control scheme shown in (aCBF-NLP).
rom (c) it can be seen that the proposed aCBF-NLP-based controller can guarantee
afety as ℎ is always non-negative; from (a) it can be seen that, if the data-driven
echniques are adopted, the control performance becomes less conservative since 𝑥1
an track the reference trajectory better inside the safe region.

Applying the safe control law obtained from (19), the state and CBF
volution are shown in Fig. 5, from which one can see that the safety
s ensured since ℎ(𝑥(𝑡)) ≥ 0 for any 𝑡 > 0. However, from Fig. 5(a)
nd 5(b), it can be seen that the control performance is conservative,
.e., the desired control performance is not well preserved inside the
afe region. This phenomenon verifies what we discussed in Remark 7,
.e., 𝑢 might not be close to 𝑢𝑑 since it is always proportional to the
artial derivative of ℎ.

. Conclusion

This paper proposes a singularity-free aCBF-NLP-based control strat-
gy for systems with parametric uncertainties in both drift terms and
ontrol-input matrices, where the aCBF-NLP has a closed-form solu-
ion. Furthermore, a data-driven approach is developed to tighten
he bounds of the unknown parameters and functions such that the
erformance of the proposed controller can be improved. Simulation
esults are also presented to validate the proposed approach. Future
ork includes relaxing the assumptions of this paper and integrating
his control method into learning-based control frameworks.
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Fig. 5. Simulation results of Example 3 using the control strategy shown in (19).
From (c) it can be seen that the aCBF-NLP-based controller obtained by solving (19)
can guarantee safety; however, the control performance is unsatisfactory (i.e., the
tracking performance of the desired controller is not well-preserved) due to the intrinsic
conservatism discussed in Remark 7.

CRediT authorship contribution statement

Yujie Wang: Formal analysis, Investigation, Methodology, Visu-
alization, Writing – original draft. Xiangru Xu: Conceptualization,
unding acquisition, Investigation, Methodology, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
iangru Xu reports financial support was provided by National Science
oundation.

ata availability

Data will be made available on request.
9

Appendix

Lemma 1. Define a function 𝑠(⋅) as

𝑠(𝑦) = 𝑦 +
𝜅1
𝑏

+
𝜅22𝑦

2

𝑏(𝜅2|ℎ𝑥2 ||𝑦| + 𝜖2)
, (A.1)

here 𝜅1, 𝜅2 ≥ 0 and 𝑏, 𝜖2, |ℎ𝑥2 | > 0 are considered as constants. The
unction 𝑠(⋅) has the following properties:
(i) When 𝑏̄ − 𝜅2 ≥ 0, where 𝑏̄ = 𝑏|ℎ𝑥2 |, 𝑠(𝑦) is monotonically increasing

with respect to 𝑦, and lim𝑦→−∞ 𝑠(𝑦) = −∞, lim𝑦→+∞ 𝑠(𝑦) = +∞;
(ii) When 𝑏̄−𝜅2 < 0, 𝑠(𝑦) has a global minimum 𝑦∗ = 𝜖2[(𝜅2−𝑏̄)−

√

𝜅2(𝜅2−𝑏̄)]
𝜅2(𝜅2−𝑏̄)

,
where 𝜖2 = 𝜖2∕|ℎ𝑥2 |, and lim𝑦→−∞ 𝑠(𝑦) = lim𝑦→+∞ 𝑠(𝑦) = +∞.

Proof. Note that the derivative of 𝑠(𝑦) with respect to 𝑦 can be
expressed as

d𝑠
d𝑦

=

⎧

⎪

⎨

⎪

⎩

1 +
𝜅22𝑦(𝜅2𝑦+2𝜖2)
𝑏̄(𝜅2𝑦+𝜖2)2

, if 𝑦 ≥ 0,

(𝑏̄−𝜅2)𝜅22𝑦
2−2𝜅2𝜖2(𝑏̄−𝜅2)𝑦+𝑏̄𝜖22
𝑏̄(−𝜅2𝑦+𝜖2)2

, if 𝑦 < 0.
(A.2)

