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Keywords: This paper introduces DEM-Engine, a new submodule of Project Chrono, that is designed to carry out Discrete
Discrete Element Method Element Method (DEM) simulations. Based on spherical primitive shapes, DEM-Engine can simulate polydisperse
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granular materials and handle complex shapes generated as assemblies of primitives, referred to as clumps. DEM-
Engine has a multi-tier parallelized structure that is optimized to operate simultaneously on two GPUs. The code
uses custom-defined data types to reduce memory footprint and increase bandwidth. A novel “delayed contact
detection” algorithm allows the decoupling of the contact detection and force computation, thus splitting the
workload into two asynchronous GPU streams. DEM-Engine uses just-in-time compilation to support user-defined
contact force models. This paper discusses its C++ and Python interfaces and presents a variety of numerical tests,
in which impact forces, complex-shaped particle flows, and a custom force model are validated considering well-
known benchmark cases. Additionally, the full potential of the simulator is demonstrated for the investigation
of extraterrestrial rover mobility on granular terrain. The chosen case study demonstrates that large-scale co-
simulations (comprising 11 million elements) spanning 15 seconds, in conjunction with an external multi-body
dynamics system, can be efficiently executed within a day. Lastly, a performance test suggests that DEM-Engine
displays linear scaling up to 150 million elements on two NVIDIA A100 GPUs.
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1. Introduction

The Discrete Element Method (DEM) is a numerical technique for
predicting the mechanical behavior of granular materials [1]. In DEM,
the motion of each individual particle is monitored, and interactions be-
tween particles are modeled in a fully detailed manner. Over time, DEM
has evolved and is now a popular method for examining the dynamics
of extensive granular systems [2], ranging from mixing [3], particulate
flows [4], geomechanics events [5-7], to astrophysical scenarios [8].
Applications of DEM include modeling soil dynamics [9], tire-soil in-
teractions [10], and rover movement on extraterrestrial surfaces [11].

Two main challenges make DEM simulations computationally ex-
pensive. Firstly, the small and often stiff elements necessitate the time
integrator to adopt very small time steps, e.g., 1 x 10761 x 10~ sec-
onds, to ensure numerical stability. Secondly, the collision detection
stage of the simulation is computationally demanding. To enhance
computational speed, DEM has been accelerated using parallel com-
puting with OpenMP [12] as seen in [13,14]; MPI standard [15] for
distributed memory clusters [16]; and combined MPI-OpenMP par-
allelism [17-21]. The Graphics Processing Unit (GPU) offers another
avenue for parallel computations and has been incorporated into DEM,
as in [22-26]. Regardless of the computational platform, reported DEM
studies typically involve between 10° and 105 elements [25,27-43],
which is considerably smaller than real-world scenarios. For instance, a
cubic meter of sand can contain around two billion particles [44].

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simula-
tor) [19] is a widely used open-source software package for molecular
dynamics simulations and DEM simulations. LAMMPS is written in C++
and is designed to run efficiently on parallel computing architectures
using both MPI and OpenMP, making it suitable for simulating large-
scale systems. LAMMPS provides a variety of built-in potentials for
modeling interatomic and intermolecular interactions, as well as the
ability to define custom potentials. LAMMPS also supports a range of
boundary conditions, including periodic, reflecting, and fixed bound-
aries. The default time stepper in LAMMPS is the Verlet algorithm,
which is a symplectic second-order method. LAMMPS supports a range
of contact models, including Hertz-Mindlin, linear-spring, cohesive and

inter-particle bond models. LIGGGHTS (LAMMPS Improved for General
Granular and Granular Heat Transfer Simulation) is a DEM package
that is based on the LAMMPS code. Like LAMMPS, LIGGGHTS is op-
timized for parallel computing and leverages combined MPI-OpenMP
parallelism. While LAMMPS is more versatile, e.g., [45-47], LIGGGHTS
focuses specifically on granular material simulations, offering features
and capabilities tailored to that end, such as neighbor lists and domain
decomposition. These added utilities come into play in granular flows,
heat transfer in granular materials, and other DEM-specific concerns.

STAR-CCM+ [20] is a commercial Computational Fluid Dynamics
(CFD) software package that includes a DEM solver for simulating the
behavior of granular materials. The software also supports a range of
contact models. One of the strengths of STAR-CCM+ is its ability to
couple DEM simulations with fluid flow simulations, allowing for the
simulation of complex multiphase flows. The coupling between the
DEM and fluid flow simulations is typically achieved through a two-
way coupling algorithm that exchanges information between the two
simulations at each time step. The software also includes models for
turbulence, heat transfer, and chemically reactive flows, and incorpo-
rates design exploration and optimization tools, allowing engineers to
not just simulate a given design, but also explore a variety of design
possibilities.

A DEM case study anchored by STAR-CCM+ is summarized in [48].
The study aimed to investigate the sand-retention mechanisms that oc-
cur at the opening of sand filters under various conditions, such as
particle shape, size, and concentration. A coupled CFD-DEM model
was used to predict the retention mechanisms under steady flow con-
ditions of the well-bore, where CFD was used to model the fluid flow,
and DEM was used to model the particle flow. The coarse grid unre-
solved and the smoothed unresolved (refined grid unresolved) coupling
approaches implemented in STAR-CCM+ were used to transfer data be-
tween the fluid and solid phases and calculate the forces. Verification
of the CFD-DEM model was then conducted by mesh sensitivity analy-
sis. The growing trend in CFD-DEM coupling research underscores the
community’s heightened interest in integrating multi-physics into DEM
simulations, likely driven by the rapid advancements in computational
power.
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Compared to the LAMMPS and STAR-CCM+, Chrono::GPU [49], an
open-source DEM simulator developed originally as the granular dy-
namics support for Chrono [50], takes a different path in that it empha-
sizes efficiency. To maximize performance, Chrono::GPU operates on
GPUs and exclusively supports monodisperse spherical DEM elements.
Additionally, a custom data type scheme is used to reduce its memory
footprint. A recent independent study [51] reveals that Chrono::GPU,
while running on an RTX 2060 Mobile NVIDIA GPU card of a laptop,
delivers performance that is two orders of magnitude faster than other
well-regarded DEM packages operating on clusters with hundreds of
CPU cores.

YADE (Yet Another Dynamic Engine) is an open-source DEM sim-
ulator for granular materials, powders, and other particulate systems.
Written in C++ and Python, it is known for its scripting-imparted exten-
sibility. One notable research study that used YADE is [52], in which
the authors were interested in the deformation of the particles under
stress. Therein, the particles are modeled as a collection of smaller par-
ticles connected by springs. The authors made additional developments
to the DEM model, so the volume of the element overlapping area is uni-
formly redistributed over the particle, the radius of each contact partner
is increased, and in the end, the volume and mass are kept constant.
Large deformations and complex element geometries are used in this
study. Another recent study that used YADE for DEM simulations is re-
ported in [53]. Therein, the authors simulated the process of icing using
an Euler-Lagrangian approach. YADE was used to calculate the motion
of snow crystals, while the open-source CFD package OpenFOAM was
used in conjunction with YADE to simulate flow hydrodynamics.

To circumvent extensive computation times, DEM packages often
resort to simplistic element geometries to simplify collision detec-
tion. Predominantly, spheres of uniform size are chosen, significantly
streamlining collision detection [54]. Yet, certain applications require
more intricate geometries, necessitating the usage of nonspherical el-
ements to ensure accurate system dynamics [55-61]. From the afore-
mentioned packages, YADE, along with its extension packages such as
SudoDEM [62], enables supports for non-spherical shapes with vary-
ing degrees of roundness or sharpness, such as superellipsoid, poly-
superellipsoid, and polyhedron. Another approach YADE employs is the
use of the “multi-sphere method” [59], meaning grouping simpler par-
ticles (like spheres) together to form more complex shapes. Likewise,
LAMMPS supports this multi-sphere method, too. LAMMPS also sup-
ports ellipsoidal and spherical particles. STAR-CCM+, being an estab-
lished commercial DEM solution, offers a library of predefined shapes
(spheres, cylinders, tetrahedra, etc.), while retaining a general-purpose
custom shape support using triangulated surfaces. These custom shapes
are treated as rigid bodies within the DEM framework. When these
methods to address nonspherical elements are employed, the number of
elements in simulations tends to reduce significantly in order to manage
the amount of time required to complete a simulation.

Recognizing the characteristics, strengths, and limitations of the
existing DEM solvers, the solution presented here, Chrono DEM-
Engine [63], aims to strike a balance: (i) it accommodates a large
number of discrete elements (into tens of millions); (ii) it employs a
composition of multiple spheres to represent nontrivial geometries; (iii)
it integrates a rapid collision detection method as per [64] and a novel
asynchronous threads management algorithm to ensure a numerical
performance ahead of state of the art; (iv) its API design leaves enough
room and flexibility for easy integration in co-simulations (explained
in Sec. 3 and 6.4), and gives users the freedom to define explicitly
the physics they wish to simulate using a custom force model script
(explained in Sec. 2.2.1). In this contribution, our emphasis is to thor-
oughly document the numerical features of this package, and provide
guidelines for the user to easily pick up this package and then fully take
advantage of its potential.

The structure of this paper is laid out as follows. The literature sur-
vey, presented in this section, identifies a prevailing need within the
DEM community for an adaptable, efficient solver capable of manag-

Computer Physics Communications 300 (2024) 109196

ing large-scale simulations. Section 2 explores the distinct numerical
capabilities of Chrono DEM-Engine and illustrates how it addresses
this identified need. Section 3 offers a breakdown of a sample sim-
ulation script, equipping the user with a foundational understanding
of the package’s operation. Section 4 unravels the implementation of
the default Hertz-Mindlin model and provides guidance on incorpo-
rating custom models. Section 5 demonstrates the solver’s efficiency,
spotlighting a large-scale simulation involving up to 150 million sphere
primitives. Section 6 underscores the validation endeavors, presenting
a suite of DEM simulations that emphasize the impact and capabilities
of varying element shape representations and force models. Section 7
reiterates the essence of the paper, accentuating the proposed future
developments with language models.

2. Implementation features

Chrono DEM-Engine is open-source, can run on commodity hard-
ware and it does so fast and at scale. It allows large-scale DEM simula-
tions to be efficiently executed on desktops equipped with one or two
graphic cards. Its open-source nature and ability to embed user-defined
contact models meet requirements often found in exploratory projects.
This section introduces the simulator’s key features.

2.1. Multi-GPU solution and delayed active-contact set update

In DEV, the contact detection process is needed to identify the con-
tact pairs in the simulation system before the force calculation step
takes place. The contact detection and force calculation are typically
done consecutively in each time step. DEM-Engine embraces a different
strategy, which uses two distinct and parallel computational threads
to update the active contacts set (done by the “kinematics thread”),
and the integration of the equations of motion (done by the “dynam-
ics thread”), respectively. The dynamics thread processes each contact
in the Active-Contact Set (ACS) at each time step to reassess the contact
penetration 6, and the ancillary information. The dynamics thread re-
ceives an ACS update when the kinematics thread finishes producing
it, or if so desired, it can wait for the ACS update when the dynamics
thread advances the system state too far ahead of the time stamp of the
last ACS update from the kinematics thread. Through this collaboration
pattern, the two threads work concurrently and the cost of contact de-
tection is nearly “hidden in the shadow” of computation done by the
dynamics thread, which continuously advances the state of the system.
To avoid missing mutual contacts that might crop up between the mo-
ments the ACS is updated, we artificially enlarge all contact geometries
in the DEM system using an approach that is reminiscent of the Verlet
table algorithm [65]. This extra margin allows to preemptively detect
potential contact pairs that might emerge in the near future. Note that
this is done only to include additional potential contacts in the ACS, and
does not affect the shape of the elements participating in the simulation.

By adding this artificial margin to all contact geometries, the kine-
matics thread can report false positives within the provided list of
contacts, i.e., a contact between two elements might be in the ACS, yet
the two elements are not in contact. This fact will be identified by the
dynamics thread when carrying out the force calculation. The thickness
of this added margin is determined by the simulation entities’ velocity
(which is bounded and known by the solver), the time step size, which
is typically small, and n,,, the maximum number of time steps the
dynamics thread is allowed to advance without receiving an ACS up-
date from the kinematics thread. It usually assumes values of the order
of tens of microns for millimeter-sized granular material. This is small
compared to typical DEM element sizes. Overall, the overhead caused
by the false-positive contacts does not offset the benefit of deferring the
ACS update.

