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Abstract. The modeling of the interaction between brain structure and
function using deep learning techniques has yielded remarkable success
in identifying potential biomarkers for different clinical phenotypes and
brain diseases. However, most existing studies focus on one-way mapping,
either projecting brain function to brain structure or inversely. This type
of unidirectional mapping approach is limited by the fact that it treats
the mapping as a one-way task and neglects the intrinsic unity between
these two modalities. Moreover, when dealing with the same biological
brain, mapping from structure to function and from function to structure
yields dissimilar outcomes, highlighting the likelihood of bias in one-way
mapping. To address this issue, we propose a novel bidirectional map-
ping model, named Bidirectional Mapping with Contrastive Learning
(BMCL), to reduce the bias between these two unidirectional mappings
via ROI-level contrastive learning. We evaluate our framework on clinical
phenotype and neurodegenerative disease predictions using two publicly
available datasets (HCP and OASIS). Our results demonstrate the supe-
riority of BMCL compared to several state-of-the-art methods.

Keywords: Bidirectional reconstruction - BOLD signals - Structural
networks - Prediction - Biomarkers

1 Introduction

Recent advancements in applying machine learning techniques to MRI-based
brain imaging studies have shown substantial progress in predicting neurodegen-
erative diseases (e.g., Alzheimer’s Disease or AD) and clinical phenotypes (e.g.,
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behavior measures), and in uncovering novel biomarkers that are closely related
to them [4]. Different MRI techniques can be used to depict different aspects of
the brain organization or dynamics [8,19,23]. In general, diffusion MRI can derive
brain structural networks that depict the connectivity of white matter tracks
among brain regions, which gains system-level insights into the brain structural
changes related to brain diseases and those phenotypes [29]. However, the struc-
tural networks may not inform us about whether this tract or the regions it con-
nects are “activated” or “not activated” in a specific state. As a complementary
counterpart, the functional MRI provides measures of BOLD (blood-oxygen-
level-dependent) signals to present activities of brain regions over time [3], but
no clue on whether those regions are physically connected or not. Therefore,
different brain imaging data provide distinct but complementary information,
and separately analyzing the data of each modality will always be suboptimal.
In this context, multimodal approaches are being explored to improve predic-
tion accuracy by integrating multiple information sources [9,13,27,31-33]. For
example, it has been shown that combining different modalities of data (e.g.,
image and text) can enhance performance in image classification and clustering
tasks [27,33]. In the healthcare field, multimodal machine learning has shown its
potential in disease detection and diagnosis [13]. In brain imaging studies, many
studies aim to explore multimodal MRI data representations by modeling the
communications between functional MRI and its structural counterpart. Most of
these studies primarily focus on establishing a unidirectional mapping between
these two imaging modalities (i.e., mapping from structural MRI data to the
functional counterpart [24,32], or the inverse [16,31]). However, for the same
biological brain, these two mappings generate distinct results, which highlights
the likelihood of bias in the unidirectional mapping approach.

To address this, we propose a mnovel bidirectional mapping framework,
where the mapping from structural MRI data (i.e., diffusion MRI-derived brain
structural network) to the functional counterpart (i.e., BOLD signals) and
the inverse mapping are implemented simultaneously. Unlike previous studies
[6,15,22,28,32] that employ unidirectional mappings, our approach leverages
bidirectional mapping, minimizing the discrepancies in the latent space of each
one-way mapping through contrastive learning at the brain region-of-interest
level (ROI level). This method subsequently unveils the inherent unity across
both imaging modalities. Moreover, our framework is interpretable, where we
employ integrated gradients [20] to generate brain saliency maps for interpret-
ing the outcomes of our model. Specifically, the identified top key brain ROIs in
the brain saliency maps are closely related to the predicted diseases and clini-
cal phenotypes. Extensive experiments have been conducted to demonstrate the
effectiveness and superiority of our proposed method on two publicly available
datasets (i.e., the Human Connectome Project (HCP), and Open Access Series
of Imaging Studies (OASIS)). In summary, the contributions of this paper can
be outlined as follows:
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— We propose a novel bidirectional framework to yield multimodal brain MRI
representations by modeling the interactions between brain structure and the
functional counterpart.

— We use contrastive learning to extract the intrinsic unity of both modalities.

— The experimental results on two publicly available datasets demonstrate the
superiority of our proposed method in predicting neurodegenerative diseases
and clinical phenotypes. Furthermore, the interpretability analysis highlights
that our method provides biologically meaningful insights.
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Fig. 1. The pipeline of Bidirectional Mapping with Contrastive Learning (BMCL).
The brain structural network and BOLD signals are initially processed by two sep-
arate encoders for representation learning. Afterward, ROI-level contrastive learning
is applied to these extracted representations, facilitating their alignment in a common
space. These derived representations are then utilized for downstream prediction tasks.