(i) If 𝜅2 = 0, then 𝑠(𝑦) = 𝜅1
𝑏 + 𝑦, from which one can see that

he statement is true. We assume 𝜅2 ≠ 0 in the following analy-
is. It can be seen that if 𝑏̄ − 𝜅2 ≥ 0, d𝑠

d𝑦 > 0 for any 𝑦 ∈ R,
uch that 𝑠(𝑦) is monotonically increasing. Meanwhile, one can see
im𝑦→+∞ 𝑠(𝑦) = +∞ and lim𝑦→−∞ 𝑠(𝑦) = lim𝑦→−∞

𝑦𝑏̄(−𝜅2𝑦+𝜖2)+𝜅22𝑦
2

𝑏̄(−𝜅2𝑦+𝜖2)
+

𝜅1
𝑏

𝑧=−𝑦
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ lim𝑧→+∞

−𝑏̄(𝜅2𝑧2+𝜖2𝑧)+𝜅22𝑧
2

𝑏̄(𝜅2𝑧+𝜖2)
+ 𝜅1

𝑏 . Define 𝛼(𝑧) = −𝑏̄(𝜅2𝑧2 + 𝜖2𝑧) +
2
2𝑧

2, 𝛽(𝑧) = 𝑏̄(𝜅2𝑧 + 𝜖2), and 𝐼 = (0,+∞), from which one can see
im𝑦→−∞ 𝑠(𝑦) = 𝜅1

𝑏 + lim𝑧→+∞
𝛼(𝑧)
𝛽(𝑧) . Since 𝛼, 𝛽 are differentiable with

respect to 𝑧 and 𝛽′(𝑧) ≠ 0 for any 𝑧 ∈ 𝐼 , applying L’Hôpital’s rule gives
lim𝑦→−∞ 𝑠(𝑦) = lim𝑧→+∞

−2(𝑏̄−𝜅2)𝜅2𝑧−𝑏̄𝜖2
𝑏̄𝜅2

+ 𝜅1
𝑏 = −∞.

(ii) If 𝑏̄ − 𝜅2 < 0, d𝑠
d𝑦 > 0 still holds when 𝑦 ≥ 0. When 𝑦 < 0,

asking d𝑠
d𝑦 = 0 gives a stationary point 𝑦∗. It can be verified d2𝑠

d𝑦2
|

|

|

|𝑦=𝑦∗
=

2(𝜅2(𝜅2−𝑏̄))
3
2

𝜅2 𝑏̄𝜖2
> 0, such that 𝑦∗ is a global minimum. Similarly, one can

rove lim𝑦→+∞ 𝑠(𝑦) = ∞ and lim𝑦→−∞ 𝑠(𝑦)
𝑧=−𝑦
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ lim𝑧→+∞

𝜅2(𝜅2−𝑏̄)𝑧2−𝑏̄𝜖2𝑧
𝑏̄(𝜖2+𝜅2𝑧)

+
𝜅1
𝑏 = lim𝑧→+∞

2𝜅2(𝜅2−𝑏̄)𝑧−𝑏̄𝜖2
𝑏̄𝜅2

+ 𝜅1
𝑏 = +∞, where the second equality arises

from L’Hôpital’s rule (the conditions of L’Hôpital’s rule can be verified
using the similar procedure in (i)). □

Lemma 2. For any 𝑎 ∈ R𝑛, 𝑏 ∈ R𝑛, 𝑐 ∈ R, the following inequalities hold:

𝑎⊤(𝑓𝜃 − 𝑓 0
𝜃 ) ≥ −𝜇‖𝑎‖‖𝛺𝜑‖, (A.3a)

𝑏⊤(𝑔𝜆 − 𝑔0𝜆)𝑏𝑐 ≥ −𝜈‖𝛺𝜓‖‖𝑏‖
2
|𝑐|, (A.3b)

where 𝑓𝜃 is defined in (3), 𝑔𝜆 is defined in (13), 𝑓 0
𝜃 , 𝑔

0
𝜆, 𝛺𝜑, 𝛺𝜓 are defined

in (14a), and 𝜇, 𝜈 are defined in (15).

