
Av
00

C

C

c

R

L

a D
b M
c D
d S

A

Ke

Di

GP

Ph

Sc

BS

Co

✩

*

ss

ne

ht

Re
Computer Physics Communications 300 (2024) 109196

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

omputational Physics

hrono DEM-Engine: A Discrete Element Method dual-GPU simulator with

ustomizable contact forces and element shape✩

uochun Zhang a, Bonaventura Tagliafierro b,c,d,∗, Colin Vanden Heuvel a, Shlok Sabarwal a,
uning Bakke a, Yulong Yue a, Xin Wei a, Radu Serban a, Dan Negruţ a

epartment of Mechanical Engineering, University of Wisconsin–Madison, 1513 Engineering Dr, Madison, 53706, WI, USA
aritime Engineering Laboratory, Universitat Politècnica de Catalunya – BarcelonaTech, C. Jordi/Girona 1-3, Barcelona, 08034, Spain
epartment of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084, Italy
chool of Natural and Built Environment, Queen’s University Belfast, Northern Ireland, Belfast, BT9 5AG, UK

 R T I C L E I N F O A B S T R A C T

ywords:

screte Element Method
U computing
ysics-based simulation
ientific package
D3 open-source

This paper introduces DEM-Engine, a new submodule of Project Chrono, that is designed to carry out Discrete
Element Method (DEM) simulations. Based on spherical primitive shapes, DEM-Engine can simulate polydisperse
granular materials and handle complex shapes generated as assemblies of primitives, referred to as clumps. DEM-
Engine has a multi-tier parallelized structure that is optimized to operate simultaneously on two GPUs. The code
uses custom-defined data types to reduce memory footprint and increase bandwidth. A novel “delayed contact
detection” algorithm allows the decoupling of the contact detection and force computation, thus splitting the
workload into two asynchronous GPU streams. DEM-Engine uses just-in-time compilation to support user-defined
contact force models. This paper discusses its C++ and Python interfaces and presents a variety of numerical tests,
in which impact forces, complex-shaped particle flows, and a custom force model are validated considering well-
known benchmark cases. Additionally, the full potential of the simulator is demonstrated for the investigation
of extraterrestrial rover mobility on granular terrain. The chosen case study demonstrates that large-scale co-
simulations (comprising 11 million elements) spanning 15 seconds, in conjunction with an external multi-body
dynamics system, can be efficiently executed within a day. Lastly, a performance test suggests that DEM-Engine
displays linear scaling up to 150 million elements on two NVIDIA A100 GPUs.

ntents

1. Introduction . 2

2. Implementation features . 3

2.1. Multi-GPU solution and delayed active-contact set update . 3

2.1.1. Comparison against domain decomposition . 4

2.2. Just-in-time CUDA kernel compilation . 5

2.2.1. Custom force model . 5

2.2.2. Family tag . 5

2.3. Custom and mixed data type . 5

2.4. Geometry hierarchy and tracker . 6

2.5. Contact detection algorithm . 6

2.6. Python wrapper . 7

3. Sample script . 7

The review of this paper was arranged by Prof. Andrew Hazel.
Corresponding author.
E-mail addresses: ruochunz@gmail.com (R. Zhang), btagliafierro@unisa.it (B. Tagliafierro), colin.vandenheuvel@wisc.edu (C. Vanden Heuvel),

abarwal@wisc.edu (S. Sabarwal), lfang9@wisc.edu (L. Bakke), yyue32@wisc.edu (Y. Yue), xwei84@wisc.edu (X. Wei), serban@wisc.edu (R. Serban),
ailable online 8 April 2024
10-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access art

grut@wisc.edu (D. Negruţ).

tps://doi.org/10.1016/j.cpc.2024.109196

ceived 31 October 2023; Received in revised form 1 March 2024; Accepted 3 April 2
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:ruochunz@gmail.com
mailto:btagliafierro@unisa.it
mailto:colin.vandenheuvel@wisc.edu
mailto:ssabarwal@wisc.edu
mailto:lfang9@wisc.edu
mailto:yyue32@wisc.edu
mailto:xwei84@wisc.edu
mailto:serban@wisc.edu
mailto:negrut@wisc.edu
https://doi.org/10.1016/j.cpc.2024.109196
https://doi.org/10.1016/j.cpc.2024.109196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109196&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

3.1. C++ version . 7

3.2. Python version . 8

4. DEM model . 9

4.1. History-based Hertz–Mindlin model . 9

4.2. Providing a custom contact force model . 10
4.2.1. Default model implementation explained . 10

4.3. Contact model validation . 12

4.3.1. Sphere rolling on incline . 12
4.3.2. Sphere stacking . 12

4.3.3. Contact chain propagation . 12
5. Simulator’s performance . 14

6. Numerical experiments . 15
6.1. Ball impact test . 16

6.2. Flow sensitivity test . 16
6.2.1. Drum tests . 16
6.2.2. Hopper tests . 17

6.3. Contact modeling for particle breakage . 18

6.4. Rover mobility co-simulation . 20
6.4.1. Co-simulation . 21

6.4.2. Active box scheme . 21

7. Conclusions and future directions . 22

Code availability . 23
CRediT authorship contribution statement . 23
Declaration of competing interest . 23

Data availability . 23

Acknowledgements . 23

References . 23

1.

pr

th

tw

ha

of

flo

A

te

pe

in

on

st

co

pu

di

al

av

as

st

w

cu

to

dy

an

us

sc

m

ab

bo

ar

w

of

in

G

th

tim

pa

fo

an

de

he

(C

be

co

co

si

D

w

si

tu

ra

no

po

Th

cu

pa

w

di

an

so

ap

tw

of

si

co

si
 Introduction

The Discrete Element Method (DEM) is a numerical technique for
edicting the mechanical behavior of granular materials [1]. In DEM,
e motion of each individual particle is monitored, and interactions be-
een particles are modeled in a fully detailed manner. Over time, DEM
s evolved and is now a popular method for examining the dynamics
 extensive granular systems [2], ranging from mixing [3], particulate
ws [4], geomechanics events [5–7], to astrophysical scenarios [8].
pplications of DEM include modeling soil dynamics [9], tire–soil in-
ractions [10], and rover movement on extraterrestrial surfaces [11].
Two main challenges make DEM simulations computationally ex-
nsive. Firstly, the small and often stiff elements necessitate the time
tegrator to adopt very small time steps, e.g., 1 × 10−6–1 × 10−5 sec-
ds, to ensure numerical stability. Secondly, the collision detection
age of the simulation is computationally demanding. To enhance
mputational speed, DEM has been accelerated using parallel com-
ting with OpenMP [12] as seen in [13,14]; MPI standard [15] for
stributed memory clusters [16]; and combined MPI–OpenMP par-
lelism [17–21]. The Graphics Processing Unit (GPU) offers another
enue for parallel computations and has been incorporated into DEM,
 in [22–26]. Regardless of the computational platform, reported DEM
udies typically involve between 103 and 105 elements [25,27–43],
hich is considerably smaller than real-world scenarios. For instance, a
bic meter of sand can contain around two billion particles [44].
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simula-
r) [19] is a widely used open-source software package for molecular
namics simulations and DEM simulations. LAMMPS is written in C++
d is designed to run efficiently on parallel computing architectures
ing both MPI and OpenMP, making it suitable for simulating large-
ale systems. LAMMPS provides a variety of built-in potentials for
odeling interatomic and intermolecular interactions, as well as the
ility to define custom potentials. LAMMPS also supports a range of
undary conditions, including periodic, reflecting, and fixed bound-
ies. The default time stepper in LAMMPS is the Verlet algorithm,
hich is a symplectic second-order method. LAMMPS supports a range
2

 contact models, including Hertz–Mindlin, linear-spring, cohesive and po
ter-particle bond models. LIGGGHTS (LAMMPS Improved for General
ranular and Granular Heat Transfer Simulation) is a DEM package
at is based on the LAMMPS code. Like LAMMPS, LIGGGHTS is op-
ized for parallel computing and leverages combined MPI–OpenMP
rallelism. While LAMMPS is more versatile, e.g., [45–47], LIGGGHTS
cuses specifically on granular material simulations, offering features
d capabilities tailored to that end, such as neighbor lists and domain
composition. These added utilities come into play in granular flows,
at transfer in granular materials, and other DEM-specific concerns.
STAR-CCM+ [20] is a commercial Computational Fluid Dynamics
FD) software package that includes a DEM solver for simulating the
havior of granular materials. The software also supports a range of
ntact models. One of the strengths of STAR-CCM+ is its ability to
uple DEM simulations with fluid flow simulations, allowing for the
mulation of complex multiphase flows. The coupling between the
EM and fluid flow simulations is typically achieved through a two-
ay coupling algorithm that exchanges information between the two
mulations at each time step. The software also includes models for
rbulence, heat transfer, and chemically reactive flows, and incorpo-
tes design exploration and optimization tools, allowing engineers to
t just simulate a given design, but also explore a variety of design
ssibilities.

A DEM case study anchored by STAR-CCM+ is summarized in [48].
e study aimed to investigate the sand-retention mechanisms that oc-
r at the opening of sand filters under various conditions, such as
rticle shape, size, and concentration. A coupled CFD–DEM model
as used to predict the retention mechanisms under steady flow con-
tions of the well-bore, where CFD was used to model the fluid flow,
d DEM was used to model the particle flow. The coarse grid unre-
lved and the smoothed unresolved (refined grid unresolved) coupling
proaches implemented in STAR-CCM+ were used to transfer data be-
een the fluid and solid phases and calculate the forces. Verification
 the CFD–DEM model was then conducted by mesh sensitivity analy-
s. The growing trend in CFD–DEM coupling research underscores the
mmunity’s heightened interest in integrating multi-physics into DEM
mulations, likely driven by the rapid advancements in computational

wer.

R.

op

na

si

G

A

fo

w

de

w

CP

ul

W

si

th

st

tic

to

fo

is

La

st

po

an

of

us

re

tio

st

m

em

m

Su

in

su

us

tic

LA

po

lis

(s

cu

ar

m

el

th

ex

En

nu

co

it
as

pe

ro

in

th

(e

ou

gu

ad

ve

D

in

ca

th

ul

of

th

ra

sp

pr

a
of

re

de

2.

w

tio

gr

co

Th

2.

ta

ta

do

st

to

an

ic

in

pe

ce

it,

th

la

pa

te

dy

To

m

in

ta

po

th

do

m

co

th

dy

of

(w

is

dy

da

of

co

by

AC

th
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Compared to the LAMMPS and STAR-CCM+, Chrono::GPU [49], an
en-source DEM simulator developed originally as the granular dy-
mics support for Chrono [50], takes a different path in that it empha-
zes efficiency. To maximize performance, Chrono::GPU operates on
PUs and exclusively supports monodisperse spherical DEM elements.
dditionally, a custom data type scheme is used to reduce its memory
otprint. A recent independent study [51] reveals that Chrono::GPU,
hile running on an RTX 2060 Mobile NVIDIA GPU card of a laptop,
livers performance that is two orders of magnitude faster than other
ell-regarded DEM packages operating on clusters with hundreds of
U cores.
YADE (Yet Another Dynamic Engine) is an open-source DEM sim-
ator for granular materials, powders, and other particulate systems.
ritten in C++ and Python, it is known for its scripting-imparted exten-
bility. One notable research study that used YADE is [52], in which
e authors were interested in the deformation of the particles under
ress. Therein, the particles are modeled as a collection of smaller par-
les connected by springs. The authors made additional developments
 the DEM model, so the volume of the element overlapping area is uni-
rmly redistributed over the particle, the radius of each contact partner
 increased, and in the end, the volume and mass are kept constant.
rge deformations and complex element geometries are used in this
udy. Another recent study that used YADE for DEM simulations is re-
rted in [53]. Therein, the authors simulated the process of icing using
 Euler–Lagrangian approach. YADE was used to calculate the motion
 snow crystals, while the open-source CFD package OpenFOAM was
ed in conjunction with YADE to simulate flow hydrodynamics.
To circumvent extensive computation times, DEM packages often
sort to simplistic element geometries to simplify collision detec-
n. Predominantly, spheres of uniform size are chosen, significantly
reamlining collision detection [54]. Yet, certain applications require
ore intricate geometries, necessitating the usage of nonspherical el-
ents to ensure accurate system dynamics [55–61]. From the afore-
entioned packages, YADE, along with its extension packages such as
doDEM [62], enables supports for non-spherical shapes with vary-
g degrees of roundness or sharpness, such as superellipsoid, poly-
perellipsoid, and polyhedron. Another approach YADE employs is the
e of the “multi-sphere method” [59], meaning grouping simpler par-
les (like spheres) together to form more complex shapes. Likewise,
MMPS supports this multi-sphere method, too. LAMMPS also sup-
rts ellipsoidal and spherical particles. STAR-CCM+, being an estab-
hed commercial DEM solution, offers a library of predefined shapes
pheres, cylinders, tetrahedra, etc.), while retaining a general-purpose
stom shape support using triangulated surfaces. These custom shapes
e treated as rigid bodies within the DEM framework. When these
ethods to address nonspherical elements are employed, the number of
ements in simulations tends to reduce significantly in order to manage
e amount of time required to complete a simulation.
Recognizing the characteristics, strengths, and limitations of the
isting DEM solvers, the solution presented here, Chrono DEM-
gine [63], aims to strike a balance: (i) it accommodates a large
mber of discrete elements (into tens of millions); (ii) it employs a
mposition of multiple spheres to represent nontrivial geometries; (iii)
integrates a rapid collision detection method as per [64] and a novel
ynchronous threads management algorithm to ensure a numerical
rformance ahead of state of the art; (iv) its API design leaves enough
om and flexibility for easy integration in co-simulations (explained
 Sec. 3 and 6.4), and gives users the freedom to define explicitly
e physics they wish to simulate using a custom force model script
xplained in Sec. 2.2.1). In this contribution, our emphasis is to thor-
ghly document the numerical features of this package, and provide
idelines for the user to easily pick up this package and then fully take
vantage of its potential.
The structure of this paper is laid out as follows. The literature sur-
y, presented in this section, identifies a prevailing need within the
3

EM community for an adaptable, efficient solver capable of manag- th
Computer Physics Communications 300 (2024) 109196

g large-scale simulations. Section 2 explores the distinct numerical
pabilities of Chrono DEM-Engine and illustrates how it addresses
is identified need. Section 3 offers a breakdown of a sample sim-
ation script, equipping the user with a foundational understanding
 the package’s operation. Section 4 unravels the implementation of
e default Hertz–Mindlin model and provides guidance on incorpo-
ting custom models. Section 5 demonstrates the solver’s efficiency,
otlighting a large-scale simulation involving up to 150 million sphere
imitives. Section 6 underscores the validation endeavors, presenting
suite of DEM simulations that emphasize the impact and capabilities
 varying element shape representations and force models. Section 7
iterates the essence of the paper, accentuating the proposed future
velopments with language models.

 Implementation features

Chrono DEM-Engine is open-source, can run on commodity hard-
are and it does so fast and at scale. It allows large-scale DEM simula-
ns to be efficiently executed on desktops equipped with one or two
aphic cards. Its open-source nature and ability to embed user-defined
ntact models meet requirements often found in exploratory projects.
is section introduces the simulator’s key features.

1. Multi-GPU solution and delayed active-contact set update

In DEM, the contact detection process is needed to identify the con-
ct pairs in the simulation system before the force calculation step
kes place. The contact detection and force calculation are typically
ne consecutively in each time step. DEM-Engine embraces a different
rategy, which uses two distinct and parallel computational threads
 update the active contacts set (done by the “kinematics thread”),
d the integration of the equations of motion (done by the “dynam-
s thread”), respectively. The dynamics thread processes each contact
 the Active-Contact Set (ACS) at each time step to reassess the contact
netration 𝛿𝑛 and the ancillary information. The dynamics thread re-
ives an ACS update when the kinematics thread finishes producing
 or if so desired, it can wait for the ACS update when the dynamics
read advances the system state too far ahead of the time stamp of the
st ACS update from the kinematics thread. Through this collaboration
ttern, the two threads work concurrently and the cost of contact de-
ction is nearly “hidden in the shadow” of computation done by the
namics thread, which continuously advances the state of the system.
 avoid missing mutual contacts that might crop up between the mo-
ents the ACS is updated, we artificially enlarge all contact geometries
 the DEM system using an approach that is reminiscent of the Verlet
ble algorithm [65]. This extra margin allows to preemptively detect
tential contact pairs that might emerge in the near future. Note that
is is done only to include additional potential contacts in the ACS, and
es not affect the shape of the elements participating in the simulation.
By adding this artificial margin to all contact geometries, the kine-
atics thread can report false positives within the provided list of
ntacts, i.e., a contact between two elements might be in the ACS, yet
e two elements are not in contact. This fact will be identified by the
namics thread when carrying out the force calculation. The thickness
 this added margin is determined by the simulation entities’ velocity
hich is bounded and known by the solver), the time step size, which

 typically small, and 𝑛max, the maximum number of time steps the
namics thread is allowed to advance without receiving an ACS up-
te from the kinematics thread. It usually assumes values of the order
 tens of microns for millimeter-sized granular material. This is small
mpared to typical DEM element sizes. Overall, the overhead caused
 the false-positive contacts does not offset the benefit of deferring the
S update.
The synchronization pattern between the kinematics and dynamics
reads is illustrated in Fig. 1. There, “S” represents a time step that

e dynamics thread executes, where the contact forces are calculated

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 1. Ideal collaboration pattern, where the dynamics thread advances the physics continuously while the kinematics thread occasionally waits for updated state
information to commence an ACS update.

Fig. 2. Non-optimal collaboration pattern, where the dynamics thread waits for the kinematics thread occasionally to generate the ACS. DEM-Engine will automati-
cally avoid this scenario.