The synchronization pattern between the kinematics and dynamics
threads is illustrated in Fig. 1. There, “S” represents a time step that
the dynamics thread executes, where the contact forces are calculated
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Fig. 1. Ideal collaboration pattern, where the dynamics thread advances the physics continuously while the kinematics thread occasionally waits for updated state

information to commence an ACS update.

|

I

Fig. 2. Non-optimal collaboration pattern, where the dynamics thread waits for the kinematics thread occasionally to generate the ACS. DEM-Engine will automati-

cally avoid this scenario.

(see Sec. 4.1), and the system state is advanced in time. A contact de-
tection step that the kinematics thread executes is marked with “CD”.
Periodically, the kinematics thread finishes a contact detection step and
sends the signal to the dynamics thread, allowing the dynamics thread
to receive the contact array, “CA”, from the kinematics thread. Then
the dynamics thread will send a work order “WO” with the current sim-
ulation system state, for the kinematics thread to pick up and continue
the next contact detection step. Before the next “CA” update is received,
the dynamics thread will use this “CA” to execute the time steps.

Because the dynamics thread only receives updates from and sends
work orders to the kinematics thread after a time step is finished, the
kinematics thread could stay idle between ACS update jobs. This is
marked with “W” in Fig. 1. Having the kinematics thread wait occa-
sionally is considered an ideal collaboration pattern since in this case,
the dynamics thread runs continuously, therefore the system marches
in time uninterruptedly. A less-than-ideal collaboration pattern is il-
lustrated in Fig. 2. There, the dynamics thread occasionally waits for
updates from the kinematics thread, reducing the overall efficiency of
the solver. This happens when the dynamics thread advances the sim-
ulation beyond n,,,, time steps without receiving an update from the
kinematics thread, and is therefore forced to idle. One could avoid this
scenario by increasing n,,,,. However, as discussed before this would
consequently increase the thickness of the artificial margin added to
contact geometries, leading to more undesirable false-positive contacts.
Hence, np,,, should be kept at the smallest value that does not cause
the dynamics thread to wait. DEM-Engine will automatically use this
principle and the execution timing history to adapt n,, to an appro-
priate value, and moderate itself so that the collaboration pattern stays
as depicted in Fig. 1.

At the implementation level, DEM-Engine is currently optimized for
using two GPUs, as each of the two host CPU threads is bound with
a CUDA stream, and then each CUDA stream is mapped to a GPU de-
vice. If only one GPU device is available, DEM-Engine will still run
since both streams are mapped on to that GPU, instead. The kinemat-
ics and dynamics thread collaboration pattern is summarized in Fig. 3.
After being produced by the kinematics thread, the contact informa-
tion is transferred to a buffer memory. Then the dynamics thread will
be notified and copy the contact information to its working memory.
The dynamics thread carries out a similar routine when updating the
kinematics thread with new element positions. Neither of them directly
modifies the working memory of the other to avoid race conditions.
Although logically there are two buffer memory pools and each thread
owns one, physically, they are both allocated on the GPU mapped to the

dynamics thread. This allows the dynamics thread to spend minimum
time copying from its buffer, speeding up the computation.

2.1.1. Comparison against domain decomposition

This section discusses the advantages and limitations of our pro-
posed multi-GPU solution in comparison to the conventional ap-
proaches, such as the domain-decomposition approach. Domain-decom-
position methods enhance computational efficiency by partitioning the
simulation domain into multiple segments, each processed by a separate
GPU. This strategy is evidenced in recent studies [66] and commercial
tools like Rocky DEM [67]. Key to this method is its scalable mem-
ory usage; as the simulation data is distributed across GPUs, and only
the interface regions require inter-GPU communication; each additional
GPU effectively enlarges the overall memory capacity. This expansion
allows for handling larger-scale problems. Moreover, adding GPUs can
potentially reduce computational time by dividing the workload. How-
ever, the efficiency gains are often offset by the overheads of array
sorting, entity and contact list reorganization, and data transfer at each
simulation step [68]. Additionally, the total runtime is heavily depen-
dent on thread workload balance, which requires specific algorithms to
correctly predetermine the domain decomposition strategy [68]. The
inter-GPU or inter-node data transfer’s latency and bandwidth con-
straints make time savings through domain decomposition challenging
and not always achievable.

In contrast, the asynchronized kinematics—dynamics pattern in
Chrono DEM-Engine offers tangible time savings. As discussed, the
cost of contact detection is nearly “hidden in the shadow” with this
approach. In the proposed implementation, a kinematic step (CD in
Fig. 1) is typically 20 times more time-consuming than a dynamic step
(S in Fig. 1), translating to over 90% time savings compared to con-
ventional serial contact detection and physics advancement methods.
It is important to note that the CD step in DEM-Engine is costly due
to its support for unlimited and unbounded element size discrepancy
(detailed in Sec. 2.5). Nevertheless, under certain convenient hypothe-
ses, the cost of CD can be reduced. For instance, Chrono::GPU, which
exclusively uses monodisperse spherical elements, has a CD step cost
comparable to that of a S step [50]. Even with such simplification, a
50% time saving is achievable if the contact detection cost is hidden by
the asynchronous pattern. Thus, we anticipate a time saving between
50% and 90% with the kinematics-dynamics asynchronization intro-
duced by DEM-Engine. However, this approach is less memory-efficient
due to the buffer arrays, effectively duplicating some simulation data,
thereby limiting the scale of the simulation for a given memory capac-

ity.
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Kinematic Thread kT
¢ Perform collision detection
¢ Perform misc. tasks that need not to
be in sync with physics

Buffer:
Particle location
Particle orientation

Main memory:
Particle location
Particle orientation
Contact pair IDs
Contact location
Contact plane

Computer Physics Communications 300 (2024) 109196

Dynamic Thread dT
* Advance physics in time
* Contact force calculation
* Integration

Buffer:
Contact pair IDs
Contact location

Contact plane

Main memory:
Contact pair IDs
Contact location

Contact plane
Particle location

Particle orientation

Particle velocity

Particle ang. vel.

Fig. 3. The collaboration pattern of the kinematic and dynamics thread. They can each run on a dedicated GPU.

In summary, when utilizing two GPU devices, the kinematics—
dynamics asynchronous pattern in Chrono DEM-Engine shows a more
pronounced time-saving advantage over the domain-decomposition ap-
proach. This advantage holds true within the constraints of the available
device memory, given the lesser memory efficiency of our approach.
Notably, the kinematics—dynamics split in Chrono DEM-Engine does
not preclude future integration with domain decomposition, allowing
for both CD and S steps to be executed on multiple GPUs. This poten-
tial integration suggests that the kinematics—dynamics split is not an
alternative to, but a valuable addition to the DEM algorithm toolkit,
complementing the established domain-decomposition approach.

2.2. Just-in-time CUDA kernel compilation

The CUDA kernels in DEM-Engine are compiled when the simulation
starts being executed, rather than being statically compiled. This is done
by leveraging the CUDA runtime compilation tool Jitify [69]. Several
benefits come with this software design choice.

With Jitify, the solver can detect the capabilities of the GPU on
which it is running and generate code specifically tailored for that de-
vice. For instance, if a program is designed to be used across a variety
of architectures, just-in-time compilation ensures the utilization of the
optimal instruction set for each device, ensuring the generated CUDA
code is optimized for an end user’s specific hardware and requirements.
At the same time, since the compilation occurs at runtime, the code is
not bound to a specific version of the CUDA toolkit. This characteristic
can make applications more resilient against changes or updates in the
CUDA environment.

It should be mentioned that just-in-time compilation introduces an
overhead. The first time a kernel is run, there is a delay due to its compi-
lation. However, assuming the DEM simulations with DEM-Engine are
generally large and invoke a time span of typically hours, this cost is
negligible.

2.2.1. Custom force model

Since Jitify allows for dynamic code generation, we use it for im-
plementing custom force models. The intricate and evolving nature of
DEM simulations often requires a higher degree of adaptability to cater
to the multifaceted modeling needs of its users, namely the expand-
ing list of approaches in contact and cohesion force modeling [70,71].
Rather than constraining the user to a predefined set of force models,
DEM-Engine allows, if so desired, for the force models to be supplied via
a user-supplied C++ script, greatly increasing the solver’s applicability.
A walk-through of a model implementation can be found in Sec. 4.2.

2.2.2. Family tag

Jitify also allows for a low-cost implementation of prescribed mo-
tion. This is done through the family tag utility. Every simulation entity
can be assigned an integer family tag between 0 and 255 (this is im-
plemented through a uint8_t; though rarely needed, it can be changed
to a different data type such as uint16_t to expand the range), then the
solver can be notified to apply prescribed motions to this family tag.
This prescription information is just-in-time compiled as a part of the in-
tegration CUDA kernel, thus no branching overhead is introduced. The
sample script in Sec. 3 showcases this functionality with the usage of
the SetFamilyPrescribedAngVel method. On the other hand, if the use
case calls for more fine-grain motion control, such as when the velocity
of a simulation object is determined by some external process, then the
“motion injection” approach detailed in Sec. 2.4 should be used.

As a side note, the family tags can also be used to mask contacts. The
user is allowed to specify whether the solver should detect and resolve
contacts between simulation entities in certain families. This is a utility
used throughout the demos provided along with this package at [63].

2.3. Custom and mixed data type

In high-performance computing, memory footprint and bandwidth
play a crucial role in determining a code’s performance. As the com-
plexities of the simulations grow, it becomes evident that relying solely
on standard data types—such as double—might inadvertently lead to
sub-optimal memory usage and consequently, potential performance
bottlenecks. For instance, the penetration depth of a DEM body in
penalty-based DEM is of the order of 1x 10~ to 1 x 10~ m. Why would
one use a budget of 64 bits, which is provisioned for the double type to
capture an extremely broad range of numbers, to represent a very nar-
row range of the positive real axis that hosts an element’s microscale
penetration? This would be a waste of bits, which leads to less accuracy
and/or lower bandwidth. Given the hierarchical memory architecture
in CUDA, from global to shared memory, the significance of ensuring
that the memory bandwidth is utilized effectively and that latency is
minimized becomes even more critical.

To this end, DEM-Engine introduces the utilization of custom and
mixed data types. Unlike stock data types that come with a prede-
fined bit budget, e.g., 64 bits for double, custom data types offer finer
control over memory use. For instance, the spatial coordinate in DEM-
Engine is represented using integers rather than floating-point numbers.
The entire simulation domain is decomposed into cubes with a known
edge length, which is adapted based on the domain size. Each of these
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Simulation domain is decomposed
by voxels with unique integer IDs

‘ A voxel

Spatial location is
represented by sub-
voxel coordinate

216

sub-voxel grid
points in each direction

Fig. 4. The domain decomposition that leads to a compressed spatial coordinate data type. The domain is decomposed into voxels with uint64_t indices, then each
voxel is split into 2!¢ x 2% x 216 sub-voxels. The typical precision is estimated to be around 10~!! m.

Table 1
Various data types in DEM-Engine and their memory location.
Data Type Variable Memory Type
uint64_t Voxel index Global
uint16_t Sub-voxel index Global
int32_t or float Kinematics quantities, friction history etc. Global
double Penetration Register
float Contact force calculation Register
float Clump types information Shared Memory

cubes is termed a “voxel” and is assigned an index represented by a
uint64_t data type. Additionally, to specify the location of a body within
a voxel, three uint16_ts are employed, each dividing the voxel uniformly
into 216 parts in its respective direction.

For a cubic simulation domain with an edge length of 1m, the
precision (i.e., the smallest discernible length unit within a voxel) is
approximately 10~!! m. This precision is adequate for capturing micro-
deformations. Moreover, this compressed data type requires only 112
bits to represent a spatial location, which is more memory-efficient than
using three doubles that would require 192 bits in total. The voxel-based
spatial coordinate data type is illustrated in Fig. 4.

The general rule used for the selection of mixed data types is that
the data residing in the global memory take a 4-byte or compressed
data type. The examples are the state variables such as the quaternions
of the elements. The temporary variables used in kernel functions that
are essential in governing physics, on the other hand, use 8-byte data
types, namely double. An example is the penetration depth between ge-
ometries in the Hertzian contact force calculation. The data type usage
in DEM-Engine is summarized in Table 1. Since data type conversion
is essentially a free operation and the main bottleneck in GPU-based
physics simulations is the memory bandwidth limit, the design choice
enhances the performance without compromising the physics.