Proof. One can verify that 𝑎⊤(𝑓𝜃 − 𝑓 0
𝜃 ) ≥ −‖𝑎‖‖𝑓𝜃 − 𝑓 0

𝜃 ‖ = −‖𝑎‖
√

∑𝑛
𝑖=1((𝜃𝑖 − 𝜃

0
𝑖 )⊤𝜑𝑖)2 ≥ −‖𝑎‖

√

∑𝑛
𝑖=1 ‖𝜃𝑖 − 𝜃

0
𝑖 ‖

2
‖𝜑𝑖‖2 ≥ −‖𝑎‖

√

∑𝑛
𝑖=1 ‖𝜃𝑖 − 𝜃

0
𝑖 ‖

2
√

∑𝑛
𝑖=1 ‖𝜑𝑖‖2 = −‖𝑎‖‖𝛩 − 𝛩0

‖‖𝛺𝜑‖ = −𝜇‖𝑎‖‖𝛺𝜑‖,
where the first and second inequality are derived from Cauchy–Schwarz
inequality and the third inequality comes from the fact ∑𝑛

𝑘=1 𝑥
2
𝑘𝑦

2
𝑘 ≤

(
∑𝑛
𝑘=1 𝑥

2
𝑘
) (

∑𝑛
𝑘=1 𝑦

2
𝑘
)

, ∀𝑥𝑘, 𝑦𝑘 ∈ R. Therefore, (A.3a) holds.
Similarly, using Cauchy–Schwarz inequality, one can get 𝑏⊤(𝑔𝜆 −

𝑔0𝜆)𝑏𝑐 ≥ −|𝑏⊤(𝑔𝜆 − 𝑔0𝜆)𝑏||𝑐| ≥ − ‖𝑔𝜆 − 𝑔0𝜆‖‖𝑏‖
2
|𝑐|. Invoking the definition

f the Frobenius norm, ‖𝑔𝜆 − 𝑔0𝜆‖ satisfies ‖𝑔𝜆 − 𝑔0𝜆‖ =
√

∑𝑛
𝑖=1

∑𝑛
𝑗=1((𝜆𝑖𝑗 − 𝜆

0
𝑖𝑗 )⊤𝜓𝑖𝑗 )2 ≤

√

∑𝑛
𝑖=1

∑𝑛
𝑗=1 ‖𝜆𝑖𝑗 − 𝜆

0
𝑖𝑗‖

2
‖𝜓𝑖𝑗‖2 ≤

√

∑𝑛
𝑖=1

∑𝑛
𝑗=1 ‖𝜓𝑖𝑗‖2

√

∑𝑛
𝑖=1

∑𝑛
𝑗=1 ‖𝜆𝑖𝑗 − 𝜆

0
𝑖𝑗‖

2 = ‖𝛬 − 𝛬0
‖‖𝛺𝜓‖ = 𝜈‖𝛺𝜓‖. Therefore, (A.3b)

holds. □



Systems & Control Letters 188 (2024) 105798Y. Wang and X. Xu
References

[1] X. Xu, P. Tabuada, A. Ames, J. Grizzle, Robustness of control barrier functions
for safety critical control, IFAC-PapersOnLine 48 (27) (2015) 54–61.

[2] A.D. Ames, X. Xu, J.W. Grizzle, P. Tabuada, Control barrier function based
quadratic programs for safety critical systems, IEEE Trans. Automat. Control 62
(8) (2016) 3861–3876.

[3] K. Garg, D. Panagou, Robust control barrier and control Lyapunov functions with
fixed-time convergence guarantees, in: 2021 American Control Conference, ACC,
2021, pp. 2292–2297.

[4] Q. Nguyen, K. Sreenath, Robust safety-critical control for dynamic robotics, IEEE
Trans. Automat. Control 67 (3) (2021) 1073–1088.

[5] C.K. Verginis, F. Djeumou, U. Topcu, Learning-based, safety-constrained control
from scarce data via reciprocal barriers, in: 2021 IEEE 60th Conference on
Decision and Control, CDC, 2021, pp. 83–89.

[6] J. Buch, S.-C. Liao, P. Seiler, Robust control barrier functions with
sector-bounded uncertainties, IEEE Control Syst. Lett. 6 (2021) 1994–1999.

[7] Y. Wang, X. Xu, Disturbance observer-based robust control barrier functions, in:
2022 American Control Conference, ACC, 2023, pp. 3681–3687.