(s

te

Pe

se

to

th

ul

th

th

w

ki

m

si

th

in

lu

up

th

ul

ki

sc

co

co

H

th

pr

pr

as

us

a
vi

si

ic

A

tio

be

Th

ki

m

A

ow

dy

tim

2.

po

pr

po

si

G

to

or

th

G

al

po

ev

so

si

de

co

in

st

an

Ch

co

ap

Fi

(S

ve

It
to

(d

se

ex

co

50

th

50

du

du

th
ee Sec. 4.1), and the system state is advanced in time. A contact de-
ction step that the kinematics thread executes is marked with “CD”.
riodically, the kinematics thread finishes a contact detection step and
nds the signal to the dynamics thread, allowing the dynamics thread
 receive the contact array, “CA”, from the kinematics thread. Then
e dynamics thread will send a work order “WO” with the current sim-
ation system state, for the kinematics thread to pick up and continue
e next contact detection step. Before the next “CA” update is received,
e dynamics thread will use this “CA” to execute the time steps.
Because the dynamics thread only receives updates from and sends

ork orders to the kinematics thread after a time step is finished, the
nematics thread could stay idle between ACS update jobs. This is
arked with “W” in Fig. 1. Having the kinematics thread wait occa-
onally is considered an ideal collaboration pattern since in this case,
e dynamics thread runs continuously, therefore the system marches
 time uninterruptedly. A less-than-ideal collaboration pattern is il-
strated in Fig. 2. There, the dynamics thread occasionally waits for
dates from the kinematics thread, reducing the overall efficiency of
e solver. This happens when the dynamics thread advances the sim-
ation beyond 𝑛max time steps without receiving an update from the
nematics thread, and is therefore forced to idle. One could avoid this
enario by increasing 𝑛max. However, as discussed before this would
nsequently increase the thickness of the artificial margin added to
ntact geometries, leading to more undesirable false-positive contacts.
ence, 𝑛max should be kept at the smallest value that does not cause
e dynamics thread to wait. DEM-Engine will automatically use this
inciple and the execution timing history to adapt 𝑛max to an appro-
iate value, and moderate itself so that the collaboration pattern stays
 depicted in Fig. 1.
At the implementation level, DEM-Engine is currently optimized for
ing two GPUs, as each of the two host CPU threads is bound with
CUDA stream, and then each CUDA stream is mapped to a GPU de-
ce. If only one GPU device is available, DEM-Engine will still run
nce both streams are mapped on to that GPU, instead. The kinemat-
s and dynamics thread collaboration pattern is summarized in Fig. 3.
fter being produced by the kinematics thread, the contact informa-
n is transferred to a buffer memory. Then the dynamics thread will
 notified and copy the contact information to its working memory.
e dynamics thread carries out a similar routine when updating the
nematics thread with new element positions. Neither of them directly
odifies the working memory of the other to avoid race conditions.
lthough logically there are two buffer memory pools and each thread
4

ns one, physically, they are both allocated on the GPU mapped to the ity
namics thread. This allows the dynamics thread to spend minimum
e copying from its buffer, speeding up the computation.

1.1. Comparison against domain decomposition
This section discusses the advantages and limitations of our pro-
sed multi-GPU solution in comparison to the conventional ap-
oaches, such as the domain-decomposition approach. Domain-decom-
sition methods enhance computational efficiency by partitioning the
mulation domain into multiple segments, each processed by a separate
PU. This strategy is evidenced in recent studies [66] and commercial
ols like Rocky DEM [67]. Key to this method is its scalable mem-
y usage; as the simulation data is distributed across GPUs, and only
e interface regions require inter-GPU communication; each additional
PU effectively enlarges the overall memory capacity. This expansion
lows for handling larger-scale problems. Moreover, adding GPUs can
tentially reduce computational time by dividing the workload. How-
er, the efficiency gains are often offset by the overheads of array
rting, entity and contact list reorganization, and data transfer at each
mulation step [68]. Additionally, the total runtime is heavily depen-
nt on thread workload balance, which requires specific algorithms to
rrectly predetermine the domain decomposition strategy [68]. The
ter-GPU or inter-node data transfer’s latency and bandwidth con-
raints make time savings through domain decomposition challenging
d not always achievable.
In contrast, the asynchronized kinematics–dynamics pattern in
rono DEM-Engine offers tangible time savings. As discussed, the
st of contact detection is nearly “hidden in the shadow” with this
proach. In the proposed implementation, a kinematic step (CD in
g. 1) is typically 20 times more time-consuming than a dynamic step
in Fig. 1), translating to over 90% time savings compared to con-
ntional serial contact detection and physics advancement methods.
is important to note that the CD step in DEM-Engine is costly due
 its support for unlimited and unbounded element size discrepancy
etailed in Sec. 2.5). Nevertheless, under certain convenient hypothe-
s, the cost of CD can be reduced. For instance, Chrono::GPU, which
clusively uses monodisperse spherical elements, has a CD step cost
mparable to that of a S step [50]. Even with such simplification, a
% time saving is achievable if the contact detection cost is hidden by
e asynchronous pattern. Thus, we anticipate a time saving between
% and 90% with the kinematics-dynamics asynchronization intro-
ced by DEM-Engine. However, this approach is less memory-efficient
e to the buffer arrays, effectively duplicating some simulation data,
ereby limiting the scale of the simulation for a given memory capac-

.

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 3. The collaboration pattern of the kinematic and dynamics thread. They can each run on a dedicated GPU.

dy

pr

pr

de

N

no

fo

tia

al

co

2.

st

by

be

w

vi

of

op

co

A

no

ca

CU

ov

la

ge

ne

2.

pl

D

to

in

Ra

D

a
A

2.

tio

ca

pl

to

so

Th

te

sa

th

ca

of

“m

us

co

us

2.

pl

pl

on

su

bo

pe

on

ca

ro

pe

an

in

th

m

m

fin

co

En

Th
In summary, when utilizing two GPU devices, the kinematics–
namics asynchronous pattern in Chrono DEM-Engine shows a more
onounced time-saving advantage over the domain-decomposition ap-
oach. This advantage holds true within the constraints of the available
vice memory, given the lesser memory efficiency of our approach.
otably, the kinematics–dynamics split in Chrono DEM-Engine does
t preclude future integration with domain decomposition, allowing
r both CD and S steps to be executed on multiple GPUs. This poten-
l integration suggests that the kinematics–dynamics split is not an
ternative to, but a valuable addition to the DEM algorithm toolkit,
mplementing the established domain-decomposition approach.

2. Just-in-time CUDA kernel compilation

The CUDA kernels in DEM-Engine are compiled when the simulation
arts being executed, rather than being statically compiled. This is done
 leveraging the CUDA runtime compilation tool Jitify [69]. Several
nefits come with this software design choice.
With Jitify, the solver can detect the capabilities of the GPU on

hich it is running and generate code specifically tailored for that de-
ce. For instance, if a program is designed to be used across a variety
 architectures, just-in-time compilation ensures the utilization of the
timal instruction set for each device, ensuring the generated CUDA
de is optimized for an end user’s specific hardware and requirements.
t the same time, since the compilation occurs at runtime, the code is
t bound to a specific version of the CUDA toolkit. This characteristic
n make applications more resilient against changes or updates in the
DA environment.
It should be mentioned that just-in-time compilation introduces an
erhead. The first time a kernel is run, there is a delay due to its compi-
tion. However, assuming the DEM simulations with DEM-Engine are
nerally large and invoke a time span of typically hours, this cost is
gligible.

2.1. Custom force model
Since Jitify allows for dynamic code generation, we use it for im-
ementing custom force models. The intricate and evolving nature of
EM simulations often requires a higher degree of adaptability to cater
 the multifaceted modeling needs of its users, namely the expand-
g list of approaches in contact and cohesion force modeling [70,71].
ther than constraining the user to a predefined set of force models,
EM-Engine allows, if so desired, for the force models to be supplied via
user-supplied C++ script, greatly increasing the solver’s applicability.
5

 walk-through of a model implementation can be found in Sec. 4.2. ed
2.2. Family tag
Jitify also allows for a low-cost implementation of prescribed mo-
n. This is done through the family tag utility. Every simulation entity
n be assigned an integer family tag between 0 and 255 (this is im-
emented through a uint8_t; though rarely needed, it can be changed
 a different data type such as uint16_t to expand the range), then the
lver can be notified to apply prescribed motions to this family tag.
is prescription information is just-in-time compiled as a part of the in-
gration CUDA kernel, thus no branching overhead is introduced. The
mple script in Sec. 3 showcases this functionality with the usage of
e SetFamilyPrescribedAngVel method. On the other hand, if the use
se calls for more fine-grain motion control, such as when the velocity
 a simulation object is determined by some external process, then the
otion injection” approach detailed in Sec. 2.4 should be used.
As a side note, the family tags can also be used to mask contacts. The
er is allowed to specify whether the solver should detect and resolve
ntacts between simulation entities in certain families. This is a utility
ed throughout the demos provided along with this package at [63].

3. Custom and mixed data type

In high-performance computing, memory footprint and bandwidth
ay a crucial role in determining a code’s performance. As the com-
exities of the simulations grow, it becomes evident that relying solely
 standard data types—such as double—might inadvertently lead to
b-optimal memory usage and consequently, potential performance
ttlenecks. For instance, the penetration depth of a DEM body in
nalty-based DEM is of the order of 1 ×10−9 to 1 ×10−5 m. Why would
e use a budget of 64 bits, which is provisioned for the double type to
pture an extremely broad range of numbers, to represent a very nar-
w range of the positive real axis that hosts an element’s microscale
netration? This would be a waste of bits, which leads to less accuracy
d/or lower bandwidth. Given the hierarchical memory architecture
 CUDA, from global to shared memory, the significance of ensuring
at the memory bandwidth is utilized effectively and that latency is
inimized becomes even more critical.
To this end, DEM-Engine introduces the utilization of custom and
ixed data types. Unlike stock data types that come with a prede-
ed bit budget, e.g., 64 bits for double, custom data types offer finer
ntrol over memory use. For instance, the spatial coordinate in DEM-
gine is represented using integers rather than floating-point numbers.
e entire simulation domain is decomposed into cubes with a known

ge length, which is adapted based on the domain size. Each of these

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 4. The domain decomposition that leads to a compressed spatial coordinate data type. The domain is decomposed into voxels with uint64_t indices, then each
voxel is split into 216 × 216 × 216 sub-voxels. The typical precision is estimated to be around 10−11 m.

cu

ui
a
in

pr

ap

de

bi

us

sp

th

da

of

ar

ty

om

in

is

ph

en

ty

Ty
th

si

(s

to

ify

th

2.

po

in

la

ex

Th

te

cl

ly

or

de

si

cl

co

ac

ge

om

pr

m

en

pa

a
a
tit

de

sp

la

an

ve

pl

fe

m

tio

2.

im

ri

en

im
Table 1

Various data types in DEM-Engine and their memory location.
Data Type Variable Memory Type

uint64_t Voxel index Global

uint16_t Sub-voxel index Global

int32_t or float Kinematics quantities, friction history etc. Global

double Penetration Register

float Contact force calculation Register

float Clump types information Shared Memory

bes is termed a “voxel” and is assigned an index represented by a
nt64_t data type. Additionally, to specify the location of a body within
voxel, three uint16_ts are employed, each dividing the voxel uniformly
to 216 parts in its respective direction.
For a cubic simulation domain with an edge length of 1m, the
ecision (i.e., the smallest discernible length unit within a voxel) is
proximately 10−11 m. This precision is adequate for capturing micro-
formations. Moreover, this compressed data type requires only 112
ts to represent a spatial location, which is more memory-efficient than
ing three doubles that would require 192 bits in total. The voxel-based
atial coordinate data type is illustrated in Fig. 4.
The general rule used for the selection of mixed data types is that
e data residing in the global memory take a 4-byte or compressed
ta type. The examples are the state variables such as the quaternions
 the elements. The temporary variables used in kernel functions that
e essential in governing physics, on the other hand, use 8-byte data
pes, namely double. An example is the penetration depth between ge-
etries in the Hertzian contact force calculation. The data type usage

 DEM-Engine is summarized in Table 1. Since data type conversion
 essentially a free operation and the main bottleneck in GPU-based
ysics simulations is the memory bandwidth limit, the design choice
hances the performance without compromising the physics.
Furthermore, DEM-Engine has a level of encapsulation of the data
pes in use. Most data types are specified in a file named Variable-
pes.h using typedef, including the ones introduced in this section. If
e user needs a different selection of data types, such as increasing the
ze of family tags from 1 byte to 2 bytes to allow for more varieties
ee Sec. 2.2.2 for context), or reducing the size of spatial coordinates
 allow for faster computation in a low-accuracy setting, they can mod-
 the data types in VariableTypes.h then recompile to conveniently get
6

e updated executable. ta
4. Geometry hierarchy and tracker

DEM-Engine facilitates complex element geometries through a com-
sition of multiple spheres, termed a “clump”. This approach draws
spiration from [72]. A clump denotes a collection of potentially over-
pping spheres that together depict a specific element shape. Some
amples of these clumps are visually presented in Fig. 14 in Sec. 5.
roughout this paper, the terms “element” and “clump” are used in-
rchangeably to discuss DEM elements with complex shapes. Beyond
umps, DEM-Engine supports integrating triangular meshes and ana-
tical objects (such as rigid objects constructed from analytical planes
 cylindrical surfaces) into the simulation framework. However, as a
dicated and performance-centric DEM package, DEM-Engine exclu-
vely handles contacts between clumps and meshes, as well as between
umps and analytical geometries. Should there be a requirement for
ntacts between meshes or between analytical geometries, users can
hieve this through co-simulation, as exemplified in Sec. 6.4.
An important aspect of DEM-Engine’s utilization is understanding its
ometry hierarchy, delineating the roles of the “owner” versus the “ge-
etry”. An owner constitutes a simulation entity endowed with mass
operties, hence governed by physics. In DEM-Engine’s current imple-
entation, an owner can manifest as a clump, a mesh, or an analytical
tity. Conversely, the term geometry is associated with the constituent
rts of an owner. A geometric entity can be a sphere (within a clump),
triangular facet (within a mesh), or an analytical component (like
plane in a multi-component analytical object). Each geometric en-
y carries associated material attributes, granting users flexibility in
signing discrete element systems with simulation entities that have
atially varying material properties.
Further, DEM-Engine provides users the control over diverse simu-

tion entities via “tracker” objects. Users can associate trackers with
y owner, facilitating real-time status inquiries such as position and
locity or enforcing state modifications, from setting coordinates to ap-
ying external loads. Beyond basic operations, trackers offer advanced
atures: identifying clumps in contact with a tracked owner or, when
onitoring a mesh, controlling its deformation. A practical demonstra-
n of tracker usage is encapsulated in Sec. 3.

5. Contact detection algorithm

The kinematics thread of the Chrono DEM-Engine (CD in Fig. 1)
plements the contact detection algorithm outlined in [64]. This algo-
thm is optimized for execution on GPU and accommodates simulation
tities of vastly differing sizes. We provide a concise overview of its
plementation in Chrono DEM-Engine, with more comprehensive de-

ils available in [64].

R.

ex

1

2

3

fin

ap

ci

va

2.

Th

En

w

ag

ca

in
al

re

in

Se

3.

ys

ta

in

co

in

3.

co

ify

DE
DE
DE
DE
DE

ge

m

su

th

au

au

DE

la

co
DE

DE
au
wa

si

si

su

th

ex

gr

w

ex

co
au

mi

mi
DE
au

an

ca

al
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

The contact detection process in each step involves a series of tasks,
ecuted sequentially:

. Initially, all simulation “geometries” (sphere components, triangu-
lar facets) are evaluated for potential contact using “bins”. These
bins are formed by uniformly segmenting the simulation domain
into axis-aligned cubic grids. If a geometry intersects with a bin,
this bin–geometry pair is recorded for subsequent processing. It is
important to note that due to the allowance for variable sizes of
geometries, the maximum number of bins intersecting with a ge-
ometry cannot be predetermined. This necessitates two sequential
CUDA kernel executions: one to determine the count of intersect-
ing bins per geometry for memory allocation, and another to store
the bin–geometry pairs.

. Next, we sort the bin–geometry pairs based on the bin IDs. This step
groups together geometries located within the same bin, effectively
clustering entities that are adjacent within the simulation.

. The final step involves checking geometries within the same bin for
potential contacts. This is accomplished through launching CUDA
blocks each processing bin to compile the CA array (recall Fig. 1),
which lists all potential contact pairs. Duplicates are ruled out by
discarding all contacts with the exact contact points not inside the
current bin. Similar to the previous step, two CUDA kernel calls
are required: the first to ascertain the number of potential contacts
per bin for array allocation, and the second to populate the CA ar-
ray with these contacts. Given 𝑛g geometries in a bin, (𝑛g − 1)𝑛g∕2
checks are necessary to identify all potential contacts. This imposes
a limit on 𝑛g, influencing the bin size. Chrono DEM-Engine dy-
namically adjusts bin sizes based on execution history for optimal
performance.

As described, both the intermediate bin–geometry pair array and the
al CA array are created using dynamically allocated memory. This
proach facilitates handling geometries with unlimited size discrepan-
es. For an illustrative example showcasing elements of significantly
rying sizes, refer to Sec. 6.4.

6. Python wrapper

DEM-Engine has a Python wrapper, facilitated by the Pybind library.
is allows users, irrespective of their CUDA expertise, to tap into DEM-
gine’s features, all within Python’s accessible library ecosystem and
idely adopted science tools such as numpy and scikit-learn. The pack-
e has been made available on the Python Package Index (PyPI) and
n be installed using the familiar pip command. Simply executing pip
stall DEME ensures that the computational capabilities and function-
ities of the package become available within the Python environment,
ducing the complexities often associated with software installations
 high-performance computing scenarios. An example script is given in
c. 3.2, where it is compared against its C++ counterpart.

 Sample script

This section discusses a script responsible for the mixer timing anal-
is discussed in Sec. 5. The focus is placed here on the code implemen-
tion. A visual representation of the simulation workflow is provided
 Fig. 5. Examples are provided in both C++ and Python. The scripts
rresponding to all simulations addressed in this paper can be located
 the DEM-Engine’s demo directory [63].

1. C++ version

The user should first create the DEMSolver object. While the solver
mes with default meta-parameters, users have the flexibility to mod-
7

 them, e.g., verbosity, output detail, and output format. in
Computer Physics Communications 300 (2024) 109196

Fig. 5. Typical workflow of running a DEM-Engine simulation.