Furthermore, DEM-Engine has a level of encapsulation of the data
types in use. Most data types are specified in a file named Variable-
Types.h using typedef, including the ones introduced in this section. If
the user needs a different selection of data types, such as increasing the
size of family tags from 1 byte to 2 bytes to allow for more varieties
(see Sec. 2.2.2 for context), or reducing the size of spatial coordinates
to allow for faster computation in a low-accuracy setting, they can mod-
ify the data types in VariableTypes.h then recompile to conveniently get
the updated executable.

2.4. Geometry hierarchy and tracker

DEM-Engine facilitates complex element geometries through a com-
position of multiple spheres, termed a “clump”. This approach draws
inspiration from [72]. A clump denotes a collection of potentially over-
lapping spheres that together depict a specific element shape. Some
examples of these clumps are visually presented in Fig. 14 in Sec. 5.
Throughout this paper, the terms “element” and “clump” are used in-
terchangeably to discuss DEM elements with complex shapes. Beyond
clumps, DEM-Engine supports integrating triangular meshes and ana-
lytical objects (such as rigid objects constructed from analytical planes
or cylindrical surfaces) into the simulation framework. However, as a
dedicated and performance-centric DEM package, DEM-Engine exclu-
sively handles contacts between clumps and meshes, as well as between
clumps and analytical geometries. Should there be a requirement for
contacts between meshes or between analytical geometries, users can
achieve this through co-simulation, as exemplified in Sec. 6.4.

An important aspect of DEM-Engine’s utilization is understanding its
geometry hierarchy, delineating the roles of the “owner” versus the “ge-
ometry”. An owner constitutes a simulation entity endowed with mass
properties, hence governed by physics. In DEM-Engine’s current imple-
mentation, an owner can manifest as a clump, a mesh, or an analytical
entity. Conversely, the term geometry is associated with the constituent
parts of an owner. A geometric entity can be a sphere (within a clump),
a triangular facet (within a mesh), or an analytical component (like
a plane in a multi-component analytical object). Each geometric en-
tity carries associated material attributes, granting users flexibility in
designing discrete element systems with simulation entities that have
spatially varying material properties.

Further, DEM-Engine provides users the control over diverse simu-
lation entities via “tracker” objects. Users can associate trackers with
any owner, facilitating real-time status inquiries such as position and
velocity or enforcing state modifications, from setting coordinates to ap-
plying external loads. Beyond basic operations, trackers offer advanced
features: identifying clumps in contact with a tracked owner or, when
monitoring a mesh, controlling its deformation. A practical demonstra-
tion of tracker usage is encapsulated in Sec. 3.

2.5. Contact detection algorithm

The kinematics thread of the Chrono DEM-Engine (CD in Fig. 1)
implements the contact detection algorithm outlined in [64]. This algo-
rithm is optimized for execution on GPU and accommodates simulation
entities of vastly differing sizes. We provide a concise overview of its
implementation in Chrono DEM-Engine, with more comprehensive de-
tails available in [64].
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The contact detection process in each step involves a series of tasks,
executed sequentially:

1. Initially, all simulation “geometries” (sphere components, triangu-
lar facets) are evaluated for potential contact using “bins”. These
bins are formed by uniformly segmenting the simulation domain
into axis-aligned cubic grids. If a geometry intersects with a bin,
this bin—geometry pair is recorded for subsequent processing. It is
important to note that due to the allowance for variable sizes of
geometries, the maximum number of bins intersecting with a ge-
ometry cannot be predetermined. This necessitates two sequential
CUDA kernel executions: one to determine the count of intersect-
ing bins per geometry for memory allocation, and another to store
the bin-geometry pairs.

2. Next, we sort the bin—geometry pairs based on the bin IDs. This step
groups together geometries located within the same bin, effectively
clustering entities that are adjacent within the simulation.

3. The final step involves checking geometries within the same bin for
potential contacts. This is accomplished through launching CUDA
blocks each processing bin to compile the CA array (recall Fig. 1),
which lists all potential contact pairs. Duplicates are ruled out by
discarding all contacts with the exact contact points not inside the
current bin. Similar to the previous step, two CUDA kernel calls
are required: the first to ascertain the number of potential contacts
per bin for array allocation, and the second to populate the CA ar-
ray with these contacts. Given n, geometries in a bin, (7, — Dng/2
checks are necessary to identify all potential contacts. This imposes
a limit on ny, influencing the bin size. Chrono DEM-Engine dy-
namically adjusts bin sizes based on execution history for optimal
performance.

As described, both the intermediate bin-geometry pair array and the
final CA array are created using dynamically allocated memory. This
approach facilitates handling geometries with unlimited size discrepan-
cies. For an illustrative example showcasing elements of significantly
varying sizes, refer to Sec. 6.4.

2.6. Python wrapper

DEM-Engine has a Python wrapper, facilitated by the Pybind library.
This allows users, irrespective of their CUDA expertise, to tap into DEM-
Engine’s features, all within Python’s accessible library ecosystem and
widely adopted science tools such as numpy and scikit-learn. The pack-
age has been made available on the Python Package Index (PyPI) and
can be installed using the familiar pip command. Simply executing pip
install DEME ensures that the computational capabilities and function-
alities of the package become available within the Python environment,
reducing the complexities often associated with software installations
in high-performance computing scenarios. An example script is given in
Sec. 3.2, where it is compared against its C++ counterpart.

3. Sample script

This section discusses a script responsible for the mixer timing anal-
ysis discussed in Sec. 5. The focus is placed here on the code implemen-
tation. A visual representation of the simulation workflow is provided
in Fig. 5. Examples are provided in both C++ and Python. The scripts
corresponding to all simulations addressed in this paper can be located
in the DEM-Engine’s demo directory [63].

3.1. C++ version
The user should first create the DEMSolver object. While the solver

comes with default meta-parameters, users have the flexibility to mod-
ify them, e.g., verbosity, output detail, and output format.
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Define material
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Fig. 5. Typical workflow of running a DEM-Engine simulation.

DEMSolver DEMSim;
DEMSim.SetVerbosity ("INFO") ;
DEMSim.SetOutputFormat ("CSV") ;
DEMSim.SetOutputContent ("ABSV") ;
DEMSim.SetMeshOutputFormat ("VTK") ;

The following code snippet defines the material types for the mesh
geometry and DEM elements. DEM-Engine will return a handle so this
material can be used to define clump templates. If a material property,
such as the frictional coefficient y, is defined between two materials,
the method SetMaterialPropertyPair can be used to specify it.
auto mat type mixer = DEMSim.LoadMaterial ({{"E", 1e8}, {"nu",

0.3}, {"Cor", 0.6}, {"mu", 0.5}, {"crr", 0.0}});
auto mat_type_granular = DEMSim.LoadMaterial ({{"E", 1le8}, {"nu",
0.3}, {"Cor", 0.6}, {"mu", 0.2}, {"Crr", 0.0}});
DEMSim.SetMaterialPropertyPair("mu", mat_type mixer,
mat_type_ granular, 0.5);

The following snippet defines the analytical boundaries of the simu-
lation domain.

const double world _size = 1;

DEMSim. InstructBoxDomainDimension(world_size, world size,
world size);

DEMSim. InstructBoxDomainBoundingBC("all", mat_type_granular) ;

auto walls = DEMSim.AddExternalObject () ;

walls->AddCylinder (make_float3(0), make_float3 (0, 0, 1),
world size / 2., mat_type mixer, 0);

The following snippet shows the mixer mesh being loaded into the
simulation. The stock mixer mesh is then scaled to fit the size of the
simulation domain. The mixer is assigned the family code 10, which is
subsequently used to prescribe a constant angular velocity z rad/s to
the mixer. A “tracker” object is created for the mixer so that we can
extract information in real time for this simulation entity, or apply fine-
grain motion control, while the simulation is running. In this example,
we use it to set the initial location of the mixer to obtain the torque
exerted by the DEM elements.
const float chamber height = world_size / 3.;
auto mixer = DEMSim.AddWavefrontMeshObject ( (GET_DATA PATH() / "

mesh/internal_mixer.obj").string(), mat_type mixer) ;
mixer->Scale (make_float3 (world_size / 2, world_size / 2,

chamber height)) ;
mixer->SetFamily (10) ;
DEMSim.SetFamilyPrescribedAngVel (10, "0", "O",
auto mixer tracker = DEMSim.Track (mixer) ;

"3.14159");

The next snippet creates a clump template. It contains mass, shape,
and material information. There are stock clump shapes that the user
can directly use to reproduce the examples we provide. The user can
also easily scale or otherwise modify the template before using it to
instantiate more DEM elements.
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float granular_rad = 0.005;

float mass = 2.6e3 x 5.5886717;

float3 MOI = make float3(2.928, 2.6029, 3.9908) * 2.6e3;

std::shared ptr<DEMClumpTemplate> template granular = DEMSim.
LoadClumpType (mass, MOI, GetDEMEDataFile("clumps/3_clump.csv
"), mat_type granular) ;

template_granular->Scale (granular_rad) ;

When instantiating the DEM elements, the user has the option to
leverage the sampler objects that come with the solver, as shown in the
following snippet. A sampling region appropriate with respect to the
simulation domain is defined, then the hexagonal close-packing sampler
is used to create initial elements. These elements are duplicates of the
clump template that has just been created.
const float fill height = chamber_ height;
const float chamber_bottom = -world size / 2.;
const float fill bottom = chamber bottom + chamber height;
HCPSampler sampler(3.f * granular_ rad);
float3 fill center = make_float3(0, 0, fill bottom + fill height

/ 2);
const float fill radius = world size / 2. - 2. * granular_rad;
auto input_xyz = sampler.SampleCylinderZ(fill center, fill_ radius
, £ill_height / 2);
DEMSim.AddClumps (template granular, input_xyz);

An initialization call is needed to instruct the solver to set up data
structures on the GPUs. Before that, several simulation specs should
be inputted, e.g., the time step size and metrics that the solver should
watch in identifying a diverged simulation, as shown in the following
snippet.
float step size = 5e-6;

DEMSim.SetInitTimeStep (step_size) ;
DEMSim.SetGravitationalAcceleration(make float3(0, 0, -9.81));
DEMSim.SetErrorOutVelocity(20.) ;

DEMSim.SetForceCalcThreadsPerBlock(512) ;
DEMSim.Initialize() ;

Finally, the following code snippet shows the main simulation loop.
The output directory is created, the simulation time length is indicated,
and the mixer is translated to the correct initial position, before the
main loop starts to iteratively make DoDynamics calls, advancing the
simulation each time by a frame. The benefit of this design is that the
user enjoys free interfacing with the simulation data while it is running.
For example, the script writes the simulation status to a file, inspects the
torque that the mixer is experiencing, and outputs the execution stats
from the kinematics and dynamics threads at the frequency of 20 times
per simulation second. Another opportunity this design brings is the
ease of co-simulation. A related example is in Sec. 6.4.
std::filesystem::path out_dir = current_path() ;

out_dir += "/DemoOutput_Mixer";
create_directory(out_dir) ;

float sim end = 10.0;
unsigned int fps = 20;

float frame_time = 1.0 / fps;
unsigned int currframe = 0;

mixer tracker->SetPos(make float3 (0, 0, chamber bottom +
chamber_height / 2.0));
for (float t = 0; t < sim end; t += frame time) {
std::cout << "Frame: " << currframe << std::endl;
char filename[200], meshfilename[200] ;
sprintf (filename, "%s/DEMdemo_output_%04d.csv", out_dir.c_str

(), currframe) ;
sprintf (meshfilename, "%s/DEMdemo_mesh %04d.vtk", out_dir.
c_str(), currframe++);

DEMSim.WriteSphereFile (std::string(filename)) ;
DEMSim.WriteMeshFile (std: :string(meshfilename)) ;

float3 mixer moi = mixer tracker-s>MOI () ;
float3 mixer acc = mixer tracker->ContactAngAccLocal () ;
float3 mixer torque = mixer acc * mixer moi;
std::cout << "Contact torque_on_the _mixer_is " <<
mixer torque.x << ", " << mixer torque.y << ", " <<
mixer torque.z << std::endl;