2 Method

The proposed bidirectional mapping framework (Fig. 1) comprises two encoder-
decoder structures. One constructs BOLD signals from structural networks,
while the other performs the inverse mapping. A ROI-level’s contrastive learn-
ing is utilized between the encoder and decoder to minimize the distinction
of the latent spaces within two reconstruction mappings. Finally, a multilayer
perceptron (MLP) is utilized for task predictions. It’s worth mentioning that
instead of using the functional connectivity matrix, we directly utilize BOLD
signals for bidirectional mapping. We believe this approach is reasonable as it
allows us to capture the dynamic nature of the brain through the BOLD time
sequence. Using the functional connectivity matrix may potentially disrupt this
dynamic information due to the calculations of correlations. Furthermore, our
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experiments indicate that our encoder can directly model the temporal relations
between different brain regions from the BOLD signals, eliminating the need to
construct functional networks.

Preliminaries. A structural brain network is an attributed and weighted graph
G = (A, H) with N nodes, where H € RY*9 is the node feature matrix, and
A € RM*N g the adjacency matrix where a; ; € R represents the edge weight
between node i and node j. Meanwhile, we utilize Xz € R¥*T to represent the
BOLD signal matrix derived from functional MRI data of each subject, where
each brain ROI has a time series BOLD signal with 7" points.

Reconstruction. For the reconstruction task, we deploy an encoder-decoder
architecture and utilize the Lq loss function. Particularly, we use a multi-layer
feed-forward neural network as the encoder and decoder. Our method differs
from previous studies [21,32], where the encoder and decoder do not necessitate
a GNN-based framework, allowing us to directly utilize the adjacency matrix
A of structural networks as the inputs. Previous studies randomly initialize the
node features (i.e., H) for the GNN input, since it is difficult to find informa-
tive brain node features that provide valuable information from the HCP and
OASIS datasets. Hence, we propose a reconstruction framework that detours
using the node feature matrix. Our framework is bidirectional, where we simul-
taneously conduct structural network and BOLD signal reconstruction. Here,
we have latent representations Zg = Encoderg(Xg) and Zs = Encoderg(A) for
BOLD signals and structural networks, respectively.

ROI-Level’s Contrastive Representation Learning. With latent repre-
sentation Zz € RV*?2 generated from BOLD signal and Zs € RY*4s from
structural networks, we then conduct ROI-level’s contrastive learning to asso-
ciate the static structural and dynamic functional patterns of multimodal brain
measurements. The contrastive learning loss aims to minimize the distinctions
between latent representations from two modalities. To this end, we first uti-
lize linear layers to project Zi and Zgs to the common space, where we obtain
Ziy =WZg+b, Z € RVX4 and similarly, Z%5 € RV*4. We use (22, 27);—1...5 to
denote representations from the same ROI, where 22 and 2 are elements of Z
and Z%, respectively. For the same brain ROI, the static structural representation
and the dynamic functional counterpart are expected to share a maximum sim-
ilarity. Conversely, for the pairs that do not match, represented as (zZ, 27 )i
these are drawn from different ROIs and should share a minimum similarity.
To formally build up the ROI-level’s contrastive loss, it is intuitive to con-
struct positive samples and negative ones based on the match of ROIs. Specif-
ically, we construct (22, 27);=1..n as positive sample pair, and (2, 25);.; as

negative sample pair. And our contrastive loss can be formulated as follow:
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. . . B S
Lot = —E | log Similarity(z;, z7)
i=1.- NZ i, Similarity(zP, 2 jS)
Lon=—E | log Similarity(z?, 2P) (1)
i=1.- NZ] , Similarity(z?, 2P)

Lcontrust = ECI + £C2

where Similarity(-) is substantiated as cosine similarity.

Loss Functions. The loss functions within our proposed framework are summa-
rized here. Besides the reconstruction loss (L,..) and the ROI-level’s contrastive
loss (Lcontrast), we utilize cross-entropy loss (Lsupervised = Leross—entropy) for

classification tasks, and Ly loss (Lsupervised =

['mean—absolute—e'rror) for regres-

sion tasks, respectively. In summary, the loss function can be described as:

L= m ACcontrast + 772£7‘ec + 773£supervised7

where 71,12 and n3 are loss weights.
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Fig. 2. Bidirectional reconstruction results on the HCP and OASIS dataset.
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3 Experiments

3.1 Data Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first
includes data from 1206 young healthy subjects (mean age 28.19 4+ 7.15, 657
women) from the Human Connectome Project [25] (HCP). The second includes
1326 subjects (mean age = 70.42 + 8.95, 738 women) from the Open Access
Series of Imaging Studies (OASIS) dataset [12]. Details of each dataset may be
found on their official websites. CONN [26] and FSL [10] were used to recon-
struct the functional and structural networks, respectively. For the HCP data,
both networks have a dimension of 82 x 82 based on 82 ROIs defined using
FreeSurfer (V6.0) [7]. For the OASIS data, both networks have a dimension of
132 x 132 based on the Harvard-Oxford Atlas and AAL Atlas. We deliberately
chose different network resolutions for HCP and OASIS, to evaluate whether the
performance of our new framework is affected by the network dimension or atlas.
The source code is available at: https://github.com/FlynnYe/BMCL.