MSolver DEMSim;
MSim.SetVerbosity("INFO");
MSim.SetOutputFormat("CSV");
MSim.SetOutputContent("ABSV");
MSim.SetMeshOutputFormat("VTK");

The following code snippet defines the material types for the mesh
ometry and DEM elements. DEM-Engine will return a handle so this
aterial can be used to define clump templates. If a material property,
ch as the frictional coefficient 𝜇, is defined between two materials,
e method SetMaterialPropertyPair can be used to specify it.
to mat_type_mixer = DEMSim.LoadMaterial({{"E", 1e8}, {"nu",

0.3}, {"CoR", 0.6}, {"mu", 0.5}, {"Crr", 0.0}});
to mat_type_granular = DEMSim.LoadMaterial({{"E", 1e8}, {"nu",

0.3}, {"CoR", 0.6}, {"mu", 0.2}, {"Crr", 0.0}});
MSim.SetMaterialPropertyPair("mu", mat_type_mixer,

mat_type_granular, 0.5);

The following snippet defines the analytical boundaries of the simu-
tion domain.
nst double world_size = 1;
MSim.InstructBoxDomainDimension(world_size, world_size,

world_size);
MSim.InstructBoxDomainBoundingBC("all", mat_type_granular);
to walls = DEMSim.AddExternalObject();
lls->AddCylinder(make_float3(0), make_float3(0, 0, 1),

world_size / 2., mat_type_mixer, 0);

The following snippet shows the mixer mesh being loaded into the
mulation. The stock mixer mesh is then scaled to fit the size of the
mulation domain. The mixer is assigned the family code 10, which is
bsequently used to prescribe a constant angular velocity 𝜋 rad∕s to
e mixer. A “tracker” object is created for the mixer so that we can
tract information in real time for this simulation entity, or apply fine-
ain motion control, while the simulation is running. In this example,
e use it to set the initial location of the mixer to obtain the torque
erted by the DEM elements.
nst float chamber_height = world_size / 3.;
to mixer = DEMSim.AddWavefrontMeshObject((GET_DATA_PATH() / "

mesh/internal_mixer.obj").string(), mat_type_mixer);
xer->Scale(make_float3(world_size / 2, world_size / 2,

chamber_height));
xer->SetFamily(10);
MSim.SetFamilyPrescribedAngVel(10, "0", "0", "3.14159");
to mixer_tracker = DEMSim.Track(mixer);

The next snippet creates a clump template. It contains mass, shape,
d material information. There are stock clump shapes that the user
n directly use to reproduce the examples we provide. The user can
so easily scale or otherwise modify the template before using it to

stantiate more DEM elements.

R.

fl
fl
fl
st

te

le

fo

si

is

cl

co
co
co
HC
fl

co
au

DE

st

be

w

sn

fl
DE
DE
DE
DE
DE

Th

an

m

si

us

Fo

to

fr

pe

ea

st
ou
cr

fl
un
fl
un

mi

fo

}

3.

tio

m

in

na

ta

st

th

or
ve

pl

nu

im
im
im
im
if
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

oat granular_rad = 0.005;
oat mass = 2.6e3 * 5.5886717;
oat3 MOI = make_float3(2.928, 2.6029, 3.9908) * 2.6e3;
d::shared_ptr<DEMClumpTemplate> template_granular = DEMSim.

LoadClumpType(mass, MOI, GetDEMEDataFile("clumps/3_clump.csv
"), mat_type_granular);

mplate_granular->Scale(granular_rad);

When instantiating the DEM elements, the user has the option to
verage the sampler objects that come with the solver, as shown in the
llowing snippet. A sampling region appropriate with respect to the
mulation domain is defined, then the hexagonal close-packing sampler
 used to create initial elements. These elements are duplicates of the
ump template that has just been created.
nst float fill_height = chamber_height;
nst float chamber_bottom = -world_size / 2.;
nst float fill_bottom = chamber_bottom + chamber_height;
PSampler sampler(3.f * granular_rad);
oat3 fill_center = make_float3(0, 0, fill_bottom + fill_height

/ 2);
nst float fill_radius = world_size / 2. - 2. * granular_rad;
to input_xyz = sampler.SampleCylinderZ(fill_center, fill_radius

, fill_height / 2);
MSim.AddClumps(template_granular, input_xyz);

An initialization call is needed to instruct the solver to set up data
ructures on the GPUs. Before that, several simulation specs should
 inputted, e.g., the time step size and metrics that the solver should
atch in identifying a diverged simulation, as shown in the following
ippet.

oat step_size = 5e-6;
MSim.SetInitTimeStep(step_size);
MSim.SetGravitationalAcceleration(make_float3(0, 0, -9.81));
MSim.SetErrorOutVelocity(20.);
MSim.SetForceCalcThreadsPerBlock(512);
MSim.Initialize();

Finally, the following code snippet shows the main simulation loop.
e output directory is created, the simulation time length is indicated,
d the mixer is translated to the correct initial position, before the
ain loop starts to iteratively make DoDynamics calls, advancing the
mulation each time by a frame. The benefit of this design is that the
er enjoys free interfacing with the simulation data while it is running.
r example, the script writes the simulation status to a file, inspects the
rque that the mixer is experiencing, and outputs the execution stats
om the kinematics and dynamics threads at the frequency of 20 times
r simulation second. Another opportunity this design brings is the
se of co-simulation. A related example is in Sec. 6.4.
d::filesystem::path out_dir = current_path();
t_dir += "/DemoOutput_Mixer";
eate_directory(out_dir);

oat sim_end = 10.0;
signed int fps = 20;
oat frame_time = 1.0 / fps;
signed int currframe = 0;

xer_tracker->SetPos(make_float3(0, 0, chamber_bottom +
chamber_height / 2.0));

r (float t = 0; t < sim_end; t += frame_time) {
std::cout << "Frame: " << currframe << std::endl;
char filename[200], meshfilename[200];
sprintf(filename, "%s/DEMdemo_output_%04d.csv", out_dir.c_str

(), currframe);
sprintf(meshfilename, "%s/DEMdemo_mesh_%04d.vtk", out_dir.

c_str(), currframe++);
DEMSim.WriteSphereFile(std::string(filename));
DEMSim.WriteMeshFile(std::string(meshfilename));

float3 mixer_moi = mixer_tracker->MOI();
float3 mixer_acc = mixer_tracker->ContactAngAccLocal();
float3 mixer_torque = mixer_acc * mixer_moi;
std::cout << "Contact torque on the mixer is " <<

mixer_torque.x << ", " << mixer_torque.y << ", " <<
mixer_torque.z << std::endl;

DEMSim.DoDynamics(frame_time);
DEMSim.ShowThreadCollaborationStats();
8

Computer Physics Communications 300 (2024) 109196

2. Python version

A Python version of the same mixer simulation is given in this sec-
n. It follows the same workflow as the C++ version, including the
aterial definition, template creation, clump instantiation, mesh load-
g and motion control, initialization, and a main simulation loop. The
mes of the methods are not changed in the Python version, and cer-
in data structures are simply converted to their Python counterparts,
reamlining the learning experience of the users switching between
ese programming languages. For example, the C++ version uses a un-
dered_map to define the properties of a material, while the Python
rsion uses a dictionary object; the C++ version takes a float3 at some
aces to specify a coordinate, while the Python version uses a list or a
mpy array of three floats.

port DEME
port numpy as np
port os
port time
__name__ == "__main__":
out_dir = "DemoOutput_Mixer/"
out_dir = os.path.join(os.getcwd(), out_dir)
os.makedirs(out_dir, exist_ok=True)

DEMSim = DEME.DEMSolver()
DEMSim.SetVerbosity("STEP_METRIC")
DEMSim.SetOutputFormat("CSV")
DEMSim.SetOutputContent(["ABSV", "XYZ"])
DEMSim.SetMeshOutputFormat("VTK")

E, nu, CoR, mu, Crr... Material properties
mat_type_mixer = DEMSim.LoadMaterial(

{"E": 1e8, "nu": 0.3, "CoR": 0.6, "mu": 0.5, "Crr":
0.0})

mat_type_granular = DEMSim.LoadMaterial(
{"E": 1e8, "nu": 0.3, "CoR": 0.8, "mu": 0.2, "Crr":

0.0})
DEMSim.SetMaterialPropertyPair(

"CoR", mat_type_mixer, mat_type_granular, 0.5)

Now define simulation world size and add the analytical
boundary

step_size = 5e-6
world_size = 1
chamber_height = world_size / 3.
fill_height = chamber_height
chamber_bottom = -world_size / 2.
fill_bottom = chamber_bottom + chamber_height
DEMSim.InstructBoxDomainDimension(world_size, world_size,

world_size)
DEMSim.InstructBoxDomainBoundingBC("all", mat_type_granular)
walls = DEMSim.AddExternalObject()
walls.AddCylinder([0, 0, 0], [0, 0, 1], world_size / 2.,

mat_type_mixer, 0)

Define the meshed mixer and its prescribed motion
mixer = DEMSim.AddWavefrontMeshObject(

DEME.GetDEMEDataFile("mesh/internal_mixer.obj"),
mat_type_mixer)

print(f"Total num of triangles: {mixer.GetNumTriangles()}")
mixer.Scale([world_size / 2, world_size / 2, chamber_height])
mixer.SetFamily(10)
DEMSim.SetFamilyPrescribedAngVel(10, "0", "0", "3.14159")
Track the mixer
mixer_tracker = DEMSim.Track(mixer)

Define the clump template used in the simulation
granular_rad = 0.005
mass = 2.6e3 * 5.5886717
MOI = np.array([2.928, 2.6029, 3.9908]) * 2.6e3
template_granular = DEMSim.LoadClumpType(mass, MOI.tolist(),

DEME.GetDEMEDataFile("clumps/3_clump.csv"),
mat_type_granular)

template_granular.Scale(granular_rad)
Sampler uses hex close-packing
sampler = DEME.HCPSampler(3.0 * granular_rad)
fill_center = [0, 0, fill_bottom + fill_height / 2]
fill_radius = world_size / 2. - 2. * granular_rad
input_xyz = sampler.SampleCylinderZ(

fill_center, fill_radius, fill_height / 2)
DEMSim.AddClumps(template_granular, input_xyz)
print(f"Total num of particles: {len(input_xyz)}")

R.

4.

im

4.

m

pr

an

a
co

in

m

𝐅𝑛

𝐅𝑡

𝑓

𝑅̄

𝑚̄

w

ac

re

tiv

pr

co

sp

𝐯𝑟
𝐯

w

an

te

Th

di

th

di

th

𝐮′

𝐮′
𝑡

w

ro

ta

st

𝐮n
𝑡

Th

at

pl

th

fo

re

in

𝐅𝑟

𝝉𝑟

it,

w

el

𝐅𝑡

co

co

𝑚

is

th

𝑚

𝐼𝑖
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

DEMSim.SetInitTimeStep(step_size)
DEMSim.SetGravitationalAcceleration([0, 0, -9.81])
DEMSim.SetErrorOutVelocity(20.)
DEMSim.SetForceCalcThreadsPerBlock(512)
DEMSim.Initialize()

sim_end = 10.0
fps = 20
frame_time = 1.0 / fps

Keep a tab of the max velocity in the simulation
max_v_finder = DEMSim.CreateInspector("clump_max_absv")

print(f"Output at {fps} FPS")
currframe = 0

mixer_tracker.SetPos([0, 0, chamber_bottom + chamber_height /
2.0])

t = 0.
start = time.process_time()
while (t < sim_end):

print(f"Frame: {currframe}", flush=True)
filename = os.path.join(out_dir, f"DEMdemo_output_{

currframe:04d}.csv")
meshname = os.path.join(out_dir, f"DEMdemo_mesh_{

currframe:04d}.vtk")
DEMSim.WriteSphereFile(filename)
DEMSim.WriteMeshFile(meshname)
currframe += 1

max_v = max_v_finder.GetValue()
print(

f"Max velocity of any point in simulation is {
max_v}", flush=True)

print(
f"Solver’s current update frequency (auto-

adapted): {DEMSim.GetUpdateFreq()}", flush=
True)

print(
f"Average contacts each sphere has: {DEMSim.

GetAvgSphContacts()}", flush=True)

mixer_moi = np.array(mixer_tracker.MOI())
mixer_acc = np.array(mixer_tracker.ContactAngAccLocal())
mixer_torque = np.cross(mixer_acc, mixer_moi)
print(

f"Contact torque on the mixer is {mixer_torque
[0]}, {mixer_torque[1]}, {mixer_torque[2]}"
, flush=True)

DEMSim.DoDynamics(frame_time)
DEMSim.ShowThreadCollaborationStats()

t += frame_time

elapsed_time = time.process_time() - start
print(f"{elapsed_time} seconds (wall time) to finish this

simulation")

 DEM model

This section details the default force models in DEM-Engine and the
plementation of the geometry representations.

1. History-based Hertz–Mindlin model

The default force model is anchored by the Hertzian contact
odel [73] and integrates the Mindlin friction model [74]. For a com-
ehensive analysis, readers may refer to [75]. For two bodies, namely 𝑖
d 𝑗, when they are in contact, the normal force, 𝐅𝑛, operates based on
spring–damper model. The tangential frictional force, 𝐅𝑡, is computed
nsidering material attributes and microscopic deformations, ensur-
g it adheres to the Coulomb limit via the friction coefficient 𝜇. The
athematical representation is as follows:

= 𝑓 (𝑅̄, 𝛿𝑛)(𝑘𝑛𝐮𝑛 − 𝛾𝑛𝑚̄𝐯𝑛), (1a)
9

= 𝑓 (𝑅̄, 𝛿𝑛)(−𝑘𝑡𝐮𝑡 − 𝛾𝑡𝑚̄𝐯𝑡), ‖𝐅𝑡‖ ≤ 𝜇‖𝐅𝑛‖ , (1b)
Computer Physics Communications 300 (2024) 109196

(𝑅̄, 𝛿𝑛) =
√

𝑅̄𝛿𝑛, (1c)

=𝑅𝑖𝑅𝑗∕(𝑅𝑖 +𝑅𝑗), (1d)

=𝑚𝑖𝑚𝑗∕(𝑚𝑖 +𝑚𝑗), (1e)

here the constants 𝑘𝑛, 𝑘𝑡, 𝛾𝑛, and 𝛾𝑡 are inferred from material char-
teristics, including Young’s modulus 𝐸, the Poisson’s ratio 𝜈, and the
stitution coefficient, CoR [76]. The terms 𝑚̄ and 𝑅̄ depict the effec-
e mass and curvature radius for the specific contact. The foundational
emise is that the geometries can undergo small penetration, 𝛿𝑛, at the
ntact point. The normal penetration vector is 𝐮𝑛 = 𝛿𝑛𝐧. The relative
eed, 𝐯𝑟𝑒𝑙 = 𝐯𝑛 + 𝐯𝑡, at the contact point is defined as:

𝑒𝑙 = 𝐯𝑗 +𝝎𝑗 × 𝐫𝑗 − 𝐯𝑖 −𝝎𝑖 × 𝐫𝑖, (2a)

𝑛 =
(
𝐯𝑟𝑒𝑙 ⋅ 𝐧

)
𝐧, (2b)

𝐯𝑡 = 𝐯𝑟𝑒𝑙 − 𝐯𝑛, (2c)

here 𝐯𝑖, 𝝎𝑖 and 𝐯𝑗 , 𝝎𝑗 denote the velocities at the mass centers and
gular speeds of entities 𝑖 and 𝑗. The position vectors, 𝐫𝑖 and 𝐫𝑗 , ex-
nd from the mass centers of bodies 𝑖 and 𝑗 to the shared contact point.
e frictional force 𝐅𝑡 varies based on the historical tangential micro-
splacement 𝐮𝑡, updated iteratively at each time interval throughout
e interaction event based on 𝐯𝑡. Let 𝐮𝑡 be the current tangential micro-
splacement and 𝐮′

𝑡
be the updated tangential micro-displacement,

en

= 𝐮𝑡 + ℎ𝐯𝑡, (2d)

= 𝐮′ − (𝐮′ ⋅ 𝐧)𝐧, (2e)

here ℎ is the time step size. The strategy adopted to update 𝐮′
𝑡
is bor-

wed from [76]. After the update, we may need to clamp the updated
ngential micro-displacement 𝐮′

𝑡
to get the final 𝐮next

𝑡
for the next time

ep in order to satisfy the capping condition ‖𝐅𝑡‖ ≤ 𝜇‖𝐅𝑛‖:
ext =

⎧⎪⎨⎪⎩
𝐮′
𝑡

if ‖𝐅𝑡‖ ≤ 𝜇‖𝐅𝑛‖,
𝜇‖𝐅𝑛‖
𝑘𝑡

𝐮′
𝑡‖𝐮′
𝑡
‖ otherwise.

(2f)

e rolling resistance arises from an asymmetric normal stress profile
 the contact patch [77]. In DEM-Engine’s default force model, it is im-
emented as the torque 𝝉𝑟. This torque is induced by a force that has
e magnitude of the rolling resistance coefficient 𝐶𝑟 times the normal
rce. The direction of this force is aligned with the rolling-contributed
lative velocity at the contact point. This is summarized in the follow-
g equations:

=
𝝎𝑗 × 𝐫𝑗 −𝝎𝑖 × 𝐫𝑖‖𝝎𝑗 × 𝐫𝑗 −𝝎𝑖 × 𝐫𝑖‖𝐶𝑟𝐅𝑛, (2g)

= 𝐫𝑖 × 𝐅𝑟. (2h)

As discussed in Sec. 2.4, a clump has mass properties associated with
 whereas its component spheres have material properties associated
ith them – in other words, each sphere of the clump that makes up an
ement can have different material properties. Consequently, 𝐅𝑛 and
in Eq. (3a) and (3b) need to be derived from the contacts between
mponent spheres. Then a reduction process is invoked to use these
ntact forces to update the element 𝐯𝑖 and 𝝎𝑖, based on each clump’s
𝑖 and 𝐼𝑖, as well as the location vector for the contact point, 𝐫𝑖. This
 visualized in Fig. 6, and the equations of motion for entity 𝑖 assume
e form

𝑖

𝑑𝐯𝑖
𝑑𝑡

=𝑚𝑖𝐠+
𝑛𝑐∑
𝑘=1

𝐅𝑘, (3a)

𝑑𝝎𝑖 =
𝑛𝑐∑(

𝐫𝑘 × 𝐅𝑘 + 𝝉
𝑘
𝑟

)
, (3b)
𝑑𝑡
𝑘=1

R.

Fi

la

co

w

su

𝐅𝑘
𝑛

co

4.

fo

in

vi

th

fa

ca

is

de

re

re

ab

th

is

tio

to
th

ta

to

re

su

m

cu

ow

tr

w

be

cu

fo

in

us

sp

an

w

qu

sh

re

m

th

re

ca

th

ci

4.

m

Fu
pr

po

in

te

us

qu

Po

(m
Lo
th

sh

tie

on

to

fo

ci

ap

sn

//
fl
{

}

fr

co

ge

on

B,

re

in

fl
{

}

Se

Th

us

th

de
hi

en
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

g. 6. The normal and tangential contact forces between particles are calcu-
ted based on the penetration and displacement history of involved sphere
mponents.

here 𝑛𝑐 is the number of contact spheres that entity 𝑖 has, and the
perscript 𝑘 iterates through each contact. In these equations, 𝐅𝑘 =
+𝐅𝑘

𝑡
means the total force, containing both the normal and tangential

mponents.