DEMSim.DoDynamics (frame_time) ;
DEMSim.ShowThreadCollaborationStats() ;
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3.2. Python version

A Python version of the same mixer simulation is given in this sec-
tion. It follows the same workflow as the C++ version, including the
material definition, template creation, clump instantiation, mesh load-
ing and motion control, initialization, and a main simulation loop. The
names of the methods are not changed in the Python version, and cer-
tain data structures are simply converted to their Python counterparts,
streamlining the learning experience of the users switching between
these programming languages. For example, the C++ version uses a un-
ordered_map to define the properties of a material, while the Python
version uses a dictionary object; the C++ version takes a float3 at some
places to specify a coordinate, while the Python version uses a list or a
numpy array of three floats.
import DEME
import numpy as np

import os
import time

if _ name__ == "_main_ ":
out_dir = "DemoOutput_Mixer/"
out_dir = os.path.join(os.getcwd(), out_dir)

os.makedirs (out_dir, exist_ ok=True)

DEMSim = DEME.DEMSolver (
DEMSim.SetVerbosity ("STEP_METRIC")
DEMSim.SetOutputFormat ("CSV")
DEMSim.SetOutputContent ( ["ABSV", "XYZ"])
DEMSim.SetMeshOutputFormat ("VTK")

# E, nu, CoR, mu, Crr... Material properties
mat_type mixer = DEMSim.LoadMaterial (

{"E": 1le8, "nu": 0.3, "CoR": 0.6, "mu": 0.5, "Crr":
0.0})
mat_type_granular = DEMSim.LoadMaterial (
{"E": 1e8, "nu": 0.3, "CoR": 0.8, "mu": 0.2, "Crr":
0.0})

DEMSim.SetMaterialPropertyPair (
"CoR", mat_type mixer, mat_type_granular, 0.5)

# Now define simulation world size and add the analytical
boundary

step_size = 5e-6

world_size = 1

chamber height = world_size / 3.

fill height = chamber height

chamber_bottom = -world_size / 2.

fill bottom = chamber bottom + chamber height

DEMSim. InstructBoxDomainDimension (world_size, world_size,
world_size)

DEMSim. InstructBoxDomainBoundingBC("all", mat_ type granular)

walls = DEMSim.AddExternalObject ()

walls.AddCylinder ([0, O, 0], [0, 0, 1], world size / 2.
mat_type_mixer, 0)

# Define the meshed mixer and its prescribed motion
mixer = DEMSim.AddWavefrontMeshObject (

DEME.GetDEMEDataFile ("mesh/internal mixer.obj"),

mat_type_mixer)

print (£"Total_num_of_triangles: {mixer.GetNumTriangles()}")
mixer.Scale([world size / 2, world size / 2, chamber_ height])
mixer.SetFamily (10)
DEMSim.SetFamilyPrescribedAngvel (10, "O", "O",
# Track the mixer
mixer tracker = DEMSim.Track (mixer)

"3.14159")

# Define the clump template used in the simulation

granular_rad = 0.005
mass = 2.6e3 * 5.5886717
MOI = np.array([2.928, 2.6029, 3.9908]) * 2.6e3
template_granular = DEMSim.LoadClumpType (mass, MOI.tolist(),
DEME .GetDEMEDataFile ("clumps/3_clump.csv"),
mat_type_granular)
template granular.Scale (granular rad)
# Sampler uses hex close-packing
sampler = DEME.HCPSampler (3.0 * granular rad)
fill center = [0, 0, fill bottom + fill height / 2]
fill_radius = world_size / 2. - 2. * granular rad
input_xyz = sampler.SampleCylinderZ (
fill center, £ill radius, fill height / 2)
DEMSim.AddClumps (template granular, input_xyz)
print (£"Total _num_of_particles:_{len(input_xyz)}")
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DEMSim.SetInitTimeStep (step_size)
DEMSim.SetGravitationalAcceleration([0, 0, -9.81])
DEMSim.SetErrorOutVelocity (20.)
DEMSim.SetForceCalcThreadsPerBlock(512)
DEMSim.Initialize ()

sim_end = 10.0
fps = 20
frame_time = 1.0 / fps

# Keep a tab of the max velocity in the simulation
max_v_finder = DEMSim.CreateInspector ("clump max absv")

print (£"Output_at_{fps}_ FPS")
currframe = 0

mixer tracker.SetPos([0, 0, chamber bottom + chamber height /
2.0])

t = 0.
start = time.process_time ()
while (t < sim _end):
print (£"Frame: {currframe}", flush=True)
filename = os.path.join(out_dir, f£"DEMdemo_output_{
currframe:04d}.csv")
meshname = os.path.join(out_dir, f"DEMdemo_mesh_{
currframe:04d}.vtk")
DEMSim.WriteSphereFile (filename)
DEMSim.WriteMeshFile (meshname)
currframe += 1

max_v = max_v_finder.GetValue ()

print (
f"Max_velocity, of_any, point_in_simulation_is,_{
max_v}", flush=True)
print (
fr"Solver’s_current_update_frequency,  (auto-
adapted) : {DEMSim.GetUpdateFreq()}", flush=
True)
print (

f"Average_contacts_each sphere_has:_{DEMSim.
GetAvgSphContacts () }", flush=True)

mixer moi = np.array(mixer_ tracker.MOI())
mixer acc = np.array(mixer_ tracker.ContactAngAccLocal())
mixer torque = np.cross(mixer acc, mixer_moi)
print (
f"Contact_torque _on_the_mixer is_{mixer_ torque
[01}, {mixer torquelll}, {mixer_ torque[2]}"
, flush=True)

DEMSim.DoDynamics (frame_time)
DEMSim.ShowThreadCollaborationStats ()

t += frame_time

elapsed_time = time.process_time() - start
print (£"{elapsed_time} _seconds_ (wall _time) _to_finish_this_
simulation™)

4. DEM model

This section details the default force models in DEM-Engine and the
implementation of the geometry representations.

4.1. History-based Hertz—Mindlin model

The default force model is anchored by the Hertzian contact
model [73] and integrates the Mindlin friction model [74]. For a com-
prehensive analysis, readers may refer to [75]. For two bodies, namely i
and j, when they are in contact, the normal force, F,, operates based on
a spring-damper model. The tangential frictional force, F,, is computed
considering material attributes and microscopic deformations, ensur-
ing it adheres to the Coulomb limit via the friction coefficient y. The
mathematical representation is as follows:

F,= f(R, o) (k,u, —y,mv,), (1a)

F, = f(R,8,)(—ku, —ymvy),  |F]l < ullF,|l, (1b)
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f(R,8,)=1/R5,, (1c)

R=R;R;/(R; +R)), ad)
m=mm;[(m; +m;), (1e)

where the constants k,, k;, 7,, and y, are inferred from material char-
acteristics, including Young’s modulus E, the Poisson’s ratio v, and the
restitution coefficient, CoR [76]. The terms /m and R depict the effec-
tive mass and curvature radius for the specific contact. The foundational
premise is that the geometries can undergo small penetration, 6, at the
contact point. The normal penetration vector is u, = ,n. The relative
speed, v,,; =V, + V,, at the contact point is defined as:

Vil =Vj+@; XT; —V; —®; XT;, (2a)
v, = (Ve -m)m, (2b)
Vi = Vrel = Vn» (20)

where v;, ®; and v s @] denote the velocities at the mass centers and
angular speeds of entities i and j. The position vectors, r; and r;, ex-
tend from the mass centers of bodies i and j to the shared contact point.
The frictional force F, varies based on the historical tangential micro-
displacement u,, updated iteratively at each time interval throughout
the interaction event based on v,. Let u, be the current tangential micro-
displacement and u) be the updated tangential micro-displacement,
then

' =u, + hv,, 2d)
u =u — (' -nn, (2e)

where £ is the time step size. The strategy adopted to update u is bor-
rowed from [76]. After the update, we may need to clamp the updated
tangential micro-displacement u] to get the final u**" for the next time
step in order to satisfy the capping condition ||F,|| < u||F,,||:

if ||E, |l < ullE, I,

!’
unext: ,||F I o (Zf)
! Bl otherwise.
K

The rolling resistance arises from an asymmetric normal stress profile
at the contact patch [77]. In DEM-Engine’s default force model, it is im-
plemented as the torque z,. This torque is induced by a force that has
the magnitude of the rolling resistance coefficient C, times the normal
force. The direction of this force is aligned with the rolling-contributed
relative velocity at the contact point. This is summarized in the follow-
ing equations:

®;XT; —®; XT; CF

Fos (28)

" ey xr; —o; X1l

7, =r;xF,. (2h)

As discussed in Sec. 2.4, a clump has mass properties associated with
it, whereas its component spheres have material properties associated
with them - in other words, each sphere of the clump that makes up an
element can have different material properties. Consequently, F, and
F, in Eq. (3a) and (3b) need to be derived from the contacts between
component spheres. Then a reduction process is invoked to use these
contact forces to update the element v; and ®;, based on each clump’s
m; and I;, as well as the location vector for the contact point, r;. This
is visualized in Fig. 6, and the equations of motion for entity i assume
the form

dv; <
mid—t' =mg+ ZF", (3a)
k=1
da) ne
Iid—t’:Z(rkka+rf), (3b)
k=1
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Fig. 6. The normal and tangential contact forces between particles are calcu-
lated based on the penetration and displacement history of involved sphere
components.

where n, is the number of contact spheres that entity i has, and the
superscript k iterates through each contact. In these equations, F¥ =
F'rf + Ff means the total force, containing both the normal and tangential
components.

4.2. Providing a custom contact force model

To cater to diverse simulation needs, DEM-Engine supports custom
force models through user-provided scripts. This section delves further
into this functionality, whose starting point is a custom force model pro-
vided as a C++ script. This script undergoes just-in-time compilation at
the onset of the simulation (as detailed in Sec. 2.2), replacing the de-
fault contact force model. The “ingredients” of a custom force model are
called user-referable variables. A comprehensive list of these variables
is provided in Table 2. For each contact pair, the solver automatically
determines the values for these variables. Users can then harness these
referable variables to implement the customized contact force.

Central to scripting the force model is the modification of the user-
referable variable force, analogous to F* in Egs. (3a) and (3b). This vari-
able represents the force that geometry A experiences during contact in
the global frame. The variable force takes the initial value of (0,0, 0). It
is worth noting that the solver will auto-apply the corresponding reac-
tion force to geometry B. In a similar vein, the user-referable variable
torque_only_force can be adjusted to store an action-reaction force pair
that solely produces torque (without affecting the linear velocity of con-
tact geometries, but only their angular momentum). This is congruent
to F, in Eq. (2g). In the default model, the implementation of rolling
resistance hinges on this variable. As Eqgs. (3a) and (3b) indicate, a
subroutine executed by the solver in each iteration, will integrate the
motions of simulation entities post the force calculation.

Note that the three “wildcard” type variables in Table 2 are the
custom properties that the user is allowed to associate with contacts,
owners (clump, mesh, or analytical object), and geometries (sphere,
triangle facet, or analytical component), respectively. For the owner
wildcards and geometry wildcards, the user can assign their values
before or during the simulation, using trackers or family tags. These
custom properties can then be used in the custom force model to derive
force, or be modified so their values change during simulation accord-
ing to a user-specified policy.

The contact wildcards, on the other hand, work differently. If the
user chooses to associate a wildcard to contacts, then the memory
space associated with a contact is allocated when this contact emerges,
and deallocated when this contact vanishes. When it is allocated, it al-
ways takes the initial value of zero. This is useful for recording some
quantities that evolve during the lifespan of a contact. For example, as
shown in Sec. 4.2.1, the default force model uses contact wildcards to
record the contact history needed for the history-based Hertz-Mindlin
model. At the implementation level, the generation of a new ACS by
the kinematics thread triggers a CUDA subroutine. This subroutine is
responsible for contrasting the new ACS with its predecessor, which is

10
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cached by the kinematics thread, to establish a mapping. Subsequently,
this mapping facilitates the transfer of contact wildcard variables asso-
ciated to the old ACS to the new ACS.

4.2.1. Default model implementation explained

We elaborate on the implementation of the default Hertz—-Mindlin
model in the remainder of this section, which can be found in the file
FullHertzianForceModel.cu from the repository [63]. The code is an ap-
propriate starting point for users to implement their own force model,
potentially adding to the existing physics.