[8] K.S. Narendra, A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, 1989.
[9] K.J. Åström, B. Wittenmark, Adaptive Control, second ed., Addison-Wesley, 1995.
[10] M. Krstić, P.V. Kokotović, I. Kanellakopoulos, Nonlinear and Adaptive Control

Design, John Wiley & Sons, Inc., 1995.
[11] P.A. Ioannou, J. Sun, Robust Adaptive Control, Prentice-Hall, 1996.
[12] A. Astolfi, D. Karagiannis, R. Ortega, Nonlinear and Adaptive Control with

Applications, Springer-Verlag, 2008.
[13] S.S. Sastry, A. Isidori, Adaptive control of linearizable systems, IEEE Trans.

Automat. Control 34 (11) (1989) 1123–1131.
[14] I. Kanellakopoulos, P.V. Kokotović, A.S. Morse, Systematic design of adaptive

controllers for feedback linearizable systems, IEEE Trans. Automat. Control 36
(1991) 1241–1253.

[15] M. Krstić, I. Kanellakopoulos, P. Kokotović, Adaptive nonlinear control without
overparametrization, Syst. Control Lett. 19 (3) (1992) 177–185.

[16] B.D. Anderson, R.R. Bitmead, C.R. Johnson Jr., P.V. Kokotovic, R.L. Kosut,
I.M. Mareels, L. Praly, B.D. Riedle, Stability of Adaptive Systems: Passivity and
Averaging Analysis, MIT Press, 1986.

[17] R. Kosut, B. Anderson, I. Mareels, Stability theory for adaptive systems: Method
of averaging and persistency of excitation, IEEE Trans. Automat. Control 32 (1)
(1987) 26–34.

[18] G. Tao, Multivariable adaptive control: A survey, Automatica 50 (11) (2014)
2737–2764.

[19] A.M. Annaswamy, A.L. Fradkov, A historical perspective of adaptive control and
learning, Annu. Rev. Control 52 (2021) 18–41.

[20] M. Krstić, P.V. Kokotović, Control Lyapunov functions for adaptive nonlinear
stabilization, Syst. Control Lett. 26 (1) (1995) 17–23.

[21] A.J. Taylor, A.D. Ames, Adaptive safety with control barrier functions, in: 2020
American Control Conference, ACC, 2020, pp. 1399–1405.

[22] B.T. Lopez, J.-J.E. Slotine, J.P. How, Robust adaptive control barrier functions:
An adaptive and data-driven approach to safety, IEEE Control Syst. Lett. 5 (3)
(2020) 1031–1036.
10
[23] P. Zhao, Y. Mao, C. Tao, N. Hovakimyan, X. Wang, Adaptive robust quadratic
programs using control Lyapunov and barrier functions, in: 2020 IEEE 59th
Conference on Decision and Control, CDC, 2020, pp. 3353–3358.

[24] M. Black, E. Arabi, D. Panagou, A fixed-time stable adaptation law for
safety-critical control under parametric uncertainty, in: 2021 European Control
Conference, ECC, 2021, pp. 1328–1333.

[25] A. Isaly, O.S. Patil, R.G. Sanfelice, W.E. Dixon, Adaptive safety with multiple
barrier functions using integral concurrent learning, in: 2021 American Control
Conference, ACC, 2021, pp. 3719–3724.

[26] M.H. Cohen, C. Belta, High order robust adaptive control barrier functions and
exponentially stabilizing adaptive control Lyapunov functions, in: 2022 American
Control Conference, ACC, 2022, pp. 2233–2238.

[27] Y. Wang, X. Xu, Observer-based control barrier functions for safety critical
systems, in: 2022 American Control Conference, ACC, 2022, pp. 709–714.

[28] S. Wang, B. Lyu, S. Wen, K. Shi, S. Zhu, T. Huang, Robust adaptive safety-critical
control for unknown systems with finite-time elementwise parameter estimation,
IEEE Trans. Syst. Man Cybern.: Syst. (2022).

[29] C. Huang, L. Long, Safety-critical model reference adaptive control of switched
nonlinear systems with unsafe subsystems: A state-dependent switching approach,
IEEE Trans. Syst. Man Cybern.: Syst. (2022).