2. Providing a custom contact force model

To cater to diverse simulation needs, DEM-Engine supports custom
rce models through user-provided scripts. This section delves further
to this functionality, whose starting point is a custom force model pro-
ded as a C++ script. This script undergoes just-in-time compilation at
e onset of the simulation (as detailed in Sec. 2.2), replacing the de-
ult contact force model. The “ingredients” of a custom force model are
lled user-referable variables. A comprehensive list of these variables
 provided in Table 2. For each contact pair, the solver automatically
termines the values for these variables. Users can then harness these
ferable variables to implement the customized contact force.
Central to scripting the force model is the modification of the user-
ferable variable force, analogous to 𝐅𝑘 in Eqs. (3a) and (3b). This vari-
le represents the force that geometry A experiences during contact in
e global frame. The variable force takes the initial value of (0, 0, 0). It
 worth noting that the solver will auto-apply the corresponding reac-
n force to geometry B. In a similar vein, the user-referable variable

rque_only_force can be adjusted to store an action–reaction force pair
at solely produces torque (without affecting the linear velocity of con-
ct geometries, but only their angular momentum). This is congruent
 𝐅𝑟 in Eq. (2g). In the default model, the implementation of rolling
sistance hinges on this variable. As Eqs. (3a) and (3b) indicate, a
broutine executed by the solver in each iteration, will integrate the
otions of simulation entities post the force calculation.
Note that the three “wildcard” type variables in Table 2 are the
stom properties that the user is allowed to associate with contacts,
ners (clump, mesh, or analytical object), and geometries (sphere,
iangle facet, or analytical component), respectively. For the owner
ildcards and geometry wildcards, the user can assign their values
fore or during the simulation, using trackers or family tags. These
stom properties can then be used in the custom force model to derive
rce, or be modified so their values change during simulation accord-
g to a user-specified policy.
The contact wildcards, on the other hand, work differently. If the
er chooses to associate a wildcard to contacts, then the memory
ace associated with a contact is allocated when this contact emerges,
d deallocated when this contact vanishes. When it is allocated, it al-
ays takes the initial value of zero. This is useful for recording some
antities that evolve during the lifespan of a contact. For example, as
own in Sec. 4.2.1, the default force model uses contact wildcards to
cord the contact history needed for the history-based Hertz–Mindlin
odel. At the implementation level, the generation of a new ACS by
e kinematics thread triggers a CUDA subroutine. This subroutine is
10

sponsible for contrasting the new ACS with its predecessor, which is fo
Computer Physics Communications 300 (2024) 109196

ched by the kinematics thread, to establish a mapping. Subsequently,
is mapping facilitates the transfer of contact wildcard variables asso-
ated to the old ACS to the new ACS.

2.1. Default model implementation explained
We elaborate on the implementation of the default Hertz–Mindlin
odel in the remainder of this section, which can be found in the file
llHertzianForceModel.cu from the repository [63]. The code is an ap-
opriate starting point for users to implement their own force model,
tentially adding to the existing physics.
The preliminary step, as presented in the ensuing code snippet,
volves extracting material properties of the contact geometries. Ma-
rial property arrays adopt naming conventions consistent with the
er-defined property names in the LoadMaterial function call. Conse-
ently, if the default force model is employed, Young’s modulus (E),
isson’s ratio (nu), coefficient of restitution (CoR), friction coefficient
u), and rolling resistance coefficient (Crr) must be specified in the
adMaterial invocation. For users implementing a custom force model,
e material property names specified during the LoadMaterial function
ould align with the array names in the force model file. For proper-
s associated singularly with a material type (e.g., Young’s modulus),
e should utilize the offset variables bodyAMatType or bodyBMatType
 retrieve the property pertinent to the contact material. Conversely,
r properties defined between two materials (like the friction coeffi-
ent), both offset variables are employed concurrently to obtain the
propriate value for the contact, as illustrated in the subsequent code
ippet.

Material properties
oat E_cnt, G_cnt, CoR_cnt, mu_cnt, Crr_cnt;

// E and nu are associated with each material, so obtain them
this way

float E_A = E[bodyAMatType];
float nu_A = nu[bodyAMatType];
float E_B = E[bodyBMatType];
float nu_B = nu[bodyBMatType];
matProxy2ContactParam(E_cnt, G_cnt, E_A, nu_A, E_B, nu_B);
// CoR, mu and Crr are pair-wise, so obtain them this way
CoR_cnt = CoR[bodyAMatType][bodyBMatType];
mu_cnt = mu[bodyAMatType][bodyBMatType];
Crr_cnt = Crr[bodyAMatType][bodyBMatType];

In this implementation, because the force is set to be in the global
ame, we do the calculation in the global frame. This requires us to
mpute the global angular velocity of the contact point on both contact
ometries (albeit having the same location in space, the contact point
 geometry A does not have the same velocity as that on geometry
 because of the intrinsic velocity that A and B have), since the user-
ferable variables ARotVel and BRotVel only give their angular velocity
 local frames. This section of the code does this task.
oat3 rotVelCPA, rotVelCPB;

// This is local rotational velocity (the portion of linear
vel contributed by rotation)

rotVelCPA = cross(ARotVel, locCPA);
rotVelCPB = cross(BRotVel, locCPB);
// This is mapping from local rotational velocity to global
applyOriQToVector3(rotVelCPA.x, rotVelCPA.y, rotVelCPA.z,

AOriQ.w, AOriQ.x, AOriQ.y, AOriQ.z);
applyOriQToVector3(rotVelCPB.x, rotVelCPB.y, rotVelCPB.z,

BOriQ.w, BOriQ.x, BOriQ.y, BOriQ.z);

Then the model calculates the normal force. Readers are referred to
c. 4.1 to relate the implementation with the normal contact model.
e material properties that are extracted previously, such as E_cnt, are
ed here to derive the force. One extra task carried out in this part is
e update of the “wildcards” delta_tan_x, delta_tan_y, delta_tan_z and
lta_time, which are used to record the friction history. The contact
story is used in the friction and rolling resistance calculation. At the
d of this snippet, the variable force is updated to record the normal

rce.

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Table 2

The user-referable variables that can be used in composing the custom force model. All
data types are the default data type. Some of the data types can be configured in Vari-
ableTypes.h upon compilation from the source to accommodate the user’s specific needs,
a concept introduced in Sec. 2.3.
Type Name Explanation

double3 contactPnt Contact point coord in global

float3 B2A
Unit vector pointing from

geometry B to geometry A

double overlapDepth The length of overlap

float ts Time step size

float time Current time in simulation

float3 locCPA, locCPB
Positions of the contact point

in the contact geometries’ frames

double3 AOwnerPos, BOwnerPos Positions of both owners

double3 bodyAPos, bodyBPos Positions of both contact geometries

float4 AOriQ, BOriQ Quaternions of both owners

float AOwnerMass, BOwnerMass Masses of both owners

float3 AOwnerMOI, BOwnerMOI Moment of inertia for both owners

float ARadius, BRadius
Radius of curvature for both contact

geometries at point of contact

uint8_t bodyAMatType, bodyBMatType
Offset used to query the material properties

for both contact geometries

uint8_t AOwnerFamily, BOwnerFamily Family number of both owners

float3 ALinVel, BLinVel Linear velocity of both owners

float3 ARotVel, BRotVel
Angular velocity of both owners,

in their local frames

unsigned int AOwner, BOwner
Offset for both owners

in system array

unsigned int AGeo, BGeo
Offset for both contact geometries

in system array

float User-specified
Contact wildcards: Extra properties

associated with contacts

float User-specified
Owner wildcards: Extra properties

associated with owners

float User-specified
Geometry wildcards: Extra properties

associated with geometries

float3 force Accumulator for contact force (in global)

float3 torque_only_force Accumulator for contact torque (in global)

//

fl
fl
fl

//
{

}

th

ro

th

Eq

if
A few re-usable variables that might be needed for both the
tangential and normal force

oat mass_eff, sqrt_Rd, beta;
oat3 vrel_tan;
oat3 delta_tan = make_float3(delta_tan_x, delta_tan_y,

delta_tan_z);

Normal force calculation

// The (total) relative linear velocity of A relative to B
const float3 velB2A = (ALinVel + rotVelCPA) - (BLinVel +

rotVelCPB);
const float projection = dot(velB2A, B2A);
vrel_tan = velB2A - projection * B2A;

// Update contact history
{

delta_tan += ts * vrel_tan;
const float disp_proj = dot(delta_tan, B2A);
delta_tan -= disp_proj * B2A;
delta_time += ts;

}

mass_eff = (AOwnerMass * BOwnerMass) / (AOwnerMass +
BOwnerMass);

sqrt_Rd = sqrt(overlapDepth * (ARadius * BRadius) / (ARadius
+ BRadius));

const float Sn = 2. * E_cnt * sqrt_Rd;

const float loge = (CoR_cnt < 1e-12) ? log(1e-12) : log(
CoR_cnt);

beta = loge / sqrt(loge * loge + deme::PI * deme::PI);

const float k_n = 2. / 3. * Sn;
const float gamma_n = 2. * sqrt(5. / 6.) * beta * sqrt(Sn *

mass_eff);

force += (k_n * overlapDepth + gamma_n * projection) * B2A;
11

}

The snippet below calculates the rolling resistance. At the end of
is snippet, the variable torque_only_force is updated to record the
lling resistance. Recall that this imaginary “force” contributes only to
e contact torque, in agreement with the rolling resistance model in
. (2g).

(Crr_cnt > 0.0) {
bool should_add_rolling_resistance = true;
{

float R_eff = sqrtf((ARadius * BRadius) / (ARadius +
BRadius));

float kn_simple = 4. / 3. * E_cnt * sqrtf(R_eff);
float gn_simple = -2.f * sqrtf(5. / 3. * mass_eff *

E_cnt) * beta * powf(R_eff, 0.25f);

float d_coeff = gn_simple / (2.f * sqrtf(kn_simple *
mass_eff));

if (d_coeff < 1.0) {
float t_collision = deme::PI * sqrtf(mass_eff /

(kn_simple * (1.f - d_coeff * d_coeff)));
if (delta_time <= t_collision) {
should_add_rolling_resistance = false;
}

}
}
if (should_add_rolling_resistance) {

// Tangential velocity (only rolling contribution) of B
relative to A, at contact point, in global

float3 v_rot = rotVelCPB - rotVelCPA;
// This v_rot is only used for identifying resistance

direction
float v_rot_mag = length(v_rot);
if (v_rot_mag > 1e-12) {

torque_only_force = (v_rot / v_rot_mag) * (
Crr_cnt * length(force));

}
}

R.

is

ab

in

to

to

po

if

}

de
de
de

M

tic

fo

D
de

fo

4.

th

br

th

4.

a
5
w

𝜇𝑠
ue

as

ill

lo

𝐶

fin

an

sh

𝛼

in

as

st

Fi

an

as

po

4.

id

fr

ra

su

w

lo

th

w

co

gr

liz

of

ex

w

co

fo

po

4.

ve

su

at

ri

co
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Table 3

The possible end status of the sphere in the rolling-on-incline test.
Mode Stationary Sliding Rolling Sliding and rolling

Definition 𝜔 = 0, 𝑣 = 0 𝜔 = 0, 𝑣 > 0 𝑣 = 𝜔𝑟 𝜔 > 0, 𝑣 > 𝜔𝑟

The snippet below implements the friction force. The variable force
 updated to record the friction force. Although the contact history vari-
les (delta_tan_x, delta_tan_y, and delta_tan_z) are initially packed
to a float3 (delta_tan) for cleaner code, they are unpacked in the end
 allow the solver to detect their modifications and write them back
 memory. The contact history variables need modifications due to the
tential tangential micro-displacement clamping, as shown in Eq. (2f).
(mu_cnt > 0.0) {
const float kt = 8. * G_cnt * sqrt_Rd;
const float gt = -2. * sqrt(5. / 6.) * beta * sqrt(mass_eff *

kt);
float3 tangent_force = -kt * delta_tan - gt * vrel_tan;
const float ft = length(tangent_force);
if (ft > 1e-12) {

// Reverse-engineer to get tangential displacement
const float ft_max = length(force) * mu_cnt;
if (ft > ft_max) {

tangent_force = (ft_max / ft) * tangent_force;
delta_tan = (tangent_force + gt * vrel_tan) / (-

kt);
}

} else {
tangent_force = make_float3(0, 0, 0);

}
force += tangent_force;

lta_tan_x = delta_tan.x;
lta_tan_y = delta_tan.y;
lta_tan_z = delta_tan.z;

The snippets provided combine to define the complete Hertz–
indlin contact force model implemented in DEM-Engine. For a prac-
al example of a custom force model in application, see Sec. 6.3
r a material breakage simulation. Users can also refer to the
EMdemo_Electrostatic.cpp demo within the repository [63]. In that
mo, elements are subjected to a contact force and an electrostatic
rce.

3. Contact model validation

In this section, three small-scale tests are introduced to validate
e implementation of the default force contact model. For notational
evity, for the rest of the paper, variables have their scopes limited to
e respective section.

3.1. Sphere rolling on incline
This is a simple but insightful test borrowed from [75], in which
sphere rolls up an incline. The sphere of radius 𝑟 = 0.2m and mass
kg moves up on an incline with an initial velocity of 0.5m∕s, parallel
ith the incline and pointing up. In [75], the static friction coefficient
and kinetic friction coefficient 𝜇𝑘 are allowed to have different val-
s; however, in the default force model that we are validating, they
sume the same value, and in this test 𝜇𝑠 = 𝜇𝑘 = 0.25. A test scene is
ustrated in Fig. 7. The end status of the sphere can be one of the fol-
wing modes depending on the incline angle 𝛼 and rolling resistance
𝑟: stationary; sliding; rolling; sliding and rolling. These modes are de-
ed by the final angular velocity 𝜔 and linear velocity 𝑣 of the sphere,
d are summarized in Table 3.
The outcome of this set of simulations is plotted in Fig. 8. It is
own in [75] that for the sphere to be stationary on the incline,
≤ tan−1(𝜇𝑠

𝜇𝑘
𝐶𝑟). For the sphere to roll down the incline without slid-

g, 𝛼 ≤ tan−1(3.5𝜇𝑠 −
5
2𝐶𝑟). These two conditions are plotted in Fig. 8

 the dashed and solid lines respectively, which evidently separate the
12

ationary region, pure rolling region, and sliding–rolling mixed region te
Computer Physics Communications 300 (2024) 109196

Fig. 7. A rendering of the sphere moving up an incline.

g. 8. The end status of the sphere’s mode, with respect to the incline angle
d rolling resistance.

 the theory suggests. The DEM-Engine results confirm the results re-
rted in [75].

3.2. Sphere stacking
A set of three-sphere stacking tests was carried out to further val-
ate the friction model implementation. This experiment is borrowed
om [49,75]. For each test, two identical spheres of mass 𝑚1 = 1 kg and
dius 𝑅 = 0.15m with a small gap 𝑑 in between were settled on a flat
rface. A third sphere of the same radius 𝑅 but a different mass, 𝑚2,
as placed between and above the bottom spheres with zero initial ve-
city, as illustrated in Fig. 9. To minimize the influence of impact, the
ird sphere was initialized right in contact (zero penetration depth)
ith the bottom ones. Depending on 𝑚1, the gap, and rolling resistance
efficient 𝐶𝑟, two scenarios can occur: the top sphere drops to the
ound, or it moves down slightly but the structure eventually stabi-
es with the bottom spheres supporting the top sphere. This is a type
 physics that also comes into play on a larger scale in angle of repose
periments. For different selections of 𝐶𝑟, the mass of the top sphere
as increased by 0.02 kg to find the critical mass 𝑚2 for the pile to
llapse, and the result is demonstrated in Fig. 10. The critical masses
und for all initial gap sizes show exact matches with the outcome re-
rted in [75], validating DEM-Engine force model implementation.

3.3. Contact chain propagation
A third validation test for the default contact model involves in-
stigating a closed-packed array of spheres arranged on a horizontal
rface, initially in equilibrium under an external gravitational acceler-
ion field. A localized force agent is applied to the uppermost symmet-
c point of this layout, allowing to study the overall sphere-to-sphere
ntact evolution parametrically by varying force magnitude and in-

rnal friction. This proposed setup follows the approach outlined in

R.

Fi

re

[7

ga

fo

en

cy

of

co

Ta

tr

Fi

ta

ue

no

pa

tu

m

Fo

Th

er

Δ

Δ

w

Fi

la

an

tic

st

pa

tia

tw

th

𝐹e

w√
of

is

sp

ne

pr

co

la

yi

in

w

da

co

fr

to

pl

on

sh

as

re

be

pa

in

im

ly

su

w

de

m

ag

W

in

M

le

Fe
ex

w

Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 9. A rendering of the three-sphere-stacking test.

g. 10. The critical mass for the three-sphere pile to collapse, given a rolling
sistance coefficient.

Table 4

The material and simulation properties used in the contact
analysis.

Diameter [m] Density [kg/m3] 𝐸 [Pa] 𝜈 [-] CoR [-]

0.020m 1.0 × 103 1 × 107 0.33 0.30

Fig. 11. Initial layout for contact chain benchmark.