The preliminary step, as presented in the ensuing code snippet,
involves extracting material properties of the contact geometries. Ma-
terial property arrays adopt naming conventions consistent with the
user-defined property names in the LoadMaterial function call. Conse-
quently, if the default force model is employed, Young’s modulus (E),
Poisson’s ratio (nu), coefficient of restitution (CoR), friction coefficient
(mu), and rolling resistance coefficient (Crr) must be specified in the
LoadMaterial invocation. For users implementing a custom force model,
the material property names specified during the LoadMaterial function
should align with the array names in the force model file. For proper-
ties associated singularly with a material type (e.g., Young’s modulus),
one should utilize the offset variables bodyAMatType or bodyBMatType
to retrieve the property pertinent to the contact material. Conversely,
for properties defined between two materials (like the friction coeffi-
cient), both offset variables are employed concurrently to obtain the
appropriate value for the contact, as illustrated in the subsequent code
snippet.

// Material properties

float E cnt, G_cnt, CoR_cnt, mu_cnt,

{

Crze_@micp

// E and nu are associated with each material, so obtain them
this way

float E_A = E[bodyAMatType] ;

float nu_A = nulbodyAMatType] ;

float E_B = E[bodyBMatTypel;

float nu B = nul[bodyBMatType] ;

matProxy2ContactParam(E _cnt, G cnt, E A, nu A, E_B, nu B);

// CoR, mu and Crr are pair-wise, so obtain them this way

CoR_cnt = CoR[bodyAMatTypel] [bodyBMatTypel] ;

mu_cnt = mu[bodyAMatType] [bodyBMatTypel ;

Crr_cnt = Crr[bodyAMatType] [bodyBMatType] ;

In this implementation, because the force is set to be in the global
frame, we do the calculation in the global frame. This requires us to
compute the global angular velocity of the contact point on both contact
geometries (albeit having the same location in space, the contact point
on geometry A does not have the same velocity as that on geometry
B, because of the intrinsic velocity that A and B have), since the user-
referable variables ARotVel and BRotVel only give their angular velocity
in local frames. This section of the code does this task.
float3 rotVelCPA,

{

rotVelCPB;

// This is local rotational velocity
vel contributed by rotation
rotVelCPA = cross (ARotVel, locCPA) ;
rotVelCPB = cross (BRotVel, 1locCPB) ;
// This is mapping from local rotational velocity to global
applyOriQToVector3 (rotVelCPA.x, rotVelCPA.y, rotVelCPA.z,
AOriQ.w, AOriQ.x, AOriQ.y, AOriQ.z);
applyOriQToVector3 (rotVelCPB.x, rotVelCPB.y,
BOriQ.w, BOriQ.x, BOriQ.y, BOriQ.z);

(the portion of linear

rotVelCPB. z,

Then the model calculates the normal force. Readers are referred to
Sec. 4.1 to relate the implementation with the normal contact model.
The material properties that are extracted previously, such as E_cnt, are
used here to derive the force. One extra task carried out in this part is
the update of the “wildcards” delta_tan_x, delta_tan_y, delta_tan_z and
delta_time, which are used to record the friction history. The contact
history is used in the friction and rolling resistance calculation. At the
end of this snippet, the variable force is updated to record the normal
force.
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The user-referable variables that can be used in composing the custom force model. All
data types are the default data type. Some of the data types can be configured in Vari-
ableTypes.h upon compilation from the source to accommodate the user’s specific needs,

a concept introduced in Sec. 2.3.

Type Name Explanation
double3 contactPnt Contact point coord in global
float3 B2A Unit vector pointing from
geometry B to geometry A
double overlapDepth The length of overlap
float ts Time step size
float time Current time in simulation
float3 IocCPA, locCPB ?osmons of the contacF p:)mt
in the contact geometries’ frames
double3 AOwnerPos, BOwnerPos Positions of both owners
double3 bodyAPos, bodyBPos Positions of both contact geometries
float4 AOCriQ, BOriQ Quaternions of both owners
float AOwnerMass, BOwnerMass Masses of both owners
float3 AOwnerMOI, BOwnerMOI Moment of inertia for both owners
float ARadius, BRadius Radius o.f curvatl'lre for both contact
geometries at point of contact
ff: h ial i
uints_t bodyAMatType, bodyBMatType Offset used to query the r‘naterla properties
for both contact geometries
uint8_t AOwnerFamily, BOwnerFamily Family number of both owners
float3 ALinVel, BLinVel Linear velocity of both owners
float3 ARotVel, BRotVel Angular velocity of both owners,

unsigned int AOwner, BOwner

unsigned int AGeo, BGeo

float User-specified
float User-specified
float User-specified
float3 force

float3 torque_only_force

in their local frames

Offset for both owners

in system array

Offset for both contact geometries

in system array

Contact wildcards: Extra properties
associated with contacts

Owner wildcards: Extra properties
associated with owners

Geometry wildcards: Extra properties
associated with geometries

Accumulator for contact force (in global)
Accumulator for contact torque (in global)

// A few re-usable variables that might be needed for both the
tangential and normal force

float mass_eff, sqrt_Rd, beta;

float3 vrel tan;

float3 delta tan = make float3(delta_tan_x, delta tan vy,
delta_tan_z);

// Normal force calculation
{
// The (total) relative linear velocity of A relative to B
const float3 velB2A = (ALinVel + rotVelCPA) - (BLinVel +
rotVelCPB) ;
const float projection = dot (velB2A, B2A);
vrel tan = velB2A - projection * B2A;

// Update contact history

{
delta_tan += ts * vrel tan;
const float disp proj = dot(delta tan, B2A);
delta_tan -= disp proj * B2A;
delta_time += ts;
mass_eff = (AOwnerMass * BOwnerMass) / (AOwnerMass +

BOwnerMass) ;

sqrt_Rd = sqrt (overlapDepth * (ARadius * BRadius) / (ARadius

+ BRadius)) ;
const float Sn = 2. * E_cnt * sqgrt_Rd;

const float loge = (CoR_cnt < le-12) ? log(le-12) : log(
CoR_cnt) ;

beta = loge / sgrt(loge * loge + deme::PI % deme::PI);

const float k. n = 2. / 3. * Sn;

const float gamma n = 2. * sqrt(5. / 6.) * beta * sqrt(Sn x

mass_eff) ;

force += (k_n * overlapDepth + gamma_n * projection) % B2A;
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The snippet below calculates the rolling resistance. At the end of
this snippet, the variable torque_only_force is updated to record the
rolling resistance. Recall that this imaginary “force” contributes only to
the contact torque, in agreement with the rolling resistance model in
Eq. (2g).

if (Crr_cnt > 0.0) {
bool should add _rolling resistance = true;

{
float R_eff = sqrtf((ARadius * BRadius) / (ARadius +
BRadius)) ;
float kn_simple = 4. / 3. * E _cnt * sqrtf(R_eff);
float gn_simple = -2.f * sqrtf(5. / 3. * mass_eff =

E_cnt) * beta * powf (R_eff, 0.25f);

float d_coeff = gn_simple / (2.f * sqgrtf(kn_simple *
mass_eff)) ;

if (d_coeff < 1.0) {
float t_collision = deme::PI % sqrtf (mass_eff /
(kn_simple * (1.f - d_coeff x d_coeff)));
if (delta_time <= t_collision) ({
should add rolling resistance = false;
}
}

if (should_add_rolling_ resistance) {
// Tangential velocity (only rolling contribution) of B
relative to A, at contact point, in global

float3 v_rot = rotVelCPB - rotVelCPA;

// This v_rot is only used for identifying resistance
direction

float v_rot_mag = length(v_rot);

if (v_rot_mag > le-12) {

torque_only force = (v_rot / v_rot_mag) * (
Crr_cnt x length(force)) ;
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Table 3

The possible end status of the sphere in the rolling-on-incline test.
Mode Stationary Sliding Rolling  Sliding and rolling
Definition w=0,v=0 w=0,0>0 v=owr w>0,0>wr

The snippet below implements the friction force. The variable force
is updated to record the friction force. Although the contact history vari-
ables (delta_tan_x, delta_tan_y, and delta_tan_z) are initially packed
into a float3 (delta_tan) for cleaner code, they are unpacked in the end
to allow the solver to detect their modifications and write them back
to memory. The contact history variables need modifications due to the
potential tangential micro-displacement clamping, as shown in Eq. (2f).
if (mu_cnt > 0.0) {

const float kt = 8.
const float gt = -2.
kt) ;

float3 tangent_force = -kt * delta_tan - gt * vrel_tan;
const float ft = length(tangent_force) ;

* G_cnt * sqgrt_Rd;
* sqrt (5. / 6.) * beta * sqgrt (mass_eff *

if (ft > le-12) {
// Reverse-engineer to get tangential displacement
const float ft_max = length(force) * mu_cnt;
if (ft > ft_max) {
tangent force = (ft_max / ft) * tangent_ force;
delta_tan = (tangent force + gt % vrel tan) / (-
kt) ;
} else {
tangent force = make float3(0, 0, 0);
}

force += tangent_force;

}

delta_tan x =
delta_tan y =
delta_tan_z =

delta_tan.x;
delta_tan.y;
delta_tan.z;

The snippets provided combine to define the complete Hertz—
Mindlin contact force model implemented in DEM-Engine. For a prac-
tical example of a custom force model in application, see Sec. 6.3
for a material breakage simulation. Users can also refer to the
DEMdemo_Electrostatic.cpp demo within the repository [63]. In that
demo, elements are subjected to a contact force and an electrostatic
force.

4.3. Contact model validation

In this section, three small-scale tests are introduced to validate
the implementation of the default force contact model. For notational
brevity, for the rest of the paper, variables have their scopes limited to
the respective section.

4.3.1. Sphere rolling on incline

This is a simple but insightful test borrowed from [75], in which
a sphere rolls up an incline. The sphere of radius r = 0.2 m and mass
5kg moves up on an incline with an initial velocity of 0.5m/s, parallel
with the incline and pointing up. In [75], the static friction coefficient
u, and kinetic friction coefficient 4 are allowed to have different val-
ues; however, in the default force model that we are validating, they
assume the same value, and in this test p; = y; = 0.25. A test scene is
illustrated in Fig. 7. The end status of the sphere can be one of the fol-
lowing modes depending on the incline angle a and rolling resistance
C,: stationary; sliding; rolling; sliding and rolling. These modes are de-
fined by the final angular velocity w and linear velocity v of the sphere,
and are summarized in Table 3.

The outcome of this set of simulations is plotted in Fig. 8. It is
shown in [75] that for the sphere to be stationary on the incline,
a < tan’l(:—iC,). For the sphere to roll down the incline without slid-

ing, @ < tan~!(3.5u, — %C,). These two conditions are plotted in Fig. 8
as the dashed and solid lines respectively, which evidently separate the
stationary region, pure rolling region, and sliding-rolling mixed region
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Fig. 8. The end status of the sphere’s mode, with respect to the incline angle
and rolling resistance.

as the theory suggests. The DEM-Engine results confirm the results re-
ported in [75].

4.3.2. Sphere stacking

A set of three-sphere stacking tests was carried out to further val-
idate the friction model implementation. This experiment is borrowed
from [49,75]. For each test, two identical spheres of mass m; = 1 kg and
radius R =0.15m with a small gap d in between were settled on a flat
surface. A third sphere of the same radius R but a different mass, mj,
was placed between and above the bottom spheres with zero initial ve-
locity, as illustrated in Fig. 9. To minimize the influence of impact, the
third sphere was initialized right in contact (zero penetration depth)
with the bottom ones. Depending on m,, the gap, and rolling resistance
coefficient C,, two scenarios can occur: the top sphere drops to the
ground, or it moves down slightly but the structure eventually stabi-
lizes with the bottom spheres supporting the top sphere. This is a type
of physics that also comes into play on a larger scale in angle of repose
experiments. For different selections of C,, the mass of the top sphere
was increased by 0.02kg to find the critical mass m, for the pile to
collapse, and the result is demonstrated in Fig. 10. The critical masses
found for all initial gap sizes show exact matches with the outcome re-
ported in [75], validating DEM-Engine force model implementation.