3.2 Experimental Setup and Evaluation Metrics

We randomly split each dataset into 5 disjoint sets for 5-fold cross-validations,
and all the results are reported in mean (s.t.d.) across 5 folds. To evaluate the
performance of each model, we utilize accuracy, precision score, and Fj score
for classification tasks, and mean absolute error (MAE) for regression tasks.
The learning rate is set as 1 x 1074 and 1 x 1073 for classification and regression
tasks, respectively. The loss weights (i.e., 71,12, and n3) are set equally as 1/3. To
demonstrate the superiority of our method in cross-modal learning, bidirectional
mapping, and ROI-level’s contrastive learning, we select four baselines including
2 single-modal graph learning methods (i.e., DIFFPOOL [30] and SAGPOOL
[14]), as well as 2 multimodal methods (i.e., VGAE [11] and DSBGM [22]) for
all tasks. We use both functional brain networks, in which edge weights are
defined as the Pearson Correlation between BOLD signals, and brain structural
networks as input for baseline methods. The functional brain networks are signed
graphs including positive and negative edge weights, however, the DIFFPOOL,
SAGPOOL, and VGAE can only take unsigned graphs (i.e., graphs only include
positive edges) as input. Therefore, we convert the functional brain networks to
unsigned graphs by using the absolute values of the edge weights.

3.3 BOLD Signal and Structural Network Reconstruction

We train the model in a task-free manner where no task-specific supervised loss
is involved. The MAE values between the edge weights in the ground-truth and
reconstructed structural networks are 0.0413 +0.0009 and 0.0309 +0.0015 under
5-fold cross-validation on the HCP and OASIS, respectively. The MAE values
between ground-truth and reconstructed BOLD signals are 0.0049 £+ 0.0001 and
0.0734£0.0016 on the HCP and OASIS, respectively. The reconstruction results
on HCP are visualized in Fig. 2.
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Table 1. The results for sex classification on HCP and AD classification on OASIS.
The best results are highlighted in bold font. Methods marked with { are unimodal
methods.

Method HCP (gender) OASIS (disease)

Acc Pre F1 Acc Pre F1
DIFFPOOL' w/ F|67.77 (3.56) |65.25 (2.65) |68.82 (1.72) |68.97 (1.34) |66.03 (3.36) |69.24 (1.83)
SAGPOOL' w/ F |70.95 (2.88) |69.83 (1.85) |71.44 (1.29) |65.65 (2.01) |63.33 (1.95) |67.27 (2.09)
DIFFPOOLT w/ S[58.71 (4.62) [30.96 (4.73) |40.6 (5.17) |86.04 (2.65) |64.92 (4.16) |74.01 (3.64)
SAGPOOL' w/ S [61.06 (4.58) |32.79 (3.54) |42.64 (3.78) |88.48 (2.51) |68.71 (3.92) |77.33 (3.44)

VGAE 73.59(2.42) |74.43 (1.84) |76.25 (1.49) |64.68 (2.49) [62.57 (2.19) |65.85 (1.91)
DSBGM 82.19 (2.01) |85.35 (1.99) |84.71(2.37) |78.92 (1.38) |79.81 (1.41) |80.22(2.25)

BMCL w/o F 93.68 (2.88) |91.71 (2.19) [92.31 (2.31) [90.09 (2.65) |71.26 (4.16) |83.61 (3.64)
BMCL w/o S 69.54 (1.77) |68.61 (1.71) |56.82 (2.60) |89.66 (2.93) |73.35 (3.15) |79.52 (3.29)
BMCL 94.83 (1.35)|93.47 (3.65)|93.21 (1.98)(92.23 (0.62)|84.47(2.14)|83.38(0.76)

3.4 Disease and Sex Classification

We conduct Alzheimer’s disease (AD) classification on the OASIS dataset, and
sex classification on the HCP dataset. As shown in Table 1, our proposed BMCL
can achieve the best results in accuracy, precision, and F} score for both tasks
among all methods. For example, in the AD classification, our model outper-
forms the baselines with at least 4.2%, 5.8% and 4.0% increases in accuracy,
precision and F} scores, respectively. In general, multimodal methods can outper-
form single-model methods. The superiority of our bidirectional BMCL model,
compared to the unidirectional methods, attributes to the fact that our BMCL
reduces the distinction between the latent spaces generated by two unidirectional
mappings through ROI-level’s contrastive learning.