8,79], initially conceived to reveal granular material stress propa-
tion capability; nevertheless, such benchmarks can also be valuable
r verifying the sanity of DEM models. Here, we simulate the refer-
ce case using monodisperse spheres with a diameter 𝐷, in contrast to
linders used in [78]. Fig. 11 illustrates the initial geometrical layout
 the particle slab, consisting of a 61×15 array of spheres layered ac-
rding to a triangular lattice, thus counting 60 spheres for even layers.
ble 4 details the parameters used to initialize the particle geome-
ies and their contact force model. Note that the solid black lines in
g. 11 indicate the analytical box boundaries, which use the same con-
ct model as the granular material.
Contact chain formation is investigated for three inner friction val-
s, 𝜇𝑖, 0.00, 0.10, and 0.20 respectively, under an external force de-
13

ted as Fext, as shown in Fig. 11, applied to the CoG of the top row pr
Computer Physics Communications 300 (2024) 109196

rticle belonging to the simmetry plane in y-z axis. The force magni-
de is defined as Fext = 𝑘𝑚𝑔, where 𝑘 is a real number ∈ℝ, 𝑚 is sphere
ass, and 𝑔 is the magnitude of the gravitational acceleration vector.
r convenience, the weight of the single sphere, 𝑚𝑔 is denoted as 𝑚̄.
us, the DEM-Engine’s configuration is completed by ensuring a prop-
ly defined time step, chosen in accordance with the critical time step
𝑡crit given by the equation [77]

𝑡crit =
𝜋𝐷

2𝛽

√
𝜌𝐸

2(1 + 𝜈)
, (4)

here 𝛽 is approximated as 0.8766 + 0.163𝜈 [80,81].
Prior to applying Fext, to reliably achieve the layout presented in
g. 11, all the spheres are generated at time 0 following a triangular
ttice spaced at 𝐷 plus some small clearance (1/1000th of 𝐷) to avoid
y possible overlap. Soon after, due to the gravitational pull, the par-
les are allowed to settle for 2 seconds of physical time, during which
ationary conditions are reached. To further ensure compliance of the
rticle positions with the target configuration, the force model is ini-
lized with no rebound factor, that is, CoR = 0.00. At this point, phase
o begins and the Fext is activated. To guarantee a smooth transition,
e following function is implemented:

xt(𝑡) = 𝑘𝑚̄ erf

(
𝑡√

𝑇active

)
, (5)

here erf is the error function, 𝑡 is the simulation time, and 𝑇active =
2𝐷𝑘𝑚̄ is set as the required time to smoothly transmit Fext to the rest
 particle system [82]. After the force application phase, the simulation
 run for 5 more seconds.
Figs. 12a–c display the contact force profiles formed between
heres and the bottom boundary surface for tests with different in-
r friction coefficients, while varying the external force. These force
ofiles are constructed by collecting the vertical componenents of the
ntact force at the end of the first phase, denoted as F0, and then iso-
ting only the force increment, or decrement thereof, induced by Fext,
elding Δ𝐹 = 𝐹 (𝑡) −𝐹0, where 𝑡 represents time, and here correspond-
g to the end of the physical time. Such shapes are then normalized
ith respect to the external force. By contrasting against reference
ta [78] and another numerical model’s results [49], the proposed out-
mes exhibit strong agreement, especially in predicting the transition
om one-peak shaped curves, where linear elasticity similitude applies,
 two-peak curves where contacts get redistributed due to particle dis-
acement. More specifically, for low values of the external force, the
e-peak curves totally agree with the results presented in [49,78],
owing similar overall shape development and peak values. However,
 the external force increases and the particle displacement becomes
levant to achieving new stationary configurations, the peak values
gin to diverge from the results provided in [78]. This discrepancy is
rticularly significant in Panel 12a, where the blue curve correspond-
g to Fext = 6.0𝑚̄ exhibits peak values almost twice as high, likely
parted by the differences in the shapes that are involved in the ana-
tical tests. The goodness of the proposed results, however, is further
pported by the close agreement shown by the curves in Figs. 12a–c
ith the results in [49], in which Chrono::GPU was employed.
Fig. 12d offers deeper insights into the system response’s depen-
nce on inner friction and applied force. This chart presents the nor-
alized force experienced by the sphere located at 𝑥∕𝐷 = 0, charted
ainst the magnitude of the external load, here indicated using 𝑘.
hen compared to the reference paper, this chart provides close match-
g with the expected behavior for all the studied friction parameters.
inor mismatching, however, affects the profile obtained for friction-
ss particles (i.e., 𝜇𝑖 = 0.00). For low values of external force, i.e.,
xt < 1.0𝑚̄, our model slightly underestimates the compression load
perienced by the spheres located in the middle of the container,
hereas for high values, the ratio becomes negative, indicating less

essure around these particles when only gravity is applied. Never-

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 12. Contact force distributions at the container bottom surface for different friction conditions and different values for the external force.

th

by

ul

pa

co

m

co

in

el

pi

as

pl

su

5.

ex

na

th

tio

In

ra

se

to

st

to

le

Ta

th

m

re

co

st

ca

Fi

be

bl

N

0.

er

sp

lin

te

on

its

tin

th

tw

pa

si

by

a
50

bo

of

an

of

tic

pr

an

si
eless, the proposed results align very well with the results obtained
 Chrono::GPU [49].
To better illustrate the contact distribution process, a series of sim-
ation visuals is proposed in Fig. 13 for 𝜇𝑖 = 0.20. In these images,
rticle contacts are instituted by colored straight lines parallel to the
ntact direction, with the length of each line proportional to the nor-
alized force magnitude (force contact over 𝑚̄). Fig. 13a visualizes the
ntact distribution that forms at the end of the settling phase, show-
g an initial uniform distribution aligning with the prediction of linear
astic theory. As soon as an external agent is applied, as gradually de-
cted by Figs. 13b–e, the force diffusion tends to deviate from linearity,
 observed in Fig. 12c. In the last case with 𝑘 = 80, the sphere dis-
acement becomes more evident, as a slight tilt forms at the horizontal
rface of the container.

 Simulator’s performance

The scaling analysis in this section seeks to offer insights into the
pected simulation performance of DEM-Engine. The chosen test sce-
rio involves a bladed mixer interacting with granular material, where
e mixer is modeled using a triangular mesh. Throughout the simula-
n, the mixer blades maintain a constant angular velocity of 2𝜋 rad∕s.
itially, the elements are positioned within a cylindrical region with a
dius of 0.5m and a height of 1∕3 m above the mixer, and are sub-
quently released at the simulation’s onset. The test’s selection is due
 its intensive particle–particle and particle–mesh interactions, demon-
rated in Fig. 15. This puts the contact history preservation algorithm
 the test, as contacts emerge and vanish in this highly dynamic prob-
m. Material properties and simulation parameters can be found in
ble 5.

In this analysis, three clump types are employed: individual spheres,
ree-sphere clumps, and six-sphere clumps, depicted in Fig. 14. Ele-
ent sizes are adjusted to regulate the total element count. The mesh
presenting the mixer blades remains consistent across simulations,
mprising 2892 triangular facets. Simulations are run until a pseudo-
eady state is achieved at 1 s, after which the wall time required to
14

rry out 106 time steps is recorded. The time step size is 5 × 10−7 s. m
Table 5

The material and simulation properties used in the mixer scal-
ing analysis.
Density [kg/m3] 𝐸 [Pa] 𝜈 [-] CoR [-] Step size [s]

2.6 × 103 1 × 109 0.3 0.2 5 × 10−7

g. 16 displays the correlation between wall time and the total num-
r of component spheres (distinct from the number of elements) via
ue, green, and black markers. The simulations are performed on two
VIDIA Ampere A100 GPUs. On average, Chrono DEM-Engine takes
546, 0.313, and 0.264 hours to complete one million steps for ev-
y million component spheres in the simulations for the individual
heres, three-sphere clumps, and six-sphere clumps, respectively. The
ear scaling persists to up to 150 million component spheres in the
sts.

An identical simulation is also executed with Chrono::GPU (utilizing
ly one A100 as Chrono::GPU is limited to using a single GPU), and
 scaling is represented with red markers. This juxtaposition is per-
ent given a recent independent study’s findings, which underscored
at Chrono::GPU outperforms two other established DEM packages by
o orders of magnitude [51]. Therein, for a 420,000-element pebble-
cking simulation, Chrono::GPU running on a laptop GPU finished the
mulation in an amount of time 261 times shorter than that required
 LAMMPS, when the latter ran on 432 CPU cores of a cluster. For
660,000-element pebble-packing simulation, Chrono::GPU executed
1 times faster than STAR-CCM+, which ran on 160 CPU cores. In
th tests, Chrono::GPU ran on the RTX 2060 Mobile NVIDIA GPU card
 a laptop. As indicated in Fig. 16, Chrono DEM-Engine demonstrates
 additional twofold efficiency boost over Chrono::GPU in the test case
 spherical elements. Owing to its ability to handle complex DEM par-
le shapes, Chrono DEM-Engine expands the modeling capacity of its
edecessor without compromising per-GPU efficiency.
Fig. 17 shows the time spent in the important steps of the kinematics
d dynamics threads’ work cycles in the largest six-sphere-clump mixer
mulation run in the scaling analysis. In that scenario, the amount of

utual contact data produced is relatively large, causing the kinematics

R.

Fi

𝜇𝑖
Computer Physics Communications 300 (2024) 109196Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

g. 13. Elaborated visualizations of the contact distribution for the case with
= 0.20.

Fig. 15. A rendering of the mixing process.

Fig. 16. The scaling result of the mixer simulation using individual spheres,
three-sphere clumps, and six-sphere clumps, on NVIDIA A100s. The wall time to
finish simulating 106 steps is plotted against the number of component spheres
in the simulation.

Fig. 17. The runtime breakdown for the kinematics and dynamics threads, dur-
ing the lifespan of the largest six-sphere-clump mixer simulation.

thread to spend a large amount of time transferring it to the dynamics
thread, reaching 26% of the former thread’s total runtime. The dynam-
ics thread spends minimal time on transferring data. This is done by
design to enable the dynamics thread to almost exclusively focus on
advancing the state of the system forward in time.

6. Numerical experiments

This section introduces a series of numerical tests, from medium-
sized hopper flow rate tests to large-scale co-simulation, designed to
15

Fig. 14. The element shapes for the three-sphere and six-sphere clumps. co
mpare the DEM-Engine simulation results against experimental data.

R.

Fi

m

6.

te

ℎ,

Th

ag

w

𝑑

w

is

𝐶

pr

in

g∕
Th

he

of

be

an

ha

tia

𝜌𝑔

he

gr

co

Co

bo

ag

6.

ph

at

de

Th

tu

A

6.

in

an

w

an

of

co

di

tio

th

(r

in

sp

th

sp

om

ta

pr

0.

0.

tia

ro

se

Fo

to

w

in

ta

ca

ph

ul

Fi

ap

po

of

na

sy

of

w

pa

po

al

th

su

pr

on

m

te

ph

of
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 18. Diagram of the initial and final projectile positions.

g. 19. Penetration depth. Each red square represents a data point in the nu-
erical test.

1. Ball impact test

This experiment is described in [83]. A spherical projectile charac-
rized by diameter 𝐷 and density 𝜌𝑏 was released from varying heights,
 onto a loosely packed pile of granular material, visualized in Fig. 18.
e resulting penetration depth 𝑑 of this sphere was gauged and set
ainst the empirical model derived from the experimental data in [83],
hich goes as:

= 𝐶

𝜇

(
𝜌𝑏

𝜌𝑔

) 1
2
𝐷

2
3𝐻

1
3 , (6)

here 𝜌𝑔 denotes the granular material’s bulk density, and 𝐻 = ℎ + 𝑑

 the sum of penetration depth and drop height. In [83], the constant
is estimated from experiments to be 𝐶 = 0.14.
Twelve numerical tests using DEM-Engine were run aiming to re-
oduce the experiment in [83] as faithfully as possible. These tests
corporate combinations of projectile densities 𝜌𝑏 = 2.2, 3.8, 7.8, 15
cm3, resembling Teflon, ceramic, steel, and tungsten, respectively.
e diameter of the spherical projectile is 𝐷 = 2.54 cm. The release
ights take values ℎ = 5, 10, 20 cm. Each simulation uses eleven types
 spherical elements with diameters evenly distributed in the range
tween 0.25 cm and 0.35 cm (inclusive), and each DEM element has
 even chance of spawning as one of them. The grain material in use
s density 𝜌grain = 2.5 g∕cm3, resembling silica. This is to be differen-
ted from the bulk density of the granular bed, which is packed at
= 1.46 g∕cm3, with a sliding friction coefficient of 𝜇 = 0.3.
The correlation between depth 𝑑 and the adjusted total release
ight 𝐻 can be observed in Fig. 19. The line represents a linear re-
ession of the numerical outcomes, showing a slope of 0.123, which
nfirms the experimentally established empirical model in Eq. (6).
mparable outcomes were also documented in [84] and [49], where
th non-smooth and smooth contact dynamics approaches were lever-
16

ed for validating the same physics. w
Computer Physics Communications 300 (2024) 109196

2. Flow sensitivity test

This section investigates the flow behavior exhibited by granular
ases characterized by heterogeneous properties, encompassing vari-
ions in shape, density, and friction coefficient. Furthermore, relevant
tails regarding simulation runtimes are provided where applicable.
e hardware configuration utilized for these numerical validations fea-
res an AMD Ryzen 9 5950X CPU in conjunction with a single NVIDIA
5000 GPU card.

2.1. Drum tests
The first test investigates the flowability of particle media compris-
g four typologies: plastic spheres, plastic cylinders, wooden spheres,
d wooden cylinders. The reference data is presented in Cui et al. [85],
here experimental and numerical tests were performed on spherical
d nonspherical particles. The experimental setup for the estimation
 the angle of repose, a schematic of which is proposed in Fig. 20,
mprised of a rotating drum made of transparent acrylic with an inner
ameter (𝐷𝑑) of 0.19m and a depth of 0.20m (𝑊𝑑). For this investiga-
n, the considered physical test outcomes refer to the test performing
e drum rotating angular velocity, 𝜃̇𝑑 , of 3.60 revolutions per minute
pm).
This test is also considered to assess the accuracy of DEM-Engine

 simulating complex shapes, which are formed by a compound of
heres, and defined as clumps. In the following, as shown in Fig. 20,
e two shapes that characterize the tested particles consist of pure
heres with uniform radii, and five sphere clumps to mimic the ge-
etric outer shape of cylinders.
Fig. 21 illustrates the sensitivity of the angle of repose for the ro-
ting drum experiment. Each plot refers to a different material setup
oposed in Table 6, using a test matrix that uses 13 values ∈ [0.00,
90] for the definition of the inner friction (𝜇𝑖) and five values ∈ [0.00,
08] for the definition of the rolling friction (𝐶𝑟). The material is ini-
lized to fill half of the volume of the drum; then, the drum initiates its
tation at a constant angular velocity of 3.60 rpm, and let run for two
conds, after which it is assumed the system achieves a steady state.
r the four different drum configurations, five seconds of simulations
ok approximately 0.20 h for each case with spheres (i.e., PS and WS),
hereas 0.6 h hours for PC and WC. The angle of repose, as reported
 the charts, is computed as the mean value of thirty measurements
ken at an interval during the three seconds of simulation. For all the
ses, very little deviation was observed throughout the post-processing
ase.

Fig. 21 illustrates some of the key characteristics exhibited by gran-
ar materials when simulated using a DEM-based numerical solver.
rstly, it is evident that as the internal friction assigned to the spheres
proaches zero, the system response yields very small angles of re-
se, ultimately resulting in a near-horizontal surface in the absence
 internal friction. Conversely, for cylindrical particles lacking inter-
l friction, the shape itself contributes to the bearing capacity of the
stem, as expected. Moreover, rolling resistance influences the angle
 repose. When 𝜇𝑖 is small, the disparity between cylindrical particles
ith and without 𝐶𝑟 remains consistently lower. Note that, for a given
ir of (𝜇𝑖, 𝐶𝑟), similar particle shapes yield comparable angles of re-
se, irrespective of particle size or density. These initial observations
ign with the findings reported in [85], wherein the authors utilized
e superquadratic DEM approach implemented in the open-source CFD
ite MFiX [86] for simulating these same particles.
By contrasting the numerical solutions against the experimental data
esented in [85] and illustrated in Fig. 21 through dashed black lines,
e can assess the accuracy of the DEM-Engine in simulating granular
aterials. First, when considering two simulated spherical particle ma-
rials (Fig. 21a) and c)), in which the grain shapes align with their
ysical counterparts, the valid angles of repose exhibit a wide range
 values in relation to internal friction (i.e., from 𝜇𝑖 ∈ 0.25-0.90),

hile only minimal variability is linked to rolling friction. Secondly,

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 20. Schematic visualization of the rotating drum test.

Table 6

Properties of four different particle setups used in this numerical investigation.
ID Material Shape Radius Length Density 𝐸 𝜈 𝐶𝑜𝑅 Clumps Spheres

[mm] [mm] [kg/m3] [MPa] [-] [-] [-] [-]

PS Plastic Sphere 3.0 - 1592 10.0 0.35 0.85 13024 13024

PC Plastic Cylinder 2.0 8.0 1128 10.0 0.35 0.85 19036 95180

WS Wooden Sphere 2.95 - 674 10.0 0.35 0.55 17112 17112

WC Wooden Cylinder 2.0 8.5 476 10.0 0.35 0.55 17016 85080

Fig. 21. Sensitivity of the angle of repose to the inner (𝜇𝑖) and rolling friction (𝐶𝑟) for the four granular materials in Table 6. The dashed line in each chart reports
the reference value for the corresponding experimental test [85].

em

as

th

pr

fe

ve

6.

pa

fo

bi

ph

0.
su

w

co

ar

co

pa

th

co

co

pr
ploying 5-sphere clumps to emulate plastic and wooden cylinders,
 reported in Fig. 21b) and d), offers distinct operational domains for
ese un-physically consistent cylinders, where both shape and surface
operties play pivotal roles. This analysis shows that the combined ef-
cts of internal and rolling frictions provide DEM-Engine with greater
rsatility.

2.2. Hopper tests
This test assesses the dynamic properties exhibited by a flow of DEM
rticles when simulated using the DEM-Engine. As reference solutions
r this task, data regarding the mass discharge rate for both single and
nary component systems are targeted, as made available in [87]. The
17

ysical testing was conducted using a flat-bottom hopper, see Fig. 22. an
The hopper has a height of 0.40m, width of 0.20m, and depth of
04m. An orifice of 0.04m is symmetrically positioned on the lower
rface. For the experimental campaign, various particle configurations
ere investigated. However, for this numerical validation, only four
nfigurations, which precisely correspond to those outlined in Table 6,
e considered. Specifically, Table 7 provides details on the hopper
nfiguration for the tests presented in the subsequent sections. The
rameters 𝜇𝑖 and 𝐶𝑟 reported in the last two columns are set using
e charts in Fig. 21. Note that the first two tests consist of single-
mponent discharge tests, whereas the remaining use binary particle
mpositions. Each simulation spans a physical time of 7.50 s, with ap-
oximate runtimes of: 0.35 h for ID 1; 0.75 for ID 2; and 0.60 for IDs 3

d 4.

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Table 7

Properties of four different particle combinations used in the hopper numerical investigation.
Test ID Layer 1 Layer 2 𝐻1 𝐻2 𝜇𝑖.1 𝐶𝑟.1 𝜇𝑖.2 𝐶𝑟.2 Clumps Spheres

[cm] [cm] [-] [-] [-] [-] [-] [-]

1 PS - 36 - 0.40 0.04 - - 14058 14058

2 WC - 36 - 0.70 0.07 - - 20014 100070

3 PS PC 18 18 0.40 0.04 0.30 0.03 17545 59565

4 PC PS 18 18 0.30 0.03 0.40 0.04 17904 61684

Fi

fo

(r

2,

tiv

nu

re

fa

ex

es

to

of

fe

sy

tr

off

fr

re

sh

ev

m

un

6.

pl

al

Th

pl

im

tle

of

de

Se

pl

th

er

th

“w

re

in

lo

th

re

𝐹𝑛

𝐅𝑛

w

co

𝑘𝑛
Fig. 22. Schematic visualization of the flat-bottom hopper.

g. 23. Experimental and numerical comparison of the mass discharge ratio
r single component hoppers with plastic spheres (blue) and wooden cylinders
ed).