4.3.3. Contact chain propagation

A third validation test for the default contact model involves in-
vestigating a closed-packed array of spheres arranged on a horizontal
surface, initially in equilibrium under an external gravitational acceler-
ation field. A localized force agent is applied to the uppermost symmet-
ric point of this layout, allowing to study the overall sphere-to-sphere
contact evolution parametrically by varying force magnitude and in-
ternal friction. This proposed setup follows the approach outlined in
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Table 4
The material and simulation properties used in the contact
analysis.
Diameter [m] Density [kg/m3] E [Pa] v [-] CoR [-]
0.020m 1.0x 10 1x107 033 030
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Fig. 11. Initial layout for contact chain benchmark.
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[78,79], initially conceived to reveal granular material stress propa-
gation capability; nevertheless, such benchmarks can also be valuable
for verifying the sanity of DEM models. Here, we simulate the refer-
ence case using monodisperse spheres with a diameter D, in contrast to
cylinders used in [78]. Fig. 11 illustrates the initial geometrical layout
of the particle slab, consisting of a 61x15 array of spheres layered ac-
cording to a triangular lattice, thus counting 60 spheres for even layers.
Table 4 details the parameters used to initialize the particle geome-
tries and their contact force model. Note that the solid black lines in
Fig. 11 indicate the analytical box boundaries, which use the same con-
tact model as the granular material.

Contact chain formation is investigated for three inner friction val-
ues, y;, 0.00, 0.10, and 0.20 respectively, under an external force de-
noted as F,, as shown in Fig. 11, applied to the CoG of the top row
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particle belonging to the simmetry plane in y-z axis. The force magni-
tude is defined as F,; = kmg, where k is a real number € R, m is sphere
mass, and g is the magnitude of the gravitational acceleration vector.
For convenience, the weight of the single sphere, mg is denoted as m.
Thus, the DEM-Engine’s configuration is completed by ensuring a prop-
erly defined time step, chosen in accordance with the critical time step
At given by the equation [77]

_zD [ _rE
atT op V21 +v)’

where f is approximated as 0.8766 + 0.163v [80,81].

Prior to applying Fe, to reliably achieve the layout presented in
Fig. 11, all the spheres are generated at time O following a triangular
lattice spaced at D plus some small clearance (1/1000th of D) to avoid
any possible overlap. Soon after, due to the gravitational pull, the par-
ticles are allowed to settle for 2 seconds of physical time, during which
stationary conditions are reached. To further ensure compliance of the
particle positions with the target configuration, the force model is ini-
tialized with no rebound factor, that is, CoR = 0.00. At this point, phase
two begins and the F,, is activated. To guarantee a smooth transition,
the following function is implemented:

At (©)]

Foy(t) = kinerf < %)

t
V Tactive ) ’

where erf is the error function, ¢ is the simulation time, and T, . =

V2Dkmm is set as the required time to smoothly transmit F, to the rest
of particle system [82]. After the force application phase, the simulation
is run for 5 more seconds.

Figs. 12a—c display the contact force profiles formed between
spheres and the bottom boundary surface for tests with different in-
ner friction coefficients, while varying the external force. These force
profiles are constructed by collecting the vertical componenents of the
contact force at the end of the first phase, denoted as F, and then iso-
lating only the force increment, or decrement thereof, induced by F,,
yielding AF = F(t) — F,,, where ¢ represents time, and here correspond-
ing to the end of the physical time. Such shapes are then normalized
with respect to the external force. By contrasting against reference
data [78] and another numerical model’s results [49], the proposed out-
comes exhibit strong agreement, especially in predicting the transition
from one-peak shaped curves, where linear elasticity similitude applies,
to two-peak curves where contacts get redistributed due to particle dis-
placement. More specifically, for low values of the external force, the
one-peak curves totally agree with the results presented in [49,78],
showing similar overall shape development and peak values. However,
as the external force increases and the particle displacement becomes
relevant to achieving new stationary configurations, the peak values
begin to diverge from the results provided in [78]. This discrepancy is
particularly significant in Panel 12a, where the blue curve correspond-
ing to Fg = 6.0m exhibits peak values almost twice as high, likely
imparted by the differences in the shapes that are involved in the ana-
lytical tests. The goodness of the proposed results, however, is further
supported by the close agreement shown by the curves in Figs. 12a—c
with the results in [49], in which Chrono::GPU was employed.

Fig. 12d offers deeper insights into the system response’s depen-
dence on inner friction and applied force. This chart presents the nor-
malized force experienced by the sphere located at x/D = 0, charted
against the magnitude of the external load, here indicated using k.
When compared to the reference paper, this chart provides close match-
ing with the expected behavior for all the studied friction parameters.
Minor mismatching, however, affects the profile obtained for friction-
less particles (i.e., y; = 0.00). For low values of external force, i.e.,
Feye < 1.0Mm, our model slightly underestimates the compression load
experienced by the spheres located in the middle of the container,
whereas for high values, the ratio becomes negative, indicating less
pressure around these particles when only gravity is applied. Never-
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Fig. 12. Contact force distributions at the container bottom surface for different friction conditions and different values for the external force.

theless, the proposed results align very well with the results obtained
by Chrono::GPU [49].

To better illustrate the contact distribution process, a series of sim-
ulation visuals is proposed in Fig. 13 for u; = 0.20. In these images,
particle contacts are instituted by colored straight lines parallel to the
contact direction, with the length of each line proportional to the nor-
malized force magnitude (force contact over /). Fig. 13a visualizes the
contact distribution that forms at the end of the settling phase, show-
ing an initial uniform distribution aligning with the prediction of linear
elastic theory. As soon as an external agent is applied, as gradually de-
picted by Figs. 13b-e, the force diffusion tends to deviate from linearity,
as observed in Fig. 12c. In the last case with k = 80, the sphere dis-
placement becomes more evident, as a slight tilt forms at the horizontal
surface of the container.

5. Simulator’s performance

The scaling analysis in this section seeks to offer insights into the
expected simulation performance of DEM-Engine. The chosen test sce-
nario involves a bladed mixer interacting with granular material, where
the mixer is modeled using a triangular mesh. Throughout the simula-
tion, the mixer blades maintain a constant angular velocity of 2z rad/s.
Initially, the elements are positioned within a cylindrical region with a
radius of 0.5m and a height of 1/3 m above the mixer, and are sub-
sequently released at the simulation’s onset. The test’s selection is due
to its intensive particle—particle and particle-mesh interactions, demon-
strated in Fig. 15. This puts the contact history preservation algorithm
to the test, as contacts emerge and vanish in this highly dynamic prob-
lem. Material properties and simulation parameters can be found in
Table 5.

In this analysis, three clump types are employed: individual spheres,
three-sphere clumps, and six-sphere clumps, depicted in Fig. 14. Ele-
ment sizes are adjusted to regulate the total element count. The mesh
representing the mixer blades remains consistent across simulations,
comprising 2892 triangular facets. Simulations are run until a pseudo-
steady state is achieved at 1s, after which the wall time required to
carry out 10° time steps is recorded. The time step size is 5x 1077 s.

Table 5
The material and simulation properties used in the mixer scal-
ing analysis.

E [Pa] v [-]

0.3

Density [kg/m?] CoR [-] Step size [s]

2.6x 103 1x10° 0.2 5x1077

Fig. 16 displays the correlation between wall time and the total num-
ber of component spheres (distinct from the number of elements) via
blue, green, and black markers. The simulations are performed on two
NVIDIA Ampere A100 GPUs. On average, Chrono DEM-Engine takes
0.546, 0.313, and 0.264 hours to complete one million steps for ev-
ery million component spheres in the simulations for the individual
spheres, three-sphere clumps, and six-sphere clumps, respectively. The
linear scaling persists to up to 150 million component spheres in the
tests.

An identical simulation is also executed with Chrono::GPU (utilizing
only one A100 as Chrono::GPU is limited to using a single GPU), and
its scaling is represented with red markers. This juxtaposition is per-
tinent given a recent independent study’s findings, which underscored
that Chrono::GPU outperforms two other established DEM packages by
two orders of magnitude [51]. Therein, for a 420,000-element pebble-
packing simulation, Chrono::GPU running on a laptop GPU finished the
simulation in an amount of time 261 times shorter than that required
by LAMMPS, when the latter ran on 432 CPU cores of a cluster. For
a 660,000-element pebble-packing simulation, Chrono::GPU executed
501 times faster than STAR-CCM+, which ran on 160 CPU cores. In
both tests, Chrono::GPU ran on the RTX 2060 Mobile NVIDIA GPU card
of a laptop. As indicated in Fig. 16, Chrono DEM-Engine demonstrates
an additional twofold efficiency boost over Chrono::GPU in the test case
of spherical elements. Owing to its ability to handle complex DEM par-
ticle shapes, Chrono DEM-Engine expands the modeling capacity of its
predecessor without compromising per-GPU efficiency.

Fig. 17 shows the time spent in the important steps of the kinematics
and dynamics threads’ work cycles in the largest six-sphere-clump mixer
simulation run in the scaling analysis. In that scenario, the amount of
mutual contact data produced is relatively large, causing the kinematics

14
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Fig. 15. A rendering of the mixing process.
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Fig. 16. The scaling result of the mixer simulation using individual spheres,
three-sphere clumps, and six-sphere clumps, on NVIDIA A100s. The wall time to
finish simulating 10° steps is plotted against the number of component spheres
in the simulation.
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Fig. 17. The runtime breakdown for the kinematics and dynamics threads, dur-
ing the lifespan of the largest six-sphere-clump mixer simulation.

thread to spend a large amount of time transferring it to the dynamics
thread, reaching 26% of the former thread’s total runtime. The dynam-
ics thread spends minimal time on transferring data. This is done by
design to enable the dynamics thread to almost exclusively focus on
advancing the state of the system forward in time.

6. Numerical experiments

This section introduces a series of numerical tests, from medium-
sized hopper flow rate tests to large-scale co-simulation, designed to
compare the DEM-Engine simulation results against experimental data.
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Fig. 18. Diagram of the initial and final projectile positions.
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Fig. 19. Penetration depth. Each red square represents a data point in the nu-
merical test.

6.1. Ball impact test

This experiment is described in [83]. A spherical projectile charac-
terized by diameter D and density p;, was released from varying heights,
h, onto a loosely packed pile of granular material, visualized in Fig. 18.
The resulting penetration depth d of this sphere was gauged and set
against the empirical model derived from the experimental data in [83],
which goes as:

1
2 2 1
d:£<ﬁ> D3iH3, 6

H o\ P
where p, denotes the granular material’s bulk density, and H =h +d
is the sum of penetration depth and drop height. In [83], the constant
C is estimated from experiments to be C =0.14.

Twelve numerical tests using DEM-Engine were run aiming to re-
produce the experiment in [83] as faithfully as possible. These tests
incorporate combinations of projectile densities p, =2.2,3.8,7.8, 15
g/cm®, resembling Teflon, ceramic, steel, and tungsten, respectively.
The diameter of the spherical projectile is D = 2.54cm. The release
heights take values 2 =5, 10, 20 cm. Each simulation uses eleven types
of spherical elements with diameters evenly distributed in the range
between 0.25cm and 0.35 cm (inclusive), and each DEM element has
an even chance of spawning as one of them. The grain material in use
has density pgrain = 2.5/ cm?, resembling silica. This is to be differen-
tiated from the bulk density of the granular bed, which is packed at
pg=146¢g/ cm?®, with a sliding friction coefficient of y = 0.3.

The correlation between depth d and the adjusted total release
height H can be observed in Fig. 19. The line represents a linear re-
gression of the numerical outcomes, showing a slope of 0.123, which
confirms the experimentally established empirical model in Eq. (6).
Comparable outcomes were also documented in [84] and [49], where
both non-smooth and smooth contact dynamics approaches were lever-
aged for validating the same physics.
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6.2. Flow sensitivity test

This section investigates the flow behavior exhibited by granular
phases characterized by heterogeneous properties, encompassing vari-
ations in shape, density, and friction coefficient. Furthermore, relevant
details regarding simulation runtimes are provided where applicable.
The hardware configuration utilized for these numerical validations fea-
tures an AMD Ryzen 9 5950X CPU in conjunction with a single NVIDIA
A5000 GPU card.