3.5 ASR and MMSE Regression

Mini-Mental State Exam (MMSE) is a quantitative measure of cognitive status in
adults, and Adult Self-Report scale (ASR) [1] is to measure the adult’s behavior.
As shown in Table 2, our proposed BMCL model outperforms all baselines in
terms of MAE values. The regression results also demonstrate the superiority
of bidirectional mapping and the importance of ROI-level’s contrastive learning,
which is consistent with the results in the classification tasks.

3.6 Ablation Study

To demonstrate the significance of bidirectional mapping, we remove a part of
our proposed BMCL model to yield two unidirectional mappings (i.e., either
mapping from structural network to BOLD signal, or mapping inversely). As
shown in the bottom three rows in Table 1 and Table 2, the prediction results are
declined when we remove each directional mapping, which clearly demonstrates
the importance of bidirectional mapping.
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Table 2. The experimental results for ASR regression on HCP and MMSE regression
on OASIS. The best results are highlighted in bold font. Methods marked with 1 are
unimodal methods.

Method HCP (aggression) | HCP (rule-break) | HCP (intrusive) | OASIS (MMSE)
DIFFPOOL' w/ F | 2.39 (0.021) 2.26 (0.0092) 2.47 (0.15) 1.77 (0.56)
SAGPOOL' w/ F |3.07 (0.062) 2.88 (0.0022) 3.47 (0.029) 1.73 (0.79)
DIFFPOOL' w/ S | 1.78 (0.268) 1.12 (0.473) 0.61 (0.3335) | 2.13 (15.5941)
SAGPOOL' w/ S | 1.82 (0.2674) 1.13 (0.3672) 0.63 (0.2608) | 0.53 (0.2125)
VGAE 1.74(0.019) 1.37(0.051) 0.67 (0.022) 1.27 (0.25)
DSBGM 1.71 (0.11) 1.21 (0.24) 0.65 (0.026) 0.87 (0.18)
BMCL w/o F 1.98 (0.2688) 1.12 (0.3508) 0.62 (0.3145) 0.49 (0.1908)
BMCL w/o S 2.03 (0.2045) 1.11 (0.3704) 0.63 (0.3839) | 0.50 (0.2008)
BMCL 1.68 (0.2374) | 1.05 (0.5046) | 0.58 (0.3377) | 0.45 (0.1726)

Fig. 3. Saliency maps to identify top 10 regions associated with (a) intrusiveness, (b)
aggression, (c) rule-break, (d) sex, (¢) AD and (f) MMSE, respectively.

3.7 Interpretability

The 10 key brain regions (Fig. 3) associated with AD (from OASIS) and with
each sex (from HCP) are identified using the brain saliency map. The salient
regions for AD are concentrated in cerebelum (i.e., cerebelum 3 right and left,
cerebelum 8 left, cerebelum crus2 right) and middle Temporal gyrus (i.e., the
posterior division left and right, as well as the temporooccipital right of middle
temporal gyrus), which have been verified as core AD biomarkers in literature
[2,18]. Similarly, 10 key regions (Fig.3) are identified for regression tasks (i.e.,
3 ASR from HCP and MMSE from OASIS). Interestingly, several brain regions
(including left and right accumbens areas, cortex left hemisphere cuneus and
insula, as well as cortex right hemisphere posteriorcingulate and parahippocam-
pal) are consistently identified across 3 ASR scales (i.e., aggression, rule-break,
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and intrusive). This finding is supported by [21], which suggests that similar ASR
exhibits common or similar biomarkers. Also, these regions have been reported
as important biomarkers for aggressive-related behaviors in literature [5,17].

4 Conclusions

We propose a new multimodal data mining framework, named BMCL, to
learn the representation from two modality data through bidirectional map-
ping between them. The elaborated ROI-level contrastive learning in BMCL
can reduce the distinction and eliminate biases between two one-way mappings.
Our results on two publicly available datasets show that BMCL outperforms
all baselines, which demonstrates the superiority of bidirectional mapping with
ROI-level contrastive learning. Beyond these, our model can identify key brain
regions highly related to different clinical phenotypes and brain diseases, which
demonstrates that our framework is interpretable and the results are biologically
meaningful. The contrastive learning method, while emphasizing the alignment
of features from different modalities, may inadvertently neglect the unique char-
acteristics inherent to each modality. Moving forward, we intend to refine our
method by aiming for a balance between the alignment of modalities and the
preservation of modality-specific information. Additionally, the pre-selection of
important features or the consideration of subnetworks holds promising for fur-
ther research.
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