In Fig. 23, the relative mass discharge is presented for Test IDs 1 and
 which involve plastic sphere and wooden cylinder particles, respec-
ely. The chart depicts a comparison between the experimental and
merical time evolution of the system, showcasing the mass discharge
lative to the total mass. For both tests, DEM-Engine demonstrates a
ir level of accuracy in predicting the flow evolution. It exhibits an
cellent match for purely spherical shapes (PS), while a slight over-
timation is shown for the cylinders (PC). This discrepancy, leaning
wards a more fluid flow, can be attributed to the fact that the clumps
 five spheres, used in place of actual cylindrical shapes, do not per-
ctly replicate the behavior of the physically consistent cylinders.
In Fig. 24, a visual comparison is provided for the binary particle
stems: Test IDs 3 and 4 as outlined in Table 6. This comparison con-
asts snapshots from both experimental and numerical perspectives,
ering lateral views of the hopper at one-second intervals, starting
om the initial configuration at Time=0.00 s. The first and third rows
18

spectively present data from [87], while the second and fourth rows
owcase the results from DEM-Engine’s simulation. The two timelines
olve in a remarkably similar fashion, highlighting that the numerical
odel accurately captures all the pertinent physical phenomena that
fold.

3. Contact modeling for particle breakage

DEM simulations have often been employed to characterize com-
ex flows, factoring in not only the outer geometries of particles but
so specialized features such as flexibility or particle breakage [88].
e DEM-Engine offers an open framework that allows users to im-
ement user-defined constitutive laws. This example details a custom
plementation to model the behavior of a cohesive yet highly brit-
 elastoplastic material. This test involves accounting for the failure
 local bonds. To this end, the model outlined in [89] is adopted for
fining the constitutive laws and failure modes.
The following implementation leverages the variables presented in
c. 4.1 for the history-based Hertz–Mindlin model. Pivotal to this im-
ementation is the capability of having stored information regarding
e state of the system, as also detailed in Sec. 4.2.1. The material prop-
ties that are used to define, in this case, granite, are used to define
e contact forces. Concerning the parent contact method, two extra
ildcards” are defined: unbroken and initialLength, which are used to
spectively record the contact state (i.e., broken or unbroken) and the
itial length of the equivalent spring for the normal force. In the fol-
wing, the general structure of the contact model is defined. Note that
e values of the two wildcard variables are initialized to 1.0 and 0.0,
spectively.

// DEME force calculation for grain breakage.
// The parameters required for the contact force computation

are defined.

if (unbroken > 1e-12) {
// Computation of the contact force for the breakage model

that accounts for normal and tangential forces, and
bending moments.

// Here goes the implementation
} else {

if (overlapDepth > 1e-12) {
// The previously broken contact may still be engaged by

compressive force, and this happens especially for
compressive tests. The contact is treated with a
Hertzian contact law.

// Here goes the implementation
}

}

The magnitude of the model calculates the normal interactive force
using:

= 𝑘𝑛𝐮𝑛 − 𝛾𝑛𝑚̄𝐯𝑛, (7)

here 𝛾𝑛 = 0.01
√
𝑘𝑛∕𝑚̄, 𝑘𝑛 is the normal stiffness and it is defined ac-

rding to the following cases:

=

⎧⎪⎪⎨⎪⎪
𝐸𝑒𝑞𝑅̄ if sign(𝐮𝑛)‖𝐮𝑛‖ > 𝛿𝑦,

−𝐸𝑒𝑞𝑅̄

𝜉
if 𝛿𝑏 ≤ sign(𝐮𝑛)‖𝐮𝑛‖ < 𝛿𝑦,

0 otherwise,

(8)
⎩

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 24. Experimental and numerical comparison of the discharging behavior of two different packing patterns of the Plastic Sphere and Cylinders. (reprinted from
[8

w

fa

th

di

in

𝐅𝑡

w

su

sn

ta

th

m

is

co

be
7]; copyright (2023), LN 5657690415083, with permission from Elsevier).

here 𝐸𝑒𝑞 is the equivalent stiffness of the contact, 𝜉 is the degrading
ctor (softening) that accounts for the formation of initial cracks in
e material, 𝛿𝑦 is the material yielding threshold, and 𝛿𝑏 is contact
splacement failure, here assumes as three times 𝛿𝑦.

float tension = -9.3e6f;

// Normal force calculation
float deltaD = (overlapDepth - initialLength);
float kn = Eeq * (ARadius * BRadius) /((ARadius + BRadius));

float intialArea = ((ARadius > BRadius) ? ARadius * ARadius :
BRadius * BRadius) * deme::PI;

float BreakingForce = tension * intialArea;
float deltaY = BreakingForce / kn;
float deltaU = 3.0f * deltaY;

float force_to_A_mag = (deltaD > deltaY) ? kn * deltaD : ((
deltaU - deltaD)-deltaY) * kn * 0.5f;

float damping = 0.01 * sqrt(mass_eff * kn);

force += B2A * force_to_A_mag - damping * velB2A;
// breaking for excess of tensile force
unbroken = (deltaD < deltaU) ? -1.0 : unbroken;

The tangential component of each contact follows from the follow-
g relationship:

= −𝑘𝑡𝐮𝑡 − 𝛾𝑡𝑚̄𝐯𝑡,

given: ‖𝐅 ‖ ≤ {
𝜇‖𝐅𝑛‖+ 𝑐 𝐴int if sign(𝐮𝑛)‖𝐮𝑛‖ > 𝛿𝑦, (9)
19

𝑡
𝜇‖𝐅𝑛‖ if sign(𝐮𝑛)‖𝐮𝑛‖ ≤ 𝛿𝑦, is
here 𝑘𝑡 = 𝜈𝑖𝑘𝑛, 𝑐 is the material cohesion, and 𝐴int is the interacting
rface for the contact and defined as 𝜋 ⋅ min(𝑅𝑖, 𝑅𝑗)2. The following
ippet of code provides the specific details of the implementation:

float cohesion = 200e6;
// Tangential force calculation

float kt = nu_cnt * kn;
float Fsmax = (deltaD > deltaY) ? length(force) * mu_cnt +

cohesion * intialArea : length(force) * mu_cnt;

const float loge = (CoR_cnt < 1e-12) ? log(1e-12) : log(
CoR_cnt);

beta = loge / sqrt(loge * loge + deme::PI * deme::PI);
float gt = 2. * sqrt(5. / 6.) * beta * sqrt(mass_eff * kt);

float3 tangent_force = -kt * delta_tan - gt * vrel_tan;
delta_tan = (tangent_force + gt * vrel_tan) / (kt);

force += tangent_force;
// breaking for excess of tangential stress
unbroken = (length(tangent_force) > Fsmax) ? -1.0 : unbroken;

The bending resistance that arises at each contact, being represen-
tive of an element of finite size, is computed using Eq. (2g), where
e bending stiffness is defined as 𝑘𝑟 = 𝑅𝑖𝑅𝑗𝑘𝑡 [90,91]. note that the
aximum bending moment is capped by min(𝜂𝑖𝑅𝑖, 𝜂𝑗𝑅𝑗)‖𝐅𝑛‖, where 𝜂
 a dimensionless coefficient that controls the rolling behavior of the
ntact. Lastly, here the code for the implementation of the fictitious
nding resistance of the contact is listed. Note that no contact failure

 associated with the bending moment value.

R.

Fi

bl

ta

as

liz

Ta

pr

pr

[8

fix

co

m

a
te

a
𝐻

ar

pr

de

pa

ou

to

ra

Fi

fo

to

Fi

te

ue

pr

tia

co

th

co

su

co

in

m

w

an

re

di

ar

vi

6.

an

re
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Table 8

Mechanical properties of the granite block, as de-
fined in [89,92].
Material Parameter Value (unit)

Rock Mass density 2640 kg∕m3

Young’s modulus 60 × 109 Pa
Poisson’s ratio 0.25
Internal friction 0.30
Compressive Strength 200 × 106 Pa
Tensile strength 9.3 × 106 Pa

Plates Young’s modulus 100 × 109 Pa
Surface friction 0.50
Poisson’s ratio 0.30

g. 25. Numerical configuration for the axial compression test of a granite
ock.

// Bending moment induced-force calculation
float kr = ARadius * BRadius * kt;
float eta = 0.1f;

float var_1 = ts * kr / ARadius;
float var_2 = eta * length(force);

float3 torque_force;
if (v_rot_mag > 1e-12) {

float torque_force_mag = (var_1 < var_2) ? var_1 : var_2
;

torque_force = (v_rot / v_rot_mag) * torque_force_mag;
}
force += torque_force;

The previous implementation has been validated against experimen-
l data from a uniaxial compression test conducted on a granite block,
 defined in [92]. This particular test configuration is commonly uti-
ed in the literature for code validation and calibration. In Fig. 25 and
ble 8, we present the numerical test rig along with the mechanical
operties of the rock specimen, lower plate, and upper plate. These
operties have also been reviewed and interpreted by other studies
9,91,93]. The test rig consists of two rigid plates, with the lower plate
ed to the reference system while the upper plate moves vertically at a
nstant velocity of 5mm∕s. The tested specimen is constructed as a ho-
ogeneous assembly of spheres placed on a regular lattice arranged in
hexagonal close-packed (HCP) configuration, generated using an in-
rnal function provided by the DEM-Engine package. The specimen has
base area of 𝑊𝑏𝑙𝑜𝑐𝑘 ×𝑊𝑏𝑙𝑜𝑐𝑘 with dimensions of 5.0 cm and a height
𝑏𝑙𝑜𝑐𝑘 of 10.0 cm. The chosen sphere radius of 12mm ensures that there
e 20 particles within the width of the specimen.
A crucial parameter that significantly influences the accuracy of the
oposed model for contact breaking is the particle interaction range,
noted as 𝛾int𝑅𝑖, which defines the area of active links around each
rticle. Essentially, when a particle is initialized as part of the previ-
sly defined contact method, it is equipped with contacts that extend
 the surrounding particles in accordance with the specified interaction
20

nge. In this study, three tests are conducted, considering different val- in
Computer Physics Communications 300 (2024) 109196

Table 9

Model parameters description for the simulation of the
particle breakage in axial compressive tests.
Test ID Radius 𝛾int Spheres ≈𝑁 𝑁𝑖.mod

[mm] [-] [-] [× 103] [-]

1 12 0.70 26754 154 6

2 12 0.90 26754 200 8

3 12 1.10 26754 230 9

g. 26. Strain–stress curves obtained from uniaxial compressive tests per-
rmed with three interaction range sizes. The reference solution corresponds
 the numerical solution proposed in [89] for 𝑁𝑖 = 13.8.

g. 27. Visualization of the cracked configuration of the three specimens. For
st 𝐼𝐷 1, the crack has been highlighted using a light green curve.

s of 𝛾int: [0.70, 0.90, 1.10]. Table 9 provides a summary of the micro
operties for these three tests, including the total number of poten-
l contacts, denoted as 𝑁 , and the statistical mode of the number of
ntacts for a single particle, denoted as 𝑁𝑖.mod.

Fig. 26 displays the strain–stress curves for the three tests along with
e numerical solution proposed in [89], where the average number of
ntacts per particle was 𝑁𝑖 = 13.8. The data presented in this chart
ggests the excellent agreement achieved by the implemented model
mpared to the one from the literature. Particularly, an increase in the
teraction range leads to a more accurate representation of the speci-
en’s stiffness. Case emphID 3 exhibits the highest level of agreement,
ith a relative error of less than 8% on the material ultimate resistance
d 5% on the elastic modulus. One source of disagreement lies in the
latively small number of links (i.e., 9 compared to 13.8), which is a
rect consequence of the uniform pattern used to initialize the particle
rangement and the uniform particle radius. Fig. 27 proposes rendered
sualizations for the final instants of the three tests.

4. Rover mobility co-simulation

This section discusses a co-simulation between a multi-body system
d a DEM system. The rover simulation originally presented in [94] is
produced herein while adding the usage of the “active box” scheme

troduced later in this section. The co-simulation aims to measure the

R.

Fi

fa

T

T

b

C

sl

ita

us

Fi

ph

si

m

Th

an

in

gr

te

si

is

us

th

sh

20

th

th

Fi

sim

6.

dl

ro

re

th

w

m

w

ri

th

te

st

of

sy

6.

si

di

an

th

em

sh

Th

tiv

de

N

lo

fe

po

of

bo

el

su

fic

a
ca

(b

w

sl

10
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

g. 28. MGRU3 climbing a “tilt bed” in NASA’s Glenn Research Center testing
cility [95].

Fig. 29. The seven clump shapes that are used in the rover co-simulation.

able 10

he weight distribution of the simulant used in the rover test, percent-wise,
y clump size. For all element types, 𝐸 = 108 N∕m2 , 𝜈 = 0.3, 𝜇𝑠 = 0.4, and
oR = 0.5 in this simulation.
Type 1 2 3 4 5 6 7

Size [mm] 21 11.4 6.6 4.5 3 2.75 2.5

Component radius [mm] 3.6 1.95 1.81 1.24 0.82 0.75 0.7

%, by weight 17 21 14 19 16 5 8

ip ratios of a rover when operating on a “tilt bed” under Earth’s grav-
tional pull. The experimental data used for comparison are obtained
ing NASA’s Moon Gravitation Representative Unit 3 (MGRU3), see
g. 28 (obtained from a publicly available video of the test [95]) for a
oto of the test scene. However, in the co-simulation presented herein,
nce the MGRU3 CAD model is inaccessible, a similar VIPER rover
odel publicly available in the latest Chrono distribution [50] is used.
e rover moves around by prescribing all its four wheels a 0.8 rad∕s
gular velocity on inclines of 0, 5, 10, 15, 20, and 25◦, where the
clines are modeled in simulation by adjusting the direction of the
avitational pull.
The experiment shown in Fig. 28 was done at Glenn Research Cen-
r, where the terrain simulant used is called GRC-1 [96]. In the co-
mulation presented herein, the numerical representation of the terrain
 inherited from [94], where seven different DEM element types are
ed (rendered in Fig. 29), each with a specific size and percentage of
e total weight, see Table 10. The size distribution is plotted in Fig. 30,
owing the DEM representation is uniformly increased by a factor of
 the actual particle sizes encountered in GRC-1. For more details and
e validation of this terrain representation, see [94]. A rendering of
21

e co-simulation is shown in Fig. 32. on
Computer Physics Communications 300 (2024) 109196

g. 30. The size distribution of the DEM elements used in the rover co-
ulation, plotted against a scaled real-world GRC-1 simulant size distribution.

4.1. Co-simulation
The co-simulation setup is depicted in Fig. 31. DEM-Engine han-
es the evolution of the granular terrain, while Chrono manages the
ver dynamics. The two simulators are connected through the meshes
presenting the wheels. DEM-Engine calculates the force exerted by
e terrain on the wheel mesh. This force information is employed
hen the Chrono numerical integrator propels the evolution of the
eshes forward in time. Subsequently, the updated position of the
heels will serve as new boundary conditions for the granular mate-
al. The rover’s mobility is also influenced by forces that originate in
e chassis and suspension, independent of the motion of the granular
rrain. In this co-simulation, the rover system progresses with a time
ep size of 2 × 10−5 s, whereas the DEM system uses a smaller time step
 2 × 10−6 s. This means for every ten DEM time steps, the multi-body
stem in Chrono advances by just one step.

4.2. Active box scheme
Using DEM-Engine’s API, the user can implement a partially active

mulation domain to reduce computational cost. The user can assign
fferent family tags (introduced in Sec. 2.2.2) to the elements inside
d outside certain regions in the simulation domain to distinguish
em. In this use case, no assigned motions are prescribed to the el-
ents inside the 1m × 0.5m boxes centered around each wheel, as
own in Fig. 32 – their motion is to be determined by the simulator.
ese boxes are called active boxes. The DEM elements outside the ac-
e boxes are fixed in position and do not participate in the contact
tection, i.e., remain dormant and contribute no computational cost.
ote that the locations of the active boxes are updated (based on the
cations of the wheel) 10 times per simulation second in this test.
The full-simulation data shown in Fig. 33 displays no notable dif-

rence compared to the active box-based counterpart. In [94], it is re-
rted that the 15-second simulation requires approximately 109 hours
 run time on two NVIDIA A100 GPUs. At the same time, the active
x-based simulation presented herein, which involves 11,336,638 DEM
ements (34,691,952 component spheres) takes around 30 hours. This
ggests that the more expeditious active box-based tests are likely suf-
ient to gain insights into the rover’s mobility attributes, while costing
fraction of the computational cost of a full simulation. The numeri-
l simulations also show good agreement with the experimental data
lack line) from NASA’s Glenn Research Center MGRU3 experiments
ith the real-world GRC-1 simulant. The slip ratio increases relatively
owly with the slope angle in the interval between 0◦ and 10◦. Past
◦, this rate of increase escalates, and the rover almost fails to climb

 a 25◦ incline.

Computer Physics Communications 300 (2024) 109196R. Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

Fig. 31. The co-simulation workflow between the multi-body system simulated by Chrono and DEM-Engine.

Fig. 32. A rendering of the VIPER rover operating on a 20◦ incline. The active box is marked and only the elements in that region are subject to the simulation
physics; the rest are fixed.

Fi

ro

ar

la

7.

ph

sh

si

En

te

fo

pu

ne

ju

ta

sp

M

in

on

fo

da

D

ul

ac

el

w

tu

pa

by

sc

he

m

cl
g. 33. The comparison between the full-domain and active box-based VIPER
ver slip test results. The experimental data used for comparison (black line)
e from Glenn Research Center’s MGRU3 experiments with the GRC-1 simu-
nt.