6.2.1. Drum tests

The first test investigates the flowability of particle media compris-
ing four typologies: plastic spheres, plastic cylinders, wooden spheres,
and wooden cylinders. The reference data is presented in Cui et al. [85],
where experimental and numerical tests were performed on spherical
and nonspherical particles. The experimental setup for the estimation
of the angle of repose, a schematic of which is proposed in Fig. 20,
comprised of a rotating drum made of transparent acrylic with an inner
diameter (D,) of 0.19 m and a depth of 0.20 m (W,). For this investiga-
tion, the considered physical test outcomes refer to the test performing
the drum rotating angular velocity, 6,, of 3.60 revolutions per minute
(rpm).

This test is also considered to assess the accuracy of DEM-Engine
in simulating complex shapes, which are formed by a compound of
spheres, and defined as clumps. In the following, as shown in Fig. 20,
the two shapes that characterize the tested particles consist of pure
spheres with uniform radii, and five sphere clumps to mimic the ge-
ometric outer shape of cylinders.

Fig. 21 illustrates the sensitivity of the angle of repose for the ro-
tating drum experiment. Each plot refers to a different material setup
proposed in Table 6, using a test matrix that uses 13 values € [0.00,
0.90] for the definition of the inner friction (;) and five values € [0.00,
0.08] for the definition of the rolling friction (C,). The material is ini-
tialized to fill half of the volume of the drum; then, the drum initiates its
rotation at a constant angular velocity of 3.60 rpm, and let run for two
seconds, after which it is assumed the system achieves a steady state.
For the four different drum configurations, five seconds of simulations
took approximately 0.20 h for each case with spheres (i.e., PS and WS),
whereas 0.6 h hours for PC and WC. The angle of repose, as reported
in the charts, is computed as the mean value of thirty measurements
taken at an interval during the three seconds of simulation. For all the
cases, very little deviation was observed throughout the post-processing
phase.

Fig. 21 illustrates some of the key characteristics exhibited by gran-
ular materials when simulated using a DEM-based numerical solver.
Firstly, it is evident that as the internal friction assigned to the spheres
approaches zero, the system response yields very small angles of re-
pose, ultimately resulting in a near-horizontal surface in the absence
of internal friction. Conversely, for cylindrical particles lacking inter-
nal friction, the shape itself contributes to the bearing capacity of the
system, as expected. Moreover, rolling resistance influences the angle
of repose. When y; is small, the disparity between cylindrical particles
with and without C, remains consistently lower. Note that, for a given
pair of (u;, C,), similar particle shapes yield comparable angles of re-
pose, irrespective of particle size or density. These initial observations
align with the findings reported in [85], wherein the authors utilized
the superquadratic DEM approach implemented in the open-source CFD
suite MFiX [86] for simulating these same particles.

By contrasting the numerical solutions against the experimental data
presented in [85] and illustrated in Fig. 21 through dashed black lines,
one can assess the accuracy of the DEM-Engine in simulating granular
materials. First, when considering two simulated spherical particle ma-
terials (Fig. 21a) and c)), in which the grain shapes align with their
physical counterparts, the valid angles of repose exhibit a wide range
of values in relation to internal friction (i.e., from y; € 0.25-0.90),
while only minimal variability is linked to rolling friction. Secondly,
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Fig. 20. Schematic visualization of the rotating drum test.
Table 6
Properties of four different particle setups used in this numerical investigation.
D Material Shape Radius  Length  Density E v CoR  Clumps  Spheres
[mm] [mm] [kg/m’] [MPa] [-] [-] [-] [-]
PS Plastic Sphere 3.0 1592 10.0 0.35 0.85 13024 13024
PC Plastic Cylinder 2.0 8.0 1128 10.0 0.35 0.85 19036 95180
WS Wooden Sphere 2.95 674 10.0 0.35 0.55 17112 17112
wC Wooden Cylinder 2.0 8.5 476 10.0 0.35 0.55 17016 85080
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Fig. 21. Sensitivity of the angle of repose to the inner (y,) and rolling friction (C,) for the four granular materials in Table 6. The dashed line in each chart reports

the reference value for the corresponding experimental test [85].

employing 5-sphere clumps to emulate plastic and wooden cylinders,
as reported in Fig. 21b) and d), offers distinct operational domains for
these un-physically consistent cylinders, where both shape and surface
properties play pivotal roles. This analysis shows that the combined ef-
fects of internal and rolling frictions provide DEM-Engine with greater
versatility.

6.2.2. Hopper tests

This test assesses the dynamic properties exhibited by a flow of DEM
particles when simulated using the DEM-Engine. As reference solutions
for this task, data regarding the mass discharge rate for both single and
binary component systems are targeted, as made available in [87]. The
physical testing was conducted using a flat-bottom hopper, see Fig. 22.
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The hopper has a height of 0.40 m, width of 0.20 m, and depth of
0.04 m. An orifice of 0.04 m is symmetrically positioned on the lower
surface. For the experimental campaign, various particle configurations
were investigated. However, for this numerical validation, only four
configurations, which precisely correspond to those outlined in Table 6,
are considered. Specifically, Table 7 provides details on the hopper
configuration for the tests presented in the subsequent sections. The
parameters y; and C, reported in the last two columns are set using
the charts in Fig. 21. Note that the first two tests consist of single-
component discharge tests, whereas the remaining use binary particle
compositions. Each simulation spans a physical time of 7.50 s, with ap-
proximate runtimes of: 0.35 h for ID 1; 0.75 for ID 2; and 0.60 for IDs 3
and 4.
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Table 7

Properties of four different particle combinations used in the hopper numerical investigation.
TestID  Layer1  Layer2 H, H, Hiy C,, Hin C,, Clumps  Spheres

[em]  [em]  [] [-1 [-1 [-1 [-1 [

1 PS - 36 - 0.40 0.04 - - 14058 14058
2 WC - 36 - 0.70 0.07 - - 20014 100070
3 PS PC 18 18 0.40 0.04 0.30 0.03 17545 59565
4 PC PS 18 18 0.30 0.03 0.40 0.04 17904 61684

Fig. 22. Schematic visualization of the flat-bottom hopper.
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Fig. 23. Experimental and numerical comparison of the mass discharge ratio
for single component hoppers with plastic spheres (blue) and wooden cylinders
(red).

In Fig. 23, the relative mass discharge is presented for Test IDs 1 and
2, which involve plastic sphere and wooden cylinder particles, respec-
tively. The chart depicts a comparison between the experimental and
numerical time evolution of the system, showcasing the mass discharge
relative to the total mass. For both tests, DEM-Engine demonstrates a
fair level of accuracy in predicting the flow evolution. It exhibits an
excellent match for purely spherical shapes (PS), while a slight over-
estimation is shown for the cylinders (PC). This discrepancy, leaning
towards a more fluid flow, can be attributed to the fact that the clumps
of five spheres, used in place of actual cylindrical shapes, do not per-
fectly replicate the behavior of the physically consistent cylinders.

In Fig. 24, a visual comparison is provided for the binary particle
systems: Test IDs 3 and 4 as outlined in Table 6. This comparison con-
trasts snapshots from both experimental and numerical perspectives,
offering lateral views of the hopper at one-second intervals, starting
from the initial configuration at Time =0.00s. The first and third rows
respectively present data from [87], while the second and fourth rows
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showcase the results from DEM-Engine’s simulation. The two timelines
evolve in a remarkably similar fashion, highlighting that the numerical
model accurately captures all the pertinent physical phenomena that
unfold.

6.3. Contact modeling for particle breakage

DEM simulations have often been employed to characterize com-
plex flows, factoring in not only the outer geometries of particles but
also specialized features such as flexibility or particle breakage [88].
The DEM-Engine offers an open framework that allows users to im-
plement user-defined constitutive laws. This example details a custom
implementation to model the behavior of a cohesive yet highly brit-
tle elastoplastic material. This test involves accounting for the failure
of local bonds. To this end, the model outlined in [89] is adopted for
defining the constitutive laws and failure modes.

The following implementation leverages the variables presented in
Sec. 4.1 for the history-based Hertz—Mindlin model. Pivotal to this im-
plementation is the capability of having stored information regarding
the state of the system, as also detailed in Sec. 4.2.1. The material prop-
erties that are used to define, in this case, granite, are used to define
the contact forces. Concerning the parent contact method, two extra
“wildcards” are defined: unbroken and initialLength, which are used to
respectively record the contact state (i.e., broken or unbroken) and the
initial length of the equivalent spring for the normal force. In the fol-
lowing, the general structure of the contact model is defined. Note that
the values of the two wildcard variables are initialized to 1.0 and 0.0,
respectively.

// DEME
// The parameters required for the contact force computation

force calculation for grain breakage.

are defined.

if (unbroken > le-12) {

// Computation of the contact force for the breakage model
that accounts for normal and tangential forces, and
bending moments.

Here goes the implementation

} else {

if (overlapDepth > le-12) {
// The previously broken contact may still be engaged by

//
s

compressive force, and this happens especially for

compressive tests. The contact is treated with a

Hertzian contact law.
// Here goes the implementation

The magnitude of the model calculates the normal interactive force
F, using:
)

where y, =0.014/k,/m, k, is the normal stiffness and it is defined ac-
cording to the following cases:

Fn = knun - Ynn_/lvm

E, R if sign(u,)|lu,ll > 6,
-E

ky, = ;" if 8, < sign(u,)llu, |l <5, ®)
0 otherwise,
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DEM

Time=0 s Time=1.00 s | Time=2.00 s Time=3.00 s | Time=4.00 s | Time=5.00s | Time=6.00 s

where E,, is the equivalent stiffness of the contact, ¢ is the degrading

factor (softening) that accounts for the formation of initial cracks in
the material, &

, is the material yielding threshold, and &, is contact
displacement failure, here assumes as three times 5.

float tension = -9.3e6f;
// Normal force calculation
float deltaD = (overlapDepth - initialLength) ;

float kn = Eeq * (ARadius * BRadius) /((ARadius + BRadius)) ;

float intialArea = ((ARadius > BRadius) ? ARadius * ARadius
BRadius * BRadius) * deme::PI;

float BreakingForce = tension * intialArea;

float deltaY = BreakingForce / kn;
float deltaU = 3.0f * deltay;

float force_to A mag = (deltaD > deltaY) ? kn x deltaD : ((
deltaU - deltaD)-deltaY) * kn * 0.5f;

float damping = 0.01 * sqgrt(mass_eff * kn);

force += B2A * force to A mag - damping * velB2A;

// breaking for excess of tensile force

unbroken = (deltaD < deltaU) ? -1.0 : unbroken;

The tangential component of each contact follows from the follow-

ing relationship:

F,=—ku, —y,mv,,

MIE, Il + ¢ Ajpe  if sign(u,)|w, || > 6,

o ©)]
HIIF,| if sign(u,)|lu, || <5,

given: [|F,|| <
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Fig. 24. Experimental and numerical comparison of the discharging behavior of two different packing patterns of the Plastic Sphere and Cylinders. (reprinted from
[871; copyright (2023), LN 5657690415083, with permission from Elsevier).

where k, = v;k,, ¢ is the material cohesion, and A, is the interacting
surface for the contact and defined as z - min(Ri, Rj)?. The following
snippet of code provides the specific details of the implementation:

float cohesion = 200e6;
// Tangential force calculation

float kt = nu_cnt * kn;
float Fsmax = (deltaD > deltaY) ? length(force) * mu_cnt +
cohesion * intialArea : length(force) * mu_cnt;

const float loge = (CoR_cnt < le-12) ? log(le-12) : log(
CoR_cnt) ;

beta = loge / sgrt(loge * loge + deme::PI % deme::PI);

float gt = 2. * sqgrt(5. / 6.) x beta * sqgrt(mass_eff * kt);

float3 tangent force = -kt * delta_tan - gt * vrel tan;
delta tan = (tangent_ force + gt * vrel tan) / (kt);

force += tangent_force;
// breaking for excess of tangential stress
unbroken = (length(tangent_force) > Fsmax) ? -1.0 : unbroken;

The bending resistance that arises at each contact, being represen-
tative of an element of finite size, is computed using Eq. (2g), where
the bending stiffness is defined as k, = R;R;k, [90,91]. note that the
maximum bending moment is capped by min(; Ri,n; R))||F, ||, where
is a dimensionless coefficient that controls the rolling behavior of the
contact. Lastly, here the code for the implementation of the fictitious
bending resistance of the contact is listed. Note that no contact failure
is associated with the bending moment value.
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Table 8
Mechanical properties of the granite block, as de-
fined in [89,92].