[30] V. Azimi, S. Hutchinson, Exponential control Lyapunov-barrier function using
a filtering-based concurrent learning adaptive approach, IEEE Trans. Automat.
Control 67 (10) (2022) 5376–5383.

[31] C.K. Verginis, Funnel control for uncertain nonlinear systems via zeroing control
barrier functions, IEEE Control Syst. Lett. 7 (2022) 853–858.

[32] C.P. Bechlioulis, G.A. Rovithakis, Robust adaptive control of feedback linearizable
MIMO nonlinear systems with prescribed performance, IEEE Trans. Automat.
Control 53 (9) (2008) 2090–2099.

[33] H. Xu, P.A. Ioannou, Robust adaptive control for a class of MIMO nonlinear
systems with guaranteed error bounds, IEEE Trans. Automat. Control 48 (5)
(2003) 728–742.

[34] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
[35] R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to Interval Analysis, SIAM,

2009.
[36] A. Isidori, Nonlinear Control Systems: An Introduction, Springer, 1985.
[37] X. Xu, Constrained control of input–output linearizable systems using control

sharing barrier functions, Automatica 87 (2018) 195–201.
[38] H.K. Khalil, Nonlinear Systems, Prentice-Hall, 2002.
[39] Q. Nguyen, K. Sreenath, Exponential control barrier functions for enforcing high

relative-degree safety-critical constraints, in: 2016 American Control Conference,
ACC, 2016, pp. 322–328.

[40] X. Tan, W.S. Cortez, D.V. Dimarogonas, High-order barrier functions: Robustness,
safety, and performance-critical control, IEEE Trans. Automat. Control 67 (6)
(2021) 3021–3028.

[41] G. Wood, B. Zhang, Estimation of the Lipschitz constant of a function, J. Global
Optim. 8 (1996) 91–103.

[42] M. Fazlyab, A. Robey, H. Hassani, M. Morari, G. Pappas, Efficient and accurate
estimation of Lipschitz constants for deep neural networks, Adv. Neural Inf.
Process. Syst. 32 (2019).

http://refhub.elsevier.com/S0167-6911(24)00086-0/sb1
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb1
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb1
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb2
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb2
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb2
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb2
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb2
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb3
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb3
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb3
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb3
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb3
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb4
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb4
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb4
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb5
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb5
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb5
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb5
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb5
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb6
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb6
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb6
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb7
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb7
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb7
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb8
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb9
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb10
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb10
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb10
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb11
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb12
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb12
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb12
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb13
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb13
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb13
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb14
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb14
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb14
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb14
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb14
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb15
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb15
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb15
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb16
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb16
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb16
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb16
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb16
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb17
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb17
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb17
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb17
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb17
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb18
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb18
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb18
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb19
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb19
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb19
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb20
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb20
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb20
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb21
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb21
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb21
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb22
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb22
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb22
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb22
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb22
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb23
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb23
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb23
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb23
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb23
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb24
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb24
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb24
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb24
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb24
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb25
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb25
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb25
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb25
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb25
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb26
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb26
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb26
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb26
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb26
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb27
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb27
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb27
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb28
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb28
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb28
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb28
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb28
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb29
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb29
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb29
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb29
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb29
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb30
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb30
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb30
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb30
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb30
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb31
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb31
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb31
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb32
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb32
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb32
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb32
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb32
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb33
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb33
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb33
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb33
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb33
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb34
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb35
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb35
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb35
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb36
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb37
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb37
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb37
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb38
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb39
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb39
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb39
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb39
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb39
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb40
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb40
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb40
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb40
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb40
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb41
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb41
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb41
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb42
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb42
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb42
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb42
http://refhub.elsevier.com/S0167-6911(24)00086-0/sb42

	Adaptive safety-critical control for a class of nonlinear systems with parametric uncertainties: A control barrier function approach
	Introduction
	Preliminaries & Problem Statement
	Notation
	Control Barrier Function
	Problem Formulation

	aCBF-NLP-based Safe Control Design
	aCBF-NLP-Based Control Design
	Closed-form Solution to the aCBF-NLP
	Extension to More General Systems

	Tightening Parameter Bounds via a Data-driven Approach
	Simulation
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References