 Conclusions and future directions

This paper has introduced Chrono DEM-Engine, an open-source,
ysics-based, dual-GPU DEM package that supports complex element
apes, positioning it as an enhancement to the existing Chrono::GPU
22

mulator. The most distinctive implementation feature of Chrono DEM- tr
gine is its partitioning of kinematic processes, such as contact de-
ction, and dynamic computations, e.g., computation of the contact
rces and carrying out numerical integrations. The resulting two com-
tational threads operate asynchronously and share data only when
cessary. Chrono DEM-Engine supports custom force models through
st-in-time CUDA kernel compilation.
This manuscript first presents the C++ and Python code implemen-
tions. They are detailed to highlight the primary code features and
ecialized software components. From the default force model, Hertz–
indlin, which possesses the capability to trace the history of contact
teractions, the paper focuses on the code structure. Emphasis is placed
 the data handling, accompanied by an overview of the procedure
r customizing the force model. Following a rigorous contact vali-
tion against analytical solutions, the computational performance of
EM-Engine’s core implementation is evaluated. This new DEM sim-
ator can process tens of millions of elements on two A100 GPUs,
hieving a throughput of one million time steps for one million DEM
ements within an hour. In contrast to its predecessor, Chrono::GPU,
hich demonstrated in third-party studies to be two orders of magni-
de faster than established DEM packages, the scaling analysis in this
per reveals that the new solver further increases this performance
 a factor of 2×. Furthermore, the new simulator demonstrates linear
alability for up to 150 million component spheres using two GPUs.
The paper validates the solver’s implementation through a compre-
nsive set of tests, including fine-grain force model evaluations and
acro-scale experiments, such as ball drop, hopper flow rate, and rover
imbing. The software is designed to handle complex particle geome-

ies using clump models. This feature is validated through comparisons

R.

w

bi

in

co

by

co

us

ad

tim

no

si

La

tu

de

in

su

Co

ht

pl

CR

ys

W

Ta

dr

de

Sa

Lu

in

og

–
or

ac

iz

Su

D

in

th

D

G

A

w

fu

br

m

an

(D

do

er

Th

an

R

[

[

[

[

[

[

[

[

[

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[2

[2

[2

[2

[2

[2

[2

[2

[2

[2

[3
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

ith physical data for the flow discharge of spheres, cylinders, and com-
nations thereof from a rectangular hopper. Moreover, the software
tegrates with the multi-physics simulation engine Chrono, facilitating
-simulations with mechanical and multi-body systems, as evidenced
 the proposed test case of simulating the rover operation.
Chrono DEM-Engine is an open-source, BSD3-distributed research
de. As such, there is an inherent learning curve associated with its
e. Users are required to sift through numerous APIs. Identifying and
dressing the tool’s limitations can also be daunting and may require
e-consuming customization. This challenge becomes even more pro-
unced in modern cross-disciplinary research, where researchers are
multaneously handling a range of tools. However, the emergence of
rge Language Models (LLMs) [97] offers a potential solution. As a fu-
re development thrust, it remains to investigate the use of LLMs to
sign assistant AIs that can translate users’ natural language directives
to executable DEM-Engine scripts. If this research trajectory proves
ccessful, the resulting tool will be made available as open-source.

de availability

Chrono DEM-Engine is accessible as part of Project Chrono at
tps://github .com /projectchrono /DEM -Engine. All numerical exam-
es discussed in this paper are provided as demo simulations.

ediT authorship contribution statement

Ruochun Zhang: Conceptualization, Data curation, Formal anal-
is, Investigation, Methodology, Software, Validation, Visualization,
riting – original draft, Writing – review & editing. Bonaventura
gliafierro: Investigation, Validation, Visualization, Writing – original
aft, Writing – review & editing, Methodology, Software. Colin Van-
n Heuvel: Writing – original draft, Methodology, Software. Shlok
barwal:Writing – original draft, Methodology, Software, Validation.
ning Bakke: Formal analysis, Investigation, Software, Writing – orig-
al draft, Writing – review & editing. Yulong Yue: Software, Methodol-
y, Writing – original draft. Xin Wei: Software, Methodology, Writing
original draft. Radu Serban: Supervision, Methodology, Writing –
iginal draft, Writing – review & editing, Conceptualization, Funding
quisition, Software. Dan Negruţ: Funding acquisition, Conceptual-
ation, Investigation, Methodology, Project administration, Resources,
pervision, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial
terests or personal relationships that could have appeared to influence
e work reported in this paper.

ata availability

The code and data used for the research is openly available on
itHub, as indicated in the Code Availability section.

cknowledgements

Open Access Funding provided by Università degli Studi di Salerno
ithin the CRUI-CARE Read&Publish agreement. B. Tagliafierro grate-
lly acknowledges financial support for this publication by the Ful-
ight Schuman Program, which is administered by the Fulbright Com-
ission in Brussels and jointly financed by the U.S. Department of State,
d the Directorate-General for Education, Youth, Sport and Culture
G.EAC) of the European Commission. The content of this manuscript
es not represent the official views of the Fulbright Program, the Gov-
nment of the United States, or the Fulbright Commission in Brussels.
is work has been partially supported by NSF project OAC2209791
23

d the US Army Research Office project W911NF1910431.
Computer Physics Communications 300 (2024) 109196

eferences

1] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies,
Geotechnique 29 (1) (1979) 47–65.

2] T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and Algo-
rithms, Springer, Berlin, Heidelberg, 2005.

3] M. Lemieux, G. Léonard, J. Doucet, L.-A. Leclaire, F. Viens, J. Chaouki, F. Bertrand,
Large-scale numerical investigation of solids mixing in a v-blender using the discrete
element method, Powder Technol. 181 (2) (2008) 205–216.

4] K. Apostolou, A. Hrymak, Discrete element simulation of liquid-particle flows, Com-
put. Chem. Eng. 32 (4–5) (2008) 841–856.

5] C.-L. Tang, J.-C. Hu, M.-L. Lin, J. Angelier, C.-Y. Lu, Y.-C. Chan, H.-T. Chu, The
Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a
discrete element simulation, Eng. Geol. 106 (1–2) (2009) 1–19.

6] D. Salciarini, C. Tamagnini, P. Conversini, Discrete element modeling of debris-
avalanche impact on earthfill barriers, Phys. Chem. Earth Parts A/B/C 35 (3–5)
(2010) 172–181.

7] C. O’Sullivan, Particle-based discrete element modeling: geomechanics perspective,
Int. J. Geomech. 11 (6) (2011) 449–464.

8] P. Sánchez, D.J. Scheeres, Simulating asteroid rubble piles with a self-gravitating
soft-sphere distinct element method model, Astrophys. J. 727 (2) (2011) 120.

9] F.F. Foldager, L.J. Munkholm, O. Balling, R. Serban, D. Negrut, R.J. Heck, O. Green,
Modeling soil aggregate fracture using the discrete element method, Soil Tillage Res.
218 (2022) 105295.

0] A.M. Recuero, R. Serban, B. Peterson, H. Sugiyama, P. Jayakumar, D. Negrut, A
high-fidelity approach for vehicle mobility simulation: nonlinear finite element tires
operating on granular material, J. Terramech. 72 (2017) 39–54, https://doi .org /10 .
1016 /j .jterra .2017 .04 .002.

1] J.B. Johnson, A.V. Kulchitsky, P. Duvoy, K. Iagnemma, C. Senatore, R.E. Arvidson,
J. Moore, Discrete element method simulations of Mars exploration rover wheel
performance, J. Terramech. 62 (2015) 31–40.

2] OpenMP: Specification Standard 5.2. Available online at, http://openmp .org/, 2021.
3] A. Amritkar, S. Deb, D. Tafti, Efficient parallel CFD-DEM simulations using OpenMP,

J. Comput. Phys. 256 (2014) 501–519.
4] M.A. Knuth, J. Johnson, M. Hopkins, R. Sullivan, J. Moore, Discrete element mod-

eling of a Mars exploration rover wheel in granular material, J. Terramech. 49 (1)
(2012) 27–36.

5] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Ver-
sion 3.0. Chapter author for Collective Communication, Process Topologies, and One
Sided Communications (2012).

6] B. Yan, R.A. Regueiro, A comprehensive study of MPI parallelism in three-
dimensional discrete element method (dem) simulation of complex-shaped granular
particles, Comput. Part. Mech. 5 (4) (2018) 553–577.

7] A.W.M. Checkaraou, A. Rousset, X. Besseron, S. Varrette, B. Peters, Hybrid MPI+
openMP implementation of extended discrete element method, in: 2018 30th Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), IEEE, 2018, pp. 450–457.

8] LIGGGHTS, Open source discrete element method particle simulation code, http://
cfdem .dcs -computing .com /?q =OpenSourceDEM, 2013.

9] LAMMPS, A molecular dynamics simulator, http://lammps .sandia .gov/, 2013.
0] Simcenter STAR-CCM+ software website, https://plm .sw .siemens .com /en -US /

simcenter /fluids -thermal -simulation /star -ccm/, 2023. (Accessed 25 September
2023).

1] R. Serban, N. Olsen, D. Negrut, High performance computing framework for co-
simulation of vehicle-terrain interaction, in: NDIA Ground Vehicle Systems Engi-
neering and Technology Symposium, 2017.

2] J. Xu, H. Qi, X. Fang, L. Lu, W. Ge, X. Wang, M. Xu, F. Chen, X. He, J. Li, Quasi-real-
time simulation of rotating drum using discrete element method with parallel GPU
computing, Particuology 9 (4) (2011) 446–450.

3] N. Govender, D. Wilke, S. Kok, Blaze-DEMGPU: modular high performance DEM
framework for the GPU architecture, SoftwareX 5 (2016) 62–66.

4] J. Gan, Z. Zhou, A. Yu, A GPU-based DEM approach for modeling of particulate
systems, Powder Technol. 301 (2016) 1172–1182.

5] Y. He, T. Evans, A. Yu, R. Yang, A GPU-based DEM for modeling large scale powder
compaction with wide size distributions, Powder Technol. 333 (2018) 219–228.

6] C. Kelly, N. Olsen, C. Vanden Heuvel, R. Serban, D. Negrut, Towards the democra-
tization of many-body dynamics: billion degree of freedom simulation of granular
material on commodity hardware, in: Proceeding of the ECCOMAS Multibody Dy-
namics Conference, Duisburg, Germany, 2019.

7] K. Iwashita, M. Oda, Rolling resistance at contacts in simulation of shear band de-
velopment by DEM, J. Eng. Mech. 124 (3) (1998) 285–292.

8] A.D. Renzo, F.P.D. Maio, Comparison of contact-force models for the simulation
of collisions in DEM-based granular flow codes, Chem. Eng. Sci. 59 (3) (2004)
525–541.

9] F. Cruz, S. Emam, M. Prochnow, J.N. Roux, F. Chevoir, Rheophysics of dense gran-
ular materials: discrete simulation of plane shear flows, Phys. Rev. E 72 (2005)
021309, https://doi .org /10 .1103 /PhysRevE .72 .021309.

0] C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Analysis of granular flow in a

pebble-bed nuclear reactor, Phys. Rev. E 74 (2006) 021306.

https://github.com/projectchrono/DEM-Engine
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib42BE12501A0C8980EB3E69C96BDA0D63s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib42BE12501A0C8980EB3E69C96BDA0D63s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib138F8ABF2C5C3715C2A93EAB80C30DA2s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib138F8ABF2C5C3715C2A93EAB80C30DA2s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib40B24D2B430DF2498C4E688AAF09842Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib40B24D2B430DF2498C4E688AAF09842Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib40B24D2B430DF2498C4E688AAF09842Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib26C6949119C372183E6786087F5DA8A6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib26C6949119C372183E6786087F5DA8A6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE6EBC5C598AB26A9B5A04DEF3192827Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE6EBC5C598AB26A9B5A04DEF3192827Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE6EBC5C598AB26A9B5A04DEF3192827Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8D061EF0B722A2828127472E7703920Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8D061EF0B722A2828127472E7703920Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8D061EF0B722A2828127472E7703920Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib517592A50FDB2B003F3851BEB68B1C50s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib517592A50FDB2B003F3851BEB68B1C50s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibEC04C46FF4FED0C912B227C7EDD8A17Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibEC04C46FF4FED0C912B227C7EDD8A17Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibDB180B80C0484B01E1D8DA81B1A67AF9s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibDB180B80C0484B01E1D8DA81B1A67AF9s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibDB180B80C0484B01E1D8DA81B1A67AF9s1
https://doi.org/10.1016/j.jterra.2017.04.002
https://doi.org/10.1016/j.jterra.2017.04.002
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1ECB94D62D70DFE6485D6FC49C8E8867s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1ECB94D62D70DFE6485D6FC49C8E8867s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1ECB94D62D70DFE6485D6FC49C8E8867s1
http://openmp.org/
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2269BEFC13D69101A37AEA794E4F09D6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2269BEFC13D69101A37AEA794E4F09D6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibA5CF17D51909EFB272F36B97BFE0EFF1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibA5CF17D51909EFB272F36B97BFE0EFF1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibA5CF17D51909EFB272F36B97BFE0EFF1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8F5EFDEDD62CFFD4981104326709030Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8F5EFDEDD62CFFD4981104326709030Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8F5EFDEDD62CFFD4981104326709030Bs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1A566BA8E9962303851FC6E8D0EBDDDFs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1A566BA8E9962303851FC6E8D0EBDDDFs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1A566BA8E9962303851FC6E8D0EBDDDFs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1A566BA8E9962303851FC6E8D0EBDDDFs1
http://cfdem.dcs-computing.com/?q=OpenSourceDEM
http://cfdem.dcs-computing.com/?q=OpenSourceDEM
http://lammps.sandia.gov/
https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/
https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib96F9B96A4F99F16E6B938FA56F9F30B0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib96F9B96A4F99F16E6B938FA56F9F30B0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib96F9B96A4F99F16E6B938FA56F9F30B0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1D0B7B4E1E8C40B6565D63DCD2B0052Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1D0B7B4E1E8C40B6565D63DCD2B0052Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1D0B7B4E1E8C40B6565D63DCD2B0052Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE14BEE1FBE0311DE5090E7A81F9D6FE5s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE14BEE1FBE0311DE5090E7A81F9D6FE5s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib480D10608D66AFA5D5D43722D5B809E4s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib480D10608D66AFA5D5D43722D5B809E4s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibA46598E5E4CB56C9647165BC299057C4s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibA46598E5E4CB56C9647165BC299057C4s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibCD7A5C896DA055EC533502FFDB360253s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibCD7A5C896DA055EC533502FFDB360253s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibCD7A5C896DA055EC533502FFDB360253s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibCD7A5C896DA055EC533502FFDB360253s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibF530EE5742A4922220173FB9B04F8658s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibF530EE5742A4922220173FB9B04F8658s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2A9DDE6E32956BCD573C46E70ACDD96Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2A9DDE6E32956BCD573C46E70ACDD96Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2A9DDE6E32956BCD573C46E70ACDD96Ds1
https://doi.org/10.1103/PhysRevE.72.021309
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib0992EDEF129B96A6925A09BA3E376453s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib0992EDEF129B96A6925A09BA3E376453s1

R.

[3

[3

[3

[3

[3

[3

[3

[3

[3

[4

[4

[4

[4

[4

[4

[4

[4

[4

[4

[5

[5

[5

[5

[5

[5

[5

[5

[5

[5

[6

[6

[6

[6

[6

[6

[6

[6

[6

[6

[7

[7

[7

[7

[7

[7

[7

[7

[7

[7

[8

[8

[8

[8

[8

[8

[8

[8

[8
Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

1] H. Kruggel-Emden, M. Sturm, S. Wirtz, V. Scherer, Selection of an appropriate time
integration scheme for the discrete element method (DEM), Comput. Chem. Eng.
32 (10) (2008) 2263–2279.

2] T.M. Wasfy, H.M. Wasfy, J.M. Peters, Coupled multibody dynamics and dis-
crete element modeling of vehicle mobility on cohesive granular terrains, in:
ASME 2014 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, American Society of Mechani-
cal Engineers, 2014, V006T10A050 http://proceedings .asmedigitalcollection .asme .
org /proceeding .aspx ?articleid =2091049.

3] S. Lommen, DEM speedup: stiffness effects on behavior of bulk material, Particuol-
ogy (2014) 107–112.

4] S. Utili, T. Zhao, G.T. Houlsby, 3D DEM investigation of granular column collapse:
evaluation of debris motion and its destructive power, Eng. Geol. 186 (2015) 3–16.

5] M. Potticary, A. Zervos, J. Harkness, An investigation into the effect of particle platy-
ness on the strength of granular material using the discrete element method, in: IV
International Conference on Particle-based Methods - Fundamentals and Applica-
tions, 2015, https://eprints .soton .ac .uk /394117 /1 /particles2015 .pdf.

6] M. Michael, F. Vogel, B. Peters, DEM-FEM coupling simulations of the interac-
tions between a tire tread and granular terrain, Comput. Methods Appl. Mech. Eng.
(2015).

7] M. Ciantia, M. Arroyo, J. Butlanska, A. Gens, DEM modelling of cone penetration
tests in a double-porosity crushable granular material, Comput. Geotech. 73 (2016)
109–127.

8] Z. Zheng, M. Zang, Numerical simulations of the interactions between a pneumatic
tire and granular sand by 3D DEM-FEM, in: 7th International Conference on Discrete
Element Methods, 2017, pp. 289–300, https://link .springer .com /chapter /10 .1007 /
978 -981 -10 -1926 -5 _32.

9] E. Parteli, T. Poschel, Particle-based simulation of powder application in additive
manufacturing, Powder Technol. (2016) 96–102.

0] R. Kivugo, Tire-Soil Interaction for Off-Road Vehicle Applications, Phd, Politecnico
di Milano, 2017, https://www .politesi .polimi .it /handle /10589 /136229.

1] F. Calvetti, C. Prisco, E. Vairaktaris, DEM assessment of impact forces of dry granular
masses on rigid barriers, Acta Geotech. (2016).

2] T. Wen, X. Zeng, Accelerating Polyhedral Discrete Element Method with CUDA,
Astron. J. 166 (2023), https://doi .org /10 .3847 /1538 -3881 /acfc46.

3] G. Liu, W. Xu, A GPU-based DEM framework for simulation of polyhedral particulate
system, Granul. Matter 25 (2023), https://doi .org /10 .1007 /s10035 -023 -01321 -2.

4] M. Furuichi, D. Nishiura, O. Kuwano, A. Bauville, T. Hori, H. Sakaguchi, Arcuate
stress state in accretionary prisms from real-scale numerical sandbox experiments,
Nat. Sci. Rep. 8 (2018), www .nature .com /scientificreports/.

5] O. Henrich, Y.A. Gutierrez Fosado, T. Curk, T. Ouldridge, Coarse-grained simulation
of DNA using LAMMPS, 2018.

6] C.S. Dias, Molecular dynamics simulations of active matter using LAMMPS, arXiv :
2102 .10399 [cond -mat .soft], 2021.

7] R. Li, Z. Liu, Z. Feng, J. Liang, L.-G. Zhang, High-fidelity MC-DEM modeling and
uncertainty analysis of HTR-PM first criticality, Front. Energy Res. 9 (2022), https://
doi .org /10 .3389 /fenrg .2021 .822780.

8] F. Razavi, A. Komrakova, C.F. Lange, CFD—DEM simulation of sand-retention
mechanisms in slurry flow, Energies 14 (13) (2021), https://doi .org /10 .3390 /
en14133797.

9] L. Fang, R. Zhang, C. Vanden Heuvel, R. Serban, D. Negrut, Chrono::GPU: an open-
source simulation package for granular dynamics using the discrete element method,
Processes 9 (10) (2021), https://doi .org /10 .3390 /pr9101813.

0] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, D. Negrut, Chrono: an open source multi-physics dynamics engine,
in: T. Kozubek (Ed.), High Performance Computing in Science and Engineering, in:
Lecture Notes in Computer Science, Springer, 2016, pp. 19–49.

1] D. Reger, E. Merzari, P. Balestra, R. Stewart, G. Strydom, Discrete element simu-
lation of pebble bed reactors on graphics processing units, Ann. Nucl. Energy 190
(2023) 109896, https://doi .org /10 .1016 /j .anucene .2023 .109896.

2] M. Haustein, A. Gladkyy, R. Schwarze, Discrete element modeling of deformable
particles in YADE, SoftwareX 6 (2017) 118–123, https://doi .org /10 .1016 /j .softx .
2017 .05 .001.