Material Parameter Value (unit)
Rock Mass density 2640kg/m?
Young’s modulus 60 x 10° Pa
Poisson’s ratio 0.25
Internal friction 0.30
Compressive Strength 200 X 10° Pa
Tensile strength 9.3 10° Pa
Plates Young’s modulus 100 x 10° Pa
Surface friction 0.50
Poisson’s ratio 0.30
Moving
Hyiock Plate
Fixed
Plate
Wblack‘,

Fig. 25. Numerical configuration for the axial compression test of a granite
block.

// Bending moment induced-force calculation
float kr = ARadius * BRadius * kt;
float eta = 0.1f;

float var_ 1 =
float var_ 2 =

ts * kr / ARadius;
eta * length(force);

float3 torque_ force;
if (v_rot mag > le-12) ({

float torque_force mag = (var_1l < var_2) ? var 1 : var 2

torque_force = (v_rot / v_rot_mag) * torque_force_mag;

zorce += torqueiforce;

The previous implementation has been validated against experimen-
tal data from a uniaxial compression test conducted on a granite block,
as defined in [92]. This particular test configuration is commonly uti-
lized in the literature for code validation and calibration. In Fig. 25 and
Table 8, we present the numerical test rig along with the mechanical
properties of the rock specimen, lower plate, and upper plate. These
properties have also been reviewed and interpreted by other studies
[89,91,93]. The test rig consists of two rigid plates, with the lower plate
fixed to the reference system while the upper plate moves vertically at a
constant velocity of 5 mm/s. The tested specimen is constructed as a ho-
mogeneous assembly of spheres placed on a regular lattice arranged in
a hexagonal close-packed (HCP) configuration, generated using an in-
ternal function provided by the DEM-Engine package. The specimen has
a base area of W, ., X W}, with dimensions of 5.0cm and a height
Hy; oo of 10.0 cm. The chosen sphere radius of 12 mm ensures that there
are 20 particles within the width of the specimen.

A crucial parameter that significantly influences the accuracy of the
proposed model for contact breaking is the particle interaction range,
denoted as y;,(R;, which defines the area of active links around each
particle. Essentially, when a particle is initialized as part of the previ-
ously defined contact method, it is equipped with contacts that extend
to the surrounding particles in accordance with the specified interaction
range. In this study, three tests are conducted, considering different val-
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Table 9
Model parameters description for the simulation of the
particle breakage in axial compressive tests.

TestID  Radius v, Spheres  ~ N N mod
[mm] [-] [-] [x 10°] [-]
1 12 0.70 26754 154 6
2 12 0.90 26754 200 8
3 12 1.10 26754 230 9
i
—— Reference
200 || — Yint = 0.70 |
— %int = 0.90
E --- 7%t = 1.10 ,r’\‘
= \
17
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\
\
\
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Fig. 26. Strain-stress curves obtained from uniaxial compressive tests per-
formed with three interaction range sizes. The reference solution corresponds
to the numerical solution proposed in [89] for N; =13.8.

ID 1 — it = 0.70 | ID 2 — Ying = 0.90 [ID 3 — ~ing = 1.10

s :

Fig. 27. Visualization of the cracked configuration of the three specimens. For
test I D 1, the crack has been highlighted using a light green curve.

ues of y;: [0.70, 0.90, 1.10]. Table 9 provides a summary of the micro
properties for these three tests, including the total number of poten-
tial contacts, denoted as N, and the statistical mode of the number of
contacts for a single particle, denoted as N; 4.

Fig. 26 displays the strain-stress curves for the three tests along with
the numerical solution proposed in [89], where the average number of
contacts per particle was N; = 13.8. The data presented in this chart
suggests the excellent agreement achieved by the implemented model
compared to the one from the literature. Particularly, an increase in the
interaction range leads to a more accurate representation of the speci-
men’s stiffness. Case emphID 3 exhibits the highest level of agreement,
with a relative error of less than 8% on the material ultimate resistance
and 5% on the elastic modulus. One source of disagreement lies in the
relatively small number of links (i.e., 9 compared to 13.8), which is a
direct consequence of the uniform pattern used to initialize the particle
arrangement and the uniform particle radius. Fig. 27 proposes rendered
visualizations for the final instants of the three tests.

6.4. Rover mobility co-simulation

This section discusses a co-simulation between a multi-body system
and a DEM system. The rover simulation originally presented in [94] is
reproduced herein while adding the usage of the “active box” scheme
introduced later in this section. The co-simulation aims to measure the
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Fig. 28. MGRU3 climbing a “tilt bed” in NASA’s Glenn Research Center testing
facility [95].

v

o

Fig. 29. The seven clump shapes that are used in the rover co-simulation.

Table 10

The weight distribution of the simulant used in the rover test, percent-wise,
by clump size. For all element types, E = 103N/m?, v=0.3, u, = 0.4, and
CoR = 0.5 in this simulation.

Type 1 2 3 4 5 6 7
Size [mm] 21 11.4 6.6 4.5 3 2.75 2.5
Component radius [mm] 3.6 1.95 1.81 1.24 0.82 0.75 0.7
%, by weight 17 21 14 19 16 5 8

slip ratios of a rover when operating on a “tilt bed” under Earth’s grav-
itational pull. The experimental data used for comparison are obtained
using NASA’s Moon Gravitation Representative Unit 3 (MGRU3), see
Fig. 28 (obtained from a publicly available video of the test [95]) for a
photo of the test scene. However, in the co-simulation presented herein,
since the MGRU3 CAD model is inaccessible, a similar VIPER rover
model publicly available in the latest Chrono distribution [50] is used.
The rover moves around by prescribing all its four wheels a 0.8 rad/s
angular velocity on inclines of 0, 5, 10, 15, 20, and 25°, where the
inclines are modeled in simulation by adjusting the direction of the
gravitational pull.

The experiment shown in Fig. 28 was done at Glenn Research Cen-
ter, where the terrain simulant used is called GRC-1 [96]. In the co-
simulation presented herein, the numerical representation of the terrain
is inherited from [94], where seven different DEM element types are
used (rendered in Fig. 29), each with a specific size and percentage of
the total weight, see Table 10. The size distribution is plotted in Fig. 30,
showing the DEM representation is uniformly increased by a factor of
20 the actual particle sizes encountered in GRC-1. For more details and
the validation of this terrain representation, see [94]. A rendering of
the co-simulation is shown in Fig. 32.
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Fig. 30. The size distribution of the DEM elements used in the rover co-
simulation, plotted against a scaled real-world GRC-1 simulant size distribution.

6.4.1. Co-simulation

The co-simulation setup is depicted in Fig. 31. DEM-Engine han-
dles the evolution of the granular terrain, while Chrono manages the
rover dynamics. The two simulators are connected through the meshes
representing the wheels. DEM-Engine calculates the force exerted by
the terrain on the wheel mesh. This force information is employed
when the Chrono numerical integrator propels the evolution of the
meshes forward in time. Subsequently, the updated position of the
wheels will serve as new boundary conditions for the granular mate-
rial. The rover’s mobility is also influenced by forces that originate in
the chassis and suspension, independent of the motion of the granular
terrain. In this co-simulation, the rover system progresses with a time
step size of 2 X 10> s, whereas the DEM system uses a smaller time step
of 2x 1076 5. This means for every ten DEM time steps, the multi-body
system in Chrono advances by just one step.

6.4.2. Active box scheme

Using DEM-Engine’s API, the user can implement a partially active
simulation domain to reduce computational cost. The user can assign
different family tags (introduced in Sec. 2.2.2) to the elements inside
and outside certain regions in the simulation domain to distinguish
them. In this use case, no assigned motions are prescribed to the el-
ements inside the 1 m X 0.5m boxes centered around each wheel, as
shown in Fig. 32 — their motion is to be determined by the simulator.
These boxes are called active boxes. The DEM elements outside the ac-
tive boxes are fixed in position and do not participate in the contact
detection, i.e., remain dormant and contribute no computational cost.
Note that the locations of the active boxes are updated (based on the
locations of the wheel) 10 times per simulation second in this test.

The full-simulation data shown in Fig. 33 displays no notable dif-
ference compared to the active box-based counterpart. In [94], it is re-
ported that the 15-second simulation requires approximately 109 hours
of run time on two NVIDIA A100 GPUs. At the same time, the active
box-based simulation presented herein, which involves 11,336,638 DEM
elements (34,691,952 component spheres) takes around 30 hours. This
suggests that the more expeditious active box-based tests are likely suf-
ficient to gain insights into the rover’s mobility attributes, while costing
a fraction of the computational cost of a full simulation. The numeri-
cal simulations also show good agreement with the experimental data
(black line) from NASA’s Glenn Research Center MGRU3 experiments
with the real-world GRC-1 simulant. The slip ratio increases relatively
slowly with the slope angle in the interval between 0° and 10°. Past
10°, this rate of increase escalates, and the rover almost fails to climb
on a 25° incline.
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Fig. 31. The co-simulation workflow between the multi-body system simulated by Chrono and DEM-Engine.
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Fig. 32. A rendering of the VIPER rover operating on a 20° incline. The active box is marked and only the elements in that region are subject to the simulation
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Fig. 33. The comparison between the full-domain and active box-based VIPER
rover slip test results. The experimental data used for comparison (black line)
are from Glenn Research Center’s MGRU3 experiments with the GRC-1 simu-
lant.

7. Conclusions and future directions

This paper has introduced Chrono DEM-Engine, an open-source,
physics-based, dual-GPU DEM package that supports complex element
shapes, positioning it as an enhancement to the existing Chrono::GPU
simulator. The most distinctive implementation feature of Chrono DEM-
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Engine is its partitioning of kinematic processes, such as contact de-
tection, and dynamic computations, e.g., computation of the contact
forces and carrying out numerical integrations. The resulting two com-
putational threads operate asynchronously and share data only when
necessary. Chrono DEM-Engine supports custom force models through
just-in-time CUDA kernel compilation.

This manuscript first presents the C++ and Python code implemen-
tations. They are detailed to highlight the primary code features and
specialized software components. From the default force model, Hertz—
Mindlin, which possesses the capability to trace the history of contact
interactions, the paper focuses on the code structure. Emphasis is placed
on the data handling, accompanied by an overview of the procedure
for customizing the force model. Following a rigorous contact vali-
dation against analytical solutions, the computational performance of
DEM-Engine’s core implementation is evaluated. This new DEM sim-
ulator can process tens of millions of elements on two A100 GPUs,
achieving a throughput of one million time steps for one million DEM
elements within an hour. In contrast to its predecessor, Chrono::GPU,
which demonstrated in third-party studies to be two orders of magni-
tude faster than established DEM packages, the scaling analysis in this
paper reveals that the new solver further increases this performance
by a factor of 2x. Furthermore, the new simulator demonstrates linear
scalability for up to 150 million component spheres using two GPUs.

The paper validates the solver’s implementation through a compre-
hensive set of tests, including fine-grain force model evaluations and
macro-scale experiments, such as ball drop, hopper flow rate, and rover
climbing. The software is designed to handle complex particle geome-
tries using clump models. This feature is validated through comparisons
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with physical data for the flow discharge of spheres, cylinders, and com-
binations thereof from a rectangular hopper. Moreover, the software
integrates with the multi-physics simulation engine Chrono, facilitating
co-simulations with mechanical and multi-body systems, as evidenced
by the proposed test case of simulating the rover operation.

Chrono DEM-Engine is an open-source, BSD3-distributed research
code. As such, there is an inherent learning curve associated with its
use. Users are required to sift through numerous APIs. Identifying and
addressing the tool’s limitations can also be daunting and may require
time-consuming customization. This challenge becomes even more pro-
nounced in modern cross-disciplinary research, where researchers are
simultaneously handling a range of tools. However, the emergence of
Large Language Models (LLMs) [97] offers a potential solution. As a fu-
ture development thrust, it remains to investigate the use of LLMs to
design assistant Als that can translate users’ natural language directives
into executable DEM-Engine scripts. If this research trajectory proves
successful, the resulting tool will be made available as open-source.

Code availability

Chrono DEM-Engine is accessible as part of Project Chrono at
https://github.com/projectchrono/DEM-Engine. All numerical exam-
ples discussed in this paper are provided as demo simulations.
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