3] D. Romanova, S. Strijhak, M. Kraposhin, Development of snowYadeFoam solver for
snow particles simulation, in: 2020 Ivannikov Ispras Open Conference (ISPRAS),
2020, pp. 166–169.

4] C. Ericson, Real Time Collision Detection, Morgan Kaufmann, San Francisco, CA,
2005.

5] J. Favier, M. Abbaspour-Fard, M. Kremmer, A. Raji, Shape representation of axi-
symmetrical, non-spherical particles in discrete element simulation using multi-
element model particles, Eng. Comput. (1999).

6] J. Hilton, P. Cleary, The influence of particle shape on flow modes in pneumatic
conveying, Chem. Eng. Sci. 66 (3) (2011) 231–240.

7] K. Kiangi, A. Potapov, M. Moys, DEM validation of media shape effects on the load
behaviour and power in a dry pilot mill, Miner. Eng. 46 (2013) 52–59.

8] B. Ren, W. Zhong, B. Jin, Y. Shao, Z. Yuan, Numerical simulation on the mixing
behavior of corn-shaped particles in a spouted bed, Powder Technol. 234 (2013)
58–66.

9] W. Zhong, A. Yu, X. Liu, Z. Tong, H. Zhang, DEM/CFD-DEM modelling of non-
spherical particulate systems: theoretical developments and applications, Powder
24

Technol. 302 (2016) 108–152.
Computer Physics Communications 300 (2024) 109196

0] R. Kawamoto, E. Andò, G. Viggiani, J.E. Andrade, All you need is shape: predicting
shear banding in sand with LS-DEM, J. Mech. Phys. Solids 111 (2018) 375–392.

1] E. Marteau, J.E. Andrade, An experimental study of the effect of particle shape
on force transmission and mobilized strength of granular materials, J. Appl. Mech.
88 (11) (2021).

2] S. Zhao, J. Zhao, SudoDEM: unleashing the predictive power of the discrete element
method on simulation for non-spherical granular particles, Comput. Phys. Commun.
259 (2023), https://doi .org /10 .1016 /j .cpc .2020 .107670.

3] R. Zhang, C. Vanden Heuvel, D. Negrut, DEM-Engine, a multi-GPU DEM solver with
complex geometry support, https://github .com /projectchrono /DEM -Engine, 2022,
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison.

4] H. Mazhar, T. Heyn, D. Negrut, A scalable parallel method for large collision detec-
tion problems, Multibody Syst. Dyn. 26 (37–55) (2011), https://doi .org /10 .1007 /
s11044 -011 -9246 -y.

5] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical proper-
ties of Lennard-Jones molecules, Phys. Rev. 159 (98–103) (1967), https://doi .org /
10 .1103 /PhysRev .159 .98.

6] Q. Zhou, W. Xu, Y. Chen, Multi-GPUs DEM algorithm and its application in the
simulation of granular materials, Powder Technol. 430 (118969) (2023), https://
doi .org /10 .1016 /j .powtec .2023 .118969.

7] Rocky DEM, https://rocky .esss .co/. (Accessed 29 December 2021).
8] Q. Liu, W. Wang, H. Ma, Parallelized combined finite-discrete element (FDEM) pro-

cedure using multi-GPU with CUDA, Int. J. Numer. Anal. Methods Geomech. 44 (2)
(2023) 208–238, https://doi .org /10 .1002 /nag .3011.

9] B. Barsdell, K. Clark, A single-header C++ library for simplifying the use of
CUDA runtime compilation, https://github .com /NVIDIA /jitify. (Accessed 24 August
2023).

0] N. Berry, Y. Zhang, S. Haeri, Contact models for the multi-sphere discrete element
method, Powder Technol. 416 (2023) 118209, https://doi .org /10 .1016 /j .powtec .
2022 .118209.

1] C.J. Coetzee, O.C. Scheffler, Review: the calibration of dem parameters for the bulk
modelling of cohesive materials, Processes 11 (1) (2023), https://doi .org /10 .3390 /
pr11010005.

2] M. Price, V. Murariu, G. Morrison, Sphere clump generation and trajectory com-
parison for real particles, in: Proceedings of Discrete Element Modelling, vol. 2007,
2007.

3] H. Hertz, Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers,
im luftleeren Raume, Ann. Phys. 253 (10) (1882) 177–193, https://doi .org /10 .
1002 /andp .18822531002, https://onlinelibrary .wiley .com /doi /pdf /10 .1002 /andp .
18822531002.

4] R. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces,
J. Appl. Mech. 20 (1953) 327–344.

5] L. Fang, D. Negrut, Producing 3D friction loads by tracking the motion of the contact
point on bodies in mutual contact, Comput. Part. Mech. 8 (2021) 905–929, https://
doi .org /10 .1007 /s40571 -020 -00376 -9.

6] J. Fleischmann, R. Serban, D. Negrut, P. Jayakumar, On the importance of displace-
ment history in soft-body contact models, J. Comput. Nonlinear Dyn. 11 (4) (2016)
044502.

7] K.L. Johnson, Contact Mechanics, Cambridge University Press, 1987.
8] C. Goldenberg, I. Goldhirsch, Friction enhances elasticity in granular solids, Nature

435 (7039) (2005) 188–191.
9] C. Goldenberg, I. Goldhirsch, Force chains, microelasticity, and macroelasticity,

Phys. Rev. Lett. 89 (8) (2002) 084302.
0] C. Thorntom, C.W. Randall, Applications of Theoretical Contact Mechanics to Solid

Particle System Simulation, Elsevier, Cambridge, MA, USA, 1988.
1] Y. Li, Y. Xu, C. Thornton, A comparison of discrete element simulations and

experiments for ‘sandpiles’ composed of spherical particles, Powder Technol.
160 (219–228) (2005), https://doi .org /10 .1016 /j .powtec .2005 .09 .002.

2] T. Qu, Y.T. Feng, T.Z. Min Wang, Calibration of linear contact stiffnesses in dis-
crete element models using a hybrid analytical-computational framework, Powder
Technol. 356 (795–807) (2019), https://doi .org /10 .1016 /j .powtec .2019 .09 .016.

3] M.A. Ambroso, C.R. Santore, A.R. Abate, D.J. Durian, Penetration depth for shal-
low impact cratering, Phys. Rev. E 71 (2005) 051305, https://doi .org /10 .1103 /
PhysRevE .71 .051305.

4] T. Heyn, On the modeling, simulation, and visualization of many-body dynamics
problems with friction and contact, PhD thesis, Department of Mechanical Engi-
neering, University of Wisconsin–Madison, 2013, http://sbel .wisc .edu /documents /
TobyHeynThesis _PhDfinal .pdf.

5] X. Cui, J. Dai, H. Xu, X. Gao, Superdem simulation and experiment validation of
nonspherical particles flows in a rotating drum, Ind. Eng. Chem. Res. 62 (16) (2023)
6525–6535, https://doi .org /10 .1021 /acs .iecr .3c00919.

6] X. Gao, J. Yu, R.J.F. Portal, J.-F. Dietiker, M. Shahnam, W.A. Rogers, Develop-
ment and validation of superdem for non-spherical particulate systems using a
superquadric particle method, Particuology 61 (2022) 74–90, https://doi .org /10 .
1016 /j .partic .2020 .11 .007.

7] B. Jian, X. Gao, Investigation of spherical and non-spherical binary particles flow
characteristics in a discharge hopper, Adv. Powder Technol. 34 (5) (2023) 104011,
https://doi .org /10 .1016 /j .apt .2023 .104011.

8] Y. Guo, J.S. Curtis, Discrete element method simulations for complex granular flows,
Annu. Rev. Fluid Mech. 47 (1) (2015) 21–46, https://doi .org /10 .1146 /annurev -

fluid -010814 -014644.

http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2198A77F1473339B3C005A3827CADF2Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2198A77F1473339B3C005A3827CADF2Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2198A77F1473339B3C005A3827CADF2Es1
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2091049
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2091049
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib921D6D93D3D2B6E3D31F21900DE8D2CBs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib921D6D93D3D2B6E3D31F21900DE8D2CBs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB6B493FA0321B8D8F09D80E7087E3C8Cs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB6B493FA0321B8D8F09D80E7087E3C8Cs1
https://eprints.soton.ac.uk/394117/1/particles2015.pdf
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib3CDA263D84DD0BD8ACE36E64A02FEEC0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib3CDA263D84DD0BD8ACE36E64A02FEEC0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib3CDA263D84DD0BD8ACE36E64A02FEEC0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibD311DE53542F9B3BCB33F87B6F196323s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibD311DE53542F9B3BCB33F87B6F196323s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibD311DE53542F9B3BCB33F87B6F196323s1
https://link.springer.com/chapter/10.1007/978-981-10-1926-5_32
https://link.springer.com/chapter/10.1007/978-981-10-1926-5_32
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE8AA92C96874D00AB37D8F239412CD28s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibE8AA92C96874D00AB37D8F239412CD28s1
https://www.politesi.polimi.it/handle/10589/136229
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB2F0D2AD00B139F120DAACEDBE8BEEB0s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB2F0D2AD00B139F120DAACEDBE8BEEB0s1
https://doi.org/10.3847/1538-3881/acfc46
https://doi.org/10.1007/s10035-023-01321-2
http://www.nature.com/scientificreports/
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib3BEF0545DE14D1E65C009FA99ADF8E5Ds1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib3BEF0545DE14D1E65C009FA99ADF8E5Ds1
https://doi.org/10.3389/fenrg.2021.822780
https://doi.org/10.3389/fenrg.2021.822780
https://doi.org/10.3390/en14133797
https://doi.org/10.3390/en14133797
https://doi.org/10.3390/pr9101813
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib21782AEA6957019E791ADBD8F74240BCs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib21782AEA6957019E791ADBD8F74240BCs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib21782AEA6957019E791ADBD8F74240BCs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib21782AEA6957019E791ADBD8F74240BCs1
https://doi.org/10.1016/j.anucene.2023.109896
https://doi.org/10.1016/j.softx.2017.05.001
https://doi.org/10.1016/j.softx.2017.05.001
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2312731DEC86A3B8B7842FEBAC0EA418s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2312731DEC86A3B8B7842FEBAC0EA418s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2312731DEC86A3B8B7842FEBAC0EA418s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib12447BDA0B906613CA45CE12545EA4E3s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib12447BDA0B906613CA45CE12545EA4E3s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibF0AD63AD1D56A51B9C9583F24A90F22Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibF0AD63AD1D56A51B9C9583F24A90F22Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibF0AD63AD1D56A51B9C9583F24A90F22Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB60ACCDC65FBCAD5EA20D7F1ED2ACBCEs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibB60ACCDC65FBCAD5EA20D7F1ED2ACBCEs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib89BA8F4BAF74B52DD78E2D2139D80DF6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib89BA8F4BAF74B52DD78E2D2139D80DF6s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib85A9CE55D395A170747BB92438E6F6F1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib85A9CE55D395A170747BB92438E6F6F1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib85A9CE55D395A170747BB92438E6F6F1s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibC1310D35EFAB8897F61E76AED26AC988s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibC1310D35EFAB8897F61E76AED26AC988s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibC1310D35EFAB8897F61E76AED26AC988s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib498764F23D7B64B97FE40D585F54EB46s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib498764F23D7B64B97FE40D585F54EB46s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8CBD6B5E6B6353415DDDE0DB01F4B702s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8CBD6B5E6B6353415DDDE0DB01F4B702s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib8CBD6B5E6B6353415DDDE0DB01F4B702s1
https://doi.org/10.1016/j.cpc.2020.107670
https://github.com/projectchrono/DEM-Engine
https://doi.org/10.1007/s11044-011-9246-y
https://doi.org/10.1007/s11044-011-9246-y
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1016/j.powtec.2023.118969
https://doi.org/10.1016/j.powtec.2023.118969
https://rocky.esss.co/
https://doi.org/10.1002/nag.3011
https://github.com/NVIDIA/jitify
https://doi.org/10.1016/j.powtec.2022.118209
https://doi.org/10.1016/j.powtec.2022.118209
https://doi.org/10.3390/pr11010005
https://doi.org/10.3390/pr11010005
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib7FD856B3CAAC8A1057502FE3702A13F2s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib7FD856B3CAAC8A1057502FE3702A13F2s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib7FD856B3CAAC8A1057502FE3702A13F2s1
https://doi.org/10.1002/andp.18822531002
https://doi.org/10.1002/andp.18822531002
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18822531002
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18822531002
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibD3BFD879E0E9710DDEBCB8455C7CCAB3s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bibD3BFD879E0E9710DDEBCB8455C7CCAB3s1
https://doi.org/10.1007/s40571-020-00376-9
https://doi.org/10.1007/s40571-020-00376-9
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib90B919AEAB1E54166EA08902F747E718s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib90B919AEAB1E54166EA08902F747E718s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib90B919AEAB1E54166EA08902F747E718s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib1FA239E064379965F679D09E0A923564s1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib08A45A222A71D0A6554801513C7A634As1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib08A45A222A71D0A6554801513C7A634As1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2948B9A68D4537423EF8527A1251C87Cs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib2948B9A68D4537423EF8527A1251C87Cs1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib6F1836C5151F1D1F527E066B929F761Es1
http://refhub.elsevier.com/S0010-4655(24)00119-X/bib6F1836C5151F1D1F527E066B929F761Es1
https://doi.org/10.1016/j.powtec.2005.09.002
https://doi.org/10.1016/j.powtec.2019.09.016
https://doi.org/10.1103/PhysRevE.71.051305
https://doi.org/10.1103/PhysRevE.71.051305
http://sbel.wisc.edu/documents/TobyHeynThesis_PhDfinal.pdf
http://sbel.wisc.edu/documents/TobyHeynThesis_PhDfinal.pdf
https://doi.org/10.1021/acs.iecr.3c00919
https://doi.org/10.1016/j.partic.2020.11.007
https://doi.org/10.1016/j.partic.2020.11.007
https://doi.org/10.1016/j.apt.2023.104011
https://doi.org/10.1146/annurev-fluid-010814-014644
https://doi.org/10.1146/annurev-fluid-010814-014644

R.

[8

[9

[9

[9

[9
Computer Physics Communications 300 (2024) 109196Zhang, B. Tagliafierro, C. Vanden Heuvel et al.

9] L. Scholtès, F.-V. Donzé, A dem model for soft and hard rocks: role of grain in-
terlocking on strength, J. Mech. Phys. Solids 61 (2) (2013) 352–369, https://
doi .org /10 .1016 /j .jmps .2012 .10 .005.

0] N. Belheine, J.-P. Plassiard, F.-V. Donzé, F. Darve, A. Seridi, Numerical simulation
of drained triaxial test using 3d discrete element modeling, Comput. Geotech. 36 (1)
(2009) 320–331, https://doi .org /10 .1016 /j .compgeo .2008 .02 .003.

1] G.-Y. Liu, W.-J. Xu, Q.-C. Sun, N. Govender, Study on the particle breakage of ballast
based on a GPU accelerated discrete element method, Geosci. Front. 11 (2) (2020)
461–471, https://doi .org /10 .1016 /j .gsf .2019 .06 .006.

2] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, Int. J. Rock Mech.
Min. Sci. 41 (8 Spec.Iss.) (2004) 1329–1364, https://doi .org /10 .1016 /j .ijrmms .
2004 .09 .011.

3] Y. Wang, F. Tonon, Modeling Lac du Bonnet granite using a discrete element model,
Int. J. Rock Mech. Min. Sci. 46 (7) (2009) 1124–1135, https://doi .org /10 .1016 /j .
ijrmms .2009 .05 .008.

[94] R. Zhang, C.V. Heuvel, A. Schepelmann, A. Rogg, D. Apostolopoulos, S. Chandler, R.
Serban, D. Negrut, A GPU-accelerated Simulator for the DEM Analysis of Granular
Systems Composed of Clump-shaped Elements.

[95] Simulated Lunar Operations Laboratory: NASA’s VIPER Prototype Motors Through
Moon-like Obstacle Course, https://www .nasa .gov /feature /ames /nasas -viper -
prototype -motors -through -moon -like -obstacle -course. (Accessed 2 April 2023).

[96] H.A. Oravec, X. Zeng, V.M. Asnani, Design and characterization of GRC-1: a soil
for lunar terramechanics testing in Earth-ambient conditions, J. Terramech. 47 (6)
(2010) 361–377, https://doi .org /10 .1016 /j .jterra .2010 .04 .006.

[97] OpenAI (2023), ChatGPT (Sep 25 version), https://chat .openai .com.
25

https://doi.org/10.1016/j.jmps.2012.10.005
https://doi.org/10.1016/j.jmps.2012.10.005
https://doi.org/10.1016/j.compgeo.2008.02.003
https://doi.org/10.1016/j.gsf.2019.06.006
https://doi.org/10.1016/j.ijrmms.2004.09.011
https://doi.org/10.1016/j.ijrmms.2004.09.011
https://doi.org/10.1016/j.ijrmms.2009.05.008
https://doi.org/10.1016/j.ijrmms.2009.05.008
https://www.nasa.gov/feature/ames/nasas-viper-prototype-motors-through-moon-like-obstacle-course
https://www.nasa.gov/feature/ames/nasas-viper-prototype-motors-through-moon-like-obstacle-course
https://doi.org/10.1016/j.jterra.2010.04.006
https://chat.openai.com

	Chrono DEM-Engine: A Discrete Element Method dual-GPU simulator with customizable contact forces and element shape
	1 Introduction
	2 Implementation features
	2.1 Multi-GPU solution and delayed active-contact set update
	2.1.1 Comparison against domain decomposition

	2.2 Just-in-time CUDA kernel compilation
	2.2.1 Custom force model
	2.2.2 Family tag

	2.3 Custom and mixed data type
	2.4 Geometry hierarchy and tracker
	2.5 Contact detection algorithm
	2.6 Python wrapper

	3 Sample script
	3.1 C++ version
	3.2 Python version

	4 DEM model
	4.1 History-based Hertz--Mindlin model
	4.2 Providing a custom contact force model
	4.2.1 Default model implementation explained

	4.3 Contact model validation
	4.3.1 Sphere rolling on incline
	4.3.2 Sphere stacking
	4.3.3 Contact chain propagation

	5 Simulator’s performance
	6 Numerical experiments
	6.1 Ball impact test
	6.2 Flow sensitivity test
	6.2.1 Drum tests
	6.2.2 Hopper tests

	6.3 Contact modeling for particle breakage
	6.4 Rover mobility co-simulation
	6.4.1 Co-simulation
	6.4.2 Active box scheme

	7 Conclusions and future directions
	Